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Abstract

The determinantal complezity of a polynomial f is defined here as the
minimal size of a matrix M with affine entries such that f = det M. This
function gives a minoration of the more traditional size of an arithmetical
formula.

Consider the polynomial ”permanent” Permy of a d x d matrix with
entries X; ;. A conjecture in complexity theory says that the determi-
nantal complexity (de) of Permg should not be polynomial in d.

In this article we prove that dc(Permy) > d?/2, improving the previ-
ously known minoration, v/2d. We also begin a systematic study of the
function dc, and compute it for the homogeneous polynomials of degree
2.

1 Introduction

The size of an arithmetical formula is the number of symbols (4, x) which it
contains. The complezity of a polynomial defined over a field k is the minimum
size of formulas defining it (see [11]). Using this notion of complexity, Valiant
gave algebraic analogs to algorithmic complexity problems such as P # NP
([11], [12], [13]). In this context, we would like to find lower bounds to the
complexity of certain sequences of polynomials. Such a sequence is given by
the permanent Perm,, of a matrix M = (m; ;) of size n x n:

n
Perm, (M) = Z Hmiﬂ(i),
oceYX, 1=1

where ¥, is the permutation group of the set {1,---,n}. A central conjecture
is:

Conjecture 1.1 The complezity of Perm,, is not bounded by a polynomial
function in n.

To approach this kind of problem, Valiant makes use of determinants: A
polynomial P € k[Xy,...,X,,] is called affine projection of a determinant



of size n if there exists an affine function F' : k™ — M, (k) such that:

P =detoF. In [11], Valiant prove that, if P is a polynomial of k[ X1, ..., X,,]

of complexity ¢, then P is affine projection of a determinant of size 2c.
Thanks to this result, we can give the

Definition 1.1 The determinantal complexity of a polynomial P over k is
the smallest integer n such that P is affine projection of a determinant of size
n. It is denoted by de(P).

The Valiant’s result tells us that the determinantal complexity of a poly-
nomial is less than or equal to the double of its complexity. A conjecture
is:

Conjecture 1.2 The function dc(Permy,) is not polynomial in n.

Conjecture 1.1 follows from Conjecture 1.2, but these two assertions are not
equivalent. The smallest known arithmetical formula to write the determinant
is of size n@™(™) which only gives: complexity(P) < de(P)°(n(@P) More-
over, the complexity of the determinant is conjectured not to be polynomial,
even if algorithms (Strassen’s algorithm for example) are able to compute the
determinant of a given matrix in O(n?8!) steps (no such algorithm exists for
the permanent).

In this article, we prove some results on the determinantal complexity of
homogeneous polynomials. For an homogeneous polynomial of three variables
(or less) the determinantal complexity is known (see Section 2). We determine
the determinantal complexity of the homogeneous polynomials of degree 2:

Theorem 1 We assume that k is algebraicaly closed. Let q be a polynomial
of degree 2 defining a quadratic form of rank r, then:

] 4
o) = Ty e

where [x]| denotes the unique integer such that [z] — 1 < z < [z], for all real
number x.

In 1913, Polya (see [9]) already asked if the permanent can be written as a
determinant. After works of Szeg6 (see [10]) on the Polya’s question, Marcus
and Minc shown in 1961 (see [7]) that dc(Perm,,) > n. In spite of recent work
of Mulmuley and Sohoni (see [8]), the best known lower bound for dc(Perm,,)
was linear. Actually, improving a previous result of Zur Gathen [5], Jin-Yi
Cai proved in [3] that: dc(Perm,) > +/2n. The main result of this article is a
quadratic lower bound to the function de(Permy,):

. . . 2
Theorem 2 If the characteristic of k is zero, dc(Perm,) > %-.



Consider the restriction SPerm,, of Perm,, to the symmetric matrices of
size n X n; so that, SPerm,, is a polynomial in M variables. In [6], it is
shown that for any n > 3 we have dc(SPerm,,) > n. Here, we obtain the

following improvement:

Theorem 3 If the characteristic of k is zero, de(SPerm,,) > "("4+1).

The proof of Theorem 2 comes from the following observation: Let S be the
hypersurface of M,,(k) defined by the polynomial “determinant”. For every X
in S, there exist affine subspaces of big dimension (precisely, of codimension
less than n + 1) contained in S and passing through X. From this, the rank of
the second fundamental form (which takes account of infinitesimal variations
of the tangent space) is small (precisely, less than 2n + 1).

On the other hand, if S’ is the “permanent” hypersurface of M,,(k) and
X' a general point of S’ we will prove that the rank of the second fundamental
form in X' equals m?.

If an affine function F' : K™*™ — k™*" exists, such that Perm = detoF’,
then the second fundamental forms w and w’ satisfy the inequality:

rkxw' < rkp(xyw,

and Theorem 2 follows. Theorem 3 is shown by the same method.

2 Determinantal complexity: low degree or dimen-
sion

We assume in this section that k is an algebraically closed field.

Let V be a k-vector space. The space k[V] of polynomials functions on V'
is graded by the degree. If f belongs to k[V], we denote by [f] its component
of degree k.

In this paper, we are only concerned with determinantal complexity of ho-
mogeneous polynomials. This restriction allows effective use of the graduation.

Let f be an homogeneous polynomial. For degree reasons, one have:

de(f) > deg(f).

Assume that dc(f) = deg(f) =d.

Let F: V — My(k) be an affine function such that f = det oF, and let
F :V — My(k) be the linear part of F: F is obtained from F by omitting
the constant part.

Since f is homogeneous of degree equal to the size of the matrix, it comes
f =det oF = detoF. In that case, we will say that f is linear determinantal.
The zero locus of f is a projective hypersurface of P(V') which will also be said
linear determinantal. Such hypersurfaces have been studied since a long time
in algebraic geometry.



If dimV equals to 1, 2 or 3, every homogeneous polynomial f is linear
determinantal: The case of dimension 1 is obvious. If dimV = 2 we have (on
any field k):

apy —<

= aoyd + alyd_lx +---+ ad:vd.
—T

aq—1Y + aqx Y

If dimV = 3, we refer to [4], where it is proved that any plane curve is linear
determinantal.

Partial results are known in bigger dimension: In [2], Brundun and Logar
show that every cubic surface of P? is linear determinantal except for the cubic
containing a single line (unique, up to the action of the projective group). This
last surface exactly have one singular point. (see also [1] for a different proof
for smooth cubic surfaces).

Remark: This last result shows that, contrary to what we may expect from
a “complexity” function and from the behaviour of dc in the quadratic case
(see Theorem 1), the dc function is not semicontinuous.

Summarizing what has been said above, we write down

Proposition 2.1 If dimV < 3 or degf = 1, then f is linear determinantal
and de(f) = deg(f).

Let us consider now the case of quadratic polynomials.

Theorem 1 Let g be a non zero quadratic form on V. Let r denote the rank
of q. Then,
2 ifr <4

delq) = { |—% + 1-| else

Before proving the theorem, we show

Lemma 2.1 Letn > 2 be an integer and F : V — M, (k) be an affine map.

We assume that det oF is a quadratic form on V and denote by r its rank.
Ifn=2thenr <4 and if n <3 then r <2(n —1).

PROOF. Set ¢ = detoF and M = F(0). Let s denote the rank of M. Since
q(0) =0, s <n — 1. There exists two invertible matrices A and B such that

AMB ' = ( g }) ) =: Mj,

where I is the identity matrix of size s x s. Moreover, there exist such matrices
A and B such that det(A) = det(B). Set F : V — M, (k), v = AF(v)B~L.



Then, ¢ = det o and F(0) = M. So, we may assume that M = M.

We can write F' = (Fjj)1<ij<n, Where the Fj; are n? affine forms on
V. Set k = n —s. Since M = My, all the F;; are linear forms excepted

Fret1k+41:- -+, Fon-
In particular, for any o € Xy, Fi(1) -+ - Fyo(x) is homogeneous of degree k.
But, ¢ = Eaezn Flg(l) ce Fm(n); and so k < 2.

Let us assume that £ = 2. We have:

g =detoF = [det OF]2: dezn [Fla(l) Tt Fna(n)]Q
=Y vex, Fro0) Fao@) [F30(3) ** * From)lo-

But, for alli > 3, if o(i) # 4, [Fas(3) * * - Fro(n)lo = 0 since Fj, ;) is a linear form.
Moreover, [F33--- Fpplo = 1. One easily deduces that ¢ = Fi1Fayy — Fa1 Fig;
and so that r < 4.

Let us now assume that £k = 1. In the same way as above, one easily
checks that [detoF]|; = Fi; and so that Fi; = 0. If 0 € X, we set P, =
[Fga(g) e Fna(n)]l' We have

g=detoF = Y F,)Ps. (i)
oEYX ),

If there exists two ¢ > 2 such that o (i) # i then P, = 0. On the other hand,
ifo(1) = 1 then Fj,(;) = 0. Finally, in Sum (i), we can only keep the transposi-
tions (1,4) fori = 2,---,n. We obtaing =) 7" , F1;F;;, and sor < 2(n—1). O

We can now prove Theorem 1.
PROOF. Since the degree of ¢ is two, dc(g) > 2. Let us assume that r < 4.

Then, by Gauss’ Theorem, there exist four linear forms ¢1,---, ¢4 on V such
that g = w192 + @3¢4. In particular, ¢ = zl _(;03 ‘ So, dc(gq) < 2 and the
4 2

theorem follows in this case.

We may now assume that 7 > 5. Then, Lemma 2.1 shows that dc(q) >
5+ 1

If r = 2k is even, by Gauss’ Theorem there exist 2k linear forms ¢; and 1;
such that ¢ = 191 + - - - + ppr. In this case, we have:

0 1 -+ g
P11

7=\ . ..
(0 1

So, dc(g) < 5+ 1 and the theorem follows in this case.



Now, if r = 2k + 1 is odd, there exist 2k + 1 linear forms ¢;, 1; and p such
that ¢ = @191 + -+ + @py, + p?. Then, we have:

0 w1 =+ @ p
P11
g=| :
[ :
p 1
So, dc(q) < k+2 =[5+ 1] and the theorem follows in this case. O

3 Determinantal complexity: the Permanent

We assume in this section that the characteristic of k is zero.

3.1 Second fundamental form and restriction

Let £ be a k-affine space of dimension N. Let E denote the vector space
associated to £ and E* its dual. Let f : £ — k be a polynomial function.
We consider the tangent map T'f to f:

Tf:E — E*

z — T,f.
With good coordinates (i.e. by considering a base in E and its dual base in
E*), we have: Tf = (%, .. %). We now consider the tangent map T2 f
to T'f:

T?f : £ — Hom(E, E*)
x — T2f.

If v belongs to E, T2f(v) € E* denotes the evaluation of T2f at v; if w is
another vector of E, T2f(v,w) denotes the evaluation of T2f(v) at w. With

. . 2
a good choice of coordinates, we have: T?f = (%) .
192 ) 1<ij<N

At a smooth point z of the zero locus of f, T, f is the Gauss map, and T2 f is
the second fundamental form of this hypersurface.

Let F be an affine subspace of £ and g denote the restriction of f to F.
We denote by F' the vector space associated to F and F™* its dual. We consider
Tg and T?g as before.

Lemma 3.1 For all x € F, the rank of T2g is less than those of T2f.

PROOF. Let p : E* — F* be the restriction map. Since T'g is the restriction
of poTf to F and p is linear, for all z € F, T2g is the restriction to F of
poT2f. The lemma follows. O



3.2 Second fundamental form of the permanent
3.2.1 A general formula

Let G be the universal matrix
X1 o X

G = : : € My(k[X;;,1<1,5 <d])
Xg1 - Xga

and P = Perm,G.

Let 7,7, 4,7, be four integers between 1 and d, such that 7 # ¢’ and j # j'.
We denote by G; ; the submatrix of G obtained by omitting the 4-th line and j-
th column. We denote by Gy; i1} .5} the submatrix of G obtained by omitting
the two lines 4,i’ and the two columns j,j’. We also define polynomials P; ;
and Py; i1 (5,51 as follows:

P,j = Permy (Gij)
P 0 ifi=14orj=y
{Z,Z’}a{]:]’} - Permd—2(G{’i,’i’},{j,j’}) else.
Let e;; denote the d x d-matrix with coefficient 1 at the entry (4,j) and 0
anywhere else. We call (e11, -, €e1pn,€21, "+, €, ,€ny) the canonical base

of My, (k), and its dual the canonical base of M, (k)*.

Lemma 3.2 Let J be the matriz of T?Perm, in the canonical bases of My, (k)
and My, (k)*. Then, the matriz J is symmetric and:

0 Jiog - J1,d
J= Jl-,g 0
: : Ja-1,4
Jiag o Ja—1d 0
where J; i is the following symmetric matriz of size d X d:
0 Punpz a Phiiyr.a)
T = P iz .0

: : Py iy ga—1,4}
P{i,i’},{d,l} e P{iai'}7{dad_1} O
PRrROOF. We have to prove that, for all 4,4', 7, 7 between 1 and d:
0’P B
aijale 5! o P{i’il}’{j’j’}.

By expanding along the i*" line, one easily checks that 6‘9?1; equals ;. In

. Y . orP - - o o2p _
particular, if ¢ = ¢' or 5 = j, ax;; 1 independent of X;/;» and X, 0K 7
0 = Pg (- i # 4" and j # j', the same computation as above shows

a%p _
that 5eaxy 5 = Pl O



3.2.2 Evaluation at a special point

We assume here that d > 3. Consider the following d x d-matrix:

1-d 1 --- 1
A= ,
11 1

The goal of this subsection is

Proposition 3.1 The permanent of A equals zero and the rank of TﬁPermd
equals d?.

Let us start with some computation. Let N be the k X k-matrix with all
coefficients equal to 1. Set ny = Permy (Ny).

Lemma 3.3 We have:

ng = k! (ii)
Permy(A) = 0 (iii)

PROOF. By expanding along the first line, one obtains ny = kng_1. Equal-
ity (ii) follows by an immediate induction.

By expanding along the first line, one obtains Permgy(A) = (1 — d)ng—1 +
(d — 1)ng_1. The second equality follows. O

Lemma 3.4 Let i,4, 7,5 be four integers between 1 and d such that i # 7'
and j # j'. We have:

o = { Gty S (v
d—2)! 7 R U
Py, (4) = {(_2(61213)! 61;6{,.7, v ")

PRrOOF. Computation of P;;(A): If 1 € {i,5}, P;;(A) = Permg_1(Ng—1) =
(d —1)!. Else, by expanding along the first line one obtains Pj;(A4) = (1 —
d)ng o+ (d—2)ng o =—(d—2).

Computation of Pp;in ;i (A): I 1 € {i,5,i,5'}, Ppny,g,3(A) is the
permanent of Ny_o and the lemma follows in this case. Else, by expanding
along the first line one obtains Py; ;1 151 (4) = (1 = d)ng—3 + (d — 3)ng—3. O

Lemmas 3.2, 3.3 and 3.4 allow us to compute easily the matrix J(A) of
TjPermd:



Lemma 3.5 With above notation, we have:

0 B B B
B 0 C C
JA)=d-3)!'| B C 0
o e, .
B C --- C 0
where B and C are the following matrices of size d X d:
0 d—2 d—2 ... d-2
0 1 1 d—2 0 -2 -2
1 0
B=(d-2) C=1d-2 -2 0
o
: : ‘. .. -2
1 10 d—2 -2 - =2 0

To show Proposition 3.1, it remains to prove that J(A) is invertible. For
this, we will use the following

Lemma 3.6 Let Q, R be two invertible matrices of size a X a (a € N) and
b € N. Then, the matriz

0 Q Q ... Q
Q 0 R ... R

M=|Q R o . ‘[,
: : . . R
Q R - R 0

of size ab x ab is invertible.

ProoFr. By multiplying on the left and on the right by the matrix diagonal
by blocks with diagonal (Q~!,I,---,I) (I denotes the identity matrix of size

Ur
a X a), we may assume that @ = I. Let : a vector of the kernel of M
Up
(each Uj is a column vector of size a). We have:
Uy+--4+U, = 0
Ur + RU3+---+RU, = 0

Ui + RU;+---+RU,_; = 0,

and so
Uo+---+U, = 0
Ui — RUy =0
Ui — RU =0

9



By multiplying the first line by R one obtains that (b — 1)U; = 0, and since
the characteristic is zero, one obtains U; = 0. Now, the following lines imply
thatUzz---:Ub:(). O

PROOF.[ of Proposition 3.1] We apply Lemma 3.6 three times: firstly to obtain
that the matrices B and C are invertible, and to the matrix J(A). O

3.3 Second fundamental form of determinant

Proposition 3.2 For any non invertible matriz A € My(k), the rank of
Tj det,, is less than or equal to 2n.

PROOF. Let A be as in the proposition. Let P and ) be two invertible
n X n-matrices. Since the map M,,(k) — M, (k), B — PBQ~! multiply the
determinant by a non zero constant (namely, det,(P) det,(Q)~!), the rank of
T2 det,, equals those of TIQD AQ-1 det,,. So, we may assume that A is a diagonal
matrix with diagonal of the form (0,---,0,1,---,1). Now, we achieve the proof
by computations analogue with that made in Section 3.2.1. O

3.4 The Permanent and Determinant problem

Here comes our main result:
Theorem 2 We have dc(Permg) > %.

Let F' : My(k) — M, (k) be an affine map such that Perm,; = det, oF.
We have to prove that n > %.

Firstly, by using the second fundamental form, we obtain a new proof of a
lemma of Jin-Yi Cai (see [3, p125]):

Lemma 3.7 With above notation, F is injective.

PROOF. By absurd, we assume that there exists a non zero vector v € My(k)
in the kernel of the linear part of F. For all z € My(k) and ¢ € k , we have:

Permy(z + tv) = det,, o F(z + tv) = det, o F(z) = Permg(x).

So, T,Perm, evaluated to v equals zero; in other words, T, Perm, belongs to
H := {p € My(k)* : ¢(v) = 0}. Since v is non zero, H is an hyperplane in
My (k)*. So, for all y € My(k) the image of T2Permy € Hom(My(k), Mg (k)*)
is contained in H; in particular the rank of TgPermd is less than d? — 1. This

y
contradicts Proposition 3.1. O

PROOF.[ of Theorem 2| Set F denote the image of F.. By Lemma 3.7, the re-
striction g of det,, at F is affinely isomorphic to Perm,. So, by Proposition 3.1,
there exists = in F such that the rank of 72g equals d2. But, by Lemmas 3.1,
this rank is less than or equal to those of T2 det,, which is by Proposition 3.2
less than or equal to 2n. Finally, we have d? < 2n. O

10



3.5 The symmetric permanent

Consider the polynomial SPermg in 4% variables obtained from Permg by

restriction to the symmetric matrices. We have:

Theorem 3 We have, dc(SPermy) > d(djl).

We prove Theorem 3 exactly as Theorem 2 with the following proposition
in place of Proposition 3.1.

Proposition 3.3 The permanent of A equals zero and the rank of TjSPermd
equals @.
PROOF. Let Sym, (resp. ASym,) denote the set of symmetric (resp. antisym-
metric) matrices of size d x d. We claim that ASym, is the orthogonal Symf[
of Sym for the bilinear form T3Permy on My(k).

Firstly, we notice that

2
T4Permy(ei; + €ji, ek — €x)

Py (A) + Piryiin (A) = Pringiey (A) — Py ey (A)
= 0.

Indeed, since A is symmetric, we have Ppyy(in(A4) = Ppiyginy(A) and
Py (A) = Ppygjry(A). This prove that ASym, is contained in Symj.
But, by Proposition 3.1, the dimensions of these vector subspaces are equal.
The claim follows.

The claim implies in particular that Sym, N Symj = {0}. The proposition
is proved since the bilinear form TﬁSPerm is the restriction of TjPerm to
Sym,. O
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