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Abstract

Let G be a complex connected reductive group. The Parthasarathy–Ranga Rao–
Varadarajan (PRV) conjecture, which was proved independently by S. Kumar and
O. Mathieu in 1989, gives explicit irreducible submodules of the tensor product of
two irreducible G-modules. This paper has three aims. First, we simplify the proof
of the PRV conjecture, then we generalize it to other branching problems. Finally, we
find other irreducible components of the tensor product of two irreducible G-modules
that appear for ‘the same reason’ as the PRV ones.

1. Introduction

1.1 The original PRV conjecture
Parthasarathy–Ranga Rao–Varadarajan (PRV) conjectured in the sixties the following.

The PRV conjecture. Let G be a complex connected reductive group with associated Weyl
group W . Let VG(µ) and VG(ν) be two irreducible G-modules with highest weights µ and ν
respectively. Then, for any w ∈W , the irreducible G-module VG(µ+ wν) with extremal weight
µ+ wν, occurs with multiplicity at least one in VG(µ)⊗ VG(ν).

This conjecture was proved independently by Kumar in [Kum88] and Mathieu in [Mat89].
The aim of this paper is to simplify the proof of the PRV conjecture and to generalize it in two
directions.

1.2 Two generalizations
We now assume that G is a subgroup of a bigger connected reductive group Ĝ. Fix a Borel
subgroup B̂ and a maximal torus T̂ ⊂ B̂ of Ĝ such that B = B̂ ∩G is a Borel subgroup of G
and T = T̂ ∩G is a maximal torus of G. Consider the restriction map ρ :X(T̂ )−→X(T ) from
the character group of T̂ to the one of T . Let λ̂ be a dominant weight of T̂ and VĜ(λ̂) be the
irreducible Ĝ-module of highest weight λ̂. Let ŵ ∈ Ŵ . The first aim of this paper is the following.

Question. Does the irreducible G-module VG(ρ(ŵλ̂)) with extremal weight ρ(ŵλ̂) occur with
multiplicity at least one in VĜ(λ̂)?

Although the answer may be NO (examples are given in § 2.4.3 or in § 3.1), the PRV conjecture
exactly asserts that the answer is YES if G is diagonally embedded in Ĝ=G×G.

Let Ĝ/B̂ denote the complete flag variety of Ĝ, X◦ŵ denote the G-orbit GŵB̂/B̂ and Xŵ

denote its closure in Ĝ/B̂. If X◦ŵ is closed in Ĝ/B̂, we easily check that the answer is YES.
We also answer positively the question under a topological assumption on Xŵ.
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Theorem 1. We assume Xŵ is multiplicity free. Then VG(ρ(ŵλ̂)) is a G-submodule of VĜ(λ̂).

Here, Xŵ is said to be multiplicity free if its cycle class in the cohomology of Ĝ/B̂ is a linear
combination with coefficients 0 or 1 of Schubert classes. This assumption, which can be hard to
check, is fulfilled for example if G is a spherical subgroup of Ĝ of minimal rank (see [Res10a] for
the complete list of such subgroup). In particular, G is a spherical subgroup of G×G of minimal
rank and Theorem 1 implies the original PRV conjecture.

Our second generalization of the PRV conjecture deals with the decomposition of tensor
products: we exhibit new components.

Theorem 2. Let λ, µ, ν be three dominant weights of T . We assume that there exist v, w ∈W ,
a simple root α and an integer k such that:

(i) l(sαv) = l(v) + 1, l(sαw) = l(w) + 1;

(ii) λ= vµ+ wν − kα;

(iii) 06 k 6 〈vµ, α∨〉, and 06 k 6 〈wν, α∨〉.

Then VG(λ) is a submodule of VG(µ)⊗ VG(ν).

Here, α∨ denotes the coroot associated to α, and 〈·, ·〉 denotes the pairing between weights
and coroots. We obtain the original PRV conjecture by applying Theorem 2 with extremal values
of k in condition (iii).

1.3 About proofs

The two key ingredients in our proofs are the normality of Xŵ, and the fact that for any
Ĝ-linearized and globally generated line bundle L on Ĝ/B̂, the restriction map H0(Ĝ/B̂, L)−→
H0(Xŵ, L) is surjective (see Theorem 6 below). An analogous version of these two results was
already stated by Demazure in the case of any Schubert varieties in flag varieties [Dem74],
but there were gaps in the proofs. Correct proofs were obtained combining several works of
Andersen, Joseph, Ramanan–Ramanathan and Seshadri (see [And85, Jos85, RR85, Ses87]). The
version we used for Ĝ=G×G was proved by Kumar in [Kum88]. We also use the generalization
due to Brion for any G, Ĝ and multiplicity free Xŵ (see [Bri03]). These two ingredients also
play a central role in Kumar’s proof. However, Kumar’s proof also uses a complete description of
H0(Xŵ, L) mainly due to Bott and the Joseph filtration. We make these two latter ingredients
superfluous by using an argument of semistability.

1.4 Link with a saturation problem

In the general situation G⊂ Ĝ, we consider the set LR(G, Ĝ) of pairs (λ, λ̂) of dominant weights
of T and T̂ such that VG(λ) occurs in VĜ(λ̂). By a theorem due to Brion and Knop, LR(G, Ĝ) is
a finitely generated semigroup. From a theoretic viewpoint, the convex cone LR(G, Ĝ) generated
by LR(G, Ĝ) is well understood: the complete and minimal list of inequalities is parametrized by
explicit cohomological conditions (see [Res10b]). There are so many inequalities that it is
not obvious to concretely describe this cone and especially to construct points in this cone.
A starting point in the proof of Theorem 1 is the following well-known proposition.

Proposition 1. Let λ̂ be a dominant character of T̂ and ŵ ∈ Ŵ . Then there exists a positive

integer n such that VG(nρ(ŵλ̂)) is a G-submodule of VĜ(nλ̂). In other words, (ρ(ŵλ̂), λ̂) belongs

to LR(G, Ĝ).
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With the additional assumption that Xŵ is multiplicity free, Theorem 1 asserts that
(ρ(ŵλ̂), λ̂) belongs to LR(G, Ĝ). The question of understanding the difference between LR(G, Ĝ)
and LR(G, Ĝ) is known as a saturation problem. Let Λ be the subgroup of X(T )×X(T̂ )
generated by LR(G, Ĝ). The semigroup LR(G, Ĝ) is said to be saturated along a half-line if
the first non-zero point of Λ on this half-line belongs to LR(G, Ĝ) (and LR(G, Ĝ) is said to be
saturated if it is along any half-line in LR(G, Ĝ)). Theorem 1 shows that if Xŵ is multiplicity
free, LR(G, Ĝ) is saturated along all the half-lines given by Proposition 1.

Knutson and Tao proved in [KT99] that LR(SLn, SLn × SLn) is saturated. Belkale and
Kumar proved in [BK10] that LR(Sp2n, Sp2n × Sp2n) and LR(Spin2n+1, Spin2n+1 × Spin2n+1) are
saturated up to a factor 2: the second point of Λ on any half-line belongs to LR. Kapovich, Leeb
and Millson obtained important results on the saturation question for semigroups LR(G, G×G)
(see [KLM08]).

We can now explain Theorem 2 in this context. Fix two dominant weights µ and ν of T .
The intersection of LR(G, G×G) with X(T )⊗Q× {µ} × {ν} is a polytope P (µ, ν) (namely,
a moment polytope). The original PRV conjecture gives finitely many points in P (µ, ν) that
generate saturated half-lines. Theorem 2 gives finitely many segments in P (µ, ν) all whose
rational points generate saturated half-lines (see § 4.3.2 for examples).

1.5 Link with Wahl’s conjecture

Solving Wahl’s conjecture, Kumar proved in [Kum92] the surjectivity of the Gaussian map for
flag varieties. The consequence in terms of tensor product decomposition is the following.

Theorem 3 (See [Kum11]). Let µ and ν be two dominant weights of T and α be a positive
root. We set λ= µ+ ν − α and assume that the following hold.

(i) The weight λ is dominant.

(ii) For all simple roots β such that 〈µ, β∨〉= 0 or 〈ν, β∨〉= 0, α− β is neither a root nor 0.

Then VG(λ) is a submodule of VG(µ)⊗ VG(ν).

The case when α is simple in Theorem 3 can also be obtained applying Theorem 2 with
v = w = e and k = 1. Condition (ii) in Theorem 3 asserts that condition (iii) in Theorem 2 is
satisfied. Nevertheless, the conclusion of Theorem 2 does not hold if α is only assumed to be
positive (see § 4.3.1). Our Theorem 2 is not a strict generalization of Theorem 3; for example,
take G= Sp4, µ= ν = ω1 + ω2 and α= α1 + α2 (with notation of § 4.3.1 below). Note that our
proof does not work in this example because the conclusion of Lemma 6 is not satisfied (the
corresponding space has dimension three instead of one).

2. Restriction to a subgroup

2.1 Setting

Let G be a complex connected reductive group, with a fixed Borel subgroup B and maximal
torus T ⊂B. Let X(T ) denote the character group of T . For any dominant weight λ ∈X(T ),
let VG(λ) denote the irreducible G-module with highest weight λ. Let W be the Weyl group
of (G, T ). For any character λ, the orbit W · λ intersects the dominant chamber in one point
denoted by λ̄. We will denote by w0 the longest element of the Weyl group W .
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We now assume that G is a subgroup of a connected reductive group Ĝ. Let T̂ and B̂ be a
maximal torus and a Borel subgroup of Ĝ such that T ⊂ T̂ ⊂ B̂ ⊃B. We will use hats to denote
objects relative to Ĝ instead of G; for example we will write Ŵ , ŵ0, . . . . For a given dominant
character λ̂ of T̂ , we are interested in the following.

Problem. Find irreducible G-submodules of VĜ(λ̂).

2.2 G-orbits in the complete flag manifold of Ĝ

For any ŵ ∈ Ŵ , we set X◦ŵ =GŵB̂/B̂ and set Xŵ to be its closure. We also denote by σŵ the

cycle class of the Schubert variety B̂ŵB̂/B̂ in Ĝ/B̂. It is well-known that

H∗(Ĝ/B̂, Z) =
⊕
ŵ∈Ŵ

Z · σŵ. (1)

Let V be an irreducible subvariety of Ĝ/B̂. The cycle class [V ] of V in H∗(Ĝ/B̂, Z) can be
expanded as follows

[V ] =
∑
ŵ∈Ŵ

cŵ(V )σŵ, (2)

where the cŵ(V ) are non-negative integers. The variety V is said to be multiplicity free if for
any ŵ ∈ Ŵ , cŵ(V ) = 0 or 1.

2.3 The statement
Consider the restriction map ρ :X(T̂ )−→X(T ). We now state a slightly more general version
of Theorem 1.

Theorem 4. With above notation, let λ̂ be a dominant character of T̂ and ŵ ∈ Ŵ . We assume
that one of the following assumption holds.

(i) The orbit X◦ŵ is closed.

(ii) The subgroup G is spherical of minimal rank in Ĝ.

(iii) The variety Xŵ is multiplicity free.

(iv) The variety Xŵŵ0 is multiplicity free.

Then VG(ρ(ŵλ̂)) is a G-submodule of VĜ(λ̂).

The first case is easy and certainly well known.

Proof in case (i). SinceX◦ŵ is complete, the isotropy group of ŵB̂/B̂ inG is a parabolic subgroup
of G. However, it is contained in ŵB̂ŵ−1, so it is solvable. It follows that B′ := ŵB̂ŵ−1 ∩G is a
Borel subgroup of G containing T . Then there exists w ∈W such that w−1Bw =B′.

Let v be a non-zero vector of VĜ(λ̂) of highest weight λ̂. It is clear that ŵv is an eigenvector
of weight ρ(ŵλ̂) for B′ (here, we identify X(T ) and X(B′) by the restriction morphism). It
follows that wŵv is an eigenvector of weight wρ(ŵλ̂) for B, so that wρ(ŵλ̂) is dominant and
wρ(ŵλ̂) = ρ(ŵλ̂). The theorem follows. 2

We now prove case (iv) assuming that case (iii) is known.

Proof in case (iv). We apply the theorem in case (iii) to the dominant weight −ŵ0λ̂ and
the element ŵŵ0 of Ŵ . We obtain that VG(ρ(−ŵλ̂)) is contained in VĜ(−ŵ0λ̂) = VĜ(λ̂)∗.
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Since −ρ(ŵλ̂) is an extremal weight of VG(ρ(ŵλ̂))∗, we deduce that VG(ρ(ŵλ̂))∗ is a G-submodule
of VĜ(λ̂)∗. The theorem follows by duality. 2

2.4 The spherical case

In this subsection, we look at a situation where we can check when assumption (iii) is fulfilled.
This will allow us to discuss the various assumptions on examples and to include case (ii) in
case (iii).

2.4.1 Assume that G is a spherical subgroup of Ĝ; i.e. G acts on Ĝ/B̂ with finitely many
orbits. In [Bri01], Brion defined an oriented graph Γ(Ĝ/G) whose vertices are the G-orbit closures
in Ĝ/B̂. The edges, which can be simple or double, are labeled by the simple roots of Ĝ.
The assumption ‘Xŵ is multiplicity free’ can be easily read off this graph: Xŵ is multiplicity
free if and only if for any path from Xŵ to Ĝ/B̂ there is no double edge. In particular, by
[Res10a, Proposition 2.1], if G is spherical of minimal rank, any G-orbit closure in Ĝ/B̂ is
multiplicity free. In particular, case (ii) of Theorem 4 is a consequence of case (iii).

We now study two examples where G is spherical, which illustrate Theorem 4.

2.4.2 Let Ĝ= Sp4 and G= Gl2 be the Levi subgroup of a maximal parabolic subgroup of
Sp4 that stabilizes an isotropic plane in C4. Then G is a spherical subgroup of Ĝ and the oriented
graph Γ(Ĝ/G) (with arrows pointed down) is the following (α̂ and β̂ denote respectively the short
and the long simple roots of Sp4).

◦

β̂
NNNNNNNNNNNNN

&&NNNNNNNNNNNNNα̂

◦

β̂ppppppppppppp

ppppppppppppp

◦ ◦

α̂ β̂ α̂

◦

β̂
ppppp

ppppp β̂
NNNNN

NNNNN

◦

α̂

ppp
ppp

ppp
ppp

α̂
NNN

NNN

NNN
NNN

◦

β̂
ppppp

ppppp β̂
NNNNN

NNNNN

◦ ◦ ◦ ◦

In this example, the varieties Xŵ correspond to the four vertices at the bottom of the graph
Γ(Ĝ/G) and they are in fact the four closed G-orbits in Ĝ/G. Hence Theorem 4 can be applied
here for all ŵ ∈ Ŵ . This gives an example where we need to use hypothesis (i) of Theorem 4 to
apply it, because two of the closed G-orbits above are not multiplicity free.

2.4.3 Let Ĝ= SL3 and G= SO3 be naturally embedded in SL3. Let α, α̂ and β̂ denote the
simple roots of SO3 and SL3. Also denote by ωα, ωα̂ and ωβ̂ the corresponding fundamental
weights. Then G is a spherical subgroup of Ĝ and the oriented graph Γ(Ĝ/G) is the following
diagram.
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We can read on the graph that there exist exactly two not-closed G-orbits in Ĝ/B̂ with
multiplicity, namely X◦sα̂ and X◦sβ̂

. An easy computation gives us that ρ(sα̂ωα̂) = ρ(sβ̂ωβ̂) = 0.
However, we can also check that VG(0) is neither in VĜ(ωα̂) nor in VĜ(ωβ̂), so that the conclusion
of Theorem 4 is not satisfied in these two cases.

We have just seen that (0, ωα̂) is not in the semigroup LR(G, Ĝ) defined in the introduction.
However, we can remark that (0, 2ωα̂) ∈ LR(G, Ĝ), while (0, ωα̂) is in the subgroup of X(T )×
X(T̂ ) generated by LR(G, Ĝ) (because we can compute that (2ωα, ωβ̂) and (2ωα, ωα̂ + ωβ̂) are

in LR(G, Ĝ)). Then LR(G, Ĝ) is not saturated along the half-line generated by (0, 2ωα̂).
The rest of § 2 is devoted to the proof of Theorem 4.

2.5 A result of geometric invariant theory
Let X be an irreducible projective G-variety. As in [MFK94], we denote by PicG(X) the group
of G-linearized line bundles on X. Let L ∈ PicG(X) and let H0(X, L) denote the G-module of
regular sections of L. A point x ∈X is said to be semistable with respect to L if there exists n > 0
and τ ∈H0(X, L⊗n)G such that τ(x) 6= 0.

Remark . Note that this definition of semistable points is not standard. Indeed, it is usually
agreed that the open subset defined by the non-vanishing of τ is affine. This property, which
is useful to construct a good quotient, is automatic only if L is ample; hence, our definition
coincides with the usual one if L is ample.

A line bundle L on X is said to be semiample if a positive power of L is base point free. If
L is a line bundle on X and x is a point in X, Lx denotes the fiber in L over x. We will need
the following lemma mainly due to Kostant.

Lemma 1. Let L ∈ PicG(X) be semiample and x ∈X be a T -fixed point. We assume that T acts
trivially on Lx.

Then x is semistable with respect to L.

Proof. Let n be a positive integer, such that the natural morphism

ϕ :X −→ P(H0(X, L⊗n)∗)

is well defined. Set V = H0(X, L⊗n)∗. Let v ∈ V be a non-zero vector on the line ϕ(x). The
assumption implies that v is fixed by T .

Let U be the unipotent radical of B. Then, as an orbit of an unipotent group in an affine
variety, U · v is closed in V (see [Ros61, Theorem 2]); and, B · v = U · v. Since G/B is complete,
it follows that G · v is closed in V . We deduce that there exists a G-invariant homogeneous
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polynomial P of degree d on V such that P (ϕ(x)) 6= 0. It follows that there exists a G-invariant
section τ of L⊗nd such that τ(x) 6= 0. 2

2.6 The Borel–Weil theorem

Let P be a parabolic subgroup of G. Let ν be a character of P . Let Cν denote the field C endowed
with the action of P defined by p · τ = ν(p)τ for all τ ∈ Cν and p ∈ P . We define the line bundle
G×P C−ν on G/P as the quotient of G× C−ν by the following equivalent relation

∀g ∈G, ∀τ ∈ Cν and ∀p ∈ P, (g, τ)∼ (gp, p−1 · τ).

It is a G-linearized line bundle on G/P , denoted by Lν . In fact, the map

X(P ) −→ PicG(G/P)
ν 7−→ Lν

is an isomorphism.
We assume that P contains B (in that case, P is said to be standard). Then X(P ) identifies

with a subgroup of X(T ). For ν ∈X(P ), Lν is semiample if and only if it has non-zero sections
if and only if ν is dominant. Moreover, H0(G/P, Lν) maps onto H0(P/P, Lν)' C−ν and is the
irreducible G-module of extremal weight −ν, that is VG(ν)∗. For ν dominant, Lν is ample if and
only if ν cannot be extended to a subgroup of G bigger than P .

2.7 The Brion theorem

We will need the following theorem, due to Brion, on multiplicity free subvarieties of G/B.

Theorem 5 [Bri03, Theorem 1]. Let V be a multiplicity free subvariety of G/B and L be any
semiample G-linearized line bundle on G/B, then the following hold.

(i) The subvariety V is normal.

(ii) The restriction map H0(G/B, L)−→H0(V, L) is surjective.

2.8 Proof of Theorem 4

2.8.1 We first prove an asymptotic version of Theorem 4, that is Proposition 1 of the
introduction.

Proof of Proposition 1. Set X = Ĝ/B̂. By the Borel–Weil theorem, we have

H0(X, Lλ̂) = VĜ(λ̂)∗.

It remains to prove that, for some n > 0, L⊗n
λ̂

admits a non-zero section that is an eigenvector

of weight −nρ(ŵλ̂) for the opposite Borel subgroup B− of G. This is made more precisely in
Lemma 2 below. 2

Lemma 2. There exists n > 0 such that L⊗n
λ̂

admits a section τ which is an eigenvector of weight

−nρ(ŵλ̂) for B− such that the restriction of τ to X◦ŵ is non-zero.

Proof. Consider the variety Y =X ×G/B− endowed with the diagonal action of G given by
g′ · (ĝB̂/B̂, gB−/B−) = (g′ĝB̂/B̂, g′gB−/B−). Let L−

−ρ(ŵλ̂)
be the G-linearized line bundle on

G/B− such that B− acts on the fiber over B− by the character ρ(ŵλ̂). We also consider the line
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bundleM := Lλ̂ � L
−
−ρ(ŵλ̂)

on Y . Note thatM is semiample because λ̂ is dominant and −ρ(ŵλ̂)

is dominant with respect to B−.

By definition of ρ(ŵλ̂), there exists v ∈W such that ρ(ŵλ̂) = vρ(ŵλ̂). Then it is clear that T
acts trivially on the fiber inM over the point y := (vŵB̂/B̂, B−/B−). Now, applying Lemma 1,
we obtain, for some n > 0, a section τY ∈H0(Y,M⊗n)G such that τY (y) 6= 0.

Define τ as the restriction of τY to X ×B−/B− seen as a section of Lλ̂ on X. Since τY is

G-invariant, τ is B−-equivariant of weight −nρ(ŵλ̂). It is clear that τ(vŵB̂/B̂) 6= 0, so that the
restriction of τ to X◦ŵ is non-zero. The lemma is proved. 2

2.8.2 We have already seen that it is sufficient to prove Theorem 4 under assumption (iii).
By Theorem 5, it is sufficient to prove the following.

Theorem 6. Let λ̂ be a dominant character of T̂ and ŵ ∈ Ŵ . We assume the following.

(i) The variety Xŵ is normal.

(ii) The restriction map H0(Ĝ/B̂, Lλ̂)−→H0(Xŵ, Lλ̂) is surjective.

Then VG(ρ(ŵλ̂)) is a G-submodule of VĜ(λ̂).

Proof. Consider the following restriction maps:

H0(Ĝ/B̂, Lλ̂) // // H0(Xŵ, Lλ̂) // H0(X◦ŵ, Lλ̂).

Since the first one is surjective and G-equivariant, it is sufficient to find VG(ρ(ŵλ̂))∗ in
H0(Xŵ, Lλ̂). We will first prove that VG(ρ(ŵλ̂))∗ is a submodule of H0(X◦ŵ, Lλ̂) without
multiplicity. Next, we will prove that the corresponding B−-equivariant section on X◦ŵ extends
to Xŵ using both the asymptotic version and the normality of Xŵ.

By Lemma 3 below, there exists a (unique up to scalar multiplication) non-zero regular
section σ of Lλ̂ on X◦ŵ which is B−-equivariant of weight −ρ(ŵλ̂).

Let n > 0 and τ be as in Lemma 2. Then τ|X◦
ŵ

and σ⊗n are two non-zero regular sections

of Lnλ̂ on X◦ŵ which are B−-equivariant of weight −nρ(ŵλ̂). By Lemma 3, it follows that τ|X◦
ŵ

and σ⊗n are proportional. In particular, σ⊗n extends to a regular section of Lnλ̂ on Xŵ. Since
Xŵ is normal, it follows that σ also extends to a regular section of Lλ̂ on Xŵ. The theorem is
proved. 2

Notation. If H is an algebraic affine group, χ is a character of H and V is a H-module, we set

V (H)χ = {v ∈ V | ∀h ∈H, h · v = χ(h)v}.

Lemma 3. The G-module VG(ρ(ŵλ̂))∗ has multiplicity exactly one in H0(X◦ŵ, Lλ̂).

Proof. Let Gŵ ⊂G be the isotropy group of ŵB̂/B̂ so that X◦ŵ is isomorphic to the homogeneous
space G/Gŵ. Let us define µ= ρ(ŵλ̂). Since Gŵ acts on the fiber (Lλ̂)ŵB̂/B̂ by the character −µ,
the line bundle L on X◦ŵ is isomorphic to G×Gŵ C−µ.
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Then, by using the Frobenius decomposition, the space of global sections H0(G/Gŵ, G×Gŵ
C−µ) can be identified with ⊕

χ

V ∗G(χ)⊗ (VG(χ))(Gŵ)µ ,

where the sum is over the set of dominant weights of G. Hence we have to prove that the vector
space VG(µ)(Gŵ)µ is one-dimensional. First, since Gŵ =G ∩ ŵB̂ŵ−1 contains T , the dimension
of VG(µ)(Gŵ)µ is less than or equal to one.

The dimension is exactly one if Gŵ is contained in the parabolic group PG(µ) associated
to the weight µ. By Lemma 2, there exist an integer n and a section τ ∈H0(Xŵ, Lnλ̂)(B−)−nµ

such that the restriction of τ to X◦ŵ is non-zero. So the dimension of H0(X◦ŵ, Lnλ̂)(B−)−nµ is
at least one. By using the Frobenius decomposition as above, we deduce that the dimension of
VG(nµ)(Gŵ)nµ is at least (and so equal to) one, and that the parabolic group PG(nµ) associated
to the weight nµ contains the group Gŵ. We conclude by saying that PG(nµ) = PG(µ). 2

3. Applications

3.1 Applications to the Kronecker product
The aim of this section is to detail our results for Gl(E)×Gl(F )⊂Gl(E ⊗ F ). This problem
is equivalent to the question on the decomposition of tensor products of representations for the
symmetric group.

A partition π is a sequence π = (π1, π2, . . . , πk) of weakly decreasing non-negative integers.
By convention, we allow partitions with some zero parts, and two partitions that differ by zero
parts are the same. If several parts are equal we denote the multiplicity of this part by an
exponent. For example (32, 24, 1) means the partition (3, 3, 2, 2, 2, 2, 1). For any partition π, we
define |π|= π1 + π2 + · · ·+ πk and define l(π) as the number of non-zero parts of π.

Recall that if V is a finite-dimensional vector space, then the Gl(V )-irreducible polynomial
representations are in bijection with the partitions π such that l(π)6 dim V : we denote by SπV
the representation associated to π.

Let E, F be two vector spaces of respective dimensions m, n, and consider G= Gl(E)×Gl(F )
and Ĝ= Gl(E ⊗ F ). Let γ be a partition such that l(γ)6mn. We can decompose the irreducible
representation Sγ(E ⊗ F ) as a G-representation:

Sγ(E ⊗ F ) =
∑
α,β

NαβγSαE ⊗ SβF,

where the sum is taken over partitions α, β such that |α|= |β|= |γ|, l(α)6m and l(β)6 n.

Remark . The irreducible representations of the symmetric group Sn correspond bijectively with
the partitions π such that |π|= n; we denote by [π] the representation corresponding to π. By
using the Schur–Weyl duality, we can show that Nαβγ is also the multiplicity of [γ] in [α]⊗ [β]
(see for example [FH91, ch. 6]). Now, the fact that the representations of Sn are self-dual implies
that Nαβγ is symmetric in α, β and γ.

We fix bases of E and F and we denote by TE and TF the maximal tori of Gl(E) and Gl(F )
consisting of diagonal matrices. For i= 1, . . . , m, denote by ηi the character that maps an element
of TE to its ith diagonal coefficient. Similarly, we define the characters δj ’s of TF . The basis of E
and F induce a natural basis of E ⊗ F indexed by pairs (i, j). Let T̂ denote the corresponding
maximal torus of Ĝ and ε̂i,j the character of T̂ corresponding to (i, j). Note that ρ(ε̂i,j) = (ηi, δj).
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The coordinates of characters of T̂ in the basis ε̂i,j , which are indexed by pairs (i, j),
will be represented in tableaux of m rows and n columns. For any tableau t (identified with
the corresponding character of T̂ ), ρ(t) is obtained by summing along columns, to obtain the
coordinates of a character of TE , and along rows to obtain the coordinates of a character of TF .

In Theorem 4, the weights of the form ŵλ̂ are exactly the extremal weights of VĜ(λ̂). In
particular, they do not depend on the choice of a Borel subgroup of Ĝ but only on T̂ and the
representation VĜ(λ̂). Here, we have fixed the torus and the representation: the extremal weights
of T̂ in Sγ(E ⊗ F ) are the tableaux m× n filled by the parts of γ.

For example, suppose that m= n= 3 and the two following tableaux correspond to extremal
weights of S14(E ⊗ F ):

where the boxes corresponding to zero coordinates are left empty.

In the first tableau, ρ(t) = ρ(t) = ((3, 1, 0), (2, 1, 1)). We can easily check that the irreducible
representation [14] (which is the one-dimensional representation given by the signature of S4)
appears in the tensor product [3, 1]⊗ [2, 12].

In the second tableau, ρ(t) = ((2, 1, 1), (1, 1, 2)) and ρ(t) = ((2, 1, 1), (2, 1, 1)). We can check
that [24] appears in [4, 22]⊗ [4, 22], which matches with our asymptotic result (Proposition 1).
However, the irreducible representation [14] does not appear in the tensor product [2, 12]⊗ [2, 12].
Then Theorem 4 shows that some Gl(E)×Gl(F )-orbit closures of the form Xŵ of the complete
flag variety of E × F are not multiplicity free. A natural but probably difficult question appears
here: which orbit closures Xŵ (for ŵ ∈ Ŵ ) are multiplicity free?

We can prove that the ŵ in Ŵ such that the orbit X◦ŵ is closed, correspond bijectively to
standard tableaux m× n. Now case (i) of Theorem 4 gives the following rule to compute some
components of the tensor product of two representations of the symmetric group. We do not
know if this rule is already known.

Rule. (1) Fill the tableau m× n by the parts of γ in weakly decreasing order along rows and
columns.

(2) Sum along rows and columns to obtain α and β.

Then [γ] appears in [α]⊗ [β].

For example, the tableaux

show that the representations [2, 14], [4, 32, 2, 12], [4, 33, 23, 12] appear in the respective tensor
products: [4, 2]⊗ [3, 2, 1], [7, 4, 3]⊗ [10, 3, 1], [9, 6, 6]⊗ [10, 7, 4].

1330



Two generalizations of the PRV conjecture

3.2 Application to a branching rule
Here we apply Theorem 4 to the subgroup G= Sp(2n) of Ĝ= Gl(2n). This subgroup is spherical
of minimal rank, so that Theorem 4 applies for any λ̂ and ŵ.

We define G as the subgroup of Gl(2n) which preserves the alternate form given by the matrix

I =


J 0 . . . 0

0 J
. . .

...
...

. . . . . . 0
0 . . . 0 J


where J =

(
0 1
−1 0

)
. Then we choose for T̂ the group of invertible diagonal matrices, and for any

i ∈ {1, . . . , 2n}, we denote by ε̂i the usual character of T̂ . Set λ̂= λ̂1ε̂1 + · · ·+ λ̂2nε̂2n. The Weyl
group Ŵ is the symmetric group S2n and ŵ−1λ̂= λ̂ŵ(1)ε̂1 + · · ·+ λ̂ŵ(2n)ε̂2n, for ŵ ∈S2n.

Set T =G ∩ T̂ and define, for any i ∈ {1, . . . , n}, the restriction εi = ρ(ε̂2i−1). Then
(ε1, . . . , εn) is a basis of characters of T and we have

ρ(ŵ−1λ̂) = (λ̂ŵ(1) − λ̂ŵ(2), λ̂ŵ(3) − λ̂ŵ(4), . . . , λ̂ŵ(2n−1) − λ̂ŵ(2n)).

The Weyl group W acts on the characters of T by permuting coordinates and by multiplying
some coordinates by −1. So ρ(ŵ−1λ̂) is obtained by arranging in a weak decreasing order the
absolute values |λ̂ŵ(2i−1) − λ̂ŵ(2i)|, for i ∈ {1, . . . , n}. We summarize this in the following.

Rule. (1) Consider a permutation (λ̂ŵ(1), . . . , λ̂ŵ(2n)) of the coordinates of a dominant weight λ̂
of Gl(2n).

(2) Order the n absolute values |λ̂ŵ(2i−1) − λ̂ŵ(2i)| to obtain a dominant weight µ of G.

Then the multiplicity of VG(µ) in V̂Ĝ(λ̂) is non-zero.
There exist combinatorial models computing the decomposition as a Sp(2n)-module of a

given Gl(2n)-module. Our rule only gives some irreducible Sp(2n)-components of a given Gl(2n)-
module, but more directly. It seems that our rule cannot be directly deduced from known models
like the one explained in [Sun90].

4. Tensor product decomposition

The aim of this section is to prove Theorem 2 stated in the introduction. We also give, at the
end, two examples.

Remark . (1) Condition (i) of Theorem 2 implies that 〈vµ, α∨〉> 0 and 〈wν, α∨〉> 0.
(2) Theorem 2 asserts that the half-line generated by (λ, µ, ν) is saturated in the Littlewood–

Richardson semigroup.
Indeed, assume that λ= vµ+ wν + kα with a rational number k satisfies (−w0λ+ µ+

ν)|Z(G) = 0. We obtain that −w0λ+ µ+ ν = (λ− w0λ) + (µ− vµ) + (ν − wν) + kα. However,
λ− w0λ, µ− vµ and ν − wν belong to the root lattice. It follows that kα has to belong to the
root lattice and so k is an integer.

The strategy of the proof of Theorem 2 is similar to that of Theorem 6. Hence, we first prove
adaptations of Proposition 1 and of Lemma 3.

4.1 Asymptotic version
To prove Proposition 1, we used Lemma 1 mainly due to Kostant; here, in order to prove Lemma 5
below, we will need to use the following strong result of semistability mainly due to Luna.
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Lemma 4. Consider the variety Y = (G/B)3. Let λ, µ and ν be three dominant weights of T .
Let β be a root of (G, T ). Denote by S the neutral component of the Kernel of β in T . Let
(u, v, w) ∈W 3 and C be the irreducible component of Y S containing (uB/B, vB/B, wB/B).
We assume that uΦ+ ∩ vΦ+ ∩ wΦ+ contains β.

The following are equivalent:

(i) C contains semistable points with respect to Lλ � Lµ � Lν ;

(ii)


(uλ+ vµ+ wν)|S = 0
〈uλ, β∨〉+ 〈vµ, β∨〉 − 〈wν, β∨〉> 0,
〈uλ, β∨〉 − 〈vµ, β∨〉+ 〈wν, β∨〉> 0,
−〈uλ, β∨〉+ 〈vµ, β∨〉+ 〈wν, β∨〉> 0.

Proof. Let L be the centralizer of S in G; it is a Levi subgroup of G of semisimple rank one.
The variety C is isomorphic to the product of three copies of the complete flag manifold
of L, i.e. (P1)3. Moreover, (Lλ � Lµ � Lν)|C is isomorphic as an abstract line bundle to
O(〈uλ, β∨〉)�O(〈vµ, β∨〉)�O(〈wν, β∨〉). Note that 〈uλ, β∨〉, 〈vµ, β∨〉 and 〈wν, β∨〉 are non-
negative integers, because β ∈ uΦ+ ∩ vΦ+ ∩ wΦ+.

It is not difficult to check that (P1)3 has semistable points for the action of SL2 or PSL2 with
respect to O(a)�O(b)�O(c) (where a, b and c are non-negative integers) if and only if we have

a+ b− c> 0,
a− b+ c> 0,
−a+ b+ c> 0.

Now, the first equation of condition (ii) means that S acts trivially on (Lλ � Lµ � Lν)|C ;
and so, induces a L/S-linearized line bundle on C. The three inequalities of condition (ii) are
equivalent to the fact that C contains semistable points for the action of L/S (which is isomorphic
to SL2 or PSL2) with respect to (Lλ � Lµ � Lν)|C . Now, it is clear that condition (i) implies
condition (ii).

The converse implication is a direct application of [Lun75, Corollary 2, Remark 1] (see
also [Res10b, Proposition 8] for a formulation that can be directly applied here). 2

We use notation from § 2 with Ĝ=G×G. In particular,X◦v,w is theG-orbit of (vB/B, wB/B)
in X = (G/B)2.

We now prove the adaptation of Lemma 2.

Lemma 5. With the assumptions of Theorem 2, there exist n > 0 and a section τ of (Lµ � Lν)⊗n

of weight −nλ for B− whose restriction to Xv,sαw is non-zero.

Proof. We apply Lemma 4 with the dominant weights −w0λ, µ and ν, the root α and
(sαw0, v, w) ∈W 3. Then the first equation of condition (ii) of Lemma 4 is clearly satisfied
and the three inequalities of condition (ii) are respectively equivalent to

k 6 〈vµ, α∨〉,
k 6 〈wν, α∨〉,
k > 0.

We now remark, because of condition (i) of Theorem 2, that {w0B/B} ×Xv,sαw intersects
C ∩ ({w0B/B} ×X) along an open subset, and we conclude the proof of the lemma, using the
same arguments as in Lemma 2. 2
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4.2 Proof of Theorem 2
In this section, we suppose that all assumptions of Theorem 2 are fulfilled. We also set
w̄ = sαw and we denote by Gu,w̄ the isotropy subgroup of (vB/B, w̄B/B) in G, i.e. Gv,w̄ =
vBv−1 ∩ w̄Bw̄−1.

We now prove the equivalent of Lemma 3.

Lemma 6. The space C[G](B
−)−λ×(Gv,w̄)vµ+w̄ν has dimension one.

Proof. We first prove that
C[G](B

−)−λ×(T )vµ+w̄ν

has dimension one. Let us recall a classical property of some characters of the representation
VG(λ): the weights λ− lα with l ∈ {0, . . . , 〈λ, α∨〉} have exactly multiplicity one for T . Frobenius’
theorem implies that C[G](B

−)−λ×(T )vµ+w̄ν is isomorphic to VG(λ)(T )vµ+w̄ν . Assumption (ii) of
Theorem 2 implies that vµ+ w̄ν = λ− (〈wν, α∨〉 − k)α. Assumption (iii) of the same theorem
implies that 06 〈wν, α∨〉 − k 6 〈λ, α∨〉. We obtain the dimension of C[G](B

−)−λ×(T )vµ+w̄ν from
the above-mentioned classical property.

Let s be a non-zero element of C[G](B
−)−λ×(T )vµ+w̄ν . Since T is contained in Gv,w̄, it is

sufficient to prove that for any h ∈Gv,w̄, we have

hs= (vµ+ w̄ν)(h)s.

By Lemma 5, there exist n and a non-zero sn ∈ C[G](B
−)−nλ×(Gv,w̄)nvµ+nw̄ν . Consider the algebra

A=
⊕

n>0 C[G](B
−)−nλ . Now, in A, s⊗n is a non-zero element of C[G](B

−)−nλ×(Gv,w̄)nvµ+nw̄ν . By
the first part of the proof, s⊗n and sn have to be proportional. It follows that for any h in Gv,w̄

(hs)⊗n = h · s⊗n = (nvµ+ nw̄ν)(h)s⊗n = ((vµ+ w̄ν)(h)s)⊗n.

Since A is the algebra of regular sections of powers of an ample line bundle over a P\G, it is
integrally closed. However, for any h ∈Gv,w̄, (hs/s)⊗n and (s/hs)⊗n belong to A. Hence, hs
and s are proportional. There exists a regular map θ :H −→ C∗ such that

hs= θ(h)s

for any h ∈Gv,w̄. We easily check that θ must be a character of Gv,w̄. However, the restriction
of θ to T equals vµ+ w̄ν so that θ = vµ+ w̄ν. The lemma follows. 2

We now prove Theorem 2.

Proof. It remains to prove that VG(λ)∗ is a submodule of VG(µ)∗ ⊗ VG(ν)∗. We interpret the
latter module as the space of sections of Lµ � Lν on X and consider the following sequence of
morphisms.

H0((G/B)2, Lµ � Lν)

����
H0(Xv,w̄, Lµ � Lν)� _

��
H0(X◦v,w̄, Lµ � Lν)

� _

����
C[G]{1}×(Gv,w̄)vµ+w̄ν
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The surjectivity of the first map is a particular case (known before) of Theorem 5. The
injectivity of the second map is obvious. Also, the next isomorphism is obtained by applying
Frobenius’ theorem.

Now, by Lemma 6, there exists a non-zero section σ of Lµ � Lν on X◦v,w̄ of weight −λ for B−.
Then, for some n > 0, σ⊗n extends to Xv,w̄ by Lemmas 5 and 6 together. Since Xv,w̄ is normal,
it follows that σ also extends to a regular section of Lµ � Lν on Xv,w̄. Thus, the theorem is
proved. 2

4.3 Examples

4.3.1 In the following example, we will see that the hypothesis on α to be simple, in
Theorem 2, is necessary. Consider G= Sp4. Denote by α1 and α2 respectively the short and
the long simple roots, and ω1 and ω2 the associated fundamental weights. Let µ= ν = ω2

(and v = w = Id). Then we can compute that

VG(µ)⊗ VG(ν) = VG(0)⊕ VG(2ω1)⊕ VG(2ω2).

Define λ := vµ+ wν − (α1 + α2) = ω2. Note that λ satisfies the conditions (ii) and (iii) of
Theorem 2 with α= α1 + α2, because 〈ω2, (α1 + α2)∨〉= 2. We cannot apply Theorem 2 just
because α1 + α2 is not a simple root. Also, in fact, VG(λ) is not a submodule of VG(µ)⊗ VG(ν).

4.3.2 In this section, we look at the positions of the dominant weights λ obtained in
Theorem 2 for fixed µ, ν, α and varying k. We prove that, by this way, we obtain an ‘integral
segment’ with at least one extremity corresponding to an original PRV component.

Proposition 2. Let λ be a dominant weight as in Theorem 2. Suppose, for convenience, that
〈vµ, α∨〉6 〈wν, α∨〉. Set kmax = 〈vµ, α∨〉 and λk = vµ+ wν − kα. Let k0 be such that λ= λk0 .

Then, for any k0 6 k 6 kmax, λk is a dominant weight. Moreover, VG(λkmax) = VG(sαvµ+ wν)
is an original PRV component of VG(µ)⊗ VG(ν).

Proof. Denote by S the set of simple roots of (G, B) and by ωγ the fundamental weight
corresponding to the simple root γ. Then, for all 06 k 6 kmax, we can write λk =

∑
γ∈S aγ,kωγ ,

with the (aγ,k) in Z. Note that

aα,kmax = 〈λkmax , α
∨〉=−〈vµ, α∨〉+ 〈wν, α∨〉> 0.

Remark also that

α=
∑
γ∈S
〈α, γ∨〉ωγ =

∑
γ∈S

bγωγ , with bα = 2 and bγ 6 0, ∀γ 6= α.

Then aα,k decreases when k increases, and for any γ 6= α, aγ,k increases with k. Moreover, since
aα,kmax > 0, aα,k is non-negative for all 06 k 6 kmax. This implies that, as soon as λk is dominant,
it stays dominant when k increases up to kmax. Now, the proposition follows from the fact that
λ= λk0 is dominant. 2

We now illustrate this proposition by the following example. Consider G= SL3 with simple
roots α1 and α2. Let µ= 7ω1 + 2ω2 and ν = ω1 + 3ω2. Then the following picture represents the
set of dominant weights λ such that VG(λ) is a submodule of VG(µ)⊗ VG(ν). In this example,
µ+ ν is an element of the root lattice so that all weights of VG(µ)⊗ VG(ν) are in the root lattice.
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Then, in order to make the picture nicer, we only draw the root lattice instead of the weight
lattice.
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