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Abstract

In this work, we improve results of [Res07, Res08a] about GIT-cones
associated to the action of a reductive group G on a projective variety
X. These results are applied to give a short proof of the Derksen-
Weyman theorem which parametrizes bijectively the faces of a rational
cone associated to any quiver without oriented cycle. An important
example of such a cone is the Horn cone.

Contents

1 Introduction 2

2 Well covering pairs and GIT-cones 3
2.1 Well covering pairs . . . . . . . . . . 3
2.2 Total cones and well covering pair . . . . . .. ... ... ... 4

3 Application to quiver representations 8
3.1 Definitions . . . . ... ..o o 8
3.2 Threecones . . . . . . . . . . e 9
3.3 Dominant pairs . . . . . .. ... Lo 11
3.4 The Derksen-Weyman theorem . . . ... .. ... ...... 15

*Université Montpellier II, Département de Mathématiques, Case courrier 051-Place
Eugéne Bataillon, 34095 Montpellier Cedex 5, France. ressayre@math.univ-montp2.fr



1 Introduction

We work over the field C of complex numbers. Let @ = (Qo, Q1) be a quiver
without oriented cycle. Here, )y is the set of vertexes and ()1 the set of
arrows. Let 3 = (6(s))seq, be a vector dimension of @@ and Rep(Q, 5) be
the vector space of the representations of dimension vector 5. The group
GL(8) = [lseq, GL(B(s)) acts naturally on Rep(Q,53). We consider the
group I of the characters of GL((3); it is isomorphic to Z%9. We consider the
cone X(Q, #) in '®@Q generated by the elements o € T" such that there exists
a non zero regular function f € C[Rep(Q, )] such that g.f = o(g)f for any
g € GL(f). It is a convex polyhedral cone. In [DW00, DWO06|, Derksen-
Weyman showed that the Horn cones can be obtained in such a way from
well chosen quiver and vector dimension. This is an important motivation
to the study X(Q, 3). Here, we use general methods of Geometric Invariant
Theory to give a proof of the Derksen-Weyman theorem (see [DW06]) which
parametrizes bijectively the faces of X(Q, ).

In Section 2, we improve results of [Res07] about GIT-cones in general.
In particular, Theorem 1 is an improvement of [Res07, Theorem 4], and
Theorem 2 of [Res07, Theorem 7|. After each statement we have include a
remark to make clear the improvement. It was very interesting for myself to
see that the example (@, ) enlightens phenomenons which did not occur
in the example studied in [Res07, Res08a].

The Horn cones can also be obtained as GIT-cones for the action of the
linear group on a product of complete flag varieties. This point of view was
used in [BS00, BK06, Res07, Res08a]. Whereas, in the literature this GIT
approach of the Horn problem was distinct from the quiver one, this work
intends to show that the GIT-cones are a very useful generalization of these
two approaches.

It may be not so easy to see the differences between the proof presented
here and the Derksen-Weyman one. The most obvious one is the context
in which the technical part of the work is made. The author guess that the
general context of GIT makes more clear the key argues. A most fundamental
difference is that here and in [Res07] the points outside the cone play a
crucial role. Moreover, we do not use here the fact that a base of the space
of semiinvariant functions on Rep(Q, 3) is known.

The Fulton conjecture about the Littlewood-Richardson coefficients is as



follows
Ky=l=c\{ny, =1 VN>1

The generalization to quiver setting is « o 8 = 1 = a o (NB) = 1. This
generalization is proved in [DWO06] and I cite, “is crucial for that paper”.
Here, this result is not used. In contrast, Theorem 3 and the method used
in [Res08c¢| allow to reprove this result.

2  Well covering pairs and GIT-cones

2.1 Well covering pairs

Let G be a connected reductive group acting on a smooth projective variety
X. Let A be a one parameter subgroup of G. Let G* denote the centralizer
of A in G. We consider the usual parabolic subgroup P(\) associated to A
with Levi subgroup G*:

P(\) = {g €G: %1_13% A(t).g.-\(t) 7! exists in G} .

Let C be an irreducible component of the fixed point set X* of A in X. We
also consider the Bialynicki-Birula cell C* associated to C':

Ct={reX| %in(l])\(t)x e C}.

Then, C is stable by the action of G and C* by the action of P()).

Consider over G x C the action of G x P()) given by the formula
(with obvious notation): (g,p).(¢',y) = (9¢'p~*, py). Consider the quotient
G xppy C of G x CF by the action of {e} x P(X). The class of a pair
(9,9) € G x CT in G xp() CT is denoted by [g : y].

The action of G' x {e} induces an action of G on G x p(5) C*. Moreover,
the first projection G x CT — G induces a G-equivariant map 7 : G XPp(y)
C*t — G/P()\) which is a locally trivial fibration with fiber C*. Consider
also the G-equivariant map

n:GxpyCt— X, [g:y] — gy

Definition. The pair (C, )) is said to be dominant if n is. The pair (C, \)
is said to be well covering if n induces an isomorphism over an open subset
of X intersecting C.



Let £ € Pic®(X). Let z be any point in C. Since X fixes x, it induces
a linear action of the group K* on the fiber £,. There exists an integer
p*(x, \) such that:

Vi e L, VEeC Atz =t r Nz,

One easily checks that /ﬂ:(ac, A) does not depends on = € C it will be denoted
by 1E(C.N).

2.2 Total cones and well covering pair

Notation. If I' is an abelian group, we set I'g = '®7Q. If I is any algebraic
group, we denote by Y (I') the set of one parameter subgroups of I'. If F is a
part of a vector space E we denote by Span(F) the subspace of E spanned
by F.

2.2.1— Consider the convex cones 7C%(X) generated in Pic®(X)q by
the £’s in Pic”(X) which have non zero G-invariant sections. We will denote
by X*%(L) the open subset of the z’s in X such that for some positive integer
n, there exists a G-invariant section of £®" such that o(z) # 0. Note that
this definition is standard, only if £ is ample. Since X(£) = X®5(L®") (for
any positive integer n), one can define X*5(£) if £ € Pic%(X)q.

Let (C,\) be a dominant pair. Since £~ p*(C, \) is a group morphism,
it induces a linear map from Pic%(X)g to @, also denoted by p“(C, )). By
[Res07, Lemma 4], T7C%(X) is contained in the half-space p%(C,\) < 0.
In particular, intersecting 7C%(X) with the hyperplane p(C,\) = 0, one
obtains a face F(C) of 7CY(X). Indeed, the following lemma shows that
the face only depends on C' (see [Res07, Lemma 4]):

Lemma 1 Let (C,\) be a dominant pair. Then, F(C) is the set of L €
Pic%(X)q such that X*(L) intersects C.

The following theorem is an improvement of [Res07, Theorem 4].

Theorem 1 We assume that the rank of Pic®(X) is finite and consider
TCE(X). Let (C,\) be a well covering pair.

Then the rank of PicGA(C) is finite and the codimension of F(C) in
Pic®(X)q equals the codimension of’TCGA(C’) in PicGA(C’)Q. More precisely,
the restriction morphism induces an isomorphism from Pic®(X)g/Span(F(C))
onto Pich(C’)(Q))/Span(’TCGA (@)).



Remark. Let p : Pic%(X)g — PicC” (C)q be the restriction morphism
and let Im p denote its image. At first glance, it is not so obvious to see why
Theorem 1 improves [Res07, Theorem 4|. In particular, if p is surjective (as
in the example considered in [Res07]) the two statements are equivalent. The

main difference is that the first one allows the following picture in PicC” (C)o
and second one no:

%

Imp

Proof. Let 2 be a G-stable open subset of X such that the natural map
G Xpey) (CTNQ) — Qis an isomorphism. Since (C,\) is well covering
one can find such an Q intersecting C. By [Res07, Lemma 5|, Pic%(Q) is
isomorphic to Pic?” (CNnQ).

Let Eq,---, Es (resp. D1,---,D;) be the irreducible components of codi-
mension one of X —§ (resp. C' —). Since G and G* are connected the E;’s
and the D;’s are respectively G and G*-stable. We consider the associated
G and G*linearized line bundles Lz, and Lp,.

Consider the following diagram:

®QLE, — Pic%(X)g

s

Pic%(Q)g ~ Pic®" (C N Q)g — 0.

«C

Y

®:QLp, — Pic? (C)g

Since X and so C are smooth, the restriction maps wx and 7 are sur-
. . . A
jective. By construction, £p, belongs to TC% (C). Moreover, each L,
has a G-invariant section with FE; has zero locus. Since FE; does not con-



tains C, this proves that Lg, € F(C). So, it is sufficient to prove that
Tx (F(0)) = me(TCH (C)).

Let £ € F(C). Since X*(L) intersects C, L) belongs to TCGA(C’). So,
Tx (F(C)) € me(TCH(C)).

Conversely, let £ be a G*-linearized line bundle on C which belongs
to TCGA(C’). Up to changing £ by a positive power, there exists a non
zero G -invariant section o of £. Let £ be the G-linearized line bundle
on Q associated to m¢(L), and & the G-invariant section of £ associated
to 0. Now, let M € Pic%(X) such that mx(M) = L. The section &
induces a non zero G-invariant rational section of M, and so a non zero
regular G-invariant section ¢’ of M’ = M+ %", E%:“ for some non negative
integers n;. Since no FE; contains C, ¢’ is not identically zero on C; in
particular, M" € F(C). Since, mx(M') = nx(M) = ¢ (L), it follows that
7x(F(C)) D 7(TC% (C)). Note that details about the above argue can be
found in the proof of [Res07, Theorem 4. O

2.2.2 — We are now interested in the span of ACY(X). Let H be a
connected normal subgroup of G acting trivially on X. Then, H has to act
trivially on any line bundle in 7C%(X). We denote by Pic®/# (X) the sub-
group consisting of the £ € Pic®(X) on which H acts trivially. We have:
ACP(X) c Pic/H(X)q. Consider now:

Definition. Let K be the neutral component of the kernel of the G-action
on X. The cone ACY(X) is said to be non degenerated if it spans Pic%(X)q.

2.2.3 — Whereas Y (I') is not a group, one can construct (see [MFK94])
amap ||-| : Y(G) — R which is invariant by conjugacy and measures
the length of A\. Moreover precisely, for any subtorus S of G the restriction
of || - || to Y(T')qg is the norm associated to a scalar product defined on Q.

This norm is used to normalize the number p*(z, \). Using £ LH(;C“)‘), Kempf

defined (see [Kem78|) an optimal destabilizing one parameter subgroup.

2.2.4 — The set of ample G-linearized line bundles generate an open
convex PicG(X)6 in Pic%(X)g. We set:

ACY(X) = Pic(X)§ N TCE (X).

If F is a face of 7C%(X), FO denotes its intersection with PicG(X)é.



To any ample £ € Pic”(X)g which does not belong to ACY(X), using
mainly the Kempf theorem, we associated in [Res07] a well covering pair
(C,\) defined up to conjugacy (and depending on || - ||). The face F(C) is
also denoted by F(L£). [Res07, Theorem 7] asserts that any face of AC%(X)
equals F°(L) for some ample £ ¢ ACE(X). Here, we need an improvement
of this result.

Theorem 2 Let F be a face of ACY(X). Consider the set A(F) of ample
L & AC%(X) such that F = F°(L).
Then,

(i) There exists L € A(F) such that the associated pair (C,\) has a non
degenerated cone ACE (@).

(ii) A(F) has non empty interior in Pic®(X)q.

Remark. [Res07, Theorem 7| asserts that any A(F) is not empty. It is clear
that Assertion (ii) of Theorem 2 improves this statement. The first assertion
is useful to elimenate unuseful inequalities. Actually, if X = G/B x G /B
(here G is a connected reductive group containing G) as in [Res07], for
every well covering pair (C,\) ACGA(C’) has non empty interior; and so,
this improvement is not useful. We will see that this property of ACGX(C')
explains the role of the Schur roots relatively to the cones X(Q, ).

Let G be a simple group and P, @ and R three parabolic subgroups of
G. Theorem 2 asks for an algorithm to decide if ACY(G/P x G/Q x G/R)
has non empty interior. In type A, Proposition 4 gives a interpretation of
the question in terms of the canonical decomposition of a vector dimension
of a quiver. In [DW02], Derksen-Weyman gives an algorithm which answers
the question. In general, it seems to be unknown.

Proof. Let £ € A(F) and (C,\) be an associated well covering pair. Let
K* denote the neutral component of the kernel of action of G* on C.

We start by constructing a kind of projection from Pic¢” (C)g onto
PicGA/KA(C)@. Let S be a maximal torus of K* and 7' > S be a maxi-
mal torus of G*. Let S’ be the subtorus of T such that Y (S)g is orthogonal
with Y'(S")g for ||-||. Note that the product induces an isogeny S x S’ — T.
Let H* be the subgroup of G* containing S’ such that the product induces
an isogeny K* x H» — G*. Now, we can identify Pic@ /K" (C)q with
Pic” (C)q. In particular, we obtain a restriction map:

p ¢ Pic%(X)g — Pic? (C)g ~ Pic? /K (C)q.



By [Res07, Lemma 10|, p(£) belongs to ACHA(C’). Let us first assume
that p(L) belongs to the interior of ACHA(C’) in PicHA(C’)Q. The first as-
sertion is automatic. The hyperplane u*(C,\) = 0 cuts Pic®(X)g in two
half spaces, the one H* contains £ and the closure of the other one contains
AC%(X). [Res07, Lemma 11] asserts that A(F) contains the set of ample
L' € H* such that p(£') € ACH*(C). This implies the second assertion.

Let Im p denote the image of p. Note that the above proof of Asser-
tion (ii) also works if p(L£) belongs to the interior of .ACHA(C) NIm p in
Im p. But, in this case, Theorem 1 shows that ACH g (C) has non empty
interior in Picf” (C)q; and, the first assertion follows.

We now assume that ACH?" (C) NIm p has non empty interior in Im p.
Since p(L) belongs to AcH? (C)NIm p, one can find a neighbor L, of £ such
that p(Le) belongs to the interior of ACH”(C) NIm p. Then, F(L.) = F
and we are in the preceding case.

We now assume that ACH (C)NIm p has empty interior in Im p. One can
find a neighbor L. of £ such that p(L.) does not belong to AcH (C)NIm p;
and, such that F(p(L.)) = ACH"(C). By [Res07, Lemma 12], F(L.) = F.
Let (Cg, A:) be the pair associated to L£.. Up to conjugacy, C. is strictly
contained in C. Now, one has to restart the proof with £.. The procedure
will finish since C. is strictly contained in C. U

3 Application to quiver representations

3.1 Definitions

In this section, we fix some classical notation about quiver representations.

Let @Q be a quiver (that is, a finite oriented graph) with vertexes QQp and
arrows Q1. An arrow a € ()1 has initial vertex ia and terminal one ta. A
representation R of @ is a family (V(s))seq, of finite dimensional vector
spaces and a family of linear maps u(a) € Hom(V (ia), V(ta)) indexed by
a € Q1. The dimension vector of R is the family (dim(V (s)))seq, € N%.

Let us fix o € N and a vector space V(s) of dimension a(s) for each
s € Qp. Set

Rep(Q, ) = @5 Hom(V (ia), V (ta)).

ac@Qq



Consider also the groups:

GL(a) = J] GL(V(s)) and SL(a) = ] SL(V(s).

SEQo s€Qo

They acts naturally on Rep(Q, «).
The character group of GL(«) identifies with T' = Z®?0; to o € Z%9°, we
associate the character x, defined by xo (9(5))seq,) = [lsco, det(g(s))7).

3.2 Three cones

3.2.1 — Consider the algebra C[Rep(Q, )] of the regular functions on
Rep(Q, a) endowed with the GL(«)-action. For o € Z9°, we denote C[Rep(Q, )],
the set of f € C[Rep(Q, )] such that for all g € GL(«), g.f = xo(g9)f. We
embed T' = Z?0 in Tg := Q%. Let X(Q,a) denote the convex cone of Tg
generated by the points o € T" such that C[Rep(Q, @)]—o is non reduced to

{0}

3.2.2— Consider the projective space X = P(Rep(Q,a) @ C). The
formula

g.(R,t) = (gR,t) Vg€ GL(a),R € Rep(Q,«) and t € C,

defines an action of GL(«) on X and a GL(«)-linearization £y € Pic®(®)(X)
of the line bundle O(1) on X. We are now interested in the GIT-cone
ACGM)(X). Since any line bundle on X admitting non zero sections is
ample, ACS(®) (X)) = 7¢O (X).

Forn € Z and o € T, set L(n,0) = LE" ® o € Pic@ (X). Note that
L(n,o) = O(n) as a line bundle. We have the following obvious

Lemma 2 The map Z xI' — PicS®) (X)), (n,0) — L(n,0) is an isomor-
phism of groups. Moreover, L(n,o) is ample if and only if n is positive.

Lemma 2 allows to embed ACSM®(X) in Q x Ig. Set P(Q,a) =
ACCH@(X) N {1} x Tg. General properties of AC%H(®)(X) imply that
P(Q, «) is closed convex rational and polyhedral. We claim that it is com-
pact. Consider the center Z of GL(«) and the set Wt of these weights for
its action on Rep(Q, a) ® C. One can easily prove that P(Q, «) is contained
in the convex hull of the Wt. Finally, P(Q, «) is a rational polytope in I'g.
Moreover, ACEH@) (X) is the pointed convex cone generated by P(Q,«) in
such a way the faces of ACEM®) (X)) and of P(Q, ) correspond bijectively.



3.2.3 — We consider Rep(Q, «) as an open subset of X by R — (R, 1);
and we identify the complement with P(Rep(Q, «v)).

Proposition 1 (i) We have: X*(Ly) = Rep(Q, cv).
(11) The point 0 € I'g is a vertex of P(Q, ).

(111) The cone of T'g generated by P(Q, ) is £(Q, o).

Proof. Since ) has no oriented cycle, one can chose a numeration of the
vertexes such that the index of ta is greater than the index of ia for all
a € Q1. Consider the one parameter subgroup g of GL(«) acting on the
vector space corresponding to the vertex indexed by ¢ as an homothety of
coefficient #*.

The point 0 € Rep(Q,«) C X is an isolated fixed point of Ag. Set
Co = {0}. One easily checks that Cj = Rep(Q, a) and that )\ is central
in GL(«): it follows that (Cp, Ag) is a well covering pair. Let F(Cy) (resp.
P(Cy)) denote the face of TCE® (X)) (resp. P(Q, ) associated to (Cp, Ag).

Let £ € F(Cp). Then, 0 is semistable for £. But 0 is fixed by GL(«); in
particular its center has to act trivially on the fiber in £ over 0. This implies
F(Cp) is contained in QtLy.

Since (R, t) — tis a GL(«a)-invariant section of Lo, Rep(Q, a) C X%(Ly).
Then, F(Cp) = Q" Ly.

Since 0 is the only closed GL(«)-orbit in Rep(Q, «v), X*(Ly)//GL(«) is a
point. So, X*5(Ly) contains only one closed orbit O which is contained in the
closure GL(«).0. We deduce that O = {0} and that X%(Ly) = Rep(Q, ).

The last assertion of the proposition is a direct application of [Res08a,
Theorem 4]. O

3.2.4— Consider now the projective space D = P(Rep(Q, «)) endowed
with the GL(«)-action. We are now interested in the GIT-cone AC%H(®) (D).
We have the following obvious

Lemma 3 The restriction map pp : PicS"®)(X) — PicSU) (D) is an
isomorphism of groups. Moreover, pp(L) is ample if and only if L is.

Lemma 3 allows to embed AC%“®) (D) in Q x T'g. Set P(D,Q,a) =
ACCHM@)(D) N {1} x Tg. Obviously, P(D,Q,a) is a rational polytope in
I'g. Via the identification of Lemma 3, the relation between P(D, @, ) and
P(Q, ) is as follows:

10



Proposition 2 The polytope P(Q, ) is the convex hull of 0 and P(D, Q, «).
If in addition Q is a tree then P(D,Q,«) is a face of P(Q,«). In par-
ticular, P(D,Q, «) is an affine section of X(Q, «).

Proof. Let 0 € I'g. It is clear that 0 € P(D,Q,«) if and only if X%(0)
intersects D, if and only if X**(o) is not contained in X*¥(0). By [Res00],
this is equivalent to the fact that the closure of the GIT-class of ¢ does not
contain 0. In particular, all the vertexes of P(Q,«) excepted 0 belong to
P(D,Q, «); the first assertion follows.

With the additional assumption, one can easily construct a central one
parameter subgroup A(¢) of G(«) which acts on each Hom(V (ia), V (ta)) (for
a € (1) by multiplication by ¢. Then, (D, \) is a well covering pair; this
implies that P(D, @, ) is a face of P(Q, a). O

The four last statements can be summarized by the following pictures.
On the third picture, @ is assumed to be a tree.

c(X) / %(Q,0a) / %(Q,0a)
P(Q, ) :
P(Q,D,«)

-
-~ -~
-~ ~ -

Figure 1: Positions of ACY(X), 2(Q, ), P(Q,a) and P(Q, D, a)

3.2.5— Propositions 1 and 2 prove that when () is a tree, the de-
scriptions of the three cones are equivalent. From now on, we are mainly
interested in (@, «) viewed as the cone generated by P(Q, «); that is to
the faces of P(Q, o) containing the vertex 0:

Lemma 4 Let (C,\) be a dominant pair. Then, F(C) contains 0 if and
only if C' contains 0.

Proof. The point is that {0} is the only closed orbit in X*%(0). Actually, if
F(C) contains 0, C has to contains 0 by [Res07, Proposition 9]. Conversely,
if C' contains 0, u°(C, \) = 0; and so, 0 belongs to F(C). O
3.3 Dominant pairs

3.3.1— Let 0 € T" and « be a vector dimension. We set:

ola) := Z o(s)a(s).

s€Qo

11



We consider the one parameter subgroup A, of GL(«a) acting on V(s) by
t.Id for any s € Qo: o(«a) is simply the composition o o \,. Note that A,
acts trivially on Rep(Q,«). This implies that P(Q, «) is contained in the
hyperplane H(«) consisting of the ¢’s such that o(a) = 0.

Definition. The dimension vector « is called a rational Schur root if P(Q, )
or equivalently ¥(Q, «) has non empty interior in H ().

If there exists R € Rep(Q, a) whose the stabilizer in GL(«) has dimen-
sion one, « is said to be a Schur root.

The second notion is very classical (see [Kac82|) and the first one very
natural in our context, in particular reading Theorem 2. We will explain the
relation between these two notions in Paragraph 3.3.5.

3.3.2— Decompositions of dimension vectors. Let a be a vector
dimension of Q.

Definition. A Z-decomposition of « is a family of dimension vectors «; in-
dexed by Z such that o; = 0 with finitely many exceptions and a = ), o.
An ordered decomposition of «, is a sequence ((31,---,[3s) of non-zero vector
dimensions such that a = 81 + --- + 5. We denote the ordered decomposi-
tion by av = 1+ -+ - +fs.

3.3.3— Let A be a one parameter subgroup of GL(«a). For any i € Z
and s € Qq, we set Vi(s) = {v € V(s) | A(t)v = t'v} and ;(s) = dim V;(s).
Obviously, a = > ._, a; form a Z-decomposition of a which determines A
up to conjugacy.

The parabolic subgroup P(A) of GL(«) associated to A is the set of
(9(s))seq, such that for all i € Z and s € Qo we have g(s)(Vi(s)) C
Dj<iVi(s)-

Now, Rep(Q, a)* is the set of the (u(a))aeq,’s such that for any a € Q4
and for any i € Z, u(a)(V;(ia)) C Vi(ta). It is isomorphic to @, Rep(Q, o).
In particular, the irreducible component C' of X* containing 0 is isomorphic
to P, Rep(Q, ay) & C).

Moreover, C* NRep(Q, ) is the set of the (u(a))qeq,’s such that for any
a € Q1 and for any i € Z, u(a)(Vi(ia)) C ®;<;Vj(ta).

Consider the morphism 7y : G xpy C* — Rep(Q, ). Note that,
P()), C and C" only depend (up to conjugacy) on the ordered decomposition
of av induced by the Z-decomposition ), a; in an obvious way. From now on,

€L
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we will consider the map U associated to the ordered decomposition of
«; it is defined up to conjugacy. We will say that the ordered decomposition
is dominant respectively birational if N8, 518, is. We will say that the
decomposition is well covering if (C, ) is.

Let us assume that our decomposition is dominant. Using Lemma 1, this
decomposition gives a face of AC®(X) and so one of P(Q,a). This last
face is denoted by Fp(Bi1+---+03s). Lemma 4 implies that it contains 0.
Now, Proposition 1 shows that this face generate a face Fx(B1+ -+ +085) of

2(Q, ).
Lemma 5 Let 3 = 31+ ---+03s be a dominant ordered decomposition. Then,

Fs(BiF - +8) =H(B) N - NH(Bs) N 2(Q, B).

Proof. Let (C,\) be a dominant pair associated to 3 = 1+ - - +8s. Let us
fix V.= (V(s))secq, of dimension 3. Let V. = V& --&V be a decomposition
such that V; has dimension ;. The torus (C*)* acts on V. as follows; the i
component acts by homothety on V. The induced action of (C*)* on C'is
trivial. So, (C*)® has to acts trivially on any point in F(C); it follows that,
F»(C) is contained in H(B1) N--- NH(Ss).

Conversely, let o € H(B1)N---NH(Bs)NE(Q, 5). Since (C, N) is covering,
X3(L(1,0)) intersects CT. But, since o € H(B1)N- - -NH(Bs), A acts trivially
on L(1,0)|c- By [Res07, Lemma 4], this implies that X*(L£(1,)) intersects
C. O

3.3.4— Let a, € N?. Following Derksen-Schofield-Weyman (see [DSW07]),
we define o o 8 to be the number of a-dimensional subrepresentations of a
general representation of dimension « + 3 if it is finite, and 0 otherwise.

We now deduce from [Res08b] a description of the well covering ordered
decomposition:

Proposition 3 The ordered decomposition 3 = 1+ -- -+, is well covering
if and only if

Proof. For simplicity we assume that s = 3; there is no more difficulty for
bigger s. By [Res08b, Lemma 10|, we have (31, 82) = (B1, 83) = (B2, F3) = 0.
So, we can apply [Res08b, Theorem 3] and obtain that 1 = (81 o (B2 +
B3))-(B2 o B3). We obtain B2 o f5 = 1. Now, [Res08b, Corollary 2| implies
that 1 = (81 0 (B2 + B3)) = (1 0 B2).(B1 o B3). The conclusion follows.
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Conversely, [Res08b, Theorem 3 and Corollary 2| imply that the degree
of ng 15,74, 15 one. So, [Res08b, Lemma 10] implies that ng 14,74, is well
covering. U

3.3.5 — We can now explain the name “rational Schur root”. Let us first
reprove two well known lemmas:

Lemma 6 Ifaof#0 and aovy # 0 then ao (8 + ) # 0.

Proof. In [DSWO07|, Derksen-Schofield-Weyman proved that « o 3 is the
dimension of C[Rep(Q, )], for well chosen weight o. With this characteri-
zation, the lemma, just follows from the fact that C[Rep(Q,a)]3“(®) has no
zero divisors. In this work, a o 8 is always understood as the degree of a
map 7; in particular, we include a proof using this point of view.

Consider a pair (C,\) (resp. (C’,))) associated to the ordered decom-
position a+3 (resp. a+7v) in Rep(Q,a + () and Rep(Q,a + ~). Since
aof # 0, 1,74 is generically finite. Moreover, by [Res08b, Lemma 9],
A acts trivially on the restriction to C' of the determinant bundle of 7.
It follows that for general x € C' = Rep(Q, ) ® Rep(Q, ), the differen-
tial of 7,74 at = is an isomorphism. In the same way, the differential of
Nai~ 18 an isomorphism for x' general in Rep(Q,«) & Rep(Q,3). A di-
rect computation implies now that 7,13, is an isomorphism for y general
in Rep(Q,a) @ Rep(Q,3) ® Rep(Q,v) C Rep(a + B+ 7). In particular,
ao(f+v)#0. ]

Let us recall the following well known
Lemma 7 We have:

X(Q,0)={c €l : o) =0and o(a) <0 Vast. ao(f—a)#0}.
Proof. Let 0 € ¥(Q, 3). We already saw that o(3) = 0. Let « be such that
ao (B —a)# 0. Since 1,7 (3_q) is dominant, o(a) < 0.

The converse inclusion is a direct consequence of [Kin94| (see [DWO00,

Remark 5]). O

Here, comes a variant of the Derksen-Weyman saturation theorem. Note
that this variant is much more easy:

Lemma 8 We have:

%(Q, kP) = %(Q, B)-
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Proof. The inclusion X(Q, k3) C X(Q, ) is a direct consequence of Lem-
mas 6 and 7.

The converse inclusion follows from the Derksen-Weyman Reciprocity
Property (see [DW00, Corollary 1]). We include here a simpler proof. Let
(V(s))seq, be vector spaces of dimension vector 3. Consider the family
Hom(CF, V (s) of vector spaces indexed by s € Qg of dimension vector k3.
Then, for the natural inclusion Rep(Q, 5) C Rep(Q, k53), Rep(Q, 3) is the fix
point set of H = (GLj)?° C GL(k3). Moreover, the centralizer of (GLj)%@°
in GL(kf) is isomorphic to GL(3). By a Luna theorem (see [Lun75]), for
any linearized ample line bundle a point € Rep(Q, 3) is semistable for £
and the action of GL(f) if and only if it is for the action of GL(k3). It
follows that P(Q,3) C P(Q,kB3). The lemma is proved. O

Proposition 4 A vector dimension « is a rational Schur root if and only if
it 1s positively proportional to a Schur root.

Proof. The Ringle form is denoted by (-,-). Let § be a Schur root. By
[Sch92, Theorem 6.1], X contains stable points for the action of GL(/3)/Im(Ao)
and the line bundle £(1, (3, -)— (-, 8)). It follows that 3(Q, 3) has non empty
interior in H(3). By Lemma 8, k3 is a rational Schur root for any positive
integer k.

Conversely, let 3 be a rational Schur root. Let d denote the gcd of the
B(s) for s € Qo. By Lemma 8, 3 = 3/d is a rational Schur root. Consider the
canonical decomposition 3 = By +- - - + 35 of 3 (see [Kac82]). Then, X(Q, 3)
is contained in H(3;)N---NH(Bs). Since ¥(Q, 3) spans the hyperplane H(f),
it follows that H(3) = H(B1) = --- = H(Bs). So, the §;’s are proportional;
since, 3 is indivisible, it follows that s = 1 and that § is a Schur root. O

3.4 The Derksen-Weyman theorem

3.4.1 — The ordered decomposition 8 = Bi1+---+f, is called an ordered
decomposition by rational Schur roots if By,---, B are rational Schur roots.
To any such decomposition we associate the (unordered) set {1, -+,0s} C
N@. Let W;(8) denote the set of subsets obtained in such a way from well
covering ordered decomposition by s rational Schur roots.

We can now state and reprove the Derksen-Weyman theorem:

Theorem 3 Let § be a vector dimension. We denote by d the dimension of
¥(Q,B) and by n the cardinality of Qo. For any s =n —d,---,0, the map

o : Ws(5) — {faces of 3(Q, ) of codimension s}
{ﬁla"'aﬁs} — H(ﬂl)mﬂH(ﬁS)mE(Qaﬁ)7
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is a bijection. Moreover, the family (1, -, Bs) s linearly independent.

Proof. Let 3 = B1+---+03s be a well covering ordered decomposition by
rational Schur roots. Then, by Lemma 5, H(31)N- - -NH(Bs) NE(Q, 5) equals
Fs(B1+ -+ +Bs). Since the f3;’s are rational Schur roots, Theorem 1 shows
that Fx(B1+--- +8) has codimension s. Let us recall that ACS*?)(X) =
TCCMP)(X). This proves that © is well defined.

From now on, we prefer to consider the faces of P(Q, ) containing 0
rather than faces of ¥(Q, 3). By Proposition 1, this is equivalent.

We are going to prove that © is surjective. Let us fix a face F of P(Q, «)
of codimension d and containing 0. By Theorem 2, there exists an open
subset U in PicG(X)(E — ACY%(X) such that F = F(L) for all £L € U. TLet
(C, \) be a well covering pair associated to a line bundle £ € U. By Lemma 4,
C contains 0. Let 8 = 31+ --- +3, be the ordered decomposition associated
to A. By Paragraph 3.3.3, n(cx) = 7g,1...15,- The Kernel of the G*-action

on (C,\) contains the central subtorus S of dimension s; and, Ace (C) is
contained in PicGA/S(C’)Q.

We claim that the ;s are rational Schur roots. Let us fix i € {1,---,s}.
Let Ag, be the central one parameter subgroup of GL(f;) defined in Para-
graph 3.3.1; and, S; be the codimension one subtorus of the center of GL(/3;)
such that Y(S;) is orthogonal to Ag,. Consider the subgroup H; of GL(;)
generated by the S; and SL(3;). We embed P(Rep(Q, ;) ® C) in X in an

obvious way and consider the restriction morphism:
pi : Pic®(X)g — Pici(P(Rep(Q, ;) ® C))o.

By construction, the restriction of p; to H(/;) is surjective. Moreover, by
[Res07, Lemma 11|, p;(U) is contained in P(Q, 5;, H;). Since p; is an open
map, this implies that P(Q, §;) has codimension one in X(GL(f;))q. So,
the (;’s are rational Schur roots and © is surjective.

Let 8 = B1+- -+, be any well covering ordered decomposition by ra-
tional Schur roots. By Theorem 1, the intersection H (1) N --- N H(Bs) has
codimension s. This means that the (§; are linearly independent.

Let us fix 0 € I'g such that £(1,0) belongs to the relative interior of
F :=Fp(B1+---+0s). Since, 3; are rational Schur roots, Theorem 1 shows
that the codimension of F equals s. Note that, A(F) contains £(1,0) in
its closure. We claim that p;(o) belongs to the relative interior of (@, ;).
Assuming it does not, one can find o, in A(F) such that p;(cc) does not
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belongs to (@, ;). Then, the ordered decomposition associated to o con-
tains strictly more than s vector dimensions. By Theorem 1 this implies that
the codimension of F is strictly greater than s; which is a contradiction.

We now want to prove the injectivity of ©. Let 3 = Bi+---+03s be
a well covering ordered decomposition by rational Schur roots and F be
the associated face. We want to obtain the decomposition of 3 from F.
By Proposition 4 and [Sch92, Theorem 3.2|, the canonical decomposition of
B; = a;3; for some positive integer a; and some Schur root §;. Set C' =
P(@;Rep(Q, B;) ® C) and Cy = P(P;Rep(Q, 5;)P% @ C); and fix embeddings
CocCcCX.

Let £ := L£(1,0) be a point in the relative interior of F. Let = be a
general point in Cy. Since p;(o) belongs to the relative interior of ¥(Q, 3;),
[Sch92, Theorem 6.1] implies that the orbit of z by the group [], GL(8;)% is
closed in X*(L). By [Lun75]|, this implies that GL(8).z is closed in X*¥(L).
Conversely, by [Res07, Proposition 9], any general closed orbit in X*%(L)
intersects C' and so Cp. This proves that a general closed orbit in X% (L)
contains a general point of Cy. In particular, any point in a general closed
orbit of X®(L£) decompose as a sum of a1 indecomposable representations
of dimension 3;...and a, indecomposable representations of dimension f3,.
Moreover, such a decomposition is unique and the §3,’s are pairwise distinct
(the family is free). The injectivity follows. O
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