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1 Introdu
tionWe work over the �eld C of 
omplex numbers. Let Q = (Q0, Q1) be a quiverwithout oriented 
y
le. Here, Q0 is the set of vertexes and Q1 the set ofarrows. Let β = (β(s))s∈Q0
be a ve
tor dimension of Q and Rep(Q,β) bethe ve
tor spa
e of the representations of dimension ve
tor β. The group

GL(β) =
∏

s∈Q0
GL(β(s)) a
ts naturally on Rep(Q,β). We 
onsider thegroup Γ of the 
hara
ters of GL(β); it is isomorphi
 to ZQ0 . We 
onsider the
one Σ(Q,β) in Γ⊗Q generated by the elements σ ∈ Γ su
h that there existsa non zero regular fun
tion f ∈ C[Rep(Q,β)] su
h that g.f = σ(g)f for any

g ∈ GL(β). It is a 
onvex polyhedral 
one. In [DW00, DW06℄, Derksen-Weyman showed that the Horn 
ones 
an be obtained in su
h a way fromwell 
hosen quiver and ve
tor dimension. This is an important motivationto the study Σ(Q,β). Here, we use general methods of Geometri
 InvariantTheory to give a proof of the Derksen-Weyman theorem (see [DW06℄) whi
hparametrizes bije
tively the fa
es of Σ(Q,β).In Se
tion 2, we improve results of [Res07℄ about GIT-
ones in general.In parti
ular, Theorem 1 is an improvement of [Res07, Theorem 4℄, andTheorem 2 of [Res07, Theorem 7℄. After ea
h statement we have in
lude aremark to make 
lear the improvement. It was very interesting for myself tosee that the example Σ(Q,β) enlightens phenomenons whi
h did not o

urin the example studied in [Res07, Res08a℄.The Horn 
ones 
an also be obtained as GIT-
ones for the a
tion of thelinear group on a produ
t of 
omplete �ag varieties. This point of view wasused in [BS00, BK06, Res07, Res08a℄. Whereas, in the literature this GITapproa
h of the Horn problem was distin
t from the quiver one, this workintends to show that the GIT-
ones are a very useful generalization of thesetwo approa
hes.It may be not so easy to see the di�eren
es between the proof presentedhere and the Derksen-Weyman one. The most obvious one is the 
ontextin whi
h the te
hni
al part of the work is made. The author guess that thegeneral 
ontext of GIT makes more 
lear the key argues. A most fundamentaldi�eren
e is that here and in [Res07℄ the points outside the 
one play a
ru
ial role. Moreover, we do not use here the fa
t that a base of the spa
eof semiinvariant fun
tions on Rep(Q,β) is known.The Fulton 
onje
ture about the Littlewood-Ri
hardson 
oe�
ients is as2



follows
cν
λ µ = 1 ⇒ cNν

Nλ Nµ = 1 ∀N ≥ 1.The generalization to quiver setting is α ◦ β = 1 ⇒ α ◦ (Nβ) = 1. Thisgeneralization is proved in [DW06℄ and I 
ite, �is 
ru
ial for that paper�.Here, this result is not used. In 
ontrast, Theorem 3 and the method usedin [Res08
℄ allow to reprove this result.2 Well 
overing pairs and GIT-
ones2.1 Well 
overing pairsLet G be a 
onne
ted redu
tive group a
ting on a smooth proje
tive variety
X. Let λ be a one parameter subgroup of G. Let Gλ denote the 
entralizerof λ in G. We 
onsider the usual paraboli
 subgroup P (λ) asso
iated to λwith Levi subgroup Gλ:

P (λ) =
{

g ∈ G : lim
t→0

λ(t).g.λ(t)−1 exists in G
}

.Let C be an irredu
ible 
omponent of the �xed point set Xλ of λ in X. Wealso 
onsider the Biaªyni
ki-Birula 
ell C+ asso
iated to C:
C+ = {x ∈ X | lim

t→0
λ(t)x ∈ C}.Then, C is stable by the a
tion of Gλ and C+ by the a
tion of P (λ).Consider over G × C+ the a
tion of G × P (λ) given by the formula(with obvious notation): (g, p).(g′, y) = (gg′p−1, py). Consider the quotient

G ×P (λ) C+ of G × C+ by the a
tion of {e} × P (λ). The 
lass of a pair
(g, y) ∈ G × C+ in G ×P (λ) C+ is denoted by [g : y].The a
tion of G×{e} indu
es an a
tion of G on G×P (λ) C+. Moreover,the �rst proje
tion G×C+ −→ G indu
es a G-equivariant map π : G×P (λ)

C+ −→ G/P (λ) whi
h is a lo
ally trivial �bration with �ber C+. Consideralso the G-equivariant map
η : G ×P (λ) C+ −→ X, [g : y] 7→ gy.De�nition. The pair (C, λ) is said to be dominant if η is. The pair (C, λ)is said to be well 
overing if η indu
es an isomorphism over an open subsetof X interse
ting C. 3



Let L ∈ PicG(X). Let x be any point in C. Sin
e λ �xes x, it indu
esa linear a
tion of the group K∗ on the �ber Lx. There exists an integer
µL(x, λ) su
h that:

∀x̃ ∈ Lx ∀t ∈ C∗ λ(t)x̃ = t−µL(x,λ)x̃.One easily 
he
ks that µL(x, λ) does not depends on x ∈ C; it will be denotedby µL(C, λ).2.2 Total 
ones and well 
overing pairNotation. If Γ is an abelian group, we set ΓQ = Γ⊗ZQ. If Γ is any algebrai
group, we denote by Y (Γ) the set of one parameter subgroups of Γ. If F is apart of a ve
tor spa
e E we denote by Span(F) the subspa
e of E spannedby F .2.2.1� Consider the 
onvex 
ones T CG(X) generated in PicG(X)Q bythe L's in PicG(X) whi
h have non zero G-invariant se
tions. We will denoteby Xss(L) the open subset of the x's in X su
h that for some positive integer
n, there exists a G-invariant se
tion of L⊗n su
h that σ(x) 6= 0. Note thatthis de�nition is standard, only if L is ample. Sin
e Xss(L) = Xss(L⊗n) (forany positive integer n), one 
an de�ne Xss(L) if L ∈ PicG(X)Q.Let (C, λ) be a dominant pair. Sin
e L 7→ µL(C, λ) is a group morphism,it indu
es a linear map from PicG(X)Q to Q, also denoted by µL(C, λ). By[Res07, Lemma 4℄, T CG(X) is 
ontained in the half-spa
e µL(C, λ) ≤ 0.In parti
ular, interse
ting T CG(X) with the hyperplane µL(C, λ) = 0, oneobtains a fa
e F(C) of T CG(X). Indeed, the following lemma shows thatthe fa
e only depends on C (see [Res07, Lemma 4℄):Lemma 1 Let (C, λ) be a dominant pair. Then, F(C) is the set of L ∈
PicG(X)Q su
h that Xss(L) interse
ts C.The following theorem is an improvement of [Res07, Theorem 4℄.Theorem 1 We assume that the rank of PicG(X) is �nite and 
onsider
T CG(X). Let (C, λ) be a well 
overing pair.Then the rank of PicGλ

(C) is �nite and the 
odimension of F(C) in
PicG(X)Q equals the 
odimension of T CGλ

(C) in PicGλ

(C)Q. More pre
isely,the restri
tion morphism indu
es an isomorphism from PicG(X)Q/Span(F(C))onto PicGλ

(C)Q/Span(T CGλ

(C)). 4



Remark. Let p : PicG(X)Q −→ PicGλ

(C)Q be the restri
tion morphismand let Im p denote its image. At �rst glan
e, it is not so obvious to see whyTheorem 1 improves [Res07, Theorem 4℄. In parti
ular, if p is surje
tive (asin the example 
onsidered in [Res07℄) the two statements are equivalent. Themain di�eren
e is that the �rst one allows the following pi
ture in PicGλ

(C)Qand se
ond one no:
Im p

ACGλ

(C)

Proof. Let Ω be a G-stable open subset of X su
h that the natural map
G ×P (λ) (C+ ∩ Ω) −→ Ω is an isomorphism. Sin
e (C, λ) is well 
overingone 
an �nd su
h an Ω interse
ting C. By [Res07, Lemma 5℄, PicG(Ω) isisomorphi
 to PicGλ

(C ∩ Ω).Let E1, · · · , Es (resp. D1, · · · ,Dt) be the irredu
ible 
omponents of 
odi-mension one of X −Ω (resp. C −Ω). Sin
e G and Gλ are 
onne
ted the Ei'sand the Di's are respe
tively G and Gλ-stable. We 
onsider the asso
iated
G and Gλ-linearized line bundles LEi

and LDi
.Consider the following diagram:

⊕iQLEi

- PicG(X)Q

PicG(Ω)Q ≃ PicGλ

(C ∩ Ω)Q
-

π
X

-

0.

⊕iQLDi

- PicGλ

(C)Q

?

πC

-

Sin
e X and so C are smooth, the restri
tion maps πX and πC are sur-je
tive. By 
onstru
tion, LDi
belongs to T CGλ

(C). Moreover, ea
h LEihas a G-invariant se
tion with Ei has zero lo
us. Sin
e Ei does not 
on-5



tains C, this proves that LEi
∈ F(C). So, it is su�
ient to prove that

πX(F(C)) = πC(T CGλ

(C)).Let L ∈ F(C). Sin
e Xss(L) interse
ts C, L|C belongs to T CGλ

(C). So,
πX(F(C)) ⊂ πC(T CGλ

(C)).Conversely, let L be a Gλ-linearized line bundle on C whi
h belongsto T CGλ

(C). Up to 
hanging L by a positive power, there exists a nonzero Gλ-invariant se
tion σ of L. Let L̃ be the G-linearized line bundleon Ω asso
iated to πC(L), and σ̃ the G-invariant se
tion of L̃ asso
iatedto σ. Now, let M ∈ PicG(X) su
h that πX(M) = L̃. The se
tion σ̃indu
es a non zero G-invariant rational se
tion of M, and so a non zeroregular G-invariant se
tion σ′ of M′ = M+
∑

i L
⊗ni

Ei
for some non negativeintegers ni. Sin
e no Ei 
ontains C, σ′ is not identi
ally zero on C; inparti
ular, M′ ∈ F(C). Sin
e, πX(M′) = πX(M) = πC(L), it follows that

πX(F(C)) ⊃ πC(T CGλ

(C)). Note that details about the above argue 
an befound in the proof of [Res07, Theorem 4℄. �2.2.2� We are now interested in the span of ACG(X). Let H be a
onne
ted normal subgroup of G a
ting trivially on X. Then, H has to a
ttrivially on any line bundle in T CG(X). We denote by PicG/H(X) the sub-group 
onsisting of the L ∈ PicG(X) on whi
h H a
ts trivially. We have:
ACG(X) ⊂ PicG/H(X)Q. Consider now:De�nition. Let K be the neutral 
omponent of the kernel of the G-a
tionon X. The 
one ACG(X) is said to be non degenerated if it spans PicG(X)Q.2.2.3� Whereas Y (Γ) is not a group, one 
an 
onstru
t (see [MFK94℄)a map ‖ · ‖ : Y (G) −→ R whi
h is invariant by 
onjuga
y and measuresthe length of λ. Moreover pre
isely, for any subtorus S of G the restri
tionof ‖ · ‖ to Y (T )Q is the norm asso
iated to a s
alar produ
t de�ned on Q.This norm is used to normalize the number µL(x, λ). Using µL(x,λ)

‖λ‖ , Kempfde�ned (see [Kem78℄) an optimal destabilizing one parameter subgroup.2.2.4� The set of ample G-linearized line bundles generate an open
onvex PicG(X)+Q in PicG(X)Q. We set:
ACG(X) = PicG(X)+Q ∩ T CG(X).If F is a fa
e of T CG(X), F0 denotes its interse
tion with PicG(X)+Q .6



To any ample L ∈ PicG(X)Q whi
h does not belong to ACG(X), usingmainly the Kempf theorem, we asso
iated in [Res07℄ a well 
overing pair
(C, λ) de�ned up to 
onjuga
y (and depending on ‖ · ‖). The fa
e F(C) isalso denoted by F(L). [Res07, Theorem 7℄ asserts that any fa
e of ACG(X)equals F◦(L) for some ample L 6∈ ACG(X). Here, we need an improvementof this result.Theorem 2 Let F be a fa
e of ACG(X). Consider the set ∆(F) of ample
L 6∈ ACG(X) su
h that F = F◦(L).Then,(i) There exists L ∈ ∆(F) su
h that the asso
iated pair (C, λ) has a nondegenerated 
one ACGλ

(C).(ii) ∆(F) has non empty interior in PicG(X)Q.Remark. [Res07, Theorem 7℄ asserts that any ∆(F) is not empty. It is 
learthat Assertion (ii) of Theorem 2 improves this statement. The �rst assertionis useful to elimenate unuseful inequalities. A
tually, if X = G/B × Ĝ/B̂(here Ĝ is a 
onne
ted redu
tive group 
ontaining G) as in [Res07℄, forevery well 
overing pair (C, λ) ACGλ

(C) has non empty interior; and so,this improvement is not useful. We will see that this property of ACGλ

(C)explains the role of the S
hur roots relatively to the 
ones Σ(Q,β).Let G be a simple group and P , Q and R three paraboli
 subgroups of
G. Theorem 2 asks for an algorithm to de
ide if ACG(G/P × G/Q × G/R)has non empty interior. In type A, Proposition 4 gives a interpretation ofthe question in terms of the 
anoni
al de
omposition of a ve
tor dimensionof a quiver. In [DW02℄, Derksen-Weyman gives an algorithm whi
h answersthe question. In general, it seems to be unknown.Proof. Let L ∈ ∆(F) and (C, λ) be an asso
iated well 
overing pair. Let
Kλ denote the neutral 
omponent of the kernel of a
tion of Gλ on C.We start by 
onstru
ting a kind of proje
tion from PicGλ

(C)Q onto
PicGλ/Kλ

(C)Q. Let S be a maximal torus of Kλ and T ⊃ S be a maxi-mal torus of Gλ. Let S′ be the subtorus of T su
h that Y (S)Q is orthogonalwith Y (S′)Q for ‖·‖. Note that the produ
t indu
es an isogeny S×S′ −→ T .Let Hλ be the subgroup of Gλ 
ontaining S′ su
h that the produ
t indu
esan isogeny Kλ × Hλ −→ Gλ. Now, we 
an identify PicGλ/Kλ

(C)Q with
PicHλ

(C)Q. In parti
ular, we obtain a restri
tion map:
p : PicG(X)Q −→ PicHλ

(C)Q ≃ PicGλ/Kλ

(C)Q.7



By [Res07, Lemma 10℄, p(L) belongs to ACHλ

(C). Let us �rst assumethat p(L) belongs to the interior of ACHλ

(C) in PicHλ

(C)Q. The �rst as-sertion is automati
. The hyperplane µ•(C, λ) = 0 
uts PicG(X)Q in twohalf spa
es, the one H+ 
ontains L and the 
losure of the other one 
ontains
ACG(X). [Res07, Lemma 11℄ asserts that ∆(F) 
ontains the set of ample
L′ ∈ H+ su
h that p(L′) ∈ ACHλ

(C). This implies the se
ond assertion.Let Im p denote the image of p. Note that the above proof of Asser-tion (ii) also works if p(L) belongs to the interior of ACHλ

(C) ∩ Im p in
Im p. But, in this 
ase, Theorem 1 shows that ACHλ

(C) has non emptyinterior in PicHλ

(C)Q; and, the �rst assertion follows.We now assume that ACHλ

(C) ∩ Im p has non empty interior in Im p.Sin
e p(L) belongs to ACHλ

(C)∩ Im p, one 
an �nd a neighbor Lǫ of L su
hthat p(Lǫ) belongs to the interior of ACHλ

(C) ∩ Im p. Then, F(Lε) = Fand we are in the pre
eding 
ase.We now assume that ACHλ

(C)∩Im p has empty interior in Im p. One 
an�nd a neighbor Lǫ of L su
h that p(Lǫ) does not belong to ACHλ

(C)∩ Im p;and, su
h that F(p(Lǫ)) = ACHλ

(C). By [Res07, Lemma 12℄, F(Lε) = F .Let (Cε, λε) be the pair asso
iated to Lε. Up to 
onjuga
y, Cε is stri
tly
ontained in C. Now, one has to restart the proof with Lε. The pro
edurewill �nish sin
e Cε is stri
tly 
ontained in C. �3 Appli
ation to quiver representations3.1 De�nitionsIn this se
tion, we �x some 
lassi
al notation about quiver representations.Let Q be a quiver (that is, a �nite oriented graph) with vertexes Q0 andarrows Q1. An arrow a ∈ Q1 has initial vertex ia and terminal one ta. Arepresentation R of Q is a family (V (s))s∈Q0
of �nite dimensional ve
torspa
es and a family of linear maps u(a) ∈ Hom(V (ia), V (ta)) indexed by

a ∈ Q1. The dimension ve
tor of R is the family (dim(V (s)))s∈Q0
∈ NQ0 .Let us �x α ∈ NQ0 and a ve
tor spa
e V (s) of dimension α(s) for ea
h

s ∈ Q0. Set
Rep(Q,α) =

⊕

a∈Q1

Hom(V (ia), V (ta)).8



Consider also the groups:
GL(α) =

∏

s∈Q0

GL(V (s)) and SL(α) =
∏

s∈Q0

SL(V (s).They a
ts naturally on Rep(Q,α).The 
hara
ter group of GL(α) identi�es with Γ = ZQ0 ; to σ ∈ ZQ0 , weasso
iate the 
hara
ter χσ de�ned by χσ (g(s))s∈Q0
) =

∏

s∈Q0
det(g(s))σ(s).3.2 Three 
ones3.2.1� Consider the algebra C[Rep(Q,α)] of the regular fun
tions on

Rep(Q,α) endowed with the GL(α)-a
tion. For σ ∈ ZQ0, we denote C[Rep(Q,α)]σthe set of f ∈ C[Rep(Q,α)] su
h that for all g ∈ GL(α), g.f = χσ(g)f . Weembed Γ = ZQ0 in ΓQ := QQ0 . Let Σ(Q,α) denote the 
onvex 
one of ΓQgenerated by the points σ ∈ Γ su
h that C[Rep(Q,α)]−σ is non redu
ed to
{0}. 3.2.2� Consider the proje
tive spa
e X = P(Rep(Q,α) ⊕ C). Theformula

g.(R, t) = (gR, t) ∀g ∈ GL(α) , R ∈ Rep(Q,α) and t ∈ C,de�nes an a
tion of GL(α) on X and a GL(α)-linearization L0 ∈ PicGL(α)(X)of the line bundle O(1) on X. We are now interested in the GIT-
one
ACGL(α)(X). Sin
e any line bundle on X admitting non zero se
tions isample, ACGL(α)(X) = T CGL(α)(X).For n ∈ Z and σ ∈ Γ, set L(n, σ) = L⊗n

0 ⊗ σ ∈ PicGL(α)(X). Note that
L(n, σ) = O(n) as a line bundle. We have the following obviousLemma 2 The map Z×Γ −→ PicGL(α)(X), (n, σ) 7→ L(n, σ) is an isomor-phism of groups. Moreover, L(n, σ) is ample if and only if n is positive.Lemma 2 allows to embed ACGL(α)(X) in Q × ΓQ. Set P(Q,α) =
ACGL(α)(X) ∩ {1} × ΓQ. General properties of ACGL(α)(X) imply that
P(Q,α) is 
losed 
onvex rational and polyhedral. We 
laim that it is 
om-pa
t. Consider the 
enter Z of GL(α) and the set Wt of these weights forits a
tion on Rep(Q,α)⊕C. One 
an easily prove that P(Q,α) is 
ontainedin the 
onvex hull of the Wt. Finally, P(Q,α) is a rational polytope in ΓQ.Moreover, ACGL(α)(X) is the pointed 
onvex 
one generated by P(Q,α) insu
h a way the fa
es of ACGL(α)(X) and of P(Q,α) 
orrespond bije
tively.9



3.2.3� We 
onsider Rep(Q,α) as an open subset of X by R 7→ (R, 1);and we identify the 
omplement with P(Rep(Q,α)).Proposition 1 (i) We have: Xss(L0) = Rep(Q,α).(ii) The point 0 ∈ ΓQ is a vertex of P(Q,α).(iii) The 
one of ΓQ generated by P(Q,α) is Σ(Q,α).Proof. Sin
e Q has no oriented 
y
le, one 
an 
hose a numeration of thevertexes su
h that the index of ta is greater than the index of ia for all
a ∈ Q1. Consider the one parameter subgroup λ0 of GL(α) a
ting on theve
tor spa
e 
orresponding to the vertex indexed by i as an homothety of
oe�
ient ti.The point 0 ∈ Rep(Q,α) ⊂ X is an isolated �xed point of λ0. Set
C0 = {0}. One easily 
he
ks that C+

0 = Rep(Q,α) and that λ0 is 
entralin GL(α): it follows that (C0, λ0) is a well 
overing pair. Let F(C0) (resp.
P(C0)) denote the fa
e of T CGL(α)(X) (resp. P(Q,α)) asso
iated to (C0, λ0).Let L ∈ F(C0). Then, 0 is semistable for L. But 0 is �xed by GL(α); inparti
ular its 
enter has to a
t trivially on the �ber in L over 0. This implies
F(C0) is 
ontained in Q+L0.Sin
e (R, t) 7→ t is a GL(α)-invariant se
tion of L0, Rep(Q,α) ⊂ Xss(L0).Then, F(C0) = Q+L0.Sin
e 0 is the only 
losed GL(α)-orbit in Rep(Q,α), Xss(L0)//GL(α) is apoint. So, Xss(L0) 
ontains only one 
losed orbit O whi
h is 
ontained in the
losure GL(α).0. We dedu
e that O = {0} and that Xss(L0) = Rep(Q,α).The last assertion of the proposition is a dire
t appli
ation of [Res08a,Theorem 4℄. �3.2.4� Consider now the proje
tive spa
e D = P(Rep(Q,α)) endowedwith the GL(α)-a
tion. We are now interested in the GIT-
one ACGL(α)(D).We have the following obviousLemma 3 The restri
tion map ρD : PicGL(α)(X) −→ PicGL(α)(D) is anisomorphism of groups. Moreover, ρD(L) is ample if and only if L is.Lemma 3 allows to embed ACGL(α)(D) in Q × ΓQ. Set P(D,Q,α) =
ACGL(α)(D) ∩ {1} × ΓQ. Obviously, P(D,Q,α) is a rational polytope in
ΓQ. Via the identi�
ation of Lemma 3, the relation between P(D,Q,α) and
P(Q,α) is as follows: 10



Proposition 2 The polytope P(Q,α) is the 
onvex hull of 0 and P(D,Q,α).If in addition Q is a tree then P(D,Q,α) is a fa
e of P(Q,α). In par-ti
ular, P(D,Q,α) is an a�ne se
tion of Σ(Q,α).Proof. Let σ ∈ ΓQ. It is 
lear that σ ∈ P(D,Q,α) if and only if Xss(σ)interse
ts D, if and only if Xss(σ) is not 
ontained in Xss(0). By [Res00℄,this is equivalent to the fa
t that the 
losure of the GIT-
lass of σ does not
ontain 0. In parti
ular, all the vertexes of P(Q,α) ex
epted 0 belong to
P(D,Q,α); the �rst assertion follows.With the additional assumption, one 
an easily 
onstru
t a 
entral oneparameter subgroup λ(t) of G(α) whi
h a
ts on ea
h Hom(V (ia), V (ta)) (for
a ∈ Q1) by multipli
ation by t. Then, (D,λ) is a well 
overing pair; thisimplies that P(D,Q,α) is a fa
e of P(Q,α). �The four last statements 
an be summarized by the following pi
tures.On the third pi
ture, Q is assumed to be a tree.

ACG(X)

P(Q,α)

Σ(Q,α)

P(Q,α)
0

Σ(Q,α)

P(Q,D,α)Figure 1: Positions of ACG(X), Σ(Q,α), P(Q,α) and P(Q,D,α)3.2.5� Propositions 1 and 2 prove that when Q is a tree, the de-s
riptions of the three 
ones are equivalent. From now on, we are mainlyinterested in Σ(Q,α) viewed as the 
one generated by P(Q,α); that is tothe fa
es of P(Q,α) 
ontaining the vertex 0:Lemma 4 Let (C, λ) be a dominant pair. Then, F(C) 
ontains 0 if andonly if C 
ontains 0.Proof. The point is that {0} is the only 
losed orbit in Xss(0). A
tually, if
F(C) 
ontains 0, C has to 
ontains 0 by [Res07, Proposition 9℄. Conversely,if C 
ontains 0, µ0(C, λ) = 0; and so, 0 belongs to F(C). �3.3 Dominant pairs3.3.1� Let σ ∈ Γ and α be a ve
tor dimension. We set:

σ(α) :=
∑

s∈Q0

σ(s)α(s).11



We 
onsider the one parameter subgroup λα of GL(α) a
ting on V (s) by
t.Id for any s ∈ Q0: σ(α) is simply the 
omposition σ ◦ λα. Note that λαa
ts trivially on Rep(Q,α). This implies that P(Q,α) is 
ontained in thehyperplane H(α) 
onsisting of the σ's su
h that σ(α) = 0.De�nition. The dimension ve
tor α is 
alled a rational S
hur root if P(Q,α)or equivalently Σ(Q,α) has non empty interior in H(α).If there exists R ∈ Rep(Q,α) whose the stabilizer in GL(α) has dimen-sion one, α is said to be a S
hur root.The se
ond notion is very 
lassi
al (see [Ka
82℄) and the �rst one verynatural in our 
ontext, in parti
ular reading Theorem 2. We will explain therelation between these two notions in Paragraph 3.3.5.3.3.2� De
ompositions of dimension ve
tors. Let α be a ve
tordimension of Q.De�nition. A Z-de
omposition of α is a family of dimension ve
tors αi in-dexed by Z su
h that αi = 0 with �nitely many ex
eptions and α =

∑

i∈Z αi.An ordered de
omposition of α, is a sequen
e (β1, · · · , βs) of non-zero ve
tordimensions su
h that α = β1 + · · · + βs. We denote the ordered de
omposi-tion by α = β1+̃ · · · +̃βs.3.3.3� Let λ be a one parameter subgroup of GL(α). For any i ∈ Zand s ∈ Q0, we set Vi(s) = {v ∈ V (s) |λ(t)v = tiv} and αi(s) = dimVi(s).Obviously, α =
∑

i∈Z αi form a Z-de
omposition of α whi
h determines λup to 
onjuga
y.The paraboli
 subgroup P (λ) of GL(α) asso
iated to λ is the set of
(g(s))s∈Q0

su
h that for all i ∈ Z and s ∈ Q0 we have g(s)(Vi(s)) ⊂
⊕j≤iVj(s).Now, Rep(Q,α)λ is the set of the (u(a))a∈Q1

's su
h that for any a ∈ Q1and for any i ∈ Z, u(a)(Vi(ia)) ⊂ Vi(ta). It is isomorphi
 to ⊕

i Rep(Q,αi).In parti
ular, the irredu
ible 
omponent C of Xλ 
ontaining 0 is isomorphi
to P(
⊕

i Rep(Q,αi) ⊕ C).Moreover, C+∩Rep(Q,α) is the set of the (u(a))a∈Q1
's su
h that for any

a ∈ Q1 and for any i ∈ Z, u(a)(Vi(ia)) ⊂ ⊕j≤iVj(ta).Consider the morphism ηλ : G ×P (λ) C+ −→ Rep(Q,α). Note that,
P (λ), C and C+ only depend (up to 
onjuga
y) on the ordered de
ompositionof α indu
ed by the Z-de
omposition ∑

i αi in an obvious way. From now on,12



we will 
onsider themap ηβ1+̃···+̃βs
asso
iated to the ordered de
omposition of

α; it is de�ned up to 
onjuga
y. We will say that the ordered de
ompositionis dominant respe
tively birational if ηβ1+̃···+̃βs
is. We will say that thede
omposition is well 
overing if (C, λ) is.Let us assume that our de
omposition is dominant. Using Lemma 1, thisde
omposition gives a fa
e of ACG(α)(X) and so one of P(Q,α). This lastfa
e is denoted by FP(β1+̃ · · · +̃βs). Lemma 4 implies that it 
ontains 0.Now, Proposition 1 shows that this fa
e generate a fa
e FΣ(β1+̃ · · · +̃βs) of

Σ(Q,α).Lemma 5 Let β = β1+̃ · · · +̃βs be a dominant ordered de
omposition. Then,
FΣ(β1+̃ · · · +̃βs) = H(β1) ∩ · · · ∩ H(βs) ∩ Σ(Q,β).Proof. Let (C, λ) be a dominant pair asso
iated to β = β1+̃ · · · +̃βs. Let us�x V = (V (s))s∈Q0

of dimension β. Let V = V 1⊕· · ·⊕V s be a de
ompositionsu
h that V i has dimension βi. The torus (C∗)s a
ts on V as follows; the ith
omponent a
ts by homothety on V i. The indu
ed a
tion of (C∗)s on C istrivial. So, (C∗)s has to a
ts trivially on any point in F(C); it follows that,
FΣ(C) is 
ontained in H(β1) ∩ · · · ∩ H(βs).Conversely, let σ ∈ H(β1)∩· · ·∩H(βs)∩Σ(Q,β). Sin
e (C, λ) is 
overing,
Xss(L(1, σ)) interse
ts C+. But, sin
e σ ∈ H(β1)∩· · ·∩H(βs), λ a
ts triviallyon L(1, σ)|C . By [Res07, Lemma 4℄, this implies that Xss(L(1, σ)) interse
ts
C. �3.3.4�Let α, β ∈ NQ0 . Following Derksen-S
ho�eld-Weyman (see [DSW07℄),we de�ne α ◦ β to be the number of α-dimensional subrepresentations of ageneral representation of dimension α + β if it is �nite, and 0 otherwise.We now dedu
e from [Res08b℄ a des
ription of the well 
overing orderedde
omposition:Proposition 3 The ordered de
omposition β = β1+̃ · · · +̃βs is well 
overingif and only if

∀i < j βi ◦ βj = 1.Proof. For simpli
ity we assume that s = 3; there is no more di�
ulty forbigger s. By [Res08b, Lemma 10℄, we have 〈β1, β2〉 = 〈β1, β3〉 = 〈β2, β3〉 = 0.So, we 
an apply [Res08b, Theorem 3℄ and obtain that 1 = (β1 ◦ (β2 +
β3)).(β2 ◦ β3). We obtain β2 ◦ β3 = 1. Now, [Res08b, Corollary 2℄ impliesthat 1 = (β1 ◦ (β2 + β3)) = (β1 ◦ β2).(β1 ◦ β3). The 
on
lusion follows.13



Conversely, [Res08b, Theorem 3 and Corollary 2℄ imply that the degreeof ηβ1+̃β2+̃β3
is one. So, [Res08b, Lemma 10℄ implies that ηβ1+̃β2+̃β3

is well
overing. �3.3.5� We 
an now explain the name �rational S
hur root�. Let us �rstreprove two well known lemmas:Lemma 6 If α ◦ β 6= 0 and α ◦ γ 6= 0 then α ◦ (β + γ) 6= 0.Proof. In [DSW07℄, Derksen-S
ho�eld-Weyman proved that α ◦ β is thedimension of C[Rep(Q,α)]σ for well 
hosen weight σ. With this 
hara
teri-zation, the lemma just follows from the fa
t that C[Rep(Q,α)]SL(α) has nozero divisors. In this work, α ◦ β is always understood as the degree of amap η; in parti
ular, we in
lude a proof using this point of view.Consider a pair (C, λ) (resp. (C ′, λ′)) asso
iated to the ordered de
om-position α+̃β (resp. α+̃γ) in Rep(Q,α + β) and Rep(Q,α + γ). Sin
e
α ◦ β 6= 0, ηα+̃β is generi
ally �nite. Moreover, by [Res08b, Lemma 9℄,
λ a
ts trivially on the restri
tion to C of the determinant bundle of η.It follows that for general x ∈ C = Rep(Q,α) ⊕ Rep(Q,β), the di�eren-tial of ηα+̃β at x is an isomorphism. In the same way, the di�erential of
ηα+̃γ is an isomorphism for x′ general in Rep(Q,α) ⊕ Rep(Q,β). A di-re
t 
omputation implies now that ηα+̃(β+γ) is an isomorphism for y generalin Rep(Q,α) ⊕ Rep(Q,β) ⊕ Rep(Q, γ) ⊂ Rep(α + β + γ). In parti
ular,
α ◦ (β + γ) 6= 0. �Let us re
all the following well knownLemma 7 We have:

Σ(Q,β) = {σ ∈ Γ : σ(β) = 0 and σ(α) ≤ 0 ∀α s.t. α ◦ (β − α) 6= 0}.Proof. Let σ ∈ Σ(Q,β). We already saw that σ(β) = 0. Let α be su
h that
α ◦ (β − α) 6= 0. Sin
e ηα+̃(β−α) is dominant, σ(α) ≤ 0.The 
onverse in
lusion is a dire
t 
onsequen
e of [Kin94℄ (see [DW00,Remark 5℄). �Here, 
omes a variant of the Derksen-Weyman saturation theorem. Notethat this variant is mu
h more easy:Lemma 8 We have:

Σ(Q, kβ) = Σ(Q,β).14



Proof. The in
lusion Σ(Q, kβ) ⊂ Σ(Q,β) is a dire
t 
onsequen
e of Lem-mas 6 and 7.The 
onverse in
lusion follows from the Derksen-Weyman Re
ipro
ityProperty (see [DW00, Corollary 1℄). We in
lude here a simpler proof. Let
(V (s))s∈Q0

be ve
tor spa
es of dimension ve
tor β. Consider the family
Hom(Ck, V (s) of ve
tor spa
es indexed by s ∈ Q0 of dimension ve
tor kβ.Then, for the natural in
lusion Rep(Q,β) ⊂ Rep(Q, kβ), Rep(Q,β) is the �xpoint set of H = (GLk)

Q0 ⊂ GL(kβ). Moreover, the 
entralizer of (GLk)
Q0in GL(kβ) is isomorphi
 to GL(β). By a Luna theorem (see [Lun75℄), forany linearized ample line bundle a point x ∈ Rep(Q,β) is semistable for Land the a
tion of GL(β) if and only if it is for the a
tion of GL(kβ). Itfollows that P(Q,β) ⊂ P(Q, kβ). The lemma is proved. �Proposition 4 A ve
tor dimension α is a rational S
hur root if and only ifit is positively proportional to a S
hur root.Proof. The Ringle form is denoted by 〈·, ·〉. Let β be a S
hur root. By[S
h92, Theorem 6.1℄, X 
ontains stable points for the a
tion of GL(β)/Im(λ0)and the line bundle L(1, 〈β, ·〉−〈·, β〉). It follows that Σ(Q,β) has non emptyinterior in H(β). By Lemma 8, kβ is a rational S
hur root for any positiveinteger k.Conversely, let β be a rational S
hur root. Let d denote the g
d of the

β(s) for s ∈ Q0. By Lemma 8, β = β/d is a rational S
hur root. Consider the
anoni
al de
omposition β = β1 + · · ·+βs of β (see [Ka
82℄). Then, Σ(Q,β)is 
ontained inH(β1)∩· · ·∩H(βs). Sin
e Σ(Q,β) spans the hyperplaneH(β),it follows that H(β) = H(β1) = · · · = H(βs). So, the βi's are proportional;sin
e, β is indivisible, it follows that s = 1 and that β is a S
hur root. �3.4 The Derksen-Weyman theorem3.4.1� The ordered de
omposition β = β1+̃ · · · +̃βs is 
alled an orderedde
omposition by rational S
hur roots if β1, · · · , βs are rational S
hur roots.To any su
h de
omposition we asso
iate the (unordered) set {β1, · · · , βs} ⊂
NQ0 . Let Ws(β) denote the set of subsets obtained in su
h a way from well
overing ordered de
omposition by s rational S
hur roots.We 
an now state and reprove the Derksen-Weyman theorem:Theorem 3 Let β be a ve
tor dimension. We denote by d the dimension of
Σ(Q,β) and by n the 
ardinality of Q0. For any s = n − d, · · · , 0, the map

Θ : Ws(β) −→ {faces of Σ(Q,β) of codimension s}
{β1, · · · , βs} 7−→ H(β1) ∩ · · · ∩ H(βs) ∩ Σ(Q,β),15



is a bije
tion. Moreover, the family (β1, · · · , βs) is linearly independent.Proof. Let β = β1+̃ · · · +̃βs be a well 
overing ordered de
omposition byrational S
hur roots. Then, by Lemma 5, H(β1)∩· · ·∩H(βs)∩Σ(Q,β) equals
FΣ(β1+̃ · · · +̃βs). Sin
e the βi's are rational S
hur roots, Theorem 1 showsthat FΣ(β1+̃ · · · +̃βs) has 
odimension s. Let us re
all that ACGL(β)(X) =
T CGL(β)(X). This proves that Θ is well de�ned.From now on, we prefer to 
onsider the fa
es of P(Q,β) 
ontaining 0rather than fa
es of Σ(Q,β). By Proposition 1, this is equivalent.We are going to prove that Θ is surje
tive. Let us �x a fa
e F of P(Q,α)of 
odimension d and 
ontaining 0. By Theorem 2, there exists an opensubset U in PicG(X)+Q − ACG(X) su
h that F = F(L) for all L ∈ U . Let
(C, λ) be a well 
overing pair asso
iated to a line bundle L ∈ U . By Lemma 4,
C 
ontains 0. Let β = β1+̃ · · · +̃βs be the ordered de
omposition asso
iatedto λ. By Paragraph 3.3.3, η(C,λ) = ηβ1+̃···+̃βs

. The Kernel of the Gλ-a
tionon (C, λ) 
ontains the 
entral subtorus S of dimension s; and, ACGλ

(C) is
ontained in PicGλ/S(C)Q.We 
laim that the βi's are rational S
hur roots. Let us �x i ∈ {1, · · · , s}.Let λβi
be the 
entral one parameter subgroup of GL(βi) de�ned in Para-graph 3.3.1; and, Si be the 
odimension one subtorus of the 
enter of GL(βi)su
h that Y (Si) is orthogonal to λβi

. Consider the subgroup Hi of GL(βi)generated by the Si and SL(βi). We embed P(Rep(Q,βi) ⊕ C) in X in anobvious way and 
onsider the restri
tion morphism:
pi : PicG(X)Q −→ PicHi(P(Rep(Q,βi) ⊕ C))Q.By 
onstru
tion, the restri
tion of pi to H(βi) is surje
tive. Moreover, by[Res07, Lemma 11℄, pi(U) is 
ontained in P(Q,βi,Hi). Sin
e pi is an openmap, this implies that P(Q,βi) has 
odimension one in X(GL(βi))Q. So,the βi's are rational S
hur roots and Θ is surje
tive.Let β = β1+̃ · · · +̃βs be any well 
overing ordered de
omposition by ra-tional S
hur roots. By Theorem 1, the interse
tion H(β1) ∩ · · · ∩ H(βs) has
odimension s. This means that the βi are linearly independent.Let us �x σ ∈ ΓQ su
h that L(1, σ) belongs to the relative interior of

F := FP (β1+̃ · · · +̃βs). Sin
e, βi are rational S
hur roots, Theorem 1 showsthat the 
odimension of F equals s. Note that, ∆(F) 
ontains L(1, σ) inits 
losure. We 
laim that pi(σ) belongs to the relative interior of Σ(Q,βi).Assuming it does not, one 
an �nd σǫ in ∆(F) su
h that pi(σǫ) does not16



belongs to Σ(Q,βi). Then, the ordered de
omposition asso
iated to σǫ 
on-tains stri
tly more than s ve
tor dimensions. By Theorem 1 this implies thatthe 
odimension of F is stri
tly greater than s; whi
h is a 
ontradi
tion.We now want to prove the inje
tivity of Θ. Let β = β1+̃ · · · +̃βs bea well 
overing ordered de
omposition by rational S
hur roots and F bethe asso
iated fa
e. We want to obtain the de
omposition of β from F .By Proposition 4 and [S
h92, Theorem 3.2℄, the 
anoni
al de
omposition of
βi = aiβi for some positive integer ai and some S
hur root βi. Set C =
P(⊕iRep(Q,βi)⊕C) and C0 = P(⊕iRep(Q,βi)

⊕ai ⊕C); and �x embeddings
C0 ⊂ C ⊂ X.Let L := L(1, σ) be a point in the relative interior of F . Let x be ageneral point in C0. Sin
e pi(σ) belongs to the relative interior of Σ(Q,βi),[S
h92, Theorem 6.1℄ implies that the orbit of x by the group ∏

i GL(βi)
ai is
losed in Xss(L). By [Lun75℄, this implies that GL(β).x is 
losed in Xss(L).Conversely, by [Res07, Proposition 9℄, any general 
losed orbit in Xss(L)interse
ts C and so C0. This proves that a general 
losed orbit in Xss(L)
ontains a general point of C0. In parti
ular, any point in a general 
losedorbit of Xss(L) de
ompose as a sum of a1 inde
omposable representationsof dimension β1. . . and as inde
omposable representations of dimension βs.Moreover, su
h a de
omposition is unique and the βi's are pairwise distin
t(the family is free). The inje
tivity follows. �Referen
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