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1 IntrodutionWe work over the �eld C of omplex numbers. Let Q = (Q0, Q1) be a quiverwithout oriented yle. Here, Q0 is the set of vertexes and Q1 the set ofarrows. Let β = (β(s))s∈Q0
be a vetor dimension of Q and Rep(Q,β) bethe vetor spae of the representations of dimension vetor β. The group

GL(β) =
∏

s∈Q0
GL(β(s)) ats naturally on Rep(Q,β). We onsider thegroup Γ of the haraters of GL(β); it is isomorphi to ZQ0 . We onsider theone Σ(Q,β) in Γ⊗Q generated by the elements σ ∈ Γ suh that there existsa non zero regular funtion f ∈ C[Rep(Q,β)] suh that g.f = σ(g)f for any

g ∈ GL(β). It is a onvex polyhedral one. In [DW00, DW06℄, Derksen-Weyman showed that the Horn ones an be obtained in suh a way fromwell hosen quiver and vetor dimension. This is an important motivationto the study Σ(Q,β). Here, we use general methods of Geometri InvariantTheory to give a proof of the Derksen-Weyman theorem (see [DW06℄) whihparametrizes bijetively the faes of Σ(Q,β).In Setion 2, we improve results of [Res07℄ about GIT-ones in general.In partiular, Theorem 1 is an improvement of [Res07, Theorem 4℄, andTheorem 2 of [Res07, Theorem 7℄. After eah statement we have inlude aremark to make lear the improvement. It was very interesting for myself tosee that the example Σ(Q,β) enlightens phenomenons whih did not ourin the example studied in [Res07, Res08a℄.The Horn ones an also be obtained as GIT-ones for the ation of thelinear group on a produt of omplete �ag varieties. This point of view wasused in [BS00, BK06, Res07, Res08a℄. Whereas, in the literature this GITapproah of the Horn problem was distint from the quiver one, this workintends to show that the GIT-ones are a very useful generalization of thesetwo approahes.It may be not so easy to see the di�erenes between the proof presentedhere and the Derksen-Weyman one. The most obvious one is the ontextin whih the tehnial part of the work is made. The author guess that thegeneral ontext of GIT makes more lear the key argues. A most fundamentaldi�erene is that here and in [Res07℄ the points outside the one play aruial role. Moreover, we do not use here the fat that a base of the spaeof semiinvariant funtions on Rep(Q,β) is known.The Fulton onjeture about the Littlewood-Rihardson oe�ients is as2



follows
cν
λ µ = 1 ⇒ cNν

Nλ Nµ = 1 ∀N ≥ 1.The generalization to quiver setting is α ◦ β = 1 ⇒ α ◦ (Nβ) = 1. Thisgeneralization is proved in [DW06℄ and I ite, �is ruial for that paper�.Here, this result is not used. In ontrast, Theorem 3 and the method usedin [Res08℄ allow to reprove this result.2 Well overing pairs and GIT-ones2.1 Well overing pairsLet G be a onneted redutive group ating on a smooth projetive variety
X. Let λ be a one parameter subgroup of G. Let Gλ denote the entralizerof λ in G. We onsider the usual paraboli subgroup P (λ) assoiated to λwith Levi subgroup Gλ:

P (λ) =
{

g ∈ G : lim
t→0

λ(t).g.λ(t)−1 exists in G
}

.Let C be an irreduible omponent of the �xed point set Xλ of λ in X. Wealso onsider the Biaªyniki-Birula ell C+ assoiated to C:
C+ = {x ∈ X | lim

t→0
λ(t)x ∈ C}.Then, C is stable by the ation of Gλ and C+ by the ation of P (λ).Consider over G × C+ the ation of G × P (λ) given by the formula(with obvious notation): (g, p).(g′, y) = (gg′p−1, py). Consider the quotient

G ×P (λ) C+ of G × C+ by the ation of {e} × P (λ). The lass of a pair
(g, y) ∈ G × C+ in G ×P (λ) C+ is denoted by [g : y].The ation of G×{e} indues an ation of G on G×P (λ) C+. Moreover,the �rst projetion G×C+ −→ G indues a G-equivariant map π : G×P (λ)

C+ −→ G/P (λ) whih is a loally trivial �bration with �ber C+. Consideralso the G-equivariant map
η : G ×P (λ) C+ −→ X, [g : y] 7→ gy.De�nition. The pair (C, λ) is said to be dominant if η is. The pair (C, λ)is said to be well overing if η indues an isomorphism over an open subsetof X interseting C. 3



Let L ∈ PicG(X). Let x be any point in C. Sine λ �xes x, it induesa linear ation of the group K∗ on the �ber Lx. There exists an integer
µL(x, λ) suh that:

∀x̃ ∈ Lx ∀t ∈ C∗ λ(t)x̃ = t−µL(x,λ)x̃.One easily heks that µL(x, λ) does not depends on x ∈ C; it will be denotedby µL(C, λ).2.2 Total ones and well overing pairNotation. If Γ is an abelian group, we set ΓQ = Γ⊗ZQ. If Γ is any algebraigroup, we denote by Y (Γ) the set of one parameter subgroups of Γ. If F is apart of a vetor spae E we denote by Span(F) the subspae of E spannedby F .2.2.1� Consider the onvex ones T CG(X) generated in PicG(X)Q bythe L's in PicG(X) whih have non zero G-invariant setions. We will denoteby Xss(L) the open subset of the x's in X suh that for some positive integer
n, there exists a G-invariant setion of L⊗n suh that σ(x) 6= 0. Note thatthis de�nition is standard, only if L is ample. Sine Xss(L) = Xss(L⊗n) (forany positive integer n), one an de�ne Xss(L) if L ∈ PicG(X)Q.Let (C, λ) be a dominant pair. Sine L 7→ µL(C, λ) is a group morphism,it indues a linear map from PicG(X)Q to Q, also denoted by µL(C, λ). By[Res07, Lemma 4℄, T CG(X) is ontained in the half-spae µL(C, λ) ≤ 0.In partiular, interseting T CG(X) with the hyperplane µL(C, λ) = 0, oneobtains a fae F(C) of T CG(X). Indeed, the following lemma shows thatthe fae only depends on C (see [Res07, Lemma 4℄):Lemma 1 Let (C, λ) be a dominant pair. Then, F(C) is the set of L ∈
PicG(X)Q suh that Xss(L) intersets C.The following theorem is an improvement of [Res07, Theorem 4℄.Theorem 1 We assume that the rank of PicG(X) is �nite and onsider
T CG(X). Let (C, λ) be a well overing pair.Then the rank of PicGλ

(C) is �nite and the odimension of F(C) in
PicG(X)Q equals the odimension of T CGλ

(C) in PicGλ

(C)Q. More preisely,the restrition morphism indues an isomorphism from PicG(X)Q/Span(F(C))onto PicGλ

(C)Q/Span(T CGλ

(C)). 4



Remark. Let p : PicG(X)Q −→ PicGλ

(C)Q be the restrition morphismand let Im p denote its image. At �rst glane, it is not so obvious to see whyTheorem 1 improves [Res07, Theorem 4℄. In partiular, if p is surjetive (asin the example onsidered in [Res07℄) the two statements are equivalent. Themain di�erene is that the �rst one allows the following piture in PicGλ

(C)Qand seond one no:
Im p

ACGλ

(C)

Proof. Let Ω be a G-stable open subset of X suh that the natural map
G ×P (λ) (C+ ∩ Ω) −→ Ω is an isomorphism. Sine (C, λ) is well overingone an �nd suh an Ω interseting C. By [Res07, Lemma 5℄, PicG(Ω) isisomorphi to PicGλ

(C ∩ Ω).Let E1, · · · , Es (resp. D1, · · · ,Dt) be the irreduible omponents of odi-mension one of X −Ω (resp. C −Ω). Sine G and Gλ are onneted the Ei'sand the Di's are respetively G and Gλ-stable. We onsider the assoiated
G and Gλ-linearized line bundles LEi

and LDi
.Consider the following diagram:

⊕iQLEi

- PicG(X)Q

PicG(Ω)Q ≃ PicGλ

(C ∩ Ω)Q
-

π
X

-

0.

⊕iQLDi

- PicGλ

(C)Q

?

πC

-

Sine X and so C are smooth, the restrition maps πX and πC are sur-jetive. By onstrution, LDi
belongs to T CGλ

(C). Moreover, eah LEihas a G-invariant setion with Ei has zero lous. Sine Ei does not on-5



tains C, this proves that LEi
∈ F(C). So, it is su�ient to prove that

πX(F(C)) = πC(T CGλ

(C)).Let L ∈ F(C). Sine Xss(L) intersets C, L|C belongs to T CGλ

(C). So,
πX(F(C)) ⊂ πC(T CGλ

(C)).Conversely, let L be a Gλ-linearized line bundle on C whih belongsto T CGλ

(C). Up to hanging L by a positive power, there exists a nonzero Gλ-invariant setion σ of L. Let L̃ be the G-linearized line bundleon Ω assoiated to πC(L), and σ̃ the G-invariant setion of L̃ assoiatedto σ. Now, let M ∈ PicG(X) suh that πX(M) = L̃. The setion σ̃indues a non zero G-invariant rational setion of M, and so a non zeroregular G-invariant setion σ′ of M′ = M+
∑

i L
⊗ni

Ei
for some non negativeintegers ni. Sine no Ei ontains C, σ′ is not identially zero on C; inpartiular, M′ ∈ F(C). Sine, πX(M′) = πX(M) = πC(L), it follows that

πX(F(C)) ⊃ πC(T CGλ

(C)). Note that details about the above argue an befound in the proof of [Res07, Theorem 4℄. �2.2.2� We are now interested in the span of ACG(X). Let H be aonneted normal subgroup of G ating trivially on X. Then, H has to attrivially on any line bundle in T CG(X). We denote by PicG/H(X) the sub-group onsisting of the L ∈ PicG(X) on whih H ats trivially. We have:
ACG(X) ⊂ PicG/H(X)Q. Consider now:De�nition. Let K be the neutral omponent of the kernel of the G-ationon X. The one ACG(X) is said to be non degenerated if it spans PicG(X)Q.2.2.3� Whereas Y (Γ) is not a group, one an onstrut (see [MFK94℄)a map ‖ · ‖ : Y (G) −→ R whih is invariant by onjugay and measuresthe length of λ. Moreover preisely, for any subtorus S of G the restritionof ‖ · ‖ to Y (T )Q is the norm assoiated to a salar produt de�ned on Q.This norm is used to normalize the number µL(x, λ). Using µL(x,λ)

‖λ‖ , Kempfde�ned (see [Kem78℄) an optimal destabilizing one parameter subgroup.2.2.4� The set of ample G-linearized line bundles generate an openonvex PicG(X)+Q in PicG(X)Q. We set:
ACG(X) = PicG(X)+Q ∩ T CG(X).If F is a fae of T CG(X), F0 denotes its intersetion with PicG(X)+Q .6



To any ample L ∈ PicG(X)Q whih does not belong to ACG(X), usingmainly the Kempf theorem, we assoiated in [Res07℄ a well overing pair
(C, λ) de�ned up to onjugay (and depending on ‖ · ‖). The fae F(C) isalso denoted by F(L). [Res07, Theorem 7℄ asserts that any fae of ACG(X)equals F◦(L) for some ample L 6∈ ACG(X). Here, we need an improvementof this result.Theorem 2 Let F be a fae of ACG(X). Consider the set ∆(F) of ample
L 6∈ ACG(X) suh that F = F◦(L).Then,(i) There exists L ∈ ∆(F) suh that the assoiated pair (C, λ) has a nondegenerated one ACGλ

(C).(ii) ∆(F) has non empty interior in PicG(X)Q.Remark. [Res07, Theorem 7℄ asserts that any ∆(F) is not empty. It is learthat Assertion (ii) of Theorem 2 improves this statement. The �rst assertionis useful to elimenate unuseful inequalities. Atually, if X = G/B × Ĝ/B̂(here Ĝ is a onneted redutive group ontaining G) as in [Res07℄, forevery well overing pair (C, λ) ACGλ

(C) has non empty interior; and so,this improvement is not useful. We will see that this property of ACGλ

(C)explains the role of the Shur roots relatively to the ones Σ(Q,β).Let G be a simple group and P , Q and R three paraboli subgroups of
G. Theorem 2 asks for an algorithm to deide if ACG(G/P × G/Q × G/R)has non empty interior. In type A, Proposition 4 gives a interpretation ofthe question in terms of the anonial deomposition of a vetor dimensionof a quiver. In [DW02℄, Derksen-Weyman gives an algorithm whih answersthe question. In general, it seems to be unknown.Proof. Let L ∈ ∆(F) and (C, λ) be an assoiated well overing pair. Let
Kλ denote the neutral omponent of the kernel of ation of Gλ on C.We start by onstruting a kind of projetion from PicGλ

(C)Q onto
PicGλ/Kλ

(C)Q. Let S be a maximal torus of Kλ and T ⊃ S be a maxi-mal torus of Gλ. Let S′ be the subtorus of T suh that Y (S)Q is orthogonalwith Y (S′)Q for ‖·‖. Note that the produt indues an isogeny S×S′ −→ T .Let Hλ be the subgroup of Gλ ontaining S′ suh that the produt induesan isogeny Kλ × Hλ −→ Gλ. Now, we an identify PicGλ/Kλ

(C)Q with
PicHλ

(C)Q. In partiular, we obtain a restrition map:
p : PicG(X)Q −→ PicHλ

(C)Q ≃ PicGλ/Kλ

(C)Q.7



By [Res07, Lemma 10℄, p(L) belongs to ACHλ

(C). Let us �rst assumethat p(L) belongs to the interior of ACHλ

(C) in PicHλ

(C)Q. The �rst as-sertion is automati. The hyperplane µ•(C, λ) = 0 uts PicG(X)Q in twohalf spaes, the one H+ ontains L and the losure of the other one ontains
ACG(X). [Res07, Lemma 11℄ asserts that ∆(F) ontains the set of ample
L′ ∈ H+ suh that p(L′) ∈ ACHλ

(C). This implies the seond assertion.Let Im p denote the image of p. Note that the above proof of Asser-tion (ii) also works if p(L) belongs to the interior of ACHλ

(C) ∩ Im p in
Im p. But, in this ase, Theorem 1 shows that ACHλ

(C) has non emptyinterior in PicHλ

(C)Q; and, the �rst assertion follows.We now assume that ACHλ

(C) ∩ Im p has non empty interior in Im p.Sine p(L) belongs to ACHλ

(C)∩ Im p, one an �nd a neighbor Lǫ of L suhthat p(Lǫ) belongs to the interior of ACHλ

(C) ∩ Im p. Then, F(Lε) = Fand we are in the preeding ase.We now assume that ACHλ

(C)∩Im p has empty interior in Im p. One an�nd a neighbor Lǫ of L suh that p(Lǫ) does not belong to ACHλ

(C)∩ Im p;and, suh that F(p(Lǫ)) = ACHλ

(C). By [Res07, Lemma 12℄, F(Lε) = F .Let (Cε, λε) be the pair assoiated to Lε. Up to onjugay, Cε is stritlyontained in C. Now, one has to restart the proof with Lε. The proedurewill �nish sine Cε is stritly ontained in C. �3 Appliation to quiver representations3.1 De�nitionsIn this setion, we �x some lassial notation about quiver representations.Let Q be a quiver (that is, a �nite oriented graph) with vertexes Q0 andarrows Q1. An arrow a ∈ Q1 has initial vertex ia and terminal one ta. Arepresentation R of Q is a family (V (s))s∈Q0
of �nite dimensional vetorspaes and a family of linear maps u(a) ∈ Hom(V (ia), V (ta)) indexed by

a ∈ Q1. The dimension vetor of R is the family (dim(V (s)))s∈Q0
∈ NQ0 .Let us �x α ∈ NQ0 and a vetor spae V (s) of dimension α(s) for eah

s ∈ Q0. Set
Rep(Q,α) =

⊕

a∈Q1

Hom(V (ia), V (ta)).8



Consider also the groups:
GL(α) =

∏

s∈Q0

GL(V (s)) and SL(α) =
∏

s∈Q0

SL(V (s).They ats naturally on Rep(Q,α).The harater group of GL(α) identi�es with Γ = ZQ0 ; to σ ∈ ZQ0 , weassoiate the harater χσ de�ned by χσ (g(s))s∈Q0
) =

∏

s∈Q0
det(g(s))σ(s).3.2 Three ones3.2.1� Consider the algebra C[Rep(Q,α)] of the regular funtions on

Rep(Q,α) endowed with the GL(α)-ation. For σ ∈ ZQ0, we denote C[Rep(Q,α)]σthe set of f ∈ C[Rep(Q,α)] suh that for all g ∈ GL(α), g.f = χσ(g)f . Weembed Γ = ZQ0 in ΓQ := QQ0 . Let Σ(Q,α) denote the onvex one of ΓQgenerated by the points σ ∈ Γ suh that C[Rep(Q,α)]−σ is non redued to
{0}. 3.2.2� Consider the projetive spae X = P(Rep(Q,α) ⊕ C). Theformula

g.(R, t) = (gR, t) ∀g ∈ GL(α) , R ∈ Rep(Q,α) and t ∈ C,de�nes an ation of GL(α) on X and a GL(α)-linearization L0 ∈ PicGL(α)(X)of the line bundle O(1) on X. We are now interested in the GIT-one
ACGL(α)(X). Sine any line bundle on X admitting non zero setions isample, ACGL(α)(X) = T CGL(α)(X).For n ∈ Z and σ ∈ Γ, set L(n, σ) = L⊗n

0 ⊗ σ ∈ PicGL(α)(X). Note that
L(n, σ) = O(n) as a line bundle. We have the following obviousLemma 2 The map Z×Γ −→ PicGL(α)(X), (n, σ) 7→ L(n, σ) is an isomor-phism of groups. Moreover, L(n, σ) is ample if and only if n is positive.Lemma 2 allows to embed ACGL(α)(X) in Q × ΓQ. Set P(Q,α) =
ACGL(α)(X) ∩ {1} × ΓQ. General properties of ACGL(α)(X) imply that
P(Q,α) is losed onvex rational and polyhedral. We laim that it is om-pat. Consider the enter Z of GL(α) and the set Wt of these weights forits ation on Rep(Q,α)⊕C. One an easily prove that P(Q,α) is ontainedin the onvex hull of the Wt. Finally, P(Q,α) is a rational polytope in ΓQ.Moreover, ACGL(α)(X) is the pointed onvex one generated by P(Q,α) insuh a way the faes of ACGL(α)(X) and of P(Q,α) orrespond bijetively.9



3.2.3� We onsider Rep(Q,α) as an open subset of X by R 7→ (R, 1);and we identify the omplement with P(Rep(Q,α)).Proposition 1 (i) We have: Xss(L0) = Rep(Q,α).(ii) The point 0 ∈ ΓQ is a vertex of P(Q,α).(iii) The one of ΓQ generated by P(Q,α) is Σ(Q,α).Proof. Sine Q has no oriented yle, one an hose a numeration of thevertexes suh that the index of ta is greater than the index of ia for all
a ∈ Q1. Consider the one parameter subgroup λ0 of GL(α) ating on thevetor spae orresponding to the vertex indexed by i as an homothety ofoe�ient ti.The point 0 ∈ Rep(Q,α) ⊂ X is an isolated �xed point of λ0. Set
C0 = {0}. One easily heks that C+

0 = Rep(Q,α) and that λ0 is entralin GL(α): it follows that (C0, λ0) is a well overing pair. Let F(C0) (resp.
P(C0)) denote the fae of T CGL(α)(X) (resp. P(Q,α)) assoiated to (C0, λ0).Let L ∈ F(C0). Then, 0 is semistable for L. But 0 is �xed by GL(α); inpartiular its enter has to at trivially on the �ber in L over 0. This implies
F(C0) is ontained in Q+L0.Sine (R, t) 7→ t is a GL(α)-invariant setion of L0, Rep(Q,α) ⊂ Xss(L0).Then, F(C0) = Q+L0.Sine 0 is the only losed GL(α)-orbit in Rep(Q,α), Xss(L0)//GL(α) is apoint. So, Xss(L0) ontains only one losed orbit O whih is ontained in thelosure GL(α).0. We dedue that O = {0} and that Xss(L0) = Rep(Q,α).The last assertion of the proposition is a diret appliation of [Res08a,Theorem 4℄. �3.2.4� Consider now the projetive spae D = P(Rep(Q,α)) endowedwith the GL(α)-ation. We are now interested in the GIT-one ACGL(α)(D).We have the following obviousLemma 3 The restrition map ρD : PicGL(α)(X) −→ PicGL(α)(D) is anisomorphism of groups. Moreover, ρD(L) is ample if and only if L is.Lemma 3 allows to embed ACGL(α)(D) in Q × ΓQ. Set P(D,Q,α) =
ACGL(α)(D) ∩ {1} × ΓQ. Obviously, P(D,Q,α) is a rational polytope in
ΓQ. Via the identi�ation of Lemma 3, the relation between P(D,Q,α) and
P(Q,α) is as follows: 10



Proposition 2 The polytope P(Q,α) is the onvex hull of 0 and P(D,Q,α).If in addition Q is a tree then P(D,Q,α) is a fae of P(Q,α). In par-tiular, P(D,Q,α) is an a�ne setion of Σ(Q,α).Proof. Let σ ∈ ΓQ. It is lear that σ ∈ P(D,Q,α) if and only if Xss(σ)intersets D, if and only if Xss(σ) is not ontained in Xss(0). By [Res00℄,this is equivalent to the fat that the losure of the GIT-lass of σ does notontain 0. In partiular, all the vertexes of P(Q,α) exepted 0 belong to
P(D,Q,α); the �rst assertion follows.With the additional assumption, one an easily onstrut a entral oneparameter subgroup λ(t) of G(α) whih ats on eah Hom(V (ia), V (ta)) (for
a ∈ Q1) by multipliation by t. Then, (D,λ) is a well overing pair; thisimplies that P(D,Q,α) is a fae of P(Q,α). �The four last statements an be summarized by the following pitures.On the third piture, Q is assumed to be a tree.

ACG(X)

P(Q,α)

Σ(Q,α)

P(Q,α)
0

Σ(Q,α)

P(Q,D,α)Figure 1: Positions of ACG(X), Σ(Q,α), P(Q,α) and P(Q,D,α)3.2.5� Propositions 1 and 2 prove that when Q is a tree, the de-sriptions of the three ones are equivalent. From now on, we are mainlyinterested in Σ(Q,α) viewed as the one generated by P(Q,α); that is tothe faes of P(Q,α) ontaining the vertex 0:Lemma 4 Let (C, λ) be a dominant pair. Then, F(C) ontains 0 if andonly if C ontains 0.Proof. The point is that {0} is the only losed orbit in Xss(0). Atually, if
F(C) ontains 0, C has to ontains 0 by [Res07, Proposition 9℄. Conversely,if C ontains 0, µ0(C, λ) = 0; and so, 0 belongs to F(C). �3.3 Dominant pairs3.3.1� Let σ ∈ Γ and α be a vetor dimension. We set:

σ(α) :=
∑

s∈Q0

σ(s)α(s).11



We onsider the one parameter subgroup λα of GL(α) ating on V (s) by
t.Id for any s ∈ Q0: σ(α) is simply the omposition σ ◦ λα. Note that λαats trivially on Rep(Q,α). This implies that P(Q,α) is ontained in thehyperplane H(α) onsisting of the σ's suh that σ(α) = 0.De�nition. The dimension vetor α is alled a rational Shur root if P(Q,α)or equivalently Σ(Q,α) has non empty interior in H(α).If there exists R ∈ Rep(Q,α) whose the stabilizer in GL(α) has dimen-sion one, α is said to be a Shur root.The seond notion is very lassial (see [Ka82℄) and the �rst one verynatural in our ontext, in partiular reading Theorem 2. We will explain therelation between these two notions in Paragraph 3.3.5.3.3.2� Deompositions of dimension vetors. Let α be a vetordimension of Q.De�nition. A Z-deomposition of α is a family of dimension vetors αi in-dexed by Z suh that αi = 0 with �nitely many exeptions and α =

∑

i∈Z αi.An ordered deomposition of α, is a sequene (β1, · · · , βs) of non-zero vetordimensions suh that α = β1 + · · · + βs. We denote the ordered deomposi-tion by α = β1+̃ · · · +̃βs.3.3.3� Let λ be a one parameter subgroup of GL(α). For any i ∈ Zand s ∈ Q0, we set Vi(s) = {v ∈ V (s) |λ(t)v = tiv} and αi(s) = dimVi(s).Obviously, α =
∑

i∈Z αi form a Z-deomposition of α whih determines λup to onjugay.The paraboli subgroup P (λ) of GL(α) assoiated to λ is the set of
(g(s))s∈Q0

suh that for all i ∈ Z and s ∈ Q0 we have g(s)(Vi(s)) ⊂
⊕j≤iVj(s).Now, Rep(Q,α)λ is the set of the (u(a))a∈Q1

's suh that for any a ∈ Q1and for any i ∈ Z, u(a)(Vi(ia)) ⊂ Vi(ta). It is isomorphi to ⊕

i Rep(Q,αi).In partiular, the irreduible omponent C of Xλ ontaining 0 is isomorphito P(
⊕

i Rep(Q,αi) ⊕ C).Moreover, C+∩Rep(Q,α) is the set of the (u(a))a∈Q1
's suh that for any

a ∈ Q1 and for any i ∈ Z, u(a)(Vi(ia)) ⊂ ⊕j≤iVj(ta).Consider the morphism ηλ : G ×P (λ) C+ −→ Rep(Q,α). Note that,
P (λ), C and C+ only depend (up to onjugay) on the ordered deompositionof α indued by the Z-deomposition ∑

i αi in an obvious way. From now on,12



we will onsider themap ηβ1+̃···+̃βs
assoiated to the ordered deomposition of

α; it is de�ned up to onjugay. We will say that the ordered deompositionis dominant respetively birational if ηβ1+̃···+̃βs
is. We will say that thedeomposition is well overing if (C, λ) is.Let us assume that our deomposition is dominant. Using Lemma 1, thisdeomposition gives a fae of ACG(α)(X) and so one of P(Q,α). This lastfae is denoted by FP(β1+̃ · · · +̃βs). Lemma 4 implies that it ontains 0.Now, Proposition 1 shows that this fae generate a fae FΣ(β1+̃ · · · +̃βs) of

Σ(Q,α).Lemma 5 Let β = β1+̃ · · · +̃βs be a dominant ordered deomposition. Then,
FΣ(β1+̃ · · · +̃βs) = H(β1) ∩ · · · ∩ H(βs) ∩ Σ(Q,β).Proof. Let (C, λ) be a dominant pair assoiated to β = β1+̃ · · · +̃βs. Let us�x V = (V (s))s∈Q0

of dimension β. Let V = V 1⊕· · ·⊕V s be a deompositionsuh that V i has dimension βi. The torus (C∗)s ats on V as follows; the ithomponent ats by homothety on V i. The indued ation of (C∗)s on C istrivial. So, (C∗)s has to ats trivially on any point in F(C); it follows that,
FΣ(C) is ontained in H(β1) ∩ · · · ∩ H(βs).Conversely, let σ ∈ H(β1)∩· · ·∩H(βs)∩Σ(Q,β). Sine (C, λ) is overing,
Xss(L(1, σ)) intersets C+. But, sine σ ∈ H(β1)∩· · ·∩H(βs), λ ats triviallyon L(1, σ)|C . By [Res07, Lemma 4℄, this implies that Xss(L(1, σ)) intersets
C. �3.3.4�Let α, β ∈ NQ0 . Following Derksen-Sho�eld-Weyman (see [DSW07℄),we de�ne α ◦ β to be the number of α-dimensional subrepresentations of ageneral representation of dimension α + β if it is �nite, and 0 otherwise.We now dedue from [Res08b℄ a desription of the well overing ordereddeomposition:Proposition 3 The ordered deomposition β = β1+̃ · · · +̃βs is well overingif and only if

∀i < j βi ◦ βj = 1.Proof. For simpliity we assume that s = 3; there is no more di�ulty forbigger s. By [Res08b, Lemma 10℄, we have 〈β1, β2〉 = 〈β1, β3〉 = 〈β2, β3〉 = 0.So, we an apply [Res08b, Theorem 3℄ and obtain that 1 = (β1 ◦ (β2 +
β3)).(β2 ◦ β3). We obtain β2 ◦ β3 = 1. Now, [Res08b, Corollary 2℄ impliesthat 1 = (β1 ◦ (β2 + β3)) = (β1 ◦ β2).(β1 ◦ β3). The onlusion follows.13



Conversely, [Res08b, Theorem 3 and Corollary 2℄ imply that the degreeof ηβ1+̃β2+̃β3
is one. So, [Res08b, Lemma 10℄ implies that ηβ1+̃β2+̃β3

is wellovering. �3.3.5� We an now explain the name �rational Shur root�. Let us �rstreprove two well known lemmas:Lemma 6 If α ◦ β 6= 0 and α ◦ γ 6= 0 then α ◦ (β + γ) 6= 0.Proof. In [DSW07℄, Derksen-Sho�eld-Weyman proved that α ◦ β is thedimension of C[Rep(Q,α)]σ for well hosen weight σ. With this harateri-zation, the lemma just follows from the fat that C[Rep(Q,α)]SL(α) has nozero divisors. In this work, α ◦ β is always understood as the degree of amap η; in partiular, we inlude a proof using this point of view.Consider a pair (C, λ) (resp. (C ′, λ′)) assoiated to the ordered deom-position α+̃β (resp. α+̃γ) in Rep(Q,α + β) and Rep(Q,α + γ). Sine
α ◦ β 6= 0, ηα+̃β is generially �nite. Moreover, by [Res08b, Lemma 9℄,
λ ats trivially on the restrition to C of the determinant bundle of η.It follows that for general x ∈ C = Rep(Q,α) ⊕ Rep(Q,β), the di�eren-tial of ηα+̃β at x is an isomorphism. In the same way, the di�erential of
ηα+̃γ is an isomorphism for x′ general in Rep(Q,α) ⊕ Rep(Q,β). A di-ret omputation implies now that ηα+̃(β+γ) is an isomorphism for y generalin Rep(Q,α) ⊕ Rep(Q,β) ⊕ Rep(Q, γ) ⊂ Rep(α + β + γ). In partiular,
α ◦ (β + γ) 6= 0. �Let us reall the following well knownLemma 7 We have:

Σ(Q,β) = {σ ∈ Γ : σ(β) = 0 and σ(α) ≤ 0 ∀α s.t. α ◦ (β − α) 6= 0}.Proof. Let σ ∈ Σ(Q,β). We already saw that σ(β) = 0. Let α be suh that
α ◦ (β − α) 6= 0. Sine ηα+̃(β−α) is dominant, σ(α) ≤ 0.The onverse inlusion is a diret onsequene of [Kin94℄ (see [DW00,Remark 5℄). �Here, omes a variant of the Derksen-Weyman saturation theorem. Notethat this variant is muh more easy:Lemma 8 We have:

Σ(Q, kβ) = Σ(Q,β).14



Proof. The inlusion Σ(Q, kβ) ⊂ Σ(Q,β) is a diret onsequene of Lem-mas 6 and 7.The onverse inlusion follows from the Derksen-Weyman ReiproityProperty (see [DW00, Corollary 1℄). We inlude here a simpler proof. Let
(V (s))s∈Q0

be vetor spaes of dimension vetor β. Consider the family
Hom(Ck, V (s) of vetor spaes indexed by s ∈ Q0 of dimension vetor kβ.Then, for the natural inlusion Rep(Q,β) ⊂ Rep(Q, kβ), Rep(Q,β) is the �xpoint set of H = (GLk)

Q0 ⊂ GL(kβ). Moreover, the entralizer of (GLk)
Q0in GL(kβ) is isomorphi to GL(β). By a Luna theorem (see [Lun75℄), forany linearized ample line bundle a point x ∈ Rep(Q,β) is semistable for Land the ation of GL(β) if and only if it is for the ation of GL(kβ). Itfollows that P(Q,β) ⊂ P(Q, kβ). The lemma is proved. �Proposition 4 A vetor dimension α is a rational Shur root if and only ifit is positively proportional to a Shur root.Proof. The Ringle form is denoted by 〈·, ·〉. Let β be a Shur root. By[Sh92, Theorem 6.1℄, X ontains stable points for the ation of GL(β)/Im(λ0)and the line bundle L(1, 〈β, ·〉−〈·, β〉). It follows that Σ(Q,β) has non emptyinterior in H(β). By Lemma 8, kβ is a rational Shur root for any positiveinteger k.Conversely, let β be a rational Shur root. Let d denote the gd of the

β(s) for s ∈ Q0. By Lemma 8, β = β/d is a rational Shur root. Consider theanonial deomposition β = β1 + · · ·+βs of β (see [Ka82℄). Then, Σ(Q,β)is ontained inH(β1)∩· · ·∩H(βs). Sine Σ(Q,β) spans the hyperplaneH(β),it follows that H(β) = H(β1) = · · · = H(βs). So, the βi's are proportional;sine, β is indivisible, it follows that s = 1 and that β is a Shur root. �3.4 The Derksen-Weyman theorem3.4.1� The ordered deomposition β = β1+̃ · · · +̃βs is alled an ordereddeomposition by rational Shur roots if β1, · · · , βs are rational Shur roots.To any suh deomposition we assoiate the (unordered) set {β1, · · · , βs} ⊂
NQ0 . Let Ws(β) denote the set of subsets obtained in suh a way from wellovering ordered deomposition by s rational Shur roots.We an now state and reprove the Derksen-Weyman theorem:Theorem 3 Let β be a vetor dimension. We denote by d the dimension of
Σ(Q,β) and by n the ardinality of Q0. For any s = n − d, · · · , 0, the map

Θ : Ws(β) −→ {faces of Σ(Q,β) of codimension s}
{β1, · · · , βs} 7−→ H(β1) ∩ · · · ∩ H(βs) ∩ Σ(Q,β),15



is a bijetion. Moreover, the family (β1, · · · , βs) is linearly independent.Proof. Let β = β1+̃ · · · +̃βs be a well overing ordered deomposition byrational Shur roots. Then, by Lemma 5, H(β1)∩· · ·∩H(βs)∩Σ(Q,β) equals
FΣ(β1+̃ · · · +̃βs). Sine the βi's are rational Shur roots, Theorem 1 showsthat FΣ(β1+̃ · · · +̃βs) has odimension s. Let us reall that ACGL(β)(X) =
T CGL(β)(X). This proves that Θ is well de�ned.From now on, we prefer to onsider the faes of P(Q,β) ontaining 0rather than faes of Σ(Q,β). By Proposition 1, this is equivalent.We are going to prove that Θ is surjetive. Let us �x a fae F of P(Q,α)of odimension d and ontaining 0. By Theorem 2, there exists an opensubset U in PicG(X)+Q − ACG(X) suh that F = F(L) for all L ∈ U . Let
(C, λ) be a well overing pair assoiated to a line bundle L ∈ U . By Lemma 4,
C ontains 0. Let β = β1+̃ · · · +̃βs be the ordered deomposition assoiatedto λ. By Paragraph 3.3.3, η(C,λ) = ηβ1+̃···+̃βs

. The Kernel of the Gλ-ationon (C, λ) ontains the entral subtorus S of dimension s; and, ACGλ

(C) isontained in PicGλ/S(C)Q.We laim that the βi's are rational Shur roots. Let us �x i ∈ {1, · · · , s}.Let λβi
be the entral one parameter subgroup of GL(βi) de�ned in Para-graph 3.3.1; and, Si be the odimension one subtorus of the enter of GL(βi)suh that Y (Si) is orthogonal to λβi

. Consider the subgroup Hi of GL(βi)generated by the Si and SL(βi). We embed P(Rep(Q,βi) ⊕ C) in X in anobvious way and onsider the restrition morphism:
pi : PicG(X)Q −→ PicHi(P(Rep(Q,βi) ⊕ C))Q.By onstrution, the restrition of pi to H(βi) is surjetive. Moreover, by[Res07, Lemma 11℄, pi(U) is ontained in P(Q,βi,Hi). Sine pi is an openmap, this implies that P(Q,βi) has odimension one in X(GL(βi))Q. So,the βi's are rational Shur roots and Θ is surjetive.Let β = β1+̃ · · · +̃βs be any well overing ordered deomposition by ra-tional Shur roots. By Theorem 1, the intersetion H(β1) ∩ · · · ∩ H(βs) hasodimension s. This means that the βi are linearly independent.Let us �x σ ∈ ΓQ suh that L(1, σ) belongs to the relative interior of

F := FP (β1+̃ · · · +̃βs). Sine, βi are rational Shur roots, Theorem 1 showsthat the odimension of F equals s. Note that, ∆(F) ontains L(1, σ) inits losure. We laim that pi(σ) belongs to the relative interior of Σ(Q,βi).Assuming it does not, one an �nd σǫ in ∆(F) suh that pi(σǫ) does not16



belongs to Σ(Q,βi). Then, the ordered deomposition assoiated to σǫ on-tains stritly more than s vetor dimensions. By Theorem 1 this implies thatthe odimension of F is stritly greater than s; whih is a ontradition.We now want to prove the injetivity of Θ. Let β = β1+̃ · · · +̃βs bea well overing ordered deomposition by rational Shur roots and F bethe assoiated fae. We want to obtain the deomposition of β from F .By Proposition 4 and [Sh92, Theorem 3.2℄, the anonial deomposition of
βi = aiβi for some positive integer ai and some Shur root βi. Set C =
P(⊕iRep(Q,βi)⊕C) and C0 = P(⊕iRep(Q,βi)

⊕ai ⊕C); and �x embeddings
C0 ⊂ C ⊂ X.Let L := L(1, σ) be a point in the relative interior of F . Let x be ageneral point in C0. Sine pi(σ) belongs to the relative interior of Σ(Q,βi),[Sh92, Theorem 6.1℄ implies that the orbit of x by the group ∏

i GL(βi)
ai islosed in Xss(L). By [Lun75℄, this implies that GL(β).x is losed in Xss(L).Conversely, by [Res07, Proposition 9℄, any general losed orbit in Xss(L)intersets C and so C0. This proves that a general losed orbit in Xss(L)ontains a general point of C0. In partiular, any point in a general losedorbit of Xss(L) deompose as a sum of a1 indeomposable representationsof dimension β1. . . and as indeomposable representations of dimension βs.Moreover, suh a deomposition is unique and the βi's are pairwise distint(the family is free). The injetivity follows. �Referenes[BK06℄ Prakash Belkale and Shrawan Kumar, Eigenvalue problem and anew produt in ohomology of �ag varieties, Invent. Math. 166(2006), no. 1, 185�228.[BS00℄ Arkady Berenstein and Reyer Sjamaar, Coadjoint orbits, momentpolytopes, and the Hilbert-Mumford riterion, J. Amer. Math. So.13 (2000), no. 2, 433�466 (eletroni).[DSW07℄ Harm Derksen, Aidan Sho�eld, and Jerzy Weyman, On the num-ber of subrepresentations of a general quiver representation, J.Lond. Math. So. (2) 76 (2007), no. 1, 135�147.[DW00℄ Harm Derksen and Jerzy Weyman, Semi-invariants of quivers andsaturation for Littlewood-Rihardson oe�ients, J. Amer. Math.So. 13 (2000), no. 3, 467�479 (eletroni).17
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