
Quotients of group 
ompletionsby spheri
al subgroupsN. RessayreAbstra
t. Let G be a semi-simple algebrai
 group and let H be a spheri
al subgroup. Theground �eld k is algebrai
ally 
losed and of 
hara
teristi
 zero. This arti
le is 
on
ernedby proje
tive embeddings Y of spheri
al homogeneous spa
es G=H. Our approa
h in thestudy of su
h a variety Y is to realize them as quotients under the a
tion of H of proje
tiveembeddings of G. First, we give a more pre
ise sense to this proje
t by de�ning the quotientof a G-variety by a spheri
al subgroup H. Then, we give a 
ondition, in terms of G-invariantvaluations, under whi
h Y 
an be obtained by quotient of an embedding of G. Finally, ifthe index of H in its normalizer is �nite, we show that an important 
lass of embeddings ofG=H (toroidal and liftable) geometri
 quotients of embeddings of G.1 Introdu
tionLet G be a semi-simple algebrai
 group and let H be a spheri
al subgroup. The ground�eld k is algebrai
ally 
losed and of 
hara
teristi
 zero. This arti
le is 
on
erned with theG-equivariant proje
tive embeddings Y of the homogeneous spa
e G=H. Indeed, whereasthe Luna-Vust Theory 
lassi�es these embeddings by 
ombinatorial obje
ts (namely 
oloredfans), important questions about the geometry and the topology of these varieties remainsunsolved.We explain our strategy. Note that apart from 
ag varieties and tori
 varieties, the bestunderstood spheri
al varieties Y are the embeddings of the group G viewed as a G�G-homogeneous spa
e (see [Bri98, CP83, LP90, BCP90℄...). Our aim in this arti
le is to realizeproje
tive embeddings Y of G=H as quotients of G�G-equivariant embeddings X of G.Indeed, su
h a 
onstru
tion 
ombined with equivariant 
ohomology methods should giveexpli
it generators of the 
ohomology ring of Y . On the other hand, the orbit 
losures of aBorel subgroup B of G in Y play a key role in the geometry of Y . Preliminary results (see[Res00℄) show that the 
losures of the B �H-orbits in X are simpler than B-orbit 
losuresin Y . This is another motivation of this arti
le and the subje
t of an forth
oming paper.In Se
tion 2, we 
olle
t notation and results about the Theory of Spheri
al Embeddings.In Se
tion 3, we give essentially known auxiliary results about the moment polytopes (seeSe
tion 3.1 for the de�nition) of a proje
tive spheri
al variety. The properties of the em-beddings of G used through the paper are 
olle
ted in Se
tion 4. In Se
tion 5, we �x aproje
tive variety X endowed with an a
tion of G. Then, as in Geometri
 Invariant The-ory (see [MFK94℄), we asso
iate to any ample H-linearized line bundle on X a \quotient"Xss(L)==H of an open subset Xss(L) of X by H, even if H is not redu
tive. In Se
tion 6,we prove our �rst main result: 1



Theorem Assume that the kernel of the a
tion of G on G=H is �nite. Let Y be aproje
tive embedding of G=H. Then, the following 
onditions are equivalent:(i) There exist a proje
tive G�G-equivariant embedding X of G and an ample G�H-linearized line bundle L on X su
h that Y = Xss(L)==H.(ii) For any G-orbit O of 
odimension one in Y , there exists a G�G-equivariant em-bedding XO of G and a G� f1g-equivariant and f1g �H-invariant surje
tive rationalmap: � : XO - G=H [ O � Y:Assertion (ii) 
an be expressed in term of the valuations used in the Luna-Vust Theory(see Theorem 1 below). The spheri
al homogeneous spa
es G=H su
h that any proje
tiveembedding of G=H 
an be realized as quotients of a group 
ompletion are said to be liftable.As examples, we show that if H is symmetri
 or if H is solvable and of �nite index in itsnormalizer then G=H is liftable.The former theorem is not suÆ
ient for appli
ations. Indeed, the quotient Xss(L)==H isnot in general an orbit spa
e but only a 
ategori
al quotient. In Se
tions 7 to 9, we obtainembeddings of G=H as spa
es of f1g �H-orbits in some open subset of X. First in Se
tion7, we prove auxiliary results about the divisors of embeddings of G whi
h are stable by leftmultipli
ation by a Borel subgroup of G and by right multipli
ation by H. In Se
tion 8, we�x a proje
tive embeddingX of G and an ampleG�H-linearized line bundle L onX. Then,we study the quotient by H: � : Xss(L) �! Xss(L)==H, in relation with moment polytopesof X and Xss(L)==H. Our main result is 
ontained in Se
tion 9. To state it, we need ade�nition: an embedding Y of G=H is said to be toroidal if Y � (G=H) is an union of G-stable prime divisors and if any G-orbit 
losure of Y 
an be obtained by interse
ting properlyG-stable prime divisors (see 2.3 for an equivalent de�nition). These embeddings play a keyrole sin
e any embedding of G=H is the image of a toroidal embedding by a G-equivariantproper morphism (see Proposition 2.6.6 below). Our main result is the followingTheorem Let G=H be a liftable spheri
al homogeneous spa
e su
h that the index of H inits normalizer is �nite. Let Y be a toroidal proje
tive embedding of G=H. Then, there exista toroidal proje
tive embedding X of G and an ample G�H-linearized line bundle L on Xsu
h that the quotient, � : Xss(L) �! Xss(L)==H;of X by f1g �H asso
iated to L satis�es:(i) � is surje
tive and G-equivariant.(ii) the �bers of � are the orbits of f1g �H in Xss(L).A
knowledgments I would like to thank S. Pin for useful dis
ussions. I am espe
iallygrateful to M. Brion who gave me pre
ious advi
e during the preparation of this arti
le.For an easier reading, we give in the following table the de�ning o

uren
e of ea
h nota-tion. 2



Index of Symbols�_, 4.1 G, 4.1 P (O), 4.3��, 9.4 eG, 2.2 P(X;L), 3.1B, 4.1 ��, 3.4 q2; qG�G, 7.4eB, 2.2 �(X;L), 3.1 r; rH , 5.1C(F), 3.3 
D, 2.2 �, 8.5�D, 2.2 [
 : �℄, 2.2 �BP , 9.4X (�), 2.1 H, 4.1 �Z ; �Z , 4.4X (B)B\H , 2.1 fH, 2.2 s�, 4.1X (B)�X (B\H) X (H), 2.2 L�, 3.4 �, 4.1C(�), 4.3 L 
 �, 8.1 �G=H , 9.4CV(G=H), 2.1 L==H, 5.4 �(L), 7.3CV(X;O), 2.3 L(�;
), 7.6 �(PG=H), 9.4fD, 2.2 L(�), 4.3 V
 , 3.1fD�1, 7.4 LY , 8.1 V H , 3.4D�, 4.1 V(G=H), 2.1 V H;�, 3.4DB, 7.2 V(X), 3.1 W , 4.1DX , 7.1 �D, 2.1 w�_, 4.1DO, 7.2 OÆB, 2.4 XF, 3.3DF, 3.5 O(F), 3.3 X�, 3.1D(G=H), 2.1 O(
), 8.5 XO, 2.3D(X;O), 2.3 P+, 3.1 XO;B, 2.4E�, 7.3 P�, 4.3 X�, 3.3EO, 7.2 P+Q , 4.2 Xs(L), 5.3fD, 2.2 PG=H , 2.5 Xss(L), 5.1F(D(Y;
)), 8.5 P (�), 4.3 Xss(L)==H, 5.2F(X), 2.3 P u(�), 4.3 �, 2.22 The embeddings of a spheri
al homogeneous spa
eLet G be a semi-simple algebrai
 group and let H be a 
losed subgroup of G. We assumethat H is spheri
al, that is, a Borel subgroup of G has a dense orbit in G=H. Let X be anormal algebrai
 variety endowed with an algebrai
 a
tion of G. Then X is said to be anembedding of G=H if it is endowed with an open and G-equivariant immersion of G=H in X.The image of the point H=H by the immersion is 
alled the base point of X. In this se
tion,we 
olle
t the notions and results of Theory of Spheri
al Embeddings (see [LV83, Kno91℄or [Bri97℄) whi
h will be used throughout this paper. We are parti
ularly interested in the
lassi�
ation and the lo
al geometry of these embeddings.2.1| In this paragraph, we introdu
e some material ne
essary to 
lassify the embeddingsof G=H. Let us �x a Borel subgroup B of G su
h that BH is dense in G; su
h a B is saidto be opposite to H. 3



We denote by k(G=H)(B) the set of all rational fun
tions on G=H whi
h are eigenve
torsforB. If � is an algebrai
 group, we denote by X (�) the group Hom(�; k�) of its multipli
ative
hara
ters. We set X (B)B\H := f
 2 X (B) : 
jB\H = 1g: Asso
iating to a fun
tion ofk(G=H)(B) its weight in X (B), we obtain an exa
t sequen
e:0 ! k� ! k(G=H)(B) !X (B)B\H ! 0:The rank of X (B)B\H is 
alled the rank of G=H.Let � : k(G=H) �! Z be a k-valuation of the �eld k(G=H). Then, for all f in k(G=H)(B),�(f) only depends on the weight of f in X (B)B\H . Thus, the restri
tion of � to k(G=H)(B)indu
es a group homomorphism � : X (B)B\H �! Z.Then, the map � 7! � de�nes an inje
tion (see [Kno91℄ or [Bri97℄) from the set V(G=H)of the G-invariant dis
rete k-valuations of k(G=H) into Hom(X (B)B\H ;Q).In this arti
le, a 
onvex subset of a real or rational ve
tor spa
e, stable by multipli-
ation by non negative s
alars, is 
alled a 
one. We denote by CV(G=H) the 
one inHom(X (B)B\H ;Q) generated by the image of V(G=H).A prime B-stable divisor of G=H is 
alled a 
olor of G=H. The set of 
olors of G=H isdenoted by D(G=H); it is �nite. If D 2 D(G=H), we denote by �D the valuation of k(G=H)with 
enter D whi
h maps onto Z.2.2| In this paragraph, we asso
iate to ea
h 
olor an equation.First, we endow G with the a
tion of B �H de�ned by: (b; h):g = bgh�1. We 
onsiderthe set k(G)(B�H) of all rational fun
tions on G whi
h are eigenve
tors for B �H. Then,asso
iating to ea
h element of k(G)(B�H) its weight, we obtain the following exa
t sequen
e:0 ! k� ! k(G)(B�H) !X (B)�X (B\H) X (H) ! 0;where X (B) �X (B\H) X (H) = f(
; �) 2 X (B) � X (H) : 
jB\H = ��jB\Hg: Moreover, if(
; �) belongs to X (B) �X (B\H) X (H) the formula f(b�1h) = 
(b)�(h) de�nes an element(denoted by [
 : �℄) of k(G)(B�H) of weight (
; �). Then, the map (
; �) 7! [
 : �℄ splits theexa
t sequen
e.Consider the universal 
overing � : eG �! G. Then, k[ eG℄ is a unique fa
torizationdomain. Set eB = ��1(B) and fH = ��1(H). Then eG a
ts transitively onG=H whi
h identi�eswith eG=fH. Moreover, � indu
es an in
lusion of X (B) �X (B\H) X (H) into X ( eB) �X (eB\eH)X (fH).Note that D(G=H) identi�es 
anoni
ally with D( eG=fH). Let D 2 D(G=H). The pullba
kfD of D in eG by the orbit-map is a eB � fH-stable divisor. Thus, there exists a unique fD ink( eG) su
h that div(fD) = fD and fD(1) = 1. Then, there exists (
D; �D) in X ( eB) �X (eB\eH)X (fH) su
h that fD = [
D : �D℄. We 
all fD the equation of D. Sin
e k[ eG℄ is a UFD, oneeasily 
he
ks the followingLemma 2.2.1 The mapX ( eB)�X (eB\eH) X (fH) �! LD2D(G=H) ZfD(
; �) 7�! div([
 : �℄)is an isomorphism of groups. 4



2.3| Let again X be an embedding of G=H and let O be an orbit of G in X. SetXO := fx 2 X : G:x 
ontains Og. Then XO is a G-stable open subset of X 
ontaining O asits unique 
losed orbit. As a 
onsequen
e, X is 
overed by embeddings of G=H 
ontaininga unique 
losed orbit (su
h an embedding is said to be simple). Simple embeddings arequasi-proje
tive, see [Kno91℄.An element of D(G=H) whi
h 
ontains O in its 
losure is 
alled a 
olor of the orbit O.Let D(X;O) denote the set of 
olors of O. The orbit O is said to be 
olorless if D(X;O) isempty. We say that X is toroidal if all orbits O of G in X are 
olorless. The term \toroidal"will be explained by Proposition 2.6.7 below.Consider the 
one CV(X;O) in Hom(X (B)B\H ;Q) generated by the G-invariant valua-tions whi
h have a 
enter in XO and by the valuations �D with D 2 D(X;O).De�nitions(i) Let C be a stri
tly 
onvex 
one in Hom(X (B)B\H ;Q) and D be a subset of D(G=H).Then, (C;D) is 
alled a 
olored 
one if the two following 
onditions hold:� The 
onvex 
one C is generated by the �D with D 2 D, and by a �nite number ofelements of CV(G=H).� The relative interior of C interse
ts CV(G=H).(ii) A 
olored fa
e of a 
olored 
one (C;D) is a 
olored 
one (C 0;D0) su
h that C 0 is a fa
eof C and D0 = fD 2 D : �D 2 C 0g.A link between the 
olored 
ones and the simple embeddings of G=H is the following:Proposition 2.3.2 Let X be a simple embedding of G=H with 
losed orbit Z. Then,(CV(X;Z);D(X;Z)) is a 
olored 
one. Moreover, the map O 7! (CV(X;O);D(X;O)) is a bi-je
tion between the set of all G-orbits in X and the set of all 
olored fa
es of (CV(X;Z);D(X;Z)).For any embedding X of G=H, we setF(X) := n�C(X;O);D(X;O)� : O is an orbit of G in Xo :To explain the stru
ture of F(X), we need the following:De�nition A 
olored fan is a set F of 
olored 
ones whi
h satisfy the two following 
ondi-tions:� Any 
olored fa
e of a 
olored 
one of F belongs to F .� For any � 2 CV(G=H), there exists at most one 
olored 
one (C;D) in F su
h that C
ontains � in its relative interior.Then, the following 
lassi�
ation statement holds:Proposition 2.3.3 The map X 7! F(X) is a bije
tion between the set of isomorphism
lasses of embeddings of G=H and the set of 
olored fans.5



2.4| Let X be an embedding of G=H and O be an orbit of G in X. One 
an 
he
kthat O is spheri
al; let OÆB denote the open orbit of B in O. Set:XO;B := fx 2 X : B:x 
ontains Og:Then, it is proved in [Kno91℄ or [Bri97℄ thatXO;B is an aÆne 111 open subset inX 
ontainingOÆB as its unique 
losed B-orbit. One easily 
he
ks the following 
hara
terizations of XO;B(see for example Proposition 2.4.1 of [Res00℄):Proposition 2.4.4 (i) The 
omplement of XO;B in X is the union of the 
losures of theD 2 D(G=H) whi
h do not 
ontain O.(ii) The subset XO;B is the interse
tion of the open B-stable subsets of X whi
h interse
tO.2.5| Let PG=H denote the stabilizer in G of the open subset BH=H of G=H. Then,PG=H is a paraboli
 subgroup of G 
ontaining B. Let P uG=H denote its unipotent radi
al. Thenext proposition (see [BP90℄ or [Bri97℄) de�nes Levi subgroups of PG=H in spe
ial positionwith respe
t to H:Proposition 2.5.5 There exist Levi subgroups L of PG=H satisfying the following two 
on-ditions:(i) If [L;L℄ denotes the derived subgroup of L, then:PG=H \H = L \H � [L;L℄:(ii) Let C denote the 
onne
ted 
enter of L. Then, for any embedding X of G=H withbase point x, the set P uG=H :C:x (where C:x denotes the 
losure of C:x in X) 
ontains anon-empty open subset of any orbit of G in X.Su
h a Levi subgroup of P uG=H is said to be adapted to H.2.6| In this se
tion, we �x our attention on the toroidal embeddings of G=H. Propo-sition 2.4.2 of [Bri97℄ explains the key role of these embeddings:Proposition 2.6.6 Let X be an embedding of G=H. Then, there exists a toroidal embeddingfX of G=H and a G-equivariant birational proje
tive morphism � : fX �! X.The next proposition (see [Bri97℄ or [Bri89℄) des
ribes the lo
al stru
ture of the toroidalembeddings of G=H.Proposition 2.6.7 Let X be an embedding of G=H with base point x and O be a 
olorlessorbit of G. Let L be an adapted Levi subgroup of PG=H . Let S denote the 
losure in XO;B ofL:x. Then, we have: 6



(i) The map: P uG=H � S �! XO;B(g; x) 7�! gxis a PG=H�equivariant isomorphism.(ii) The group [L;L℄ a
ts trivially on S. The indu
ed a
tion of L=[L;L℄ endows S with astru
ture of an aÆne tori
 variety.(iii) Ea
h orbit of G in XO interse
ts S transversely in a unique orbit of L.Proposition 2.6.7 means that the lo
al stru
ture of the orbits of G in X looks like theorbits in a tori
 variety. A 
ommon feature between the tori
 varieties and the toroidalembeddings of G=H is the following easy lemma (see [Res00℄):Lemma 2.6.8 Let X be an embedding of G=H and O be a 
olorless orbit of G in X. Letrk(O) denote the rank of the spheri
al homogeneous spa
e O. Let dim(G=H) (resp. dim(O))denote the dimension of G=H (resp. O).Then, we have rk(G=H)� rk(O) = dim(G=H)� dim(O).2.7|Now we introdu
e an important 
lass of spheri
al homogeneous spa
es. Proposition4.4.1 of [Bri97℄ isProposition 2.7.9 For a spheri
al homogeneous spa
e G=H, the following 
onditions areequivalent:(i) The index of H in its normalizer in G is �nite.(ii) There exists a simple 
omplete embedding of G=H.Su
h a spheri
al homogeneous spa
e is said to be sober.Let G=H be a sober spheri
al subgroup of G. Then there exists a unique simple 
ompletetoroidal embedding Y of G=H: we 
all it the 
anoni
al embedding of G=H. Note that Y isproje
tive.3 Moment polyhedron3.1| Let X be a quasiproje
tive embedding of G=H and L be an ample G-linearized linebundle on X. In this se
tion, we re
all the notion of moment polyhedron asso
iated to L.After re
alling the 
lassi
al properties of these polyhedra (see [Bri97℄), we �x our attentionon the 
ase when X = G=H.If � is an Abelian group, we denote by �Q its tensor produ
t with Q . Let P+ denote theset of dominant weights for (G;B). For 
 2 P+, we denote by V
 the irredu
ible G-moduleof highest weight 
 for B. 7



For ea
h positive integer n, the set �(X;L
n) of se
tions of L
n is a rational G-module.Set P(X;L) := fp 2 X (B)Q : 9n > 0; np 2 P+; Vnp ,! �(X;L
n)g;where Vnp ,! �(X;L
n) means that the G-module Vnp is a sub-module of �(X;L
n).The 
onvex hull of a �nite number of points in a ve
tor spa
e will be 
alled a polytope.A subset of a ve
tor spa
e de�ned by a �nite number of linear inequalities will be 
alled apolyhedron. Then, we have (see [Bri97℄; 1.2 or [Bri89℄):Proposition 3.1.1 The set P(X;L) is a polyhedron in X (B)Q; the di�eren
es of elementsof P(X;L) spans X (B)B\HQ . If moreover X is proje
tive, then P(X;L) is a polytope.We 
all P(X;L) the moment polyhedron (resp. moment polytope if X is proje
tive) of Xasso
iated to L.3.2| If X 0 is a lo
ally 
losed G-stable subset of X, we set P(X 0;L) := P(X 0;LjX0): Oneeasily proves (see [Bri97℄;5.3.2 and [Res00℄)Proposition 3.2.2 With above notation, we have:(i) If X 0 is a G-stable open subset of X, then P(X;L) is 
ontained in P(X 0;L).(ii) Moreover, P(X;L) = TZ P(XZ;L), interse
tion over all 
losed orbits Z of G in X.To give a more pre
ise des
ription of P(X;L), we introdu
e more notation. Let V(X)denote the set of the k-valuations of k(G=H) asso
iated to the G-stable prime divisors ofX. If � 2 V(X), we denote by X� its 
enter. Let us �x a se
tion �0 of L, B-eigenve
tor ofweight 
(�0). Then, we have div(�Æ) = P�2V(X) n�X� +PD2D(G=H) nDD; where the n� andthe nD are non-negative integers. We re
all Proposition 5.3.1 of [Bri97℄ (see also Proposition3.3 of [Bri89℄):Proposition 3.2.3 With the above notation and those of Paragraph 2.1, P(X;L) is the setof all 
(�Æ) + p where p 2 X (B)B\HQ satis�es:(i) �(p) + n� � 0 8� 2 V(X).(ii) �D(p) + nD � 0 8D 2 D(G=H).3.3| In this paragraph, we assume that X is proje
tive. Consider a fa
e F of P(X;L)and a point p in the relative interior of F. Set �p + P(X;L) := f�p + q : q 2 P(X;L)g:Proposition 3.1.1 shows that �p + P(X;L) is 
ontained in X (B)B\HQ . Moreover, the set ofall linear forms in Hom(X (B)B\H ;Q), non-negative on �p+P(X;L), is 
alled the dual 
oneof �p+P(X;L) and is denoted by (�p+P(X;L))_. One 
he
ks that (�p+P(X;L))_ onlydepends on F. The latter 
one is 
alled the dual 
one of P(X;L) from F and is denoted byC(F).Let n be a positive integer and � be a se
tion of L
n, B-eigenve
tor of weight np. We
onsider X� = fx 2 X : �(x) 6= 0g. Then, X� only depends on F and is denoted by XF.Moreover, there exists a unique orbit O(F) of G whi
h meets XF and whi
h is minimal forthe order de�ned by the in
lusion of 
losures.8



Proposition 3.3.4 Keep notation as above. If X is proje
tive, we have:(i) If O is an orbit of G in X, then P(O;L) is a fa
e of P(X;L). Su
h a fa
e is said tobe orbital.(ii) If O1 and O2 are two orbits of G in X, then:P(O1 \ O2;L) = P(O1;L) \P(O2;L):(iii) P(O(F);L) is the unique minimal orbital fa
e of P(X;L) whi
h 
ontains F.(iv) If F = P(O;L), for an orbit O of G in X, then:O(F) = O ; XF = XO;B and C(F) = C(X;O):(v) The map O 7! P(O;L) is a bije
tion from the set of orbits of G in X onto the set ofthose fa
es F of P(X;L) su
h that the relative interior of C(F) interse
ts CV(G=H).Proof: Assertions (i); (v) and (iv) are Proposition 5.3.2 of [Bri97℄. Assertions (ii); (iii)and (iv) are proved in Proposition 2.6.4 of [Res00℄. �3.4| In this paragraph, we are interested in the moment polyhedra of an orbit G=H.First, we re
all the des
ription of all G-linearized line bundles on G=H.Let � be a 
hara
ter of H. We endow G � k with an a
tion of G�H by the formula:(g; h):(g0; �) = (gg0h�1; �(h)�). Then the quotient by f1g � H exists and is a G-linearizedline bundle on G=H denoted by L�. It is shown in [KKV84℄:Lemma 3.4.5 The map � 7�! L� is an isomorphism of groups between X (H) and the groupof all G-linearized line bundles on G=H.Before des
ribing P(G=H;L�), we introdu
e some notation. If V is a G-module, we setV H;� := fv 2 V : 8h 2 H h:v = �(h)vg, V H := V H;0 and �� := n
 2 P+ : (V �
 )H;� 6= 0o.Then we haveProposition 3.4.6 With above notation and those of Se
tion 2.2, we have:�� = f
 2 X (B) : (
; �) 2 MD2D(G=H) N(
D ; �D)g:Moreover, for all 
 in �� the dimension of (V �
 )H;� equals one.Proof: Let 
 2 �� and � be a non-zero ve
tor in (V �
 )H;�. Let v 2 V (B)
 . Considerf 2 k[G℄ de�ned by f(g) = �(gv). Sin
e f 2 k(G)(B�H), (
; �) belongs to X (B) �X (B\H)X (H). Moreover, sin
e f is regular on G, Lemma 2.2.1 implies that (
; �) belongs toLD2D(G=H) N(
D ; �D). The �rst in
lusion is proved.Moreover, sin
e (
; �) determines f up to a multipli
ative 
onstant, the same is true for�. So, the dimension of (V �
 )H;� equals one. 9



Conversely, let 
 2 X (B) su
h that (
; �) belongs to LD2D(G=H) N(
D ; �D). Then, thefun
tion [
 : �℄ is regular on G. But, by Frobenius' theorem, the G�G-module k[G℄ isisomorphi
 to L�2P+ V� 
 V �� . By this isomorphism, k[G℄(B�H) identi�es with the disjointunion of the V (B)� 
 V �(H)� . Now, [
 : �℄ belongs to k[G℄(B�H) implies that 
 belongs to ��.� Now we 
an des
ribe P(G=H;L�) inProposition 3.4.7 Keep notation as above. Then, we have:(i) P(G=H;L�) = f
 2 X (B)Q : (
;��) 2 LD2D(G=H) Q�0(
D; �D)g:(ii) Let F be a fa
e of P(G=H;L�). Let I be the minimal subset of D(G=H) su
h thatLD2I Q�0(
D; �D) 
ontains F. With the notation of Se
tion 3.3, we have:(G=H)F = G=H � [D2ID:Proof: If f 2 k[G℄ satis�es h:f = �(h)�1f , the map G �! G�k; g 7! (g; f(g)) indu
es ase
tion of L�. So, we identify �(G=H;L�) with the set of those f 2 k[G℄ su
h that for all h inH we have h:f = �(h)�1f (see [KKV84℄). Now, Frobenius' Theorem yields an isomorphismof G-modules between �(G=H;Ln�) and L
2P+ V
 
 (V �
 )H;�n�. Then, Assertion (i) followsfrom Proposition 3.4.6.Let us 
onsider F and I as in Assertion (ii) and �x a point p in the relative interior ofF. Let n be a positive integer and � a se
tion of L
n, B-eigenve
tor of weight np. Then,(np; n�) = PD2I kD(
D; �D) for some positive integers kD. With the notation of Se
tion 2.2,we 
onsider f = QD2I [
D : �D℄kD . Then, the map G �! G � k; g 7! (g; f(g)) indu
es ase
tion of L�. Then, the latter se
tion is a s
alar multiple of �. Assertion (ii) follows. �3.5| In this paragraph, we apply the des
ription of the moment polyhedra ofG=H givenby Proposition 3.4.7 to the des
ription of the moment polytopes of a proje
tive embeddingX of G=H.By Lemma 3.4.5, there exists a 
hara
ter � of H su
h that the restri
tion of L to G=His L�. If P is a polytope in X (B)Q, we set P� � := f(p; �) 2 X (B)Q �X (H)Q : p 2 Pg: IfF is a fa
e of P(X;L), we set DF := fD 2 D(G=H) : D interse
ts XFg, where XF denotesthe open subset of X de�ned in Paragraph 3.3.Proposition 3.5.8 With pre
eding notation, if F is a fa
e of P(X;L), we have:(i) F� � = �P(O(F);L)� �� \ �D 62DFQ�0(
D; �D).(ii) If in addition F = P(O;L), then DF = D(X;O).(iii) Moreover, P(X;L) = P(G=H;L�) \\Z �P(Z;L) + C(X;Z)_�;interse
tion over all 
losed orbits Z of G in X.10



Proof: Propositions 3.3.4 and 3.4.7 show that F � � is 
ontained in the interse
tion ofAssertion (i). Let (p; �) belong to this interse
tion. Then, there exist a positive integer nand a se
tion � of L
n, B-eigenve
tor of weight np. Sin
e � is non-zero on O(F), Assertion(ii) of Proposition 3.4.7 shows that XF is 
ontained in X�. Now, Assertion (i) follows fromProposition 3.3.4.If F = P(O;L), then XF = XO;B by Proposition 3.3.4. Now, Assertion (ii) follows fromProposition 3.4.7.The in
lusion of P(X;L) in the interse
tion of Assertion (iii) follows from Propositions3.2.2 and 3.3.4. Let p belong to this interse
tion. Repla
ing L by a positive power ifne
essary, we 
an assume that there exist a se
tion �0 of L, B-eigenve
tor of weight 
(�0)and a rational fun
tion f onG=H, B-eigenve
tor of weight p�
(�0). Then, with the notationof Proposition 3.2.3, p belongs to P(G=H;L�) implies that:8D 2 D(G=H) h�D; p� 
(�Æ)i+ nD � 0:Let � 2 V(X) and let Z be a 
losed orbit of G in X�. Then, sin
e p belongs to P(Z;L) +C(X;Z)_, we have h�; p� 
(�Æ)i+ n� � 0: Now, Proposition 3.2.3 
ompletes the proof. �4 The embeddings of the group4.1| Re
all that G denotes a semi-simple algebrai
 group. We endow G with the a
tion ofG�G by the formula: (g1; g2):g = g1gg�12 . In this arti
le the G�G-equivariant embeddingsof G play a key role: in this se
tion, we 
olle
t the results about these embeddings whi
hwill be used through this paper.Set G := G�G and H = f(g; g) : g 2 Gg. Then, G is the homogeneous spa
e G=H.Let B and B� be two opposite Borel subgroup of G and let T denote their interse
tion.Set B := B � B�. Then, by the Bruhat de
omposition B:H=H is dense in G=H. So, H isa spheri
al subgroup of G, and B is opposite to H.First, note that X (B)B\H = f(
;�
) : 
 2 X (T )g: From now on, we identify X (B)B\Hwith X (B) by (
;�
) 7! 
. Then, Hom(X (B)B\H;Q) identi�es with Hom(X (B);Q).Let � denote the set of simple roots of (B; T ) and � 2 �. Let W := N(T )=T denote theWeyl group of T . We denote by s� the simple re
e
tion of W asso
iated to �, by �_ the
oroot asso
iated to �, and by !�_ the fundamental weight of the 
oroot �_. So, (!�_)�2�is the dual basis of the basis (�)�2� of X (T )Q. Let D� denote the 
losure of Bs�B� in G.Then, by the Bruhat de
omposition D(G=H) = fD� : � 2 �g. Moreover, with the notationof Se
tion 2.2, the equation of D� is the fun
tion [!� : �!�℄. Then, under the identi�
ationof Hom(X (B)B\H;Q) with Hom(X (B);Q), the image of the valuation �D� identi�es withthe 
oroot �_.Set T = T � T . With the notation of Proposition 2.5.5, we have PG=H = B, and T isa Levi subgroup of PG=H adapted to H. Finally, the valuation 
one CV(G=H) is identi�edwith the negative Weyl 
hamber: CV(G=H) =L�2� Q�0!�_ (see [Bri97℄; 4.1).4.2| Now, we study moment polyhedra of embeddings of G=H.Let P+Q = ��2�Q�0!� denote the 
one generated by P+ in X (B)Q; this is the positiveWeyl 
hamber. Note that the only G-linearized line bundle on G=H is the trivial one11



L0. Moreover, we have: P(G=H;L0) = f(p;�p) : p 2 P+Q g. From now on, we embedP(G=H;L0) (and more generally any moment polyhedron of an embedding of G=H) intoX (B)Q, by (p;�p) 7! p.Let X be a proje
tive toroidal embedding of G=H and L be an ample G-linearized linebundle on X. Consider the 
orresponding moment polytope P(X;L) � X (B)Q. WhenF runs over the fa
es of P(X;L), the 
ones C(F) de�ned in Se
tion 3.3 form a fan inHom(X (B);Q) denoted by F(P(X;L)).If O is an orbit of G in X and I is a subset of �, we denote by C(I;O) the 
one ofHom(X (B);Q) generated by C(X;O) and by the �_ for � 2 I. The following propositiondes
ribes the fan F(P(X;L)):Proposition 4.2.1 With pre
eding notation, the 
ones of F(P(X;L)) are the 
ones C(I;O),where O is an orbit of G in X and I is a subset of � su
h that C(X;O) is 
ontained inL�=2I Q!�_ .Proof: If O is an orbit of G in X, Proposition 3.3.4 shows that C(X;O) belongs toF(P(X;L)). Moreover, Proposition 3.5.8 gives:P(X;L) = P+Q \ \
losed orbit Z of G in X P(Z;L) + C(X;Z)_:In parti
ular, every extremal ray of F(P(X;L)) is either Q�0�_ for some � 2 � or anextremal ray of F(X). Let C be a 
one in F(P(X;L)). Then, there exists a I � � and anorbit O of G in X su
h that C = C(I;O).If I is empty there is nothing to prove. If I is non-empty, sin
e X is toroidal, Proposition3.3.4 shows that the relative interior of C does not interse
t CV(G=H) = ��2�Q�0!�_. Sin
e�_ is orthogonal to !�_ for all simple roots � 6= �, we dedu
e that C(X;O) is 
ontained inL�=2I Q!�_ .Conversely, let I and O be as in the proposition. Then,C(I;O) \ ��2�Q�0�_ = ��2IQ�0�_; and C(I;O) \ CV(G=H) = C(X;O):It follows easily that C(I;O) belongs to F(P(X;L)). �4.3| In this se
tion, we are interested in the isotropy subgroups of the a
tion of G inX. We begin with some notation.Let � be a one parameter subgroup of T . Set:P (�) := fg 2 G : limt!0 �(t)g�(t�1) exists in Gg:For example, if � is a simple root then P (�_) is the usual minimal paraboli
 subgroup P�asso
iated to �. In general, by [MFK94℄, P (�) is a paraboli
 subgroup of G with unipotentradi
al: P u(�) := fg 2 G : limt!0 �(t)g�(t�1) = 1g:Moreover, P (�) and P (��) are opposite and their interse
tion L(�) is the 
entralizer of theimage of �. Set �L(�) := f(l; l) 2 G : l 2 L(�)g. Denote by C(�) the 
onne
ted 
enter ofL(�).The proof of Theorem A1 in [Bri98℄ shows12



Proposition 4.3.2 Let X be an embedding of G=H and O be a 
olorless orbit of G in X.Then, there exists a one parameter subgroup � of T su
h that limt!0 �(t) exists in X andbelongs to O. Set z := limt!0 �(t).The isotropy subgroup of z inG is generated by P u(�)�P u(��) and �L(�):(C(�)�f1g)z.In parti
ular, the 
onjuga
y 
lass of P (�) only depends on O; its representative 
ontainingB� is denoted by P (O).The paraboli
 subgroups P (O) 
an be read o� the moment polytopes of X byLemma 4.3.3 Assume that X is proje
tive and toroidal. Let L be an ample G-linearizedline bundle on X. Let � 2 �. Then, the following are equivalent:(i) fp 2 X (T )Q : �_(p) = 0g \P(O;L) 6= ;.(ii) P� � P (O).Proof: By Proposition 4.2.1, Assertion (i) is equivalent to the fa
t that C(X;O) is
ontained in �� 6=�Q!�_ .Let � be as in Proposition 4.3.2. Repla
ing � by a 
onjugated one parameter subgroup,we 
an assume that P (�) � B�, that is, P (�) = P (O). Then, one 
he
ks that �� belongs tothe relative interior of C(X;O). So, Assertion (i) is equivalent to: � belongs to �� 6=�Q!�_ .The lemma follows easily. �4.4| In this paragraph, X is a simple toroidal embedding of G=H su
h that the 
losedorbit Z is proje
tive. We re
all some results (see [Bri97℄ or [Bri89℄) about the Pi
ard group,Pi
(X) of X.Consider the universal 
overing � : eG �! G of G. As in Se
tion 2.2, if � is a subgroupof G, e� denotes its preimage in eG.If � is an algebrai
 group a
ting on a variety Y , we denote by Pi
�(Y ) the group ofall �-linearized line bundles on Y . Then we have 
anoni
al isomorphisms: Pi
eG�eG(X) 'Pi
(X) = L�2� Z[Bs�B�℄.By Proposition 4.3.2, the orbit Z is isomorphi
 to eG= eB � eG= eB�. Then, Lemma 3.4.5allows us to identify Pi
eG�eG(Z) with X ( eB)� X ( eB�). Let �Z : Pi
eG�eG(X) �! Pi
eG�eG(Z)be the restri
tion homomorphism. Then, by the pre
eding isomorphisms, �Z indu
es amorphism �Z : Pi
(X) �! X ( eB)�X ( eB�). Then, we have (see [Bri97℄ and [Res00℄):Proposition 4.4.4 With above notation (X is simple and toroidal), we have:(i) The morphism �Z indu
es an isomorphismPi
(X) �! f(�;��) : � 2 X ( eB)g:If � 2 X ( eB), we denote by L� the eG� eG-linearized line bundle su
h that �Z(L�) =(�;��).(ii) If � 2 X ( eB), L� is generated by its global se
tions (resp. ample) if and only if � isdominant (resp. dominant regular). 13



5 GIT-quotient by a spheri
al subgroup5.1| In this se
tion, X denotes a normal proje
tive variety endowed with an a
tion of asemi-simple group G, and H denotes a spheri
al subgroup of G. As in Geometri
 InvariantTheory, to ea
h ample H-linearized line bundle on X, we will asso
iate an open subset of Xwhi
h admits a 
ategori
al quotient by H in the 
ategory of aÆne morphisms.Let rH : Pi
G(X) �! Pi
H(X) and r : Pi
H(X) �! Pi
(X) denote the morphisms ofrestri
tion of the a
tions. A 
hara
ter of H indu
es a linearization of the trivial line bundle.This de�nes an embedding i of X (H) into Pi
H(X).With these notation, it is shown in [KKV84℄ that the following sequen
e:0 !X (H)Q i! Pi
H(X)Q r! Pi
(X)Q ! 0is exa
t. Applying this to G and H, we easily obtainLemma 5.1.1 The morphism� : Pi
G(X)Q � X (H)Q �! Pi
H(X)Q(L; �) 7�! rH(L)
 i(�)is surje
tive.Now, we 
an prove the fundamental lemma of this se
tion:Lemma 5.1.2 Let L be anH-linearized line bundle on X. Then, the algebraLn�0 �(X;L
n)Hof H-invariant se
tions is �nitely generated.Proof: By Lemma 5.1.1, there exist a positive integer m, L0 in Pi
G(X) and � in X (H)su
h that L
m = rH(L0)
 i(�): Then, with the notation of Se
tion 3.4, we have a 
anoni
alisomorphism: Mn�0�(X;L
mn)H 'Mn�0�(X;L
n0 )H;�n�:The grading of �n�0�(X;L
n0 ) and the G-linearization of L0 de�ne an a
tion of G� k� on�n�0�(X;L
n0 ). Consider H� = f(h; �(h)) : h 2 Hg: Then, we haveMn�0�(X;L
n0 )H;�n� = 0�Mn�0�(X;L
n0 )1AH� :Moreover, H� is a spheri
al subgroup of G� k� and the algebra Ln�0 �(X;L
n0 ) is �nitelygenerated. Then, Theorem 9.3. of [Gro97℄ shows that Ln�0 �(X;L
mn)H is �nitely gener-ated.On the other hand, the ring Ln�0 �(X;L
n)H is integral on Ln�0 �(X;L
mn)H . We
on
lude by Theorem 2, Chap. V (x3.2) of [Bou64℄. �
14



By Lemma 5.1.2, if L is an ample H-linearized line bundle , we set, as in GIT forredu
tive groups:Y (L) = Proj �Ln�0 �(X;L
n)H� ;Xss(L) = fx 2 X : 9n > 0; � 2 �(X;L
n)H : �(x) 6= 0g; and� : Xss(L) �! Y (L) the morphism indu
ed by the in
lusion ofLn�0 �(X;L
n)Hin Ln�0 �(X;L
n):5.2| The pre
eding 
onstru
tion has the following properties:Proposition 5.2.3 Keep notation as above; in parti
ular, L is ample. Then, we have:(i) The map � is aÆne. Moreover, for every aÆne open subset U in Y (L), we havek[��1(U)℄H = ��(k[U ℄).(ii) If Y is a variety and � : Xss(L) �! Y is an aÆne H-invariant map then there existsa map e� : Y (L) �! Y su
h that the following diagram is 
ommutative:Xss(L) �! YY (L)�# e� !In parti
ular, Y (L) only depends on Xss(L), and is denoted by Xss(L)==H.(iii) The variety Xss(L)==H is normal.(iv) The map � is surje
tive in 
odimension one.(v) Let Z be a G-stable 
losed subvariety of X. If LjZ denotes the restri
tion of the H-linearized line bundle L to Z, then we have Zss(LjZ) = Z \ Xss(L). Moreover therestri
tion of � to Z \Xss(L) identi�es 
anoni
ally with the quotient of Z by H.Proof: The proofs of Assertions (i) and (iii) are the same as for redu
tive quotients (see[Res00℄ for details). Assertion (ii) is a dire
t 
onsequen
e of the �rst one.To prove Assertion (iv) let us �x a prime divisor D in Xss(L)==H. Sin
e Xss(L)==H isnormal, there exists an aÆne open subset U and a regular fun
tion f on U su
h that D \Uis non-empty and equal to fx 2 U : f(x) = 0g. Let ��U denote the in
lusion of k[U ℄H ink[U ℄. Consider fD = ��1(D \ U) = fx 2 ��1(U) : ��U(f)(x) = 0g.If A is a ring and a belongs to A, then we denote by a:A the ideal generated by a. Sin
e��U (k[U ℄) = k[��1(U)℄ \ k(X)H and f 2 k(X)H , we have:���U(f):k[��1(U)℄� \ k(X)H = ��U (f:k[U ℄):This shows that k[U ℄=f:k[U ℄ embeds into k[��1(U)℄=f:k[��1(U)℄ and so �(fD) is dense in D.Assertion (iv) follows. 15



Let us prove Assertion (v). By Lemma 5.1.1, repla
ing L by a power if ne
essary, we
an assume that there exist L0 2 Pi
G(X) and � 2 X (H) su
h that L = rH(L0) 
 i(�).Repla
ing L by a power again, we 
an assume that the restri
tion morphism � : �(X;L0) �!�(Z;L0jZ) is surje
tive. Sin
eG is redu
tive and � isG-equivariant, there exists a sub-moduleM of �(X;L0) su
h that � indu
es an isomorphism of G-modules betweenM and �(Z;L0jZ).In parti
ular, � indu
es a surje
tion from �(X;L0)H;� onto �(Z;L0jZ)H;�. Assertion (v)follows easily. �Remark: 1) If H is redu
tive, then Assertion (ii) holds without assuming that � is aÆne.But in general, this assumption 
annot be omitted. Indeed, one 
an easily �nd an examplewhere H is a Borel subgroup of G (see [Res00℄).2) If H is redu
tive, then the quotient morphism is surje
tive; but this does not hold ingeneral. Consider, indeed, the additive group G a of the �eld k. Let M2 denote the ve
torspa
e of 2� 2-matri
es and let P(M2) be the 
orresponding proje
tive spa
e. We de�ne ana
tion of G a on P(M2) by:�:[m℄ = [ 1 �0 1 !m℄ 8� 2 k and m 2M2; m 6= 0One 
he
ks easily that the quotient of P(M2) by G a asso
iated to L = O(1) is not surje
tive.5.3| Now, we set: Xs(L) := fx 2 Xss(L) : ��1(�(x)) = H:xg. Points in Xs(L) aresaid to be stable for L.Remark: Assume that there exists a point in X with �nite isotropy in H. Then, one 
he
kseasily that any stable point x has a �nite stabilizer in H and a 
losed H-orbit in Xss(L).When H is redu
tive the 
onverse is also true. But this 
onverse is false in general (see[Res00℄; 5.2 for an example).We have the following 
riterion for existen
e of stable points:Proposition 5.3.4 Let d be the dimension of the general orbits of H in X. Then, thefollowing assertions are equivalent:(i) dim(Xss(L)==H) + d=dim(X).(ii) Ea
h general �ber of � 
ontains a unique dense orbit of H.Proof: The impli
ation (ii) ) (i) is trivial. Let us prove the 
onverse. Consider anaÆne open subset UH in Xss(L)==H and set U = ��1(UH). We 
laim that the quotient �eldFra
(k[U ℄H) equals the �eld k(U)H of invariant rational fun
tions on U .By Rosenli
ht's Theorem (see [PV89℄; Theorem 2.3), the trans
enden
e degree of k(U)Hequals dim(U) � d. Sin
e k[U ℄H = k[UH ℄, the trans
enden
e degree of Fra
(k[U ℄H) is thedimension of Xss(L)==H. So, k(U)H is a �nite extension of Fra
(k[U ℄H).Let f 2 k(U)H . Then, there exist a0; � � � ; ak 2 k[U ℄H su
h that a0fk+a1fk�1+� � �+ak = 0.Multiplying by ak�10 , we obtain that a0f is integral on k[U ℄. Now, the normality of X (andso of U) implies that a0f 2 k[U ℄. Then f belongs to Fra
(k[U ℄H). This proves the 
laim.16



The other part of Rosenli
ht's Theorem then shows that there exists a restri
tion of � toan open subset of Xss(L) whi
h is a geometri
 quotient. Assertion (ii) follows. �5.4| In this paragraph, we show that some power of L des
ends to an ample line bundleon Xss(L)==H.Sin
e the graded algebraLn�0 �(X;L
n)H is �nitely generated, Proposition 3 of ChapterIII of [Bou61℄ shows that there exists a positive integer m su
h that Ln�0 �(X;L
mn)H isgenerated by �(X;L
m)H . Then, we 
onsider the map:� : Xss(L)==H �! P �(�(X;L
m)H)��y 7�! n� 2 �(X;L
m)H : �(y) = 0o :We set L
m==H := ��(O(1)). Then, L
m==H is a very ample line bundle on Xss(L)==H.Moreover, ��(L
m==H) = L
mjXss(L) and we have a 
anoni
al isomorphism:Mn�0�(Xss(L)==H; (L
m==H)
n) 'Mn�0�(X;L
mn)H :6 Proje
tive embeddings of G=H as quotients of 
om-pletions of G: a 
riterion6.1| We �x again a semi-simple group G, a spheri
al subgroup H of G and a proje
tiveembedding Y of G=H. The following theorem answers the question: 
an Y be obtained asa quotient by f1g �H of a G�G-equivariant proje
tive embedding of G ?An a
tion of G is said to be quasi-faithful if its kernel is �nite.Theorem 1 Assume that the a
tion of G on G=H is quasi-faithful. Let Y be a proje
tiveembedding of G=H. Then, the two following 
onditions are equivalent:(i) There exist a proje
tive G�G-equivariant embedding X of G and an ample G�H-linearized line bundle L on X su
h that Y = Xss(L)==H.(ii) For any G-stable prime divisor D in Y , the valuation �D of the �eld k(G=H) with
enter D extends to a G�G-invariant valuation of k(G).Proof: (i)) (ii): Consider the quotient-morphism � : Xss(L) �! Y . Let D be aG-stable prime divisor of Y .Sin
e � is surje
tive in 
odimension one, there exists a prime divisor E of X su
h that�(E \Xss(L)) = D. Let �� : k(Y ) �! k(X) denote the map indu
ed by �. Then,�D = �E Æ ��.Sin
e � is G-equivariant, we have �(G) = �(G=H). Then, E is 
ontained in X �G andso is stable by G�G. Moreover, the map �� is the 
anoni
al embedding of k(G=H) in k(G).Now, Assertion (ii) follows from the relation �D = �E Æ ��.(ii)) (i): Let M be a very ample G-linearized line bundle on Y . Set V = �(Y;M)�.Then, Y is embedded in P(V ). By Exer
ise 5.1.4 of [Har77℄, repla
ing M by a power if17



ne
essary, we 
an assume that the aÆne 
one ~Y over Y is normal. Let y be the base pointof Y and ey be a lift of y in V . The s
alar multipli
ation on the G-module V gives an a
tionof G� k� on V . There exists a 
hara
ter � of H su
h that the isotropy of ey in G� k� isequal to H� = f(h; �(h)) : h 2 Hg.We denote by � the a
tion map G �! PGL(V ) and by G1 its image. Consider the 
losureX1 of G1 in P(End(V )), gX1 the 
orresponding aÆne 
one in End(V ), and the map:e : fX1 �! eYm 7�! m:eyWe 
laim that e is surje
tive in 
odimension one. Otherwise, there exists a prime divisorfD in the 
losure of eY � Im( e ). Then, fD is stable by G� k� and is the aÆne 
one over aG-stable divisor of Y .Let X1ss be the image in X1 of the pullba
k in gX1 of eY � f0g by e . Then, e restri
ts to : X1ss �! Y .By assumption, there exists a G�G-invariant valuation � of k(G) whose restri
tion tok(G)H is �D. Sin
e X1 is 
omplete, � Æ �� has a 
enter Z in X1. So � Æ  � = �D and  (Z)is dense in D. This 
ontradi
tion proves the 
laim.Via �, k(X1) is embedded into k(G). Let us 
onsider the normalization X of X1 in k(G)and the 
orresponding morphism, � : X �! X1.Let L1 denote the restri
tion to X1 of O(1) on P(End(V )) and L its pullba
k by �. Sin
ethe a
tion of G on G=H is quasi-faithful, � and � are �nite. Thus, L is ample. Repla
ingM (and so L) by a power if ne
essary, we 
an assume that X is embedded into P(�(X;L)�).Consider the aÆne 
one fX over X in �(X;L)� and the k�-equivariant map e� : fX �! gX1over �.Note that fX is endowed with an a
tion of G�G su
h that e� is G�G-equivariant. Then,e� Æ e : fX �! eY indu
es a 
ommutative diagram:fX e�Æe ! eYSpe
(k[fX℄H�)� !� !Sin
e � is G� k�-equivariant, the stabilizer of �(1) in G� k� is 
ontained in H�. So itis equal to H�, sin
e � is H�-invariant. In parti
ular, � is birational.Moreover, the 
laim implies that � is surje
tive in 
odimension one. Sin
e eY is normal,Ri
hardson's Lemma (see [PV89℄) shows that � is an isomorphism. Then, Y equals Xss(L
�)==H. �Remarks 1- Note that a G-invariant valuation � of k(G=H) always extends to a G-invariant(for the left multipli
ation) valuation of k(G) (see [Kno91℄ or [Bri97℄). But, as shown bythe example in Appendix A of [Res00℄, a G�G-invariant extension of � may not exist. Inparti
ular, Condition (ii) of Theorem 1 may not hold.2- The 
onstru
tion used in the proof of Theorem 1 is essentially due to L. Renner (see[Ren89℄). But, in his arti
le L. Renner forgot an essential assumption (that is, Condition(ii) of Theorem 1). Moreover, he assumed that H is semi-simple.18



6.2| Theorem 1 motivates the followingDe�nition A spheri
al homogeneous spa
e G=H is said to be liftable if any G-invariantvaluation of k(G=H) extends to a G�G-invariant valuation of k(G).Proposition 6.2.1 Let G be a semi-simple group. Then, we have:(i) Let H1 � H2 be two spheri
al subgroups of G. Then, if G=H1 is liftable then so isG=H2.(ii) Let H1 � H2 be two spheri
al subgroups of G su
h that the index of H1 in H2 is �nite.Then, G=H1 is liftable if and only if G=H2 is.(iii) If H is symmetri
 (i.e. the set of the �x points of an automorphism of G of order 2)then G=H is liftable.Proof: Assertion (i): Let � be a G-invariant valuation of k(G=H2). Then, by Corollary3.1.1 of [Bri97℄ or by [Kno91℄ there exists a G� f1g-invariant valuation � of k(G) su
h that� is the restri
tion of � to k(G=H2). Sin
e, G=H1 is liftable, the restri
tion of � to k(G=H1)extends to a G�G-invariant valuation of k(G). Assertion (i) follows.Assertion (ii): Let B be a Borel subgroup of G opposite to H2. With the assumptions of As-sertion (ii), Hom(X (B)B\H1 ;Q) identi�es 
anoni
ally with Hom(X (B)B\H2 ;Q). Moreover,Corollary 3.1.1 of [Bri97℄ (see also [Kno91℄) shows that CV(G=H1) maps onto CV(G=H2).Sin
e for i = 1 or 2, CV(G=Hi) embeds in Hom(X (B)B\Hi ;Q), this implies that CV(G=H1)identi�es with CV(G=H2). Assertion (ii) follows.Assertion (iii): By Assertion (ii), we 
an assume that G is adjoint and that G=H has a
anoni
al embedding X, with the notation of [CP83℄ (note that X is 
alled the wonderful
ompa
ti�
ation of X). Let L be an ample G-linearized line bundle on X. Consider theverti
es p of the moment polytope P(X;L) 
orresponding to the unique 
losed orbit of G inX. Then, Proposition 8.2 of [CP83℄ des
ribes the 
one generated by �p+P(X;L). Indeed,this 
one is the interse
tion of X (B)B\HQ and the 
one of X (B)Q generated by the oppositeof simple roots. Thus, the dual 
one of �p+P(X;L) in Hom(X (B)B\HQ ;Q ) is the image bythe restri
tion of the negative Weyl 
hamber of Hom(X (B)Q;Q). By Proposition 3.3.4, thisimplies that the 
one CV(G=H) is the image of the 
one CV(G) generated by the G�G-invariant valuations of k(G). �Remark: In [Kan99℄, S. Kannan showed that the 
anoni
al embedding of a symmetri
 spa
eis a GIT-quotient of the 
anoni
al embedding of the group. This also follows from Theorem1 and Proposition 6.2.1.The symmetri
 spa
es are a �rst family of liftable spheri
al homogeneous spa
es. Thefollowing proposition gives another one:Proposition 6.2.2 Let G=H be a sober spheri
al homogeneous spa
e. If H is solvable thenG=H is liftable. 19



Proof: Let Y be the 
anoni
al embedding of G=H and y be its base point. Let B�be a Borel subgroup of G 
ontaining H. Then, by [Kno91℄ or [Bri97℄, the 
anoni
al mapG=H �! G=B� extends to a G-equivariant map � : Y �! G=B�. Consider the B�-variety� = ��1(B�=B�).Let B be a Borel subgroup of G opposite to H and hen
e to B�. Set T = B \ B�.Denote by U the unipotent radi
al of B. Consider the following 
ommutative diagram:U � � (u;s)7!usisomorphism! U:�U(u;s)7!u# u7!uB�=B�!G=B�:�#The subset U:� is open in Y . Then, T:y is dense in � whi
h is a tori
 variety. Sin
e Y
ontains a unique 
losed orbit of G, � 
ontains a unique 
losed orbit of B�. This orbit beingproje
tive, it is a �xed point denoted by z. Consider the unique aÆne T -stable and opensubset �z of � 
ontaining z. Then, by the previous diagram U ��z is isomorphi
 to YG:z;B.We dedu
e that the 
one CV(G=H) identi�es with the 
one C asso
iated to the aÆne tori
variety �z.We want to determine the rays of the 
one C_ generated by the weights of the a
tion ofT in k[�z℄. Let x be a point in �z su
h that dim(T:x) equals one. Consider the restri
tionmorphism � : k[�z℄(T ) �! k[T:x�z ℄(T ):Sin
e � is surje
tive, the half-line generated by a weight of T in k[T:x�z ℄ is 
ontained inC_. Moreover, the 
lassi
al theory of tori
 varieties (see [Ful93℄ or [Oda88℄) shows that thishalf-line is a ray of C_ and that 
onversely all rays of C_ are obtained in this way. Thus, itremains to 
ompute the weights of the a
tion of T in k[T:x�z ℄.Consider the 
losure S of T:x in �. Sin
e Y is toroidal, all T -stable divisors in �
ontaining z are stable by B�. Then, S is stable by B�. On the other hand, as a proje
tivetori
 variety of dimension one, S is isomorphi
 to P1. Moreover, B�:x is either isomorphi
 tok or k�. If B�:x is isomorphi
 to k�, then B� has two �xed point in S; that is not possible.We dedu
e that B�:x is isomorphi
 to k.Let B�x (resp. Tx) be the stabilizer of x in B� (resp. in Tx). Sin
e B�:x is isomorphi
to k, B�x does not 
ontain the unipotent radi
al of B�. Then, there exists a simple root �of (B�; T ) su
h that the unipotent one parameter subgroup U� of B� asso
iated to � doesnot �x x.We 
laim that the restri
tion of � to Tx is trivial. Indeed, let � : k �! U� be the
anoni
al isomorphism. Sin
e T:x is open in S, there exist � 2 k� and t0 2 T su
h that�(�):x = t0:x. Let t 2 Tx. Then, we have:�(�_(t)�):x= t�(�)t�1:x = t:�(�):x= tt0:x = t0t:x= �(�): (1)Moreover, sin
e k has no non-trivial subgroup, Bx \ U� is trivial. Then, Equality (1)implies that �(t) = 1. This proves the 
laim.20



By the 
laim, � or �� is a weight of the T -module k[�z \ S℄. On the other hand, it isshown in [BP90℄ (see also Se
tion 4.2 of [Bri97℄) that C_ is 
ontained in the 
one generatedby the negative roots. We dedu
e that � is a weight of the T -module k[�z \ S℄.We just proved that the rays of the dual 
one of CV(G=H) 
ontain the simple roots of(B�; T ). The proposition follows easily. �6.3| Consider G = PGL(3) and the symmetri
 subgroup H = PSO(3). Then G=H isthe set of (non-degenerated) 
oni
s in P2. Asso
iating to ea
h 
oni
 its equation de�nes anembedding Y of G=H into P5.Theorem 1 and Proposition 6.2.1 show that Y is the quotient of a proje
tive embeddingof G. But it is not a geometri
 quotient of any proje
tive embedding of G (see [Res00℄; 7.5.2for details). Note that the embedding Y is not toroidal.In the sequen
e of this arti
le, our main aim is to obtain proje
tive embeddings of spher-i
al homogeneous spa
es as geometri
 quotients of proje
tive embeddings of the group. So,the pre
eding example explain why we pay now a parti
ular attention to 
olorless embeddings(and 
olorless orbits).7 B �H-stable divisors in embeddings of G7.1| Let X be an embedding of G and O be a 
olorless orbit of G�G in X. Let D 2D(G=H). We denote by DX the 
losure in X of the set of all g 2 G su
h that gH=H 2 D.The aim of this se
tion is to determine the interse
tion of O and DX .7.2| The �rst step is to show that O 
ontains an open B �H-orbit whose 
omplementin O is a divisor.By Proposition 4.3.2, there exist two opposite paraboli
 subgroups P and Q of G anda point x in O su
h that the isotropy I of x in G�G is (P u � Qu):(�L:(f1g � C)) whereL = P \ Q; �L = f(l; l) : l 2 Lg and C is a subgroup of the 
onne
ted 
enter of L.Moreover, repla
ing x by another point in O if ne
essary, we 
an assume that Q 
ontains B.The in
lusion of I in P �G de�nes a G� f1g-equivariant �bration p : O �! G=P . The�ber F over P=P is the P �G-homogeneous spa
e (P �G)=I. Note that F is homogeneousunder the a
tion of f1g �G. Moreover, the in
lusion of I \ (f1g �G) in f1g �B indu
es af1g �G-equivariant �bration q : F �! G=B. We obtain a diagram:F !OG=Bq# G=Pp# (7.2.1)Let E 2 D(G=P ) be a prime B-stable divisor in G=P . Then, p�1(E) is a prime B �H-divisor of O denoted by EO. Now, we 
onsider O � SE2D(G=P )EO. Ea
h orbit of B �Hin O � SE2D(G=P )EO interse
ts F in a unique orbit of (P \ B) � H; so, for all y 2 O,(B �H):y \ F is either the empty set or the preimage by q of a unique orbit of H in G=B.21



If D 2 D(G=H), we set DB = fgB=B 2 G=B : g�1H=H 2 Dg. We denote by DO the
losure of (B �H):q�1(DB) in O. Then, DO is a B �H-stable divisor in O.The previous dis
ussion showsLemma 7.2.1 With the previous notation (in parti
ular B � Q), we have:O = (B �H):x [ [D2D(G=H)DO [ [E2D(G=P )EO:7.3| Let �(L) denote the set of simple roots of (B \ L; T ). Then, the Bruhat de
om-position yields D(G=P ) = fBs�P=P : � 2 � � �(L)g. We set E� = Bs�P=P . Returningto the situation of Se
tion 7.1, we 
an now formulate a des
ription of DX \ O:Proposition 7.3.2 Let X be an embedding of G and O a 
olorless orbit of G�G in X.Let P , Q and L be as in Se
tion 7.2. Let D 2 D(G=H) and let 
D be the B-weight of itsequation. Write 
D = P�2� k�!�, with k� 2 N.Then, with the notation of Lemma 7.2.1, we have:DX \ O = DO [ [�2���(L) s:t: k� 6=0E�O:7.4| From Paragraph 7.4 to Paragraph 7.7, we will prove Proposition 7.3.2. First, wede�ne and 
al
ulate\equations" of DO and EO as we have de�ned the equations of elementsof D(G=H) in Se
tion 2.2.Consider the universal 
overing � : eG �! G and the map qG�G : eG� eG �! O; (g1; g2) 7!(�(g1; g2)):x. If D 2 D(G=H), we denote by fDO the unique equation of q�1G�G(DO) ink[ eG� eG℄ su
h that fDO(1) = 1. We de�ne fEO similarly.To 
ompute fDO and fEO , we �x our attention on O. Considering the a
tion of eG� eGon O, we 
an assume that G is simply 
onne
ted. Moreover, the in
lusion of (P u �Qu):�Lin I indu
es a 
ommutative diagram:G�G=((P u �Qu):�L)G�G qG�G !! O� !Then, applying Lemma 7.4.3 below to �, we 
an assume that C is trivial.Lemma 7.4.3 Let � be a linear algebrai
 group, �1 and �2 two 
losed subgroups of � su
hthat �1 � �2. Consider the natural map � : �=�1 �! �=�2. Let D be a prime divisorin �=�2. Then, the pullba
k ��(D) of D by � is the sum of the irredu
ible 
omponents of��1(D), with multipli
ity being one.
22



Proof: In this proof, if Y is a variety and y is a point in Y , we denote by OY;y thelo
al ring of rational fun
tions in Y de�ned at y. By absurd, we assume that there existsan irredu
ible 
omponent E of ��1(D) su
h that ��(D)� 2E is e�e
tive. Sin
e all �bers of� have the same dimension, �(E) is dense in D. In parti
ular, there exists x 2 E su
h that�(x) is smooth in D. Then, there exists a lo
al equation f 2 O�=�2;�(x) of D at �(x). Therealso exists a lo
al equation g 2 O�=�1;x of E at x. Sin
e, ��(D) � 2E is e�e
tive, h := fÆ�g2belongs to O�=�1;x. So, the di�erential of f Æ � at x is zero. But, sin
e � is equivariant, itsdi�erential is surje
tive at any point of �=�1. Then, the di�erential of f at �(x) is zero.This is impossible be
ause of smoothness of D at �(x). The lemma is proved. �To 
ompute fDO and fEO , we will also use the followingLemma 7.4.4 Assume that G is simply 
onne
ted and C is trivial. Let D 2 D(G=H). SetfD�1 := fg 2 G : g�1H=H 2 Dg. Considerq2 : G �! Og 7�! (1; g):x:Then, the pullba
k q�2(DO) of DO by q2 equals fD�1.Proof: Let us use the notation of Diagram (7.2.1). For this proof, we set U :=p�1(BP=P ). Sin
e q2 is a �bration, and U is an open subset of O whi
h interse
ts DOit suÆ
es to determine q�2(U \DO).Consider the a
tion of B \ L on F by right multipli
ation. Then, the quotient of B � Fby the diagonal a
tion of B \L exists and is denoted by B�B\L F . With obvious notation,we set � : B �B\L F �! U(b; f) 7�! b:fOne easily shows that � is bije
tive; then, the normality of U implies that � is an isomorphism.Then, we have ��(DO \ U) = 1: �B �B\L q2(fD�1)�. Consider now:i : F �! B �B\L Ff 7�! (1; f):We have i� �B �B\L q2(fD�1)� = 1:q2(fD�1): To 
on
lude, we fa
tor q2 asG ! F i! B �B\L F �! U � !O:and use Lemma 7.4.3. �Consider on G�G the a
tion of B �H�I de�ned by: (b; h; i):(g1; g2) = (bg1; hg2)i for allb 2 B; h 2 H; i 2 I and (g1; g2) 2 G�G. Then, if D 2 D(G=H) (resp. E 2 D(G=P )), theequation fDO (resp. fEO) is an eigenve
tor for the indu
ed a
tion of B �H� I on k[G�G℄.The 
orresponding 
hara
ter in X (B)� X (H)� X (I) whi
h determines fDO (resp. fEO) isstill denoted by fDO (resp. fEO). 23



Note that by the restri
tion homomorphism, X (I) identi�es with X (�L), that is, withX (L). Similarly, X (P ) and X (Q) identify with X (L). Moreover, X (L) is 
anoni
ally em-bedded into X (B). From now on, we make these identi�
ations impli
itly.Now, we 
an des
ribe fDO and fEO as follows:Lemma 7.4.5 With the pre
eding notation, we have:(i) Let E� 2 D(G=P ) with � 2 ���(L). Then, the weight of fE�O in X (B)�X (H)�X (L)is (!�; 0;�!�).(ii) Let D belong to D(G=H) and [
D : �D℄ 2 X (B)�X (B\H) X (H) be its equation. Write
D = P�2� k�!� with k� 2 N. Then,fDO = ( X�2�(L) k�!�; �D; X�2���(L) k�!�):Proof: Sin
e � 2 �� �(L), !� 2 X (T ) extends to P . Moreover, the equation of Bs�Pin G is a B � P -eigenve
tor of weight (!�;�!�). On the other hand, by Lemma 7.4.3, wehave q�G�G(EO) = Bs�P �G. Assertion (i) follows.Consider the rational fun
tion f on G�G de�ned on B �H:I by the formula:f((b; h):i) = 
(b)�(h) 8b 2 B ; h 2 H and i 2 I: (2)Indeed, one easily veri�es that for all b 2 B and h 2 H su
h that (b; h) 2 I, we have
D(b)�D(h) = 1; that is, (2) makes sense.SetDf =div(f). One easily shows that for all b 2 B and h 2 H, f(1; bh) = 
D(b�1)�D(h).So, Df\(f1g�G) = fD�1 (with notation as in Lemma 7.4.4). Sin
eDf is stable by B �H�I,using Lemmas 7.2.1 and 7.4.4, it follows that:Df = q�G�G(DO) + XE2D(G=P )nE:q�G�G(EO); (3)where the nE are integers. Denote by � the 
hara
ter of P su
h that the equation ofPE2D(G=P ) nEE is [� : ��℄ (with the notation of Se
tion 2.2 for H = P ). Then, Assertion(i) and Equation (3) imply that fDO = (
D � �; �D; �).Let � 2 ���(L). We 
laim that DO is stable by P��f1g. Indeed, sin
e DO is stable byB � f1g, (P� � f1g):DO is 
losed in O and thus equals DO or O. But, looking at Diagram(7.2.1), we see that ((P��f1g):DO)\F = ((P \P�)�f1g):(DO \F ). Sin
e � 2 ���(L),P \ P� equals B. So, ((P� � f1g):DO) \ F = DO \ F . The 
laim follows.The 
laim shows that 
D � � 2 X (B) extends to P� for all � 2 � � �(L). That is,
D� � is a linear 
ombination of the !� for � 2 �(L). Moreover, � is a 
hara
ter of P , thatis, a linear 
ombination of the !� for � 2 � � �(L). We dedu
e that � = P�2���(L) k�!�.Assertion (ii) follows. �7.5| The next step in the proof of Proposition 7.3.2 is to �nd an equation for DX .For this, we make some redu
tions. The theory of embeddings of G (see [Res00℄ or [Bri97℄and Se
tion 4) shows that there exists a simple toroidal G�G-equivariant embedding X 024



of G whi
h 
ontains XO and a proje
tive G�G-orbit Z. Repla
ing X by X 0 if ne
essary,to prove Proposition 7.3.2, we 
an assume (in the sequen
e of Se
tion 7) that X is simple,toroidal, with proje
tive 
losed orbit Z. Then, we have the followingLemma 7.5.6 Keep notation as above. Consider the eG� eG-linearized line bundle L
D de-�ned in Proposition 4.4.4.Then, there exists a se
tion � of L
D (unique up to s
alar multipli
ation) su
h that � isan eigenve
tor for eB � fH of weight (
D; �D). Moreover, DX = div(�).Proof: The uniqueness of � follows from Proposition 3.4.6 and from the fa
t that�(X;L
D) is a multipli
ity-free eG� eG-module.Sin
e 
D is dominant, L
D is generated by its global se
tions. As a 
onsequen
e, therestri
tion morphism from �(X;L
D) to �(Z;L
D jZ) is non-zero. But, the eG� eG-module�(Z;L
D jZ) is isomorphi
 to V
D 
 V �
D . Thus, there exists a eG� eG-equivariant embeddingi of V
D 
 V �
D into �(X;L
D) (unique up to s
alar multipli
ation).By Proposition 3.4.6, there exists � 2 V �
D , fH-eigenve
tor of weight �D. Let v 2 V
D bea B-eigenve
tor. Then � = i(v 
 �) satis�es the �rst assertion of the lemma.Sin
e the restri
tion of � to Z is non-zero, no 
omponent of div(�) is stable by G�G.Then, ea
h 
omponent of div(�) interse
ts G. So, to prove the lemma it suÆ
es to determinediv(�) \G.Consider � : eG �! G. Sin
e Pi
( eG) is trivial, �( eG; ��(L
D jG)) is isomorphi
 as aeG� eG-module to k[ eG℄. Then, � Æ � equals [
D : �D℄ up to a s
alar multipli
ation. Thus,div(�jG Æ �) = fD. Moreover, Lemma 7.4.3 shows that �� ��(fD)� = fD. Then, we havediv(�jG) = �(fD). The lemma follows. �7.6| Now, we want to understand the restri
tion of the equation of DX (given byLemma 7.5.6) to an orbit O of G�G.Consider the restri
tion morphism Pi
eG�eG(X) �! Pi
eG�eG(O). Then, by Proposition4.4.4, we identify Pi
eG�eG(X) with X ( eB). Set eI = (�; �)�1(I). Then, by Lemma 3.4.5, thegroup Pi
eG�eG(O) identi�es with X (eI), that is, with X (eL)�X ( eC). If (�; 
) 2 X (eL)�X ( eC),then we denote by L(�;
) the 
orresponding eG� eG-linearized line bundle on O. Then, wehave theLemma 7.6.7 Let � 2 X ( eB). Consider the eG� eG-linearized line bundle L� on X de�nedby Proposition 4.4.4. Then, the restri
tion of L� to O equals L(0;��jeC) with pre
eding notation( where (0;��jeC) 2 X (eL)� X ( eC)).Proof: Let XZ;B�B� be the unique aÆne open B�B�-stable and open subset of X thatinterse
ts Z. Let S be the 
losure of T in XZ;B�B�. Then, by Proposition 2.6.7, S interse
tsZ in a unique point z and XZ;B�B� is isomorphi
 to U � U� � S as B � B�-variety . Thevariety S is an aÆne T � T -equivariant embedding of T , in parti
ular its Pi
ard group istrivial. Thus, the restri
tion of L� to S is trivial as a line bundle on S (without linearization).Furthermore, the eT � eT -linearization of L�jS obtained by restri
ting the eG� eG-linearization25



of L� de�nes a 
hara
ter of eT � eT : via the a
tion of eT � eT on the �ber of L� at z. Sin
ez is the point of Z �xed by B� � B and L�jZ = L(�;��), the group eT � eT a
ts on (L�)z by(�;��).By Proposition 4.3.2, there exists x in S\O �xed by eI. But now, sin
e L�jS is trivial, thestabilizer of x in eT � eT a
ts on the �ber at x by (�;��). We dedu
e that �eL a
ts triviallyon this �ber and eC a
ts by ��jeC . The proposition follows. �7.7| Now, we 
an 
omplete the proof of Proposition 7.3.2:Let D 2 D(G=H) and O a 
olorless orbit of G�G in X. The aim is to determineDX \ O. As noted just before Lemma 7.5.6, we 
an assume that X is a simple toroidalembedding of G and 
ontains a proje
tive orbit Z of G�G.Consider the weight (
; �; �) 2 X ( eB)�X (fH)�X (eL) of the equation in k[ eG� eG℄ of thepullba
k of DX \ O in eG� eG (see Lemma 7.4.5). Let L
D and � be as in Lemma 7.5.6.Sin
e �jO is an equation of DX \ O, we have: 
 = 
D and � = �D. Moreover, by Lemma7.6.7, the restri
tion of L
D to O is L(0;�
D jeC). We dedu
e that � = 0. Then, Proposition7.3.2 follows easily from Lemma 7.4.5. �8 Quotients of proje
tive embeddings of the group bya spheri
al subgroup8.1| In Se
tion 6, we started with a proje
tive embedding of G=H and tried to realize itas a quotient of a proje
tive embedding of G. Conversely, in this se
tion, we start with aG�G-equivariant proje
tive embedding X of G.Let L be an ample G�H-linearized line bundle on X and let � be a 
hara
ter of H. Weuse the notation of Lemma 5.1.1 for the subgroup G�H of G�G. Sin
e X (G) is trivial,rG�H is inje
tive. For simpli
ity, we denote rG�H(L)
 i(�) by L 
 �. Then, Lemma 5.1.1shows that any G�H-linearized line bundle has a non-zero tensor power of the form L
 �for some L and �.We �x our attention on the quotient of X by f1g�H asso
iated to L
 �, as in Se
tion5.1: � : Xss(L 
 �) �! Xss(L 
 �)==H:Then, the a
tion of G� f1g on X des
ends to an a
tion of G on Xss(L 
 �)==H whi
hbe
omes a spheri
al variety (sin
e B �H has a dense orbit in G).Moreover, repla
ing L
 � by a power, we 
an assume (see Se
tion 5.4) that there existsa \quotient" line bundle (L
�)==H. This line bundle has a natural G-linearization indu
edby the G� f1g-one on L. For simpli
ity, we set:Y := Xss(L 
 �)==H and LY := (L 
 �)==H:Consider the quotient:
26



L 
 � !LYXss(L
 �)# �! Y#8.2| Let B be a Borel subgroup of G opposite to H and B� be another one, oppositeto B. As in Se
tion 4.2, we embed P(X;L) in X (B)Q . Then, we 
an des
ribe the momentpolytope P(Y;LY ) by:Theorem 2 Keep notation as above. Then, we have:P(Y;LY ) = P(X;L) \P(G=H;L�):Proof: We have:P(X;L) = fp 2 X (B)Q : 9n > 0; np 2 P+; Vnp 
 V �np ,! �(X;L
n)g:Moreover,P(Y;LY ) = fp 2 X (B)Q : 9n > 0; np 2 P+; Vnp ,! �(X; (L 
 �)
n)Hg:With the notation of Proposition 3.4.6, we dedu
e that:P(Y;LY ) = fp 2 X (B)Q : 9n > 0; np 2 �n� et Vnp 
 V �np ,! �(X;L
n)g:But by de�nition P(G=H;L�) is the set of p 2 X (B)Q su
h that there exists a positiveinteger n su
h that np 2 �n�. The theorem follows. �8.3| In the sequel of the se
tion, we show how to read properties of Y and � on thepolytopes P(X;L) and P(G=H;L�). For example, the following 
orollary gives a 
riterionfor Y to be an embedding of G=H.Corollary 8.3.1 The G-variety Y is an embedding of G=H if and only if P(X;L) interse
tsthe relative interior of P(G=H;L�).Proof: The ne
essary 
ondition follows easily from Theorem 2 and Proposition 3.1.1.Conversely, assume that P(X;L) interse
ts the relative interior of P(G=H;L�). Let Idenote the isotropy in G of �(1). Obviously, I 
ontains H; in parti
ular, I is a spheri
alsubgroup and Y is an embedding of G=I. By Proposition 3.1.1, the interior of P(X;L)in X (B)Q is not empty. Then, the di�enren
es of elements of P(Y;LY ) span X (B)B\HQ .In parti
ular, the ranks of G=I and G=H equal. Then, Theorem 3.4.3 in [Bri97℄ (see also[Kno91℄) shows that the index of H in I is �nite. So, Proposition 5.3.4 implies that ea
h�ber of � over G=I 
ontains a unique open orbit of H. We dedu
e that H = I. �Remark: Note that if Y satis�es Corollary 8.3.1, we 
an determine the fan F(Y ) byTheorem 2 and Propositions 3.3.4 and 3.5.8 (see [Res00℄; 7.2.3 for examples).8.4| The following proposition des
ribes the image by � of an orbit of G�G in X:27



Proposition 8.4.2 Let O be an orbit of G�G in X whi
h interse
ts Xss(L 
 �). Then,there exists a dense orbit (G�H):x of G�H in O. Moreover,(i) �(O \Xss(L 
 �)) = G:�(x), and(ii) P(G:�(x);LY ) = P(O;L) \P(G=H;L�).Proof: Proposition 2.6.6 shows that there exists a toroidal embedding fX of G anda G�G-equivariant surje
tive morphism fX �! X. Moreover, any orbit of G�G in fX
ontains a dense orbit of G�H by Lemma 7.2.1. Then, there exists a dense orbit of G�Hin O.Sin
e the variety �(O \Xss(L 
 �)) is irredu
ible and stable by G, it is the 
losure of anorbit of G in Y . But (G�H):x is dense in O, and G:�(x) is dense in �(O \Xss(L
 �)).Assertion (i) follows.By Proposition 5.2.3, the restri
tion of � to O \ Xss(L 
 �) is the quotient by H ofOss(L 
 �). Then, the proof of Assertion (ii) is the same as that of Theorem 2. �8.5| Let us �x an orbit 
 of G in Y . We are now interested in the preimage of 
 by �.Re
all that D(Y;
) denotes the set of 
olors of 
 in Y . Set:F(D(Y;
)) := f
 2 P(G=H;L�) : (
; �) 2 XD=2D(Y;
)Q :(
D ; �D)g:Then by Proposition 3.5.8, F(D(Y;
) is the minimal fa
e of P(G=H;L�) whi
h 
ontainsP(
;LY ).Proposition 8.5.3 With the pre
eding notation, we have:(i) There exists a minimal orbit (for the order indu
ed by the in
lusion of the 
losures)among the orbits O of G�G in X su
h that the 
losure of �(O\Xss(L
�)) 
ontains
. We denote this minimal orbit by O(
).(ii) P(O(
);L) is the minimal orbital fa
e of P(X;L) whi
h 
ontains P(
;LY ).(iii) P(
;LY ) = P(O(
);L) \ F(D(Y;
)).(iv) If 
 is 
olorless in Y , then �(O(
) \Xss(L
 �)) = 
. In parti
ular, the image of �
ontains 
.Proof: Let O be an orbit of G�G in X and let x be a point in the open orbit of G�Hin O. Proposition 8.4.2 shows that �(O(
) \Xss(L 
 �)) 
ontains 
 if and only if G:�(x)
ontains 
. On the other hand, if O1 and O2 are two orbits of G�G in X, Proposition3.3.4 shows that: P(O1;L) \P(O2;L) = P(O1 \ O2;L):Then, we dedu
e that:
 � �(O) \Xss(L
 �) () P(
;LY ) � P(G:�(x);LY )() P(
;LY ) � P(O;L) \P(G=H;L�)() P(
;LY ) � P(O;L): (1)28



Then, Proposition 3.3.4 shows that there exists an orbit 
(G) of G�G in X satisfying (1)and minimal for this property. This proves Assertions (i) and (ii).Moreover, P(
;LY ) is 
ontained in F(D(Y;
)). Sin
e, P(O(
);L)\F(D(Y;
)) is a fa
eof P(Y;LY ), we dedu
e that P(
;LY ) is a fa
e of P(O(
);L)\F(D(Y;
)). But, P(
;LY )interse
ts the relative interior of F(D(Y;
)). So, there exists a fa
e F of P(O(
);L) su
hthat: P(
;LY ) = F \ F(D(Y;
)):With the notation of Proposition 3.3.4, the minimality of O(
) implies that O(F) = O(
).Let P+F denote the minimal fa
e of P+ interse
ting F. Sin
e P(G=H;L�) is 
ontained inP+ and P(
;LY ) is 
ontained in F, F(D(Y;
)) is 
ontained in P+F . But now, Proposition3.3.4 implies that: F \ F(D(Y;
)) = P(O(
);L) \ F(D(Y;
)):Assertion (iii) is proved. If 
 is 
olorless, we have, by Assertion (iii):P(
;LY ) = P(O(
);L) \P(G=H;L�):Then, Assertion (iv) follows from Proposition 8.4.2. �Remark: If H is redu
tive, then � is surje
tive. Moreover, if y is a point in 
 and x is apoint in the unique 
losed orbit of f1g �H in ��1(y), then O(
) is the orbit of x by G�G.Let � : Hom(X (B);Q) �! Hom(X (B)B\H ;Q) be the restri
tion map. Then, a 
onne
-tion between the 
olored fans of X and Y is the followingLemma 8.5.4 With the notation of Proposition 8.5.3, we have:� (C(X;O(
))) � C(Y;
):Proof: Let p be a point in the relative interior of P(
;LY ). By Proposition 3.5.8, the
one C(Y;
) is dual to �p + P(Y;LY ) in Hom(X (B)B\H ;Q). Sin
e P(Y;LY ) is 
ontainedin P(X;L), C(Y;
) 
ontains the image by � of the dual in Hom(X (B);Q) of �p+P(X;L).Sin
e p belongs to P(O(
);L), applying Proposition 3.5.8 to X and O(
) 
ompletes theproof of the lemma. �8.6| Denote again by 
 an orbit of G in Y . The next proposition gives a des
riptionof the preimage by � of the minimal aÆne B-stable open subset of Y interse
ting 
, namelyY
;B (see Proposition 2.4.4).Proposition 8.6.5 With pre
eding notation, we have:��1(Y
;B) = XO(
) � [D=2D(Y;
)DX :Proof: Let p be a point in the relative interior of P(
;LY ). Let n be a positive integerand � be a se
tion of L
nY whi
h is a B-eigenve
tor of weight np. Then, by Proposition 3.3.4,we have Y
;B = Y � fy 2 Y : �(y) = 0g: 29



But � belongs to � (X; (L 
 �)
n)), and ��1(Y
;B) = X�fx 2 X : �(x) = 0g:Moreover,by de�nition of O(
) (see Proposition 8.5.3), the set ��1(Y
) is 
ontained in XO(
). So, wehave: ��1(Y
;B) = XO(
) � fx 2 X : �(x) = 0g: (4)We 
onsider the set of those x 2 X su
h that �(x) = 0. Let M be an irredu
ible
omponent of this set whi
h does not interse
t G. Sin
e the 
odimension of M equals one,M is stable by G�G. But, ��1(Y
;B) interse
ts O(
). Then, Equality (4) shows that M is
ontained in X �XO(
). We dedu
e that:��1(Y
;B) = XO(
) � fx 2 G : �(x) = 0g:Moreover, sin
e p belongs to the relative interior of P(
;LY ), we have:fy 2 G=H : �(y) = 0g = [D=2D(Y;
)D:The proposition follows. �8.7| The main result of this se
tion is a 
riterion (expressed orbit by orbit) in terms ofpolytopes to de
ide if Xs(L 
 �) equals Xss(L 
 �), with notation of Se
tion 5.3. We startby the followingLemma 8.7.6 Let 
 be an orbit of G in Y . With the notation of Proposition 8.5.3, weassume that 
 and O(
) are 
olorless. Then, ��1(
) \ O(
) is the open orbit of G�H inO(
).Proof: Assertion (iv) of Proposition 8.5.3 shows that ��1(
) \O(
) 
ontains the openorbit of G�H in O(
). Moreover, by Proposition 8.6.5, we have: ��1(Y
;B) = XO(
) �SD=2D(Y;
)DX : But, sin
e G is 
onne
ted, an orbit of G� f1g is 
ontained in SD=2D(Y;
)DX ifand only if it is 
ontained in some DX . We dedu
e that ��1(Y
) = XO(
) � SD=2D(Y;
) 
DX ,where 
DX denotes the union of all orbits of G� f1g 
ontained in DX .Moreover, with the notation of Diagram (7.2.1), ea
h orbit of G� f1g in O interse
ts Fin a unique orbit of P � f1g; that is, in a �ber of the natural map� : F q! G=B ! G=Q:This identi�es the set of all orbits of G� f1g 
ontained in DO with the set of all orbits ofQ 
ontained in D. In parti
ular, any non open orbit of G�H in O is 
ontained in DO forsome D in D(G=H).But, by Proposition 7.3.2, for anyD 2 D(G=H),DX\O 
ontainsDO. Then, no non-openorbit of G�H in O is 
ontained in ��1(Y
). This 
ompletes the proof of the proposition.� Let E be a �nite-dimensional ve
tor spa
e and let P be a polyhedron in E . The dimensionof the aÆne subspa
e generated by P in E is 
alled the dimension of P and is denoted bydim(P). If Q is another polyhedron in E , we say that the interse
tion of P and Q istransversal if dim(P \Q) = dim(E)� dim(P)� dim(Q):30



Proposition 8.7.7 Let 
 be an orbit of G in Y . With the notation of Proposition 8.5.3, weassume that 
 and O(
) are 
olorless. Then, the three following 
onditions are equivalent:(i) ��1(Y
) is 
ontained in Xs(L).(ii) ��1(
) is 
ontained in Xs(L).(iii) The interse
tion of P(O(
);L) and P(G=H;L�) is transversal.Proof: Note that Proposition 3.1.1 shows that the rank of 
 (resp. O(
)) equals thedimension of P(
;LY ) (resp. P(O(
);L)). Then, Condition (iii) is equivalent to rk(G=H)�rk(
) = rk(G)� rk(O(
)). By Lemma 2.6.8, this is also equivalent to:dim(G=H)� dim(
) = dim(G)� dim(O(
)): (5)On the other hand, Proposition 8.5.3 shows that: �(O(
) \Xss(L
 �)) = 
: We dedu
ethat the dimension of the general �bers of � over 
 equals dim(O(
))�dim(
). In parti
ular,the �ber over any point y in 
 has this dimension. But now, Condition (iii) (that is, Equality(5)) is equivalent to: 8y 2 
 dim(��1(y)) = dim(H):Now, using the Remark of Se
tion 5.3, we 
on
lude that Condition (ii) implies (iii). Sin
e(i) implies trivially (ii), it remains to prove: \(ii) implies (i)".Assume that dim(��1(y)) = dim(H). Then , Proposition 8.4.2 implies easily that ��1(y)is 
ontained in O(
).Consider the stabilizer PG=H in G of BH=H. Let us �x a Levi subgroup LG=H of PG=Hadapted to H (see Proposition 2.5.5) and a maximal torus TG=H of LG=H 
ontained in B.By Proposition 4.3.2, there exists a point x in O su
h that the isotropy of x in G�G is:I = (P u �Qu)n (�L� (f1g � C)) ;where Q is a paraboli
 subgroup of G 
ontaining B, P is the paraboli
 subgroup of G
ontaining TG=H and opposite to Q, L is the interse
tion of P and Q and C is a subgroup ofthe 
onne
ted 
enter of L.We 
laim that PG=H is 
ontained in Q.Let � be a simple root of (B; TG=H) su
h that P� is 
ontained in PG=H . Then, sin
e the
omplement of PG=HH=H in G=H is the union of the 
olors of G=H, P� stabilizes ea
h 
olorof G=H. Thus, the B-weight of the equation fD of any 
olor D of G=H is orthogonal to the
oroot �_. Then, Lemma 4.3.3 shows that P(G=H;L�) is 
ontained in the orthogonal spa
eto �_. In parti
ular, P(O(
);L) whi
h 
ontains P(
;LY ) interse
ts the orthogonal of �_.Thus, Lemma 4.3.3 shows that Q 
ontains P�. The 
laim follows.Now, we 
laim that the isotropy of f1g �H at a general point of O(
) is �nite.Indeed, sin
e (G�H):I=I is open in O(
), we have to prove that the interse
tion ofI and f1g �H is �nite. By the �rst 
laim, Qu is 
ontained in P uG=H . Thus, sin
e C is
ontained in LG=H , Proposition 2.6.7 implies that H \ QuC = H \ C. On the other hand,by Proposition 3.1.1, the di�eren
es of elements of P(G=H;L�) span X (B)B\HQ , and that31



of elements of P(O(
);L) span X (B)B\CQ . The assumption implies that the interse
tion ofX (TG=H)TG=H\H and X (TG=H)C is �nite; hen
e H \C is �nite. This proves the se
ond 
laim.Let us �x an aÆne open subset U of 
. The 
laims show that the general �bers of �over U and the general orbits of H in O(
) have the same dimension. But, by Lemma 8.7.6,��1(U) is 
ontained in the open orbit of G�H in O(
). In parti
ular, ��1(U) is smooth.Then, the proof of Proposition 5.3.4 shows that every general �ber of � over U 
ontains aunique open dense orbit of H. But now, the fa
t ��1(U) is 
ontained in the open orbit ofG�H in O(
) implies that the �bers of � over U are orbits of H. This implies Assertion(ii).But, Condition (iii) holds for all orbits of G in Y
. Thus, the same is true for (ii). Then,Condition (i) holds. �9 Toroidal embeddings as geometri
 quotients9.1| In Se
tion 9, G=H is supposed to be sober and liftable. Fix a proje
tive embeddingY of G=H. As in Se
tion 6, we want to obtain Y as a quotient of a G�G-equivariantproje
tive embedding X of G for an ample G�H-linearized line bundle L. But now, wewant to have: Xss(L) = Xs(L); that is, a geometri
 quotient. We start with the 
ase whenY is the 
anoni
al embedding of G=H:Theorem 3 Assume that G=H is sober and liftable. Consider the 
anoni
al embedding Y(resp. X) of G=H (resp. G). Then, there exists an ample G�H-linearized line bundle Lon X su
h that the quotient � : Xss(L) �! Xss(L)==H of X by f1g �H asso
iated to Lsatis�es the following 
onditions:(i) Xss(L)==H = Y ,(ii) Xss(L) = Xs(L),(iii) � is surje
tive.Before proving Theorem 3, we illustrate the ideas of the proof by examples.9.2| In this paragraph, G is PGL(3) and H is the subgroup of G 
onsisting of matri
esof the form 0B� � 0 00 � �0 � � 1CA :It is easy to see that G=H is spheri
al and identi�es with the pairs (p; d) 2 P2�P2_ (a pointand a line in P2) su
h that p does not belong to d. Set Y = P2�P2_ viewed as an embeddingof G=H. Then Y is the 
anoni
al embedding of G=H.We �x an ampleG-linearized line bundleM on Y . The proof of Theorem 1 is 
onstru
tive:it gives the 
anoni
al embedding X of G and an ample G�H-linearized line bundle L 
 �on X depending onM. The polytopes P(X;L) and P(Y;M) look like the following pi
ture:32



!�P(X;L)
P(Y;M) !�Figure 1: The polytopes P(Y;M) and P(X;L)

P(X;L")
P(Y;M) !�

!�
Figure 2: The polytopes P(Y;M) and P(X;L")
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By Proposition 8.7.7, we do not have Xss(L 
 �) = Xs(L 
 �). Yet, if we move a littlebit L to L" we obtain the situation of Figure 9.2. Then Y is the geometri
 quotient ofXss(L" 
 �).9.3| The proof of Theorem 3 will be a generalization of the pre
eding example. Morepre
isely, we start with an ample G-linearized line bundle on the 
anoni
al embedding Y ofG=H. Then, the 
onstru
tion used in the proof of Theorem 1 gives a G�H-linearized linebundle L on the 
anoni
al embedding X of G. Then, using Proposition 8.7.7, we are goingto prove that we 
an move L a little bit and obtain Y as a geometri
 quotient of X.Two diÆ
ulties 
an appear. First, as shown by the example when G = SL(4) andH = Sp(4) (see [Res00℄) the 
onstru
tion of the proof of Theorem 1 may not give the
anoni
al embedding of G; or equivalently, the line bundle L on X may not be ample.On the other hand, if the rank of G=H is less than that of G, repla
ing L by a nearbyL", we may 
hange the \shape" of the moment polytope of the quotient. That is, we 
an
hange the quotient variety Xss(L
�)==H (see [Res00℄, for an example). We will show thatthese problems 
an be avoided by moving L 
arefully.9.4| In this paragraph, we obtain some te
hni
al results about the 
one of valuationsof G=H.Let us �x a W -invariant s
alar produ
t h:; :i on X (T )
 R. Denote by �(PG=H) the setof simple roots � su
h that PG=H 
ontains P�. Consider the basis (��)�2� of Hom(X (B);Q)dual to the basis (�)�2� of X (B)Q . Then, we obtain the following 
ommutative diagram:X�2�Q�0�� � ! Hom(X (B);Q)X�=2�(PG=H)Q�0��[" ! Hom(X (PG=H);Q);�BP#where �BP is the restri
tion homomorphism indu
ed by the in
lusion of X (PG=H) into X (B).With this notation, we have:Lemma 9.4.1 (i) The set ��BP (��)��=2�(PG=H) is a basis of the ve
tor spa
e Hom(X (PG=H);Q).(ii) Moreover, �BP  X�2�Q�0��! = X�=2�(PG=H)Q�0�BP (��):Proof: Let us 
onsider the dual statements. The dual spa
e of P�=2�(PG=H) Q�� identi�eswith P�2�(PG=H ) Q�, that is, with the orthogonal of X (PG=H) for the W -invariant s
alarprodu
t. Assertion (i) follows easily.Now, to prove Assertion (ii), it is suÆ
ient to show that the dual 
ones in X (PG=H)Q ofP�=2�(PG=H) Q�0�BP (��) and of �BP �P�2� Q�0��� are equal; that is, to show that:X (PG=H)Q \ 0� X�=2�(PG=H)Q�0� + X�2�(PG=H)Q�1A = X (PG=H)Q \  X�2�Q�0�! :34



The in
lusion of the right side in the left one is obvious. Conversely, let us �x 
 = P�2� x��with x� 2 Q�0 if � =2 �(PG=H), and x� 2 Q if � 2 �(PG=H).Sin
e X (PG=H)Q is the orthogonal spa
e of �(PG=H), we have h�_; 
i = 0 for all � in�(PG=H). Thus, for all � in �(PG=H), we have:h�_; X�2�(PG=H ) x��i = � X�=2�(PG=H)h�_; �ix�:On the other hand, for all distin
t � and � in �, h�_; �i is non-positive. Moreover, for all� =2 �(PG=H), x� is non-negative. As a 
onsequen
e, we have:8� 2 �(PG=H) h�_; X�2�(PG=H ) x��i � 0:Then, we 
an apply Lemma 6 of Chapter 5, no 3.5 of [Bou68℄ to the basis �(PG=H). Weobtain that x� is non-negative for all �. Assertion (ii) of the lemma follows. �Sin
e PG=H is paraboli
, it is 
onne
ted. Then, ea
h D in D(G=H) is stable by PG=H ;and the 
hara
ter 
D for the a
tion of B of the equation of D extends to PG=H . Then, byLemma 2.2.1, we have the following in
lusions: X (B)B\H � X (PG=H) � X (B). Taking thedual, we obtain:Hom(X (B);Q) �BP! Hom(X (PG=H);Q) ! Hom(X (B)B\H ;Q ):We denote by CV(G) the valuation 
one asso
iated to the G�G-homogeneous spa
e G.Consider also the restri
tion map � : CV(G) �! CV(G=H) indu
ed by the in
lusion ofk(G=H) in k(G). Then, we haveLemma 9.4.2 Keep notation as above . We assume in addition that G=H is sober andliftable (i.e. CV(G=H) is stri
tly 
onvex and � is surje
tive).Then, there exists a subset �G=H of ���(PG=H) su
h that, in the following 
ommutativediagram: CV(G) � ! Hom(X (B);Q)  � X�2�Q�0��Hom(X (PG=H);Q)�BP #  X�=2�(PG=H)Q�0��["
CV(G=H)

�# �! Hom(X (B)B\H ;Q)#  � X�2�G=H Q�0��["the images in Hom(X (B)B\H ;Q) of the 
ones CV(G=H) and P�2�G=H Q�0�� are equal.Moreover, the hooked arrows ,! are inje
tive.35



Proof: By Lemma 9.4.1, the assumption that � is surje
tive implies that the images inHom(X (B)B\H ;Q) of P�=2�(PG=H) Q�0�� and of CV(G=H) are equal. Indeed, CV(G) equalsP�2� Q�0�� (see Se
tion 4).Moreover, by [Bri90℄, sin
e G=H is sober, the 
one CV(G=H) is simpli
ial. For all raysQ�0
 of CV(G=H), there exists a root � in � � �(PG=H) su
h that Q�0�� maps to Q�0
in Hom(X (B)B\H ;Q) by the diagram of the lemma. Choosing su
h an � for all rays ofCV(G=H), we obtain a set �G=H 
ontained in � � �(PG=H) whi
h satis�es the 
ondition ofthe lemma. �9.5| We 
an now give the:Proof of Theorem 3: Let M be an ample G-linearized line bundle on Y . Let P�G=Hbe the paraboli
 subgroup of G 
ontaining T and opposite to PG=H . Then, by Proposition2.6.7, the 
losed G-orbit Z in Y is isomorphi
 to G=P�G=H . Denote by 
0 the 
hara
ter ofP�G=H su
h that, with the notation of Lemma 3.4.5, the restri
tion of M to Z is L
0 . Westart by proving:Claim 1: the set 
0 +P�=2�G=H Q>0� 
ontains a rational regular dominant weight.Sin
e, �PG=H is 
ontained in � � �G=H , it is suÆ
ient to prove Claim 1 for the 
one
0 +P�2�(PG=H) Q>0�.Note that, sin
eM is ample, L
0 is ample and 
0 belongs to the relative interior of the
one generated by P+ \ X (PG=H). Re
all that P+Q denotes the 
one of X (B)Q generated byP+. Then, Q�0�_ is the dual 
one of P+Q from the fa
e P� 6=� Q�0!�. We dedu
e that thedual 
one of �
0 + P+Q equals P�2�(PG=H ) Q�0�_.If, by absurd, 
0+P�=2�G=H Q>0� does not interse
t the interior of P+Q , then the interiorof �
0 + P+Q does not interse
t P�=2�G=H Q>0�. Thus, there exists � 2 P�2�(PG=H) Q�0�_whi
h is negative on P�=2�G=H Q>0�. This 
ontradi
ts the fa
t that h�_; �i is non-positiveand proves Claim 1.Repla
ingM by a power, Claim 1 shows that there exists � 2 X (B) whi
h belongs to
0 +P�=2�G=H Q>0� and to the relative interior of P+Q . Consider the eG� eG-linearized linebundle L� on X with the notation of Proposition 4.4.4. Repla
ing M and hen
e L� bya power if ne
essary, we 
an assume that the eG� eG-linearization of L� indu
es a G�G-linearization. Denote by � the 
hara
ter of H su
h that the restri
tion ofM to G=H is L�(see Lemma 3.4.5). We are going to prove that L = L� 
 � has the properties announ
ed inthe theorem.First, sin
e � is regular dominant, Proposition 4.4.4 shows that L is ample. Note thatProposition 3.5.8 shows here that:P(X;L�) = P+Q \  � + X�2�Q�0�! :In parti
ular, 
0 belongs to P(X;L�) \P(G=H;L�).Let us denote byO0 the unique orbit ofG�G inX su
h that C(X;O0) = P�2�G=H Q�0��.Then, we have:Claim 2: Any orbit O of G�G in X su
h that P(O;L�) 
ontains 
0 is 
ontained in XO.36



Let O be su
h an orbit. If � is a simple root, we denote by X� the 
enter in X of thevaluation of CV(G) whi
h maps to �!�_ in Hom(X (B);Q). Then, there exists a subset I of� su
h that: O = \�2IX�(see for example [CP83℄). Thus, we have:P(O;L�) = 0�� +X�=2I Q�1A \P(X;L�);and by Claim 1: 
0 � � 2 0�X�=2I Q�1A \ 0� X�=2�G=H Q<0�1A :We 
on
lude that �� �G=H is 
ontained in � � I; that is I is 
ontained in �G=H . Claim 2follows.The next step is to proveClaim 3: P(O0;L�) \P(G=H;L�) = f
0g.The di�enren
es of elements of P(O0;L�) span P�=2�G=H Q�. The one spanned by thedi�enren
es of elements of P(G=H;L�) is X (B)B\HQ . Moreover, the interse
tion of these twove
tor subspa
es is f0g, sin
e by Lemma 9.4.2P�2�G=H Q�0�� embeds in Hom(X (B)B\H ;Q).Then, P(O0;L�)\P(G=H;L�) is either the empty set or a single point. On the other hand,the proof of Claim 2 shows that 
0 belongs to this interse
tion. Claim 3 is proved.Now, we 
an prove Assertion (i).Consider the quotient morphism � : Xss(L� 
 �) �! Xss(L� 
 �)==H. Repla
ing Mby a power, we 
an assume that L� 
 � admits a quotient by f1g �H denoted by LY (seeSe
tion 5.4). Let us �x a point x in the open orbit of B �H in O0. By Proposition 8.4.2, wehave: P(G:�(x);LY ) = P(O0;L�)\P(G=H;L�). Thus, Claim 3 and Proposition 3.1.1 showthat the rank of G:�(x) equals 0. Thus, G:�(x) is proje
tive, hen
e 
losed in Xss(L�
�)==H.Moreover, Proposition 3.5.8 applied to the 
losed orbit of G in Y implies that (
D; �D)belongs to the relative interior of the 
one PD2D(G=H) Q�0(
D; �D): Now, Proposition 3.5.8shows that G:�(x) is 
olorless in Xss(L� 
 �)==H.Moreover, if �BG=H : Hom(X (B);Q) �! Hom(X (B)B\H ;Q) denotes the restri
tion mor-phism, we have:��
0 +P(Xss(L� 
 �)==H;LY )�_ � �BG=H �(�
0 +P(O0;L�))_�� �BG=H �P�2�G=H Q�0��� :Then, Proposition 3.3.4 shows that G:�(x) is the unique 
losed orbit of G in Xss(L�
�)==H.This easily implies that Xss(L� 
 �)==H = Y . The fa
t that L� 
 � satis�es Assertion (i) isproved.Sin
e Y is toroidal, Proposition 8.5.3 implies Assertion (iii). It remains to prove37



Claim 5: Xss(L� 
 �) = Xs(L� 
 �).We noted in the proof of Claim 3 that the subspa
es spaned by the di�eren
es of elementsof P(G=H;L�) and of P(O0;L�) interse
t in f0g. We 
on
lude by Proposition 8.7.7. �9.6|We 
ome to our main theorem. It asserts that ifG=H is sober and liftable then anytoroidal embedding of G=H 
an be obtained as a geometri
 quotient of a toroidal embeddingof G. A toroidal embedding of a spheri
al homogeneous spa
e is said to be simpli
ial if itsfan is simpli
ial.Theorem 4 Let G=H be a sober, liftable spheri
al homogeneous spa
e. Let Y be a proje
tive,toroidal embedding of G=H.Then, there exist a proje
tive, toroidal G�G-equivariant embedding X of G and anample G�H-linearized line bundle L on X su
h that the quotient,� : Xss(L) �! Xss(L)==Hof X by f1g �H asso
iated to L satis�es:(i) Xss(L)==H = Y ,(ii) Xss(L) = Xs(L),(iii) � is surje
tive.If in addition Y is simpli
ial, then there exists a simpli
ial embedding X of G satisfyingthe pre
eding 
onditions.Proof: The �rst step of the proof is to 
onstru
t the 
olored fan of X (see Proposition2.3.3).Consider the 
ommutative diagramHom(X (B);Q) e�! Hom(X (B)B\H ;Q )CV(G)[" � ! CV(G=H);["where e� denotes the restri
tion map.Let X denote the 
anoni
al embedding of G. Let L1 be an ample G�H-linearized linebundle on X whi
h satis�es Theorem 3. Let 
0 be the 
losed orbit of G in the 
anoni
alembedding Y of G=H. Consider the orbit O(
0) of G�G in X de�ned in Proposition 8.5.3.Then CV(X;O(
0)) is a fa
e of CV(G); the latter is mapped by � isomorphi
ally ontoCV(G=H). Consider the fan F1 of CV(X;O(
0)) obtained from F(Y ) by �. Let F de-note the fa
e of CV(G) generated by those extremal rays of CV(G) whi
h do not belong toCV(X;O(
0)). Consider the fan F with maximal 
ones generated by F and the maximal
ones of F1. Then, F is the fan of a 
omplete toroidal G�G-equivariant embedding X ofG. 38



We 
laim that X is proje
tive. This will follow from a proje
tivity 
riterion of an embed-ding of a spheri
al homogeneous spa
e in term of its fan (see Corollary 5.2.2 of [Bri97℄ or see[Bri89℄). When applied to Y , this 
riterion shows existen
e of a fun
tion l : CV(G=H) �! Q ;whi
h is linear on ea
h 
one of F(Y ) and stri
tly 
onvex (as de�ned in [Ful93℄ p.68). Then,there exists a unique fun
tion el : CV(G) �! Q ; whi
h equals zero on F, whi
h equals l Æ �on CV(X;O(
0)) and whose restri
tions to the 
ones of F are linear. One 
he
ks that el isstri
tly 
onvex. Sin
e X is 
omplete, Corollary 5.2.2 of [Bri97℄ shows that X is proje
tive.The next step is to 
hose an ample line bundle on X.Repla
ing L1 by a power if ne
essary, we 
an write L1 = L2 
 �, with L2 2 Pi
G�G(X)and � 2 X (H). By [Bri97℄, Theorem 2 (see also [Kno91℄) there exists a G�G-equivariantbirational morphism  : X �! X. We �x our attention on  �(L2).By Theorem 3, Xss(L2
�) is 
ontained in XO(
0) and interse
ts O(
0). We dedu
e thatfor any orbit O of G�G in X, the following equivalen
e holds:P(O;  �(L2)) \P(G=H;L�) 6= ; () O �  �1(XO(
0)): (6)Moreover, the interse
tion in (6) is transversal. We dedu
e that there exists a neighborhoodU of  �(L2) in Pi
G�G(X)Q su
h that for allM in U , we have:P(O;M) \P(G=H;L�) 6= ; () O �  �1(XO(
0)): (7)On the other hand, the line bundle  �(L2) is generated by its global se
tions. Then, byProposition 4.4.4, U 
ontains an ample line bundle L"2.We 
laim that (X;L = L"2 
 �) satis�es the three 
onditions of the theorem.Consider the quotient � : Xss(L) �! Xss(L)==H. Let O be an orbit of G�G whi
his 
losed in  �1(XO(
0)). Denote by 
 the open G-orbit in �(O \ Xss(L)). Sin
e Xss(L)is 
ontained in  �1(XO(
0)), we have O(
) = O. Thus, Lemma 8.5.4 shows that the 
oneC(Xss(L)==H;
) 
ontains �(C(X;O)). Moreover, the restri
tion of � to C(X;O(
0)) is in-je
tive. Then, the interior of the 
one C(Xss(L)==H;
) in CV(G=H) is not empty. It followsthat 
 is proje
tive and that �(O\Xss(L)) = 
. Then, by Lemma 8.5.4 and by 
onstru
tionof X, Xss(L)==H is isomorphi
 to Y .Sin
e the 
ones �(C(X;O)), where O is an orbit of G�G in X as above, 
over CV(G=H),we have established a 
orresponden
e between 
losed orbits of G�G in  �1(XO(
0)) and
omplete orbits of G in Xss(L)==H. It is now easy to prove that Xss(L) = Xs(L), by usingProposition 8.7.7.Moreover, Proposition 8.5.3 show that � is surje
tive.If in addition Y is simpli
ial, then by 
onstru
tion X is simpli
ial too. �Now, we 
an apply Theorem 4 and des
ribe the isotropy subgroups of the a
tion of Gin Y (with the notation of Theorem 4). So, the following 
orollary extends results that C.DeCon
ini and C. Pro
esi (see [CP83℄) obtained when H is symmetri
.39



Corollary 9.6.3 Let G=H and Y be as in Theorem 4. Let y be a point in Y .Then, there exist two opposite paraboli
 subgroups P and Q of G su
h thatGy = P u:Cy:�L \Qu(Q \H)�;where L = P \ Q, C is the 
onne
ted 
enter of L and, P u and Qu denote respe
tively theunipotent radi
als of P and Q.Proof: Let X be a G�G-equivariant embedding of G and L be a ample G�H-linearized line bundle satisfying Theorem 4. Let x in X su
h that �(x) = y. Then, byProposition 4.3.2, there exists two opposite paraboli
 subgroups P and Q of G and a sub-group C of the 
onne
ted 
enter of L = P \Q su
h that the isotropy of x in G�G isI := (P u �Qu)n (�L� (C � f1g)):Sin
e ��1(y) = (f1g �H):x, we have:Gy = fg 2 G : (g; 1)I \ (f1g �H) 6= ;g:The 
orollary follows. �With pre
eding notation, Corollary 9.6.3 implies that L \ Qu(Q \ H) is a spheri
alsubgroup of L. Moreover, Gy is obtained by paraboli
 indu
tion (see [Bri98℄, [Lun96℄ or[Was96℄ for a pre
ise de�nition) from the latter spheri
al subgroup of L.Note that Corollary 9.6.3 does not ne
essary hold if G=H is not liftable (see Example10.7.3 of [Res00℄).Referen
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