Quotients of group completions
by spherical subgroups

N. Ressayre

Abstract. Let G be a semi-simple algebraic group and let H be a spherical subgroup. The
ground field k is algebraically closed and of characteristic zero. This article is concerned
by projective embeddings Y of spherical homogeneous spaces G/H. Our approach in the
study of such a variety Y is to realize them as quotients under the action of H of projective
embeddings of G. First, we give a more precise sense to this project by defining the quotient
of a G-variety by a spherical subgroup H. Then, we give a condition, in terms of G-invariant
valuations, under which Y can be obtained by quotient of an embedding of G. Finally, if
the index of H in its normalizer is finite, we show that an important class of embeddings of
G/H (toroidal and liftable) geometric quotients of embeddings of G.

1 Introduction

Let G be a semi-simple algebraic group and let H be a spherical subgroup. The ground
field k is algebraically closed and of characteristic zero. This article is concerned with the
G-equivariant projective embeddings Y of the homogeneous space G/H. Indeed, whereas
the Luna-Vust Theory classifies these embeddings by combinatorial objects (namely colored
fans), important questions about the geometry and the topology of these varieties remains
unsolved.

We explain our strategy. Note that apart from flag varieties and toric varieties, the best
understood spherical varieties Y are the embeddings of the group G viewed as a G x G-
homogeneous space (see [Bri98, CP83, LP90, BCP90]...). Our aim in this article is to realize
projective embeddings Y of G/H as quotients of G X G-equivariant embeddings X of G.
Indeed, such a construction combined with equivariant cohomology methods should give
explicit generators of the cohomology ring of Y. On the other hand, the orbit closures of a
Borel subgroup B of G in Y play a key role in the geometry of Y. Preliminary results (see
[Res00]) show that the closures of the B x H-orbits in X are simpler than B-orbit closures
in Y. This is another motivation of this article and the subject of an forthcoming paper.

In Section 2, we collect notation and results about the Theory of Spherical Embeddings.
In Section 3, we give essentially known auxiliary results about the moment polytopes (see
Section 3.1 for the definition) of a projective spherical variety. The properties of the em-
beddings of G used through the paper are collected in Section 4. In Section 5, we fix a
projective variety X endowed with an action of G. Then, as in Geometric Invariant The-
ory (see [MFKO94]), we associate to any ample H-linearized line bundle on X a “quotient”
X®(L)//H of an open subset X*(L) of X by H, even if H is not reductive. In Section 6,
we prove our first main result:



Theorem Assume that the kernel of the action of G on G/H s finite. Let Y be a
projective embedding of G/H. Then, the following conditions are equivalent:

(i) There exist a projective G x G-equivariant embedding X of G and an ample G x H -
linearized line bundle £ on X such that Y = X*(L)//H.

(ii) For any G-orbit O of codimension one in Y, there erists a G x G-equivariant em-
bedding Xo of G and a G x {1}-equivariant and {1} x H -invariant surjective rational
map:

o Xo —-’G/HUOCY

Assertion (ii) can be expressed in term of the valuations used in the Luna-Vust Theory
(see Theorem 1 below). The spherical homogeneous spaces G/H such that any projective
embedding of G/H can be realized as quotients of a group completion are said to be liftable.
As examples, we show that if H is symmetric or if H is solvable and of finite index in its
normalizer then G/H is liftable.

The former theorem is not sufficient for applications. Indeed, the quotient X*(L)//H is
not in general an orbit space but only a categorical quotient. In Sections 7 to 9, we obtain
embeddings of G/H as spaces of {1} x H-orbits in some open subset of X. First in Section
7, we prove auxiliary results about the divisors of embeddings of G which are stable by left
multiplication by a Borel subgroup of G and by right multiplication by H. In Section 8, we
fix a projective embedding X of G and an ample G x H-linearized line bundle £ on X. Then,
we study the quotient by H: 7 : X*(L) — X*(L)//H, in relation with moment polytopes
of X and X*(L)//H. Our main result is contained in Section 9. To state it, we need a
definition: an embedding Y of G/H is said to be toroidal if Y — (G/H) is an union of G-
stable prime divisors and if any G-orbit closure of Y can be obtained by intersecting properly
G-stable prime divisors (see 2.3 for an equivalent definition). These embeddings play a key
role since any embedding of G/H is the image of a toroidal embedding by a G-equivariant
proper morphism (see Proposition 2.6.6 below). Our main result is the following

Theorem Let G/H be a liftable spherical homogeneous space such that the index of H in
its normalizer is finite. Let Y be a toroidal projective embedding of G/H. Then, there exist
a toroidal projective embedding X of G and an ample G x H-linearized line bundle £ on X
such that the quotient,

T X¥(L) — X*(L)//H,

of X by {1} x H associated to L satisfies:

(i) 7 is surjective and G-equivariant.

(ii) the fibers of m are the orbits of {1} x H in X*(L).
Acknowledgments I would like to thank S. Pin for useful discussions. I am especially
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2 The embeddings of a spherical homogeneous space

Let G be a semi-simple algebraic group and let H be a closed subgroup of G. We assume
that H is spherical, that is, a Borel subgroup of G has a dense orbit in G/H. Let X be a
normal algebraic variety endowed with an algebraic action of G. Then X is said to be an
embedding of G/H if it is endowed with an open and G-equivariant immersion of G/H in X.
The image of the point H/H by the immersion is called the base point of X. In this section,
we collect the notions and results of Theory of Spherical Embeddings (see [LV83, Kno91]
or [Bri97]) which will be used throughout this paper. We are particularly interested in the
classification and the local geometry of these embeddings.

2.1 — In this paragraph, we introduce some material necessary to classify the embeddings
of G/H. Let us fix a Borel subgroup B of G such that BH is dense in G; such a B is said
to be opposite to H.



We denote by k(G/H)® the set of all rational functions on G//H which are eigenvectors
for B. If T is an algebraic group, we denote by X' (") the group Hom(T', £*) of its multiplicative
characters. We set X (B)"™ := {y € X(B) : vypnu = 1}. Associating to a function of
k(G/H)®) its weight in X'(B), we obtain an exact sequence:

0 —— k" — k(G/H)® — x(B)P™ — 0.

The rank of X(B)?™ is called the rank of G/H.

Let v : k(G/H) — Z be a k-valuation of the field k(G /H). Then, for all f in k(G /H)®),
v(f) only depends on the weight of f in X' (B)B™"#. Thus, the restriction of v to k(G/H)®
induces a group homomorphism 7 : X(B)?" — Z.

Then, the map v — 7 defines an injection (see [Kno91] or [Bri97]) from the set V(G/H)
of the G-invariant discrete k-valuations of k(G/H) into Hom(X (B)®™¥, Q).

In this article, a convex subset of a real or rational vector space, stable by multipli-
cation by non negative scalars, is called a cone. We denote by CV(G/H) the cone in
Hom (X (B)P" Q) generated by the image of V(G/H).

A prime B-stable divisor of G/H is called a color of G/H. The set of colors of G/H is
denoted by D(G/H); it is finite. If D € D(G/H), we denote by vp the valuation of k(G/H)
with center D which maps onto Z.

2.2 — In this paragraph, we associate to each color an equation.

First, we endow G with the action of B x H defined by: (b, h).g = bgh™'. We consider
the set k(G)B*H) of all rational functions on G which are eigenvectors for B x H. Then,
associating to each element of k(G)Z*H) its weight, we obtain the following exact sequence:

0 — k" — k(G) P — X(B) X x(prmy X(H) — 0,

where X(B) Xxnm) X(H) = {(7,x) € X(B) x X(H) : Ypnu = —X|Bnu}- Moreover, if
(7, x) belongs to X (B) X x(pnm) X (H) the formula f(b~*h) = ~v(b)x(h) defines an element
(denoted by [y : x]) of k(G)B*H) of weight (7, x). Then, the map (7, x) = [7: x] splits the
exact sequence.

Consider the universal covering ¢ : G — G. Then, k[é] is a unique factorization
domain. Set B = ¢~(B) and H = (~'(H). Then G acts transitively on G/H which identifies
with G/H. Moreover, ¢ induces an inclusion of X (B) X x(pnu) X (H) into X(B) x
X(H). N
__ Note that D(G//H) identifies canonically with D(G/H). Let D € D(G/H). The pullback
D of D in G by the orbit-map is a B x H-stable divisor. Thus, there exists a unique fp in
k(G) such that div(fp) = D and fp(1) = 1. Then, there exists (yp, xp) in X (B) X x(Bnil)
X (H) such that fp = [yp : xp]. We call f the equation of D. Since k[G] is a UFD, one
easily checks the following

X(BNH)

Lemma 2.2.1 The map
X (B) x X(H) — Dpep(a/m) ZD

(vsx) = div([y:x])

X(BnH)

s an isomorphism of groups.



2.3 — Let again X be an embedding of G/H and let O be an orbit of G in X. Set
Xo :={zx € X : G.x contains O}. Then Xp is a G-stable open subset of X containing O as
its unique closed orbit. As a consequence, X is covered by embeddings of G/H containing
a unique closed orbit (such an embedding is said to be simple). Simple embeddings are
quasi-projective, see [Kno91].

An element of D(G/H) which contains O in its closure is called a color of the orbit O.
Let D(X, O) denote the set of colors of O. The orbit O is said to be colorless if D(X, O) is
empty. We say that X is toroidal if all orbits O of G in X are colorless. The term “toroidal”
will be explained by Proposition 2.6.7 below.

Consider the cone CV(X,0) in Hom(X(B)5"" Q) generated by the G-invariant valua-
tions which have a center in X and by the valuations 7 with D € D(X, O).

Definitions

(i) Let C be a strictly convex cone in Hom (X (B)®™" Q) and D be a subset of D(G/H).
Then, (C,D) is called a colored cone if the two following conditions hold:

e The convex cone C is generated by the 7, with D € D, and by a finite number of
elements of CV(G/H).

e The relative interior of C intersects CV(G/H).

(ii) A colored face of a colored cone (C,D) is a colored cone (C',D') such that C' is a face
of Cand D' ={DeD :vpeCl}.

A link between the colored cones and the simple embeddings of G/H is the following:

Proposition 2.3.2 Let X be a simple embedding of G/H with closed orbit Z. Then,
(CV(X,Z),D(X, Z)) is a colored cone. Moreover, the map O — (CV(X,0),D(X, O)) is a bi-
jection between the set of all G-orbits in X and the set of all colored faces of (CV(X, Z), D(X, Z)).

For any embedding X of G/H, we set
F(X) = {(C(X,0),D(X,0)) : Ois an orbit of G in X}.
To explain the structure of F(X), we need the following:

Definition A colored fan is a set F of colored cones which satisfy the two following condi-
tions:

e Any colored face of a colored cone of F belongs to F.

e For any v € CV(G/H), there exists at most one colored cone (C,D) in F such that C
contains v in its relative interior.

Then, the following classification statement holds:

Proposition 2.3.3 The map X — F(X) is a bijection between the set of isomorphism
classes of embeddings of G/H and the set of colored fans.
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2.4 — Let X be an embedding of G/H and O be an orbit of G in X. One can check
that O is spherical; let Op denote the open orbit of B in O. Set:

Xop:={x € X : B.x contains O}.

Then, it is proved in [Kno91] or [Bri97] that X p is an affine 111 open subset in X containing
Og% as its unique closed B-orbit. One easily checks the following characterizations of Xo p
(see for example Proposition 2.4.1 of [Res00]):

Proposition 2.4.4 (i) The complement of Xo 5 in X is the union of the closures of the
D € D(G/H) which do not contain O.

(i) The subset Xo p is the intersection of the open B-stable subsets of X which intersect
0.

2.5 — Let Pg/y denote the stabilizer in G of the open subset BH/H of G/H. Then,
Pg/n is a parabolic subgroup of GG containing B. Let Pg/H denote its unipotent radical. The
next proposition (see [BP90] or [Bri97]) defines Levi subgroups of Py, in special position
with respect to H:

Proposition 2.5.5 There exist Levi subgroups L of Pq g satisfying the following two con-
ditions:

(i) If [L; L] denotes the derived subgroup of L, then:

PyyyNH=LNHDI[L;L].

(ii) Let C denote the connected center of L. Then, for any embedding X of G/H with
base point , the set Pg/H.m (where C.z denotes the closure of C.x in X ) contains a
non-empty open subset of any orbit of G in X.

Such a Levi subgroup of Péy s said to be adapted to H.

2.6 — In this section, we fix our attention on the toroidal embeddings of G/H. Propo-
sition 2.4.2 of [Bri97] explains the key role of these embeddings:

Proposition 2.6.6 Let X be an embedding of G/H. Then, there exists a toroidal embedding
X of G/H and a G-equivariant birational projective morphism m : X — X.

The next proposition (see [Bri97] or [Bri89]) describes the local structure of the toroidal
embeddings of G/H.

Proposition 2.6.7 Let X be an embedding of G/H with base point x and O be a colorless
orbit of G. Let L be an adapted Levi subgroup of Pg/u. Let S denote the closure in Xo p of
L.x. Then, we have:



(i) The map:
(g,2)  — gu

is a Pg/y—equivariant isomorphism.

(i) The group [L; L] acts trivially on S. The induced action of L/[L; L] endows S with a
structure of an affine toric variety.

(iii) Each orbit of G in Xo intersects S transversely in a unique orbit of L.

Proposition 2.6.7 means that the local structure of the orbits of G in X looks like the
orbits in a toric variety. A common feature between the toric varieties and the toroidal
embeddings of G/H is the following easy lemma (see [Res00]):

Lemma 2.6.8 Let X be an embedding of G/H and O be a colorless orbit of G in X. Let
rk(O) denote the rank of the spherical homogeneous space O. Let dim(G/H) (resp. dim(Q))
denote the dimension of G/H (resp. O).

Then, we have tk(G/H) — rk(O) = dim(G/H) — dim(0O).

2.7 — Now we introduce an important class of spherical homogeneous spaces. Proposition
4.4.1 of [Bri97] is

Proposition 2.7.9 For a spherical homogeneous space G/H, the following conditions are
equivalent:

(i) The index of H in its normalizer in G is finite.
(i) There exists a simple complete embedding of G/H.
Such a spherical homogeneous space is said to be sober.

Let G/H be a sober spherical subgroup of G. Then there exists a unique simple complete
toroidal embedding Y of G/H: we call it the canonical embedding of G/H. Note that Y is
projective.

3 Moment polyhedron

3.1 — Let X be a quasiprojective embedding of G/H and £ be an ample G-linearized line
bundle on X. In this section, we recall the notion of moment polyhedron associated to L.
After recalling the classical properties of these polyhedra (see [Bri97]), we fix our attention
on the case when X = G/H.

If T is an Abelian group, we denote by [ its tensor product with Q. Let P* denote the
set of dominant weights for (G, B). For v € P*, we denote by V, the irreducible G-module
of highest weight v for B.



For each positive integer n, the set T'(X, L%") of sections of L®" is a rational G-module.
Set
P(X,L):={pe X(B)g: In>0,npe Pt V,, = (X, L)},

where V,,, — I'(X, £%") means that the G-module V,,, is a sub-module of I'(X, L%").

The convex hull of a finite number of points in a vector space will be called a polytope.
A subset of a vector space defined by a finite number of linear inequalities will be called a
polyhedron. Then, we have (see [Bri97]; 1.2 or [Bri89)):

Proposition 3.1.1 The set P(X, L) is a polyhedron in X (B)q; the differences of elements
of P(X, L) spans X(B)g"". If moreover X is projective, then P(X, L) is a polytope.

We call P(X, L) the moment polyhedron (resp. moment polytope if X is projective) of X
associated to L.

3.2 — If X' is a locally closed G-stable subset of X, we set P(X', L) := P(X', Ljx/). One
easily proves (see [Bri97];5.3.2 and [Res00])

Proposition 3.2.2 With above notation, we have:
(i) If X' is a G-stable open subset of X, then P(X, L) is contained in P(X', L).
(i1) Moreover, P(X, L) = Nz P(Xyz, L), intersection over all closed orbits Z of G in X.

To give a more precise description of P(X, L), we introduce more notation. Let V(X)
denote the set of the k-valuations of k(G/H) associated to the G-stable prime divisors of
X. If v € V(X), we denote by X, its center. Let us fix a section oy of £, B-eigenvector of
weight v(0o). Then, we have div(o.) = ¥,epx) WXy + Xpene/m) oD, where the n, and
the np are non-negative integers. We recall Proposition 5.3.1 of [Bri97] (see also Proposition
3.3 of [Bri89)):

Proposition 3.2.3 With the above notation and those of Paragraph 2.1, P(X, L) is the set
of all ¥(0,) +p where p € X(B)§™ satisfies:

(t) 7(p) +n, >0 Vv e V(X).
(i) p(p) +np >0 VD € D(G/H).

3.3 — In this paragraph, we assume that X is projective. Consider a face F of P(X, £)
and a point p in the relative interior of F. Set —p+ P(X, L) :={-p+¢ : ¢ € P(X,L)}.
Proposition 3.1.1 shows that —p + P (X, £) is contained in X'(B)§"". Moreover, the set of
all linear forms in Hom (X (B)5""  Q), non-negative on —p+ P (X, £), is called the dual cone
of —p+P(X, £) and is denoted by (—p+P(X, £))". One checks that (—p+P(X, L))" only
depends on F. The latter cone is called the dual cone of P(X, L) from F and is denoted by
C(F).

Let n be a positive integer and o be a section of L¥", B-eigenvector of weight np. We
consider X, = {z € X : o(x) # 0}. Then, X, only depends on F and is denoted by Xp.
Moreover, there exists a unique orbit O(F) of G which meets Xp and which is minimal for
the order defined by the inclusion of closures.
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Proposition 3.3.4 Keep notation as above. If X is projective, we have:

(i) If O is an orbit of G in X, then P(O, L) is a face of P(X, L). Such a face is said to
be orbital.

(ii) If Oy and Oy are two orbits of G in X, then:

P(O, N0, L) = P(Oy, L) N P(Os, L).

(iii) P(O(F), L) is the unique minimal orbital face of P(X, L) which contains F.
(iv) If F =P(O, L), for an orbit O of G in X, then:

O(F) =0 y XF == X(’),B and C(F) == C(X, O)

(v) The map O — P(O, L) is a bijection from the set of orbits of G in X onto the set of
those faces F of P(X, L) such that the relative interior of C(F) intersects CV(G/H).

Proof: Assertions (i), (v) and (iv) are Proposition 5.3.2 of [Bri97]. Assertions (i), (7it)
and (iv) are proved in Proposition 2.6.4 of [Res00]. O

3.4 — In this paragraph, we are interested in the moment polyhedra of an orbit G/H.
First, we recall the description of all G-linearized line bundles on G/H.

Let x be a character of H. We endow G x k with an action of G x H by the formula:
(g,h).(¢",7) = (99’h™", x(h)7). Then the quotient by {1} x H exists and is a G-linearized
line bundle on G/H denoted by L,. It is shown in [KKV84]:

Lemma 3.4.5 The map x — L, is an isomorphism of groups between X (H) and the group
of all G-linearized line bundles on G/H.

Before describing P(G/H, L,), we introduce some notation. If V' is a G-module, we set
VX .={v eV :Vhe H hv = x(h)v}, VI =V and T, := {7 € Pt (V)X O}.
Then we have

Proposition 3.4.6 With above notation and those of Section 2.2, we have:

Iy={yeXB) : (.x)e B NOow,xn)}

DED(G/H)
Moreover, for all v in ', the dimension of (V. )HX equals one.

Proof: Let v € I'y and v be a non-zero vector in (V)#X. Let v € V). Consider
f € k[G] defined by f(g) = v(gv). Since f € k(G)B*1) (v, x) belongs to X(B) X x(BnH)
X(H). Moreover, since f is regular on G, Lemma 2.2.1 1mp11es that (v, x) belongs to
@ pep(c/u) N(vp, xp). The first inclusion is proved.

Moreover, since (7, x) determines f up to a multiplicative constant, the same is true for
v. So, the dimension of (V*)"X equals one.



Conversely, let v € X'(B) such that (v, x) belongs to @ pep(c/uy N(vp, xp). Then, the
function [y : x| is regular on G. But, by Frobenius’ theorem, the G x G-module k[G] is
isomorphic to @,cp+ Va ® Vi. By this isomorphism, k[G](P*#) identifies with the disjoint
union of the V/\(B) ® V/\*(H). Now, [y : x] belongs to k[G]Z*H) implies that v belongs to T'.
U

Now we can describe P(G/H, L,) in

Proposition 3.4.7 Keep notation as above. Then, we have:

(i) P(G/H, Ex) ={yeX(B)o : (v,—x) € @DED(G/H) QZO('YD,XD)}-

(i) Let F be a face of P(G/H,L,). Let I be the minimal subset of D(G/H) such that
DB per Q1 (vp, xp) contains F. With the notation of Section 3.3, we have:

Proof: If f € k[G] satisfies h.f = x(h) " f, the map G — G xk,g — (g, f(g)) induces a
section of £,. So, we identify I'(G/H, L, ) with the set of those f € k[G] such that for all 4 in
H we have h.f = x(h)™'f (see [KKV84]). Now, Frobenius’ Theorem yields an isomorphism
of G-modules between I'(G/H, L,,y) and @,cp+ V, @ (V)">7™. Then, Assertion (i) follows
from Proposition 3.4.6.

Let us consider F and I as in Assertion (i) and fix a point p in the relative interior of
F. Let n be a positive integer and o a section of £®", B-eigenvector of weight np. Then,
(np,nx) = > per kp(vp, xp) for some positive integers kp. With the notation of Section 2.2,
we consider f = [Ipes[vp @ xp]*®. Then, the map G — G x k, g — (g, f(g)) induces a
section of £,. Then, the latter section is a scalar multiple of 0. Assertion (i7) follows. O

3.5 — In this paragraph, we apply the description of the moment polyhedra of G/H given
by Proposition 3.4.7 to the description of the moment polytopes of a projective embedding
X of G/H.

By Lemma 3.4.5, there exists a character x of H such that the restriction of £ to G/H
is £,. If P is a polytope in X'(B)q, we set P x x := {(p,x) € X(B)ox X(H)g : pe P}. If
F is a face of P(X, L), we set Dy := {D € D(G/H) : D intersects Xg}, where Xg denotes
the open subset of X defined in Paragraph 3.3.

Proposition 3.5.8 With preceding notation, if F is a face of P(X, L), we have:
(i) F x x = (P(OTF), £) x ) N ©z0e @ (10, x0).
(ii) If in addition F = P(O, L), then Dy = D(X, O).

(iii) Moreover,
P(X,L)=P(G/H, L) N (P(Z, L)+C(X, Z)V),

intersection over all closed orbits Z of G in X.
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Proof: Propositions 3.3.4 and 3.4.7 show that F x x is contained in the intersection of
Assertion (i). Let (p,x) belong to this intersection. Then, there exist a positive integer n
and a section o of L% B-eigenvector of weight np. Since o is non-zero on O(F), Assertion
(i7) of Proposition 3.4.7 shows that Xy is contained in X,. Now, Assertion (7) follows from
Proposition 3.3.4.

If F = P(O, L), then X§ = X p by Proposition 3.3.4. Now, Assertion (i) follows from
Proposition 3.4.7.

The inclusion of P(X, £) in the intersection of Assertion (i) follows from Propositions
3.2.2 and 3.3.4. Let p belong to this intersection. Replacing £ by a positive power if
necessary, we can assume that there exist a section oy of £, B-eigenvector of weight ~(op)
and a rational function f on G/H, B-eigenvector of weight p—~(0p). Then, with the notation
of Proposition 3.2.3, p belongs to P(G/H, L,) implies that:

VD € D(G/H) (Tp,p — ¥(0,)) +np > 0.

Let v € V(X) and let Z be a closed orbit of G in X,. Then, since p belongs to P(Z, L) +
C(X,Z)Y, we have (,p — v(0,)) + n, > 0. Now, Proposition 3.2.3 completes the proof. [

4 The embeddings of the group

4.1 — Recall that G denotes a semi-simple algebraic group. We endow G with the action of
G x G by the formula: (g1, 92).9 = 9199, *. In this article the G x G-equivariant embeddings
of G play a key role: in this section, we collect the results about these embeddings which
will be used through this paper.

Set G:=G x G and H={(g,9) : ¢ € G}. Then, G is the homogeneous space G/H.

Let B and B~ be two opposite Borel subgroup of G’ and let 7" denote their intersection.
Set B := B x B~. Then, by the Bruhat decomposition B.H/H is dense in G/H. So, H is
a spherical subgroup of G, and B is opposite to H.

First, note that X'(B)B™ = {(v,—) : v € X(T)}. From now on, we identify X (B)B™H
with X(B) by (v, —7) = 7. Then, Hom(X (B)B™ Q) identifies with Hom (X (B), Q).

Let ¥ denote the set of simple roots of (B,T) and o € 3. Let W := N(T')/T denote the
Weyl group of T. We denote by s, the simple reflection of W associated to a, by «V the
coroot, associated to «, and by w,v the fundamental weight of the coroot . So, (wav)aes
is the dual basis of the basis ()aex of X(T)q. Let D, denote the closure of Bs,B~ in G.
Then, by the Bruhat decomposition D(G/H) = {D, : a € ¥}. Moreover, with the notation
of Section 2.2, the equation of D, is the function [w, : —w,]. Then, under the identification
of Hom(X (B)B™ Q) with Hom(X(B),Q), the image of the valuation vp_ identifies with
the coroot V.

Set T =T x T. With the notation of Proposition 2.5.5, we have Pg/m = B, and T is
a Levi subgroup of Pg /g adapted to H. Finally, the valuation cone CV(G/H) is identified
with the negative Weyl chamber: CV(G/H) = @4cy; Q<% wav (see [Brio7]; 4.1).

4.2 — Now, we study moment polyhedra of embeddings of G/H.
Let P& = BaexQ>’w, denote the cone generated by P in X(B)g; this is the positive
Weyl chamber. Note that the only G-linearized line bundle on G/H is the trivial one
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Ly. Moreover, we have: P(G/H, L) = {(p,—p) : p € Pg}. From now on, we embed
P(G/H, L) (and more generally any moment polyhedron of an embedding of G/H) into
X(B)qg, by (p, —p) — p-

Let X be a projective toroidal embedding of G/H and £ be an ample G-linearized line
bundle on X. Consider the corresponding moment polytope P(X, L) C X(B)g. When
F runs over the faces of P(X, L), the cones C(F) defined in Section 3.3 form a fan in
Hom(X(B), Q) denoted by F(P(X, £)).

If O is an orbit of G in X and I is a subset of ¥, we denote by C(I,O) the cone of
Hom(X (B), Q) generated by C(X, Q) and by the o for @ € I. The following proposition
describes the fan F(P(X, L)):

Proposition 4.2.1 With preceding notation, the cones of F(P (X, L)) are the conesC(I,O),
where O is an orbit of G in X and I is a subset of ¥ such that C(X,O) is contained in

@5¢I Q‘/-’ﬂv .

Proof: If O is an orbit of G in X, Proposition 3.3.4 shows that C(X, Q) belongs to
F(P(X, L)). Moreover, Proposition 3.5.8 gives:

P(X,L)= PN N P(Z,L)+C(X,Z2)".
closed orbit Z of G in X

In particular, every extremal ray of F(P(X, L)) is either Q%" for some o € ¥ or an
extremal ray of F(X). Let C be a cone in F(P (X, £)). Then, there exists a I C ¥ and an
orbit O of G in X such that C = C(1,0).

If I is empty there is nothing to prove. If I is non-empty, since X is toroidal, Proposition
3.3.4 shows that the relative interior of C does not intersect CV(G/H) = @gcxQ<wsv. Since
a” is orthogonal to wgv for all simple roots  # «, we deduce that C(X, O) is contained in

Dper Qupv.
Conversely, let I and O be as in the proposition. Then,

C(I,0) N @pesQ2BY = ®peQ2°BY, and C(I,0)NCV(G/H) =C(X,0).
It follows easily that C(I, Q) belongs to F(P(X, £)). O

4.3 — In this section, we are interested in the isotropy subgroups of the action of G in
X. We begin with some notation.
Let A be a one parameter subgroup of 1'. Set:

PN\ ={gedG: %1_{% At)gA(t™!) exists in G}.

For example, if « is a simple root then P(a") is the usual minimal parabolic subgroup P,
associated to a. In general, by [MFK94], P()\) is a parabolic subgroup of G' with unipotent
radical:

P'(\) :={g€qG: %i_r}r(})\(t)g)\(t_l) =1}.

Moreover, P(\) and P(—X\) are opposite and their intersection L(\) is the centralizer of the
image of A. Set AL(\) := {(/,/) € G : [ € L(\)}. Denote by C()) the connected center of
L()).

The proof of Theorem Al in [Bri98] shows
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Proposition 4.3.2 Let X be an embedding of G/H and O be a colorless orbit of G in X.
Then, there exists a one parameter subgroup \ of T such that limy_,o A(t) exists in X and
belongs to O. Set z := limy_,o A(t).

The isotropy subgroup of z in G is generated by P"(\)x P*(—\) and AL(\).(C(\)x{1}).,.
In particular, the conjugacy class of P()\) only depends on Q; its representative containing

B~ is denoted by P(O).
The parabolic subgroups P(Q) can be read off the moment polytopes of X by

Lemma 4.3.3 Assume that X is projective and toroidal. Let L be an ample G-linearized
line bundle on X. Let o € X. Then, the following are equivalent:

(i) {p€ X(T)g : a”(p) =0} NP(O, L) # 0.
(ii) P, C P(O).

Proof: By Proposition 4.2.1, Assertion (i) is equivalent to the fact that C(X, Q) is
contained in @g.,Qupv.

Let A\ be as in Proposition 4.3.2. Replacing A by a conjugated one parameter subgroup,
we can assume that P(\) D B~, that is, P(A) = P(O). Then, one checks that —\ belongs to
the relative interior of C(X, ©O). So, Assertion (¢) is equivalent to: A belongs to @g.zoQugsv .
The lemma follows easily. O

4.4 — In this paragraph, X is a simple toroidal embedding of G/H such that the closed
orbit Z is projective. We recall some results (see [Bri97] or [Bri89]) about the Picard group,
Pic(X) of X.

Consider the universal covering ¢ : G — G of G. As in Section 2.2, if T is a subgroup
of G, T denotes its preimage in G.

If I' is an algebraic group acting on a variety Y, we denote by Pic'(Y) the group of

all I'-linearized line bundles on Y. Then we have canonical isomorphisms: Pic®*¢(X) ~
Pic(X) = @pex Z[Bs.B~|.

By Proposition 4.3.2, the orbit Z is isomorphic to (N}'/E X C:’/B_ Then, Lemma 3.4.5
allows us to identify Pic®*%(Z) with X(B) x X(B~). Let p; : Pic®*¢(X) — Pic®*%(2)
be the restriction homomorphism. Then, by the preceding isomorphisms, p; induces a

morphism 7, : Pic(X) — X(B) x X(B~). Then, we have (see [Bri97] and [Res00)):
Proposition 4.4.4 With above notation (X is simple and toroidal), we have:

(i) The morphism p, induces an isomorphism
Pic(X) — {(\,—=A) : A€ X(B)}.

If A\ € X(B), we denote by Ly the G x G-linearized line bundle such that p,(Ly) =
(A, =A).

(i) If X\ € X(B), Ly is generated by its global sections (resp. ample) if and only if X is
dominant (resp. dominant regular).
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5 GIT-quotient by a spherical subgroup

5.1 — In this section, X denotes a normal projective variety endowed with an action of a
semi-simple group GG, and H denotes a spherical subgroup of G. As in Geometric Invariant
Theory, to each ample H-linearized line bundle on X, we will associate an open subset of X
which admits a categorical quotient by H in the category of affine morphisms.

Let 77 : Pic“(X) — Pic”(X) and r : Pic(X) — Pic(X) denote the morphisms of
restriction of the actions. A character of H induces a linearization of the trivial line bundle.
This defines an embedding i of X' (H) into Pic” (X).

With these notation, it is shown in [KKV84] that the following sequence:

0 — X(H)g - Pic” (X)g -5 Pic(X)g — 0
is exact. Applying this to G and H, we easily obtain

Lemma 5.1.1 The morphism

¢ : Pic“(X)g x X(H)g — Pic(X)g
(L,x) = ru(L)®i(x)

18 surjective.

Now, we can prove the fundamental lemma of this section:

Lemma 5.1.2 Let L be an H-linearized line bundle on X. Then, the algebra @, I'(X, L£emyH
of H-invariant sections s finitely generated.

Proof: By Lemma 5.1.1, there exist a positive integer m, Lo in Pic”(X) and x in X (H)
such that L™ = ry(Ly) @ i(x). Then, with the notation of Section 3.4, we have a canonical
isomorphism:

P X, Lo ~ PrX, Ly

n>0 n>0
The grading of @,>o'(X, £L§") and the G-linearization of £y define an action of G x k* on
®n>ol (X, LF"). Consider H, = {(h,x(h)) : h € H}. Then, we have

Hy
@ 1’\ £®n H,—nx _ (@ 1’\ £®n ) )

n>0 n>0

Moreover, H, is a spherical subgroup of G x k* and the algebra @,,5, I'(X, LF™) is finitely
generated. Then, Theorem 9.3. of [Gro97] shows that @,,5, (X, £L9")" is finitely gener-
ated.

On the other hand, the ring @, (X, £%")" is integral on @, 5, (X, L&) We
conclude by Theorem 2, Chap. V (§3.2) of [Bou64]. O
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By Lemma 5.1.2, if £ is an ample H-linearized line bundle , we set, as in GIT for
reductive groups:

Y(£) = Proj (EBnZO I'(X, £®")H) ,

X®(L)={reX :In>0,0 e (X, LT . o(z)#0}, and

7 X®(L) — Y(£) the morphism induced by the inclusion of @,~, ['(X, L)%
in @, (X, L%™). -

5.2 — The preceding construction has the following properties:

Proposition 5.2.3 Keep notation as above; in particular, L is ample. Then, we have:

(i) The map w is affine. Moreover, for every affine open subset U in Y (L), we have
klr=H(U)]" = = (k[U]).

(i) If Y is a variety and ¢ : X*(L) — Y is an affine H-invariant map then there exists
amap ¢ : Y(L) — Y such that the following diagram is commutative:

xXs(£) 25y
Wl g
Y (L)

In particular, Y (L) only depends on X*(L), and is denoted by X**(L)//H.
(iii) The variety X*(L)//H is normal.
(iv) The map m is surjective in codimension one.

(v) Let Z be a G-stable closed subvariety of X. If L), denotes the restriction of the H-
linearized line bundle £ to Z, then we have Z*(Lz) = Z N X*®(L). Moreover the
restriction of m to Z N X*(L) identifies canonically with the quotient of Z by H.

Proof: The proofs of Assertions (i) and (4i7) are the same as for reductive quotients (see
[Res00] for details). Assertion (i7) is a direct consequence of the first one.

To prove Assertion (iv) let us fix a prime divisor D in X*(L)//H. Since X*(L)//H is
normal, there exists an affine open subset U and a regular function f on U such that DNU
is non-empty and equal to {# € U : f(z) = 0}. Let m}, denote the inclusion of k[U]" in
k[U]. Consider D ==Y (DNU) ={zx € n ' (U) : 75(f)(x) = 0}.

If Ais aring and a belongs to A, then we denote by a.A the ideal generated by a. Since
75 (K[U]) = k[m Y(U)] N k(X)X and f € k(X)H, we have:

(75 () Kl (U)]) N R(X) ™ = 7 (f.R[U]).

This shows that k[U]/f.k[U] embeds into k[~ (U)]/f.k[x~*(U)] and so 7(D) is dense in D.
Assertion (iv) follows.
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Let us prove Assertion (v). By Lemma 5.1.1, replacing £ by a power if necessary, we
can assume that there exist £y € Pic®(X) and y € X(H) such that £ = rg(Ly) ® i(x).
Replacing £ by a power again, we can assume that the restriction morphism p : I'(X, £y) —
['(Z, Lo)z) is surjective. Since G is reductive and p is G-equivariant, there exists a sub-module
M of I'(X, Lo) such that p induces an isomorphism of G-modules between M and I'(Z, Lo, z).
In particular, p induces a surjection from I'(X, L) onto T'(Z, Ly z)™*. Assertion (v)
follows easily. O

Remark: 1) If H is reductive, then Assertion (ii) holds without assuming that ¢ is affine.
But in general, this assumption cannot be omitted. Indeed, one can easily find an example
where H is a Borel subgroup of G (see [Res00]).

2) If H is reductive, then the quotient morphism is surjective; but this does not hold in
general. Consider, indeed, the additive group G, of the field k. Let M, denote the vector
space of 2 x 2-matrices and let P(Ms) be the corresponding projective space. We define an
action of G, on P(My) by:

T.[m]:[<(1) 71->m] Vrekand me My, m#0

One checks easily that the quotient of P(My) by G, associated to £ = O(1) is not surjective.

5.3 — Now, we set: X3(L) := {z € X¥(L) : 7 !(w(z)) = H.x}. Points in X*(L) are
said to be stable for L.

Remark: Assume that there exists a point in X with finite isotropy in H. Then, one checks
easily that any stable point x has a finite stabilizer in H and a closed H-orbit in X%(L).
When H is reductive the converse is also true. But this converse is false in general (see
[Res00]; 5.2 for an example).

We have the following criterion for existence of stable points:

Proposition 5.3.4 Let d be the dimension of the general orbits of H in X. Then, the
following assertions are equivalent:

(1) dim(X*(L)//H) + d=dim(X).
(ii) Each general fiber of m contains a unique dense orbit of H.

Proof: The implication (i7) = (i) is trivial. Let us prove the converse. Consider an
affine open subset Uy in X*(L£)//H and set U = 7 }(Uy). We claim that the quotient field
Frac(k[U]") equals the field k(U)" of invariant rational functions on U.

By Rosenlicht’s Theorem (see [PV89]; Theorem 2.3), the transcendence degree of k(U)
equals dim(U) — d. Since k[U]” = k[Uy], the transcendence degree of Frac(k[U]") is the
dimension of X®*(L)//H. So, k(U)H is a finite extension of Frac(k[U]7).

Let f € k(U)®. Then, there exist ag, - - -, ax € k[U]¥ such that ag f*+a; f* 1+ 4a, = 0.
Multiplying by af™", we obtain that aof is integral on k[U]. Now, the normality of X (and
so of U) implies that agf € k[U]. Then f belongs to Frac(k[U]"). This proves the claim.
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The other part of Rosenlicht’s Theorem then shows that there exists a restriction of 7 to
an open subset of X*(L) which is a geometric quotient. Assertion (ii) follows. O

5.4 — In this paragraph, we show that some power of £ descends to an ample line bundle
on X*(L)//H.

Since the graded algebra @,,-, I'(X, L") is finitely generated, Proposition 3 of Chapter
I1I of [Bou61] shows that there exists a positive integer m such that @,-o (X, L) is
generated by T'(X, £%™)#. Then, we consider the map: -

¢ XS(L))JH — ]P’((F(X, c@m)H)*)
y — {oeD(X, L5 . o(y) =0}.

We set L™ //H := ¢*(O(1)). Then, £L®™//H is a very ample line bundle on X*(L)//H.
Moreover, 7*(L®™//H) = L®™ xss(z) and we have a canonical isomorphism:

P U(X*(L) )/ H, (L5 )/ H)®") ~ @ T (X, L2

n>0 n>0

6 Projective embeddings of G/H as quotients of com-
pletions of (G: a criterion

6.1 — We fix again a semi-simple group G, a spherical subgroup H of G and a projective
embedding Y of G/H. The following theorem answers the question: can Y be obtained as
a quotient by {1} x H of a G x G-equivariant projective embedding of G 7

An action of G is said to be quasi-faithful if its kernel is finite.

Theorem 1 Assume that the action of G on G/H is quasi-faithful. Let' Y be a projective
embedding of G/H. Then, the two following conditions are equivalent:

(i) There exist a projective G x G-equivariant embedding X of G and an ample G x H -
linearized line bundle £ on X such that Y = X*(L)//H.

(ii) For any G-stable prime divisor D in Y, the valuation vp of the field k(G/H) with
center D extends to a G X G-invariant valuation of k(QG).

Proof: (i) = (ii): Consider the quotient-morphism 7 : X*(L) — Y. Let D be a
G-stable prime divisor of Y.

Since 7 is surjective in codimension one, there exists a prime divisor £ of X such that
T(ENXs(L) = D. Let 7* : k(Y) — k(X) denote the map induced by . Then,
Vp = Vg om".

Since 7 is G-equivariant, we have 7(G) = 7(G/H). Then, E is contained in X — G and
so is stable by G x G. Moreover, the map 7* is the canonical embedding of k(G/H) in k(G).

Now, Assertion (i) follows from the relation vp = v o 7*.

(17) = (i): Let M be a very ample G-linearized line bundle on Y. Set V' = ['(Y, M)*.
Then, Y is embedded in P(V). By Exercise 5.1.4 of [Har77], replacing M by a power if

17



necessary, we can assume that the affine cone Y over Y is normal. Let y be the base point
of Y and g be a lift of y in V. The scalar multiplication on the G-module V' gives an action
of G x k* on V. There exists a character x of H such that the isotropy of ¥ in G x k* is
equal to H, = {(h,x(h)) : h € H}.

We denote by p the action map G — PGL(V) and by G! its image. Consider the closure
X' of G' in P(End(V)), X the corresponding affine cone in End(V), and the map:

v X! — Y
m > m.y

We claim that w is surjective in codimension one. Otherwise, there exists a prime divisor
D in the closure of ¥ — Im(¢)). Then, D is stable by G' x k* and is the affine cone over a
G-stable divisor of Y. -

Let XL be the image in X' of the pullback in X! of ¥ — {0} by . Then, 1 restricts to
Y XL — Y.

By assumption, there exists a G x G-invariant valuation v of k(G) whose restriction to
k(G)" is vp. Since X! is complete, v o p* has a center Z in X'. So v o¢* = vp and ¥(Z)
is dense in D. This contradiction proves the claim.

Via p, k(X") is embedded into k(G). Let us consider the normalization X of X' in k(G)
and the corresponding morphism, ¢ : X — X1

Let £ denote the restriction to X' of O(1) on P(End(V')) and £ its pullback by ¢. Since
the action of G on G/H is quasi-faithful, p and ¢ are finite. Thus, £ is ample. Replacing
M (and so £) by a power if necessary, we can assume that X is embedded into P(I'(X, £)*).
Consider the affine cone X over X in I'(X, £)* and the k*-equivariant map ¢ : X — X!
over ¢.

Note that X is endowed with an action of G x G such that ¢ is G x G-equivariant. Then,
ot : X — Y induces a commutative diagram:

\M/

Spec(k

Since 1 is G x k*-equivariant, the stabilizer of 7r(1) in G x k* is contained in H,. So it
is equal to H,, since 7 is H,-invariant. In particular, 7 is birational.

Moreover, the claim implies that 7 is surjective in codimension one. Since Y is normal,
Richardson’s Lemma (see [PV89]) shows that 7 is an isomorphism. Then, Y equals X*(£L ®
X)//H. [

Remarks 1- Note that a G-invariant valuation v of k(G/H) always extends to a G-invariant
(for the left multiplication) valuation of k(G) (see [Kno91] or [Bri97]). But, as shown by
the example in Appendix A of [Res00], a G x G-invariant extension of v may not exist. In
particular, Condition (i7) of Theorem 1 may not hold.

2- The construction used in the proof of Theorem 1 is essentially due to L. Renner (see
[Ren89]). But, in his article L. Renner forgot an essential assumption (that is, Condition
(77) of Theorem 1). Moreover, he assumed that H is semi-simple.
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6.2 — Theorem 1 motivates the following

Definition A spherical homogeneous space G/H is said to be [liftable if any G-invariant
valuation of k(G/H) extends to a G x G-invariant valuation of k(G).

Proposition 6.2.1 Let G be a semi-simple group. Then, we have:

(i) Let Hy C Hy be two spherical subgroups of G. Then, if G/H; is liftable then so is
G/H,.

(i1) Let Hy C Hy be two spherical subgroups of G such that the index of Hy in Ho is finite.
Then, G/H; is liftable if and only if G/Hs is.

(iii) If H is symmetric (i.e. the set of the fix points of an automorphism of G of order 2)
then G/H is liftable.

Proof: Assertion (i): Let v be a G-invariant valuation of k£(G/Hz). Then, by Corollary
3.1.1 of [Bri97] or by [Kno91] there exists a G x {1}-invariant valuation 7 of k(G) such that
v is the restriction of 7 to k(G/Hz). Since, G/H, is liftable, the restriction of 7 to k(G/H,)
extends to a G x G-invariant valuation of k(G). Assertion () follows.

Assertion (ii): Let B be a Borel subgroup of G opposite to Hy. With the assumptions of As-
sertion (ii), Hom(X (B)?"1 Q) identifies canonically with Hom (X (B)?"#2 Q). Moreover,
Corollary 3.1.1 of [Brio7] (see also [Kno91]) shows that CV(G/H;) maps onto CV(G/H,).
Since for i = 1 or 2, CV(G/H;) embeds in Hom(X (B)2": Q), this implies that CV(G/H,)
identifies with CV(G/Hz). Assertion (ii) follows.

Assertion (7i7): By Assertion (ii), we can assume that G is adjoint and that G/H has a
canonical embedding X, with the notation of [CP83] (note that X is called the wonderful
compactification of X). Let £ be an ample G-linearized line bundle on X. Consider the
vertices p of the moment polytope P(X, £) corresponding to the unique closed orbit of G in
X. Then, Proposition 8.2 of [CP83] describes the cone generated by —p + P(X, £). Indeed,
this cone is the intersection of X'(B)§™" and the cone of X (B)q generated by the opposite
of simple roots. Thus, the dual cone of —p +P(X, £) in Hom(X (B)§™, Q) is the image by
the restriction of the negative Weyl chamber of Hom(X (B)g, Q). By Proposition 3.3.4, this
implies that the cone CV(G/H) is the image of the cone CV(G) generated by the G x G-
invariant valuations of k(G). O

Remark: In [Kan99], S. Kannan showed that the canonical embedding of a symmetric space
is a GIT-quotient of the canonical embedding of the group. This also follows from Theorem
1 and Proposition 6.2.1.

The symmetric spaces are a first family of liftable spherical homogeneous spaces. The
following proposition gives another one:

Proposition 6.2.2 Let G/H be a sober spherical homogeneous space. If H is solvable then
G/H is liftable.
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Proof: Let Y be the canonical embedding of G/H and y be its base point. Let B~
be a Borel subgroup of G' containing H. Then, by [Kno91] or [Bri97|, the canonical map
G/H — G /B~ extends to a G-equivariant map ¢ : Y — G/B~. Consider the B~-variety
Y=¢ YB/B).

Let B be a Borel subgroup of G opposite to H and hence to B~. Set T' = BN B™.
Denote by U the unipotent radical of B. Consider the following commutative diagram:

(u,8)—us

UxY — - Ux
isomorphism

(u,s)r—)ul lqﬁ

U u—uB~ /B~ G/Bi

The subset U.X is open in Y. Then, Ty is dense in ¥ which is a toric variety. Since Y
contains a unique closed orbit of G, ¥ contains a unique closed orbit of B~. This orbit being
projective, it is a fixed point denoted by z. Consider the unique affine T-stable and open
subset X, of ¥ containing z. Then, by the previous diagram U x X, is isomorphic to Y . p.
We deduce that the cone CV(G/H) identifies with the cone C associated to the affine toric
variety X,.

We want to determine the rays of the cone C¥ generated by the weights of the action of
T in k[X,]. Let x be a point in ¥, such that dim(7".z) equals one. Consider the restriction
morphism p : k[¥,]T) — k[ﬂxz](n.

Since p is surjective, the half-line generated by a weight of T" in k[T—azz] is contained in
CY. Moreover, the classical theory of toric varieties (see [Ful93] or [Oda88]) shows that this
half-line is a ray of C¥ and that conversely all rays of CV are obtained in this way. Thus, it
remains to compute the weights of the action of 7" in k[T—.xzz].

Consider the closure S of T.x in ¥. Since Y is toroidal, all T-stable divisors in X
containing z are stable by B~. Then, S is stable by B~. On the other hand, as a projective
toric variety of dimension one, S is isomorphic to P'. Moreover, B~ .z is either isomorphic to
k or k*. If B~.x is isomorphic to £*, then B~ has two fixed point in S; that is not possible.
We deduce that B~.z is isomorphic to k.

Let B, (resp. T,) be the stabilizer of x in B~ (resp. in T}). Since B~ .z is isomorphic
to k, B, does not contain the unipotent radical of B~. Then, there exists a simple root «
of (B~,T) such that the unipotent one parameter subgroup U, of B~ associated to a does
not fix x.

We claim that the restriction of a to T, is trivial. Indeed, let & : & — U, be the
canonical isomorphism. Since 7.z is open in S, there exist ¢ € k* and t; € T such that
£(e).x = tg.w. Let t € T,. Then, we have:

(Y (t)e).a=té(e)t ™ a = t.£(e).w

=¢(e).

Moreover, since k has no non-trivial subgroup, B, N U, is trivial. Then, Equality (1)
implies that a(t) = 1. This proves the claim.
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By the claim, o or —« is a weight of the T-module k£[¥, N'S]. On the other hand, it is
shown in [BP90] (see also Section 4.2 of [Bri97]) that C¥ is contained in the cone generated
by the negative roots. We deduce that « is a weight of the T-module k[X, N S].

We just proved that the rays of the dual cone of CV(G/H) contain the simple roots of
(B~,T). The proposition follows easily. O

6.3 — Consider G = PGL(3) and the symmetric subgroup H = PSO(3). Then G/H is
the set of (non-degenerated) conics in P2, Associating to each conic its equation defines an
embedding Y of G/H into P°.

Theorem 1 and Proposition 6.2.1 show that Y is the quotient of a projective embedding
of G. But it is not a geometric quotient of any projective embedding of G (see [Res00]; 7.5.2
for details). Note that the embedding Y is not toroidal.

In the sequence of this article, our main aim is to obtain projective embeddings of spher-
ical homogeneous spaces as geometric quotients of projective embeddings of the group. So,
the preceding example explain why we pay now a particular attention to colorless embeddings
(and colorless orbits).

7 B x H-stable divisors in embeddings of G

7.1 — Let X be an embedding of G and O be a colorless orbit of G x G in X. Let D €
D(G/H). We denote by D™ the closure in X of the set of all g € G such that gH/H € D.
The aim of this section is to determine the intersection of @ and D" .

7.2 — The first step is to show that O contains an open B X H-orbit whose complement
in O is a divisor.

By Proposition 4.3.2, there exist two opposite parabolic subgroups P and @) of G and
a point z in O such that the isotropy I of z in G x G is (P* x Q*).(AL.({1} x C)) where
L =PnQ,AL = {(l,l) : | € L} and C is a subgroup of the connected center of L.
Moreover, replacing x by another point in O if necessary, we can assume that () contains B.

The inclusion of I in P x G defines a G X {1}-equivariant fibration p : O — G/P. The
fiber F' over P/P is the P x G-homogeneous space (P x G)/I. Note that F' is homogeneous
under the action of {1} x G. Moreover, the inclusion of I N ({1} x G) in {1} x B induces a
{1} x G-equivariant fibration ¢ : F — G /B. We obtain a diagram:

F—O0
| -
G/B G/P

Let E € D(G/P) be a prime B-stable divisor in G/P. Then, p~!(E) is a prime B x H-
divisor of O denoted by Eo. Now, we consider O — Ugepa/p) Fo. Each orbit of B x H
in O — Ugep(a/r) Fo intersects F' in a unique orbit of (P N B) x H; so, for all y € O,
(B x H).yN F is either the empty set or the preimage by ¢ of a unique orbit of H in G/B.
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If D e D(G/H), we set Dgp = {gB/B € G/B : go*H/H € D}. We denote by Dy the
closure of (B x H).q7'(Dpg) in O. Then, Dy is a B x H-stable divisor in O.
The previous discussion shows

Lemma 7.2.1 With the previous notation (in particular B C Q), we have:

O=(BxH)zU |J DoU |J Eo.

DeD(G/H) EED(G/P)

7.3 — Let X(L) denote the set of simple roots of (BN L,T’). Then, the Bruhat decom-
position yields D(G/P) = {Bs,P/P : o € ¥ — X(L)}. We set E* = Bs,P/P. Returning
to the situation of Section 7.1, we can now formulate a description of DY no:

Proposition 7.3.2 Let X be an embedding of G and O a colorless orbit of G X G in X.
Let P, @ and L be as in Section 7.2. Let D € D(G/H) and let vp be the B-weight of its
equation. Write vp = Y 4ex kawa, with ko, € N.

Then, with the notation of Lemma 7.2.1, we have:

D NO=Dou U ES.
a€L—%(L) s.t. ka#0

7.4 — From Paragraph 7.4 to Paragraph 7.7, we will prove Proposition 7.3.2. First, we
define and calculate “equations” of Dy and Ep as we have defined the equations of elements
of D(G/H) in Section 2.2.

Consider the universal covering ¢ : G — G and the map ggxg : G X G — O, (g1, 92) —
(C(g1,92)).w. If D € D(G/H), we denote by fp, the unique equation of ¢;L.(De) in
k[G x G] such that fp, (1) = 1. We define fy,, similarly.

To compute fp, and fg,, we fix our attention on O. Considering the action of G xG
on O, we can assume that G is simply connected. Moreover, the inclusion of (P* x Q").AL
in I induces a commutative diagram:

G x G/((P* x Q").AL)
¢

GxG > O

4G x G

Then, applying Lemma 7.4.3 below to ¢, we can assume that C'is trivial.

Lemma 7.4.3 Let I be a linear algebraic group, I'y and I's two closed subgroups of I such
that T'y C T'y. Consider the natural map ¢ : T')Ty — T'/Ty. Let D be a prime divisor
in T'/Ty. Then, the pullback ¢*(D) of D by ¢ is the sum of the irreducible components of
¢~ (D), with multiplicity being one.
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Proof: In this proof, if Y is a variety and y is a point in Y, we denote by Oy, the
local ring of rational functions in Y defined at y. By absurd, we assume that there exists
an irreducible component E of ¢~'(D) such that ¢*(D) — 2F is effective. Since all fibers of
¢ have the same dimension, ¢(F) is dense in D. In particular, there exists x € E such that
¢(x) is smooth in D. Then, there exists a local equation f € Op/p, 4z of D at ¢(x). There
also exists a local equation g € Op/p, , of E at x. Since, ¢*(D) — 2E is effective, h := %
belongs to Op/r, ;. So, the differential of f o ¢ at x is zero. But, since ¢ is equivariant, its
differential is surjective at any point of I'/T'y. Then, the differential of f at ¢(z) is zero.
This is impossible because of smoothness of D at ¢(z). The lemma is proved. U

To compute fp, and fg,, we will also use the following

Lemma 7.4.4 Assume that G is simply connected and C is trivial. Let D € D(G/H). Set
D':={geG: g 'H/H e D}. Consider

¢p: G — O
g (,g).l‘.

Then, the pullback ¢5(Do) of Do by qs equals DL,

Proof: Let us use the notation of Diagram (7.2.1). For this proof, we set U :=
p Y(BP/P). Since ¢, is a fibration, and U is an open subset of O which intersects Dgp
it suffices to determine ¢5(U N Dp).

Consider the action of BN L on F by right multiplication. Then, the quotient of B x F
by the diagonal action of BN L exists and is denoted by B x gz F'. With obvious notation,

we set
f: BXBQLF — U

b.f)  — bf

One easily shows that £ is bijective; then, the normality of U implies that £ is an isomorphism.
Then, we have £*(Dpo NU) = 1. (B X BAL qg(D_l)). Consider now:

1: F — BXBQLF

fo— (L)

We have i* (B X BAL qg(ﬁ_l)) = 1.¢2(D™"). To conclude, we factor ¢, as

G— s F s Bxpy F—sUc—>0.

and use Lemma 7.4.3. O

Consider on G x G the action of B x H x I defined by: (b, h,1).(g1, 92) = (bg1, hgz)i for all
be B,he H,ieIand (g1,92) € Gx G. Then, if D € D(G/H) (resp. E € D(G/P)), the
equation fp, (resp. fr,) is an eigenvector for the induced action of B x H x I on k[G x G].
The corresponding character in X'(B) x X (H) x X(I) which determines fp, (resp. fg,) is
still denoted by fp,, (resp. fg,)-
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Note that by the restriction homomorphism, X' (/) identifies with X'(AL), that is, with
X(L). Similarly, X(P) and X(Q) identify with X' (L). Moreover, X' (L) is canonically em-
bedded into X (B). From now on, we make these identifications implicitly.

Now, we can describe fp, and fg, as follows:

Lemma 7.4.5 With the preceding notation, we have:

(i) Let E* € D(G/P) witha € ¥—%(L). Then, the weight of fga in X (B)xX(H)xX (L)

i (Wa, 0, —wq).

(ii) Let D belong to D(G/H) and [vp : xp] € X(B) Xxsnu) X(H) be its equation. Write
fYD = ZQEE kawa thh ka € N Then,

fDo :( Z kameD; Z kawa)-

aex(L) aen—x(L)

Proof: Since o € ¥ — X(L), w, € X(T') extends to P. Moreover, the equation of Bs,P
in G is a B x P-eigenvector of weight (w,, —ws). On the other hand, by Lemma 7.4.3, we
have ¢, o(Eop) = Bs, P x G. Assertion (i) follows.

Consider the rational function f on G x G defined on B x H.I by the formula:

F((b,h).i) = y(b)x(h) VbeB,he Handiel. 2)

Indeed, one easily verifies that for all b € B and h € H such that (b,h) € I, we have
vp(b)xp(h) = 1; that is, (2) makes sense.

Set Dy =div(f). One easily shows that for allb € Band h € H, f(1,bh) = vp(b~')xp(h).
So, D;N({1} xG) = D~ (with notation as in Lemma 7.4.4). Since D; is stable by B x HxI,
using Lemmas 7.2.1 and 7.4.4, it follows that:

Df = quG(DO) + Z nE-qz?xG(EO)a (3)
EeD(G/P)

where the ngp are integers. Denote by A the character of P such that the equation of
Y gep(c/py el is [A 1 —A] (with the notation of Section 2.2 for H = P). Then, Assertion
(i) and Equation (3) imply that fp, = (vp — A, xp, A).

Let o € ¥ —3(L). We claim that Dy is stable by P, x {1}. Indeed, since Dy is stable by
B x {1}, (Pa x {1}).Do is closed in O and thus equals Do or O. But, looking at Diagram
(7.2.1), we see that ((Py X {1}).Do)NF = ((PNP,) x{1}).(DoNF). Since o € ¥ —3(L),
PN P, equals B. So, (P, x {1}).Do) N F = Do N F. The claim follows.

The claim shows that vp — A € X(B) extends to P, for all @ € ¥ — X(L). That is,
vp — A is a linear combination of the w, for @ € ¥(L). Moreover, A is a character of P, that
is, a linear combination of the w, for a € ¥ — X(L). We deduce that A = 3 cx 5 (1) FaWa-
Assertion (ii) follows. 0

7.5 — The next step in the proof of Proposition 7.3.2 is to find an equation for D~

For this, we make some reductions. The theory of embeddings of G (see [Res00] or [Bri97]
and Section 4) shows that there exists a simple toroidal G x G-equivariant embedding X'
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of G which contains Xy and a projective G x G-orbit Z. Replacing X by X' if necessary,
to prove Proposition 7.3.2, we can assume (in the sequence of Section 7) that X is simple,
toroidal, with projective closed orbit Z. Then, we have the following

Lemma 7.5.6 Keep notation as above. Consider the G x G-linearized line bundle L., de-
fined in Proposition 4.4.4.

Then, there exists a section o of L, (unique up to scalar multiplication) such that o is
an eigenvector for B x H of weight (vp, Xp)- Moreover, DY = div(o).

Proof: The uniqueness of o follows from Proposition 3.4.6 and from the fact that
T'(X,L,,) is a multiplicity-free G x G-module.
Slnce Yp is dominant, L, is generated by its global sections. As a consequence, the
restriction morphism from F(X Ly,) to I'(Z, L, ;) is non-zero. But, the G x G-module
(Z7 ‘C"/D |Z)
iof V,, ® V¥ into I'(X, £,,,) (unique up to scalar multiplication).

is isomorphic to V,, @ V.* . Thus, there exists a G x G- equivariant embedding

By Proposition 3.4.6, there exists v € V7, E—eigenvector of weight xp. Let v € V,, be
a B-eigenvector. Then o = i(v ® v) satisfies the first assertion of the lemma.

Since the restriction of o to Z is non-zero, no component of div(o) is stable by G x G.
Then, each component of div(c) intersects G.. So, to prove the lemma it suffices to determine
div(e) N G.

Consider ¢ : G — G. Since Pic(G) is trivial, F(é,{*(ﬁww)) is isomorphic as a
G x G-module to k[G]. Then, o o ¢ equals [yp : xp] up to a scalar multiplication. Thus,
div(ojg o () = D. Moreover, Lemma 7.4.3 shows that ¢* (C(ﬁ)) — D. Then, we have

div(0)g) = ¢(D). The lemma follows. O

7.6 — Now, we want to understand the restriction of the equation of D* (given by
Lemma 7.5.6) to an orbit O of G x G.

Consider the restriction morphism Pchxa(X) — Pichg((?). Then, by Proposition
4.4.4, we identify PchXG(X) with X(B). Set I = (¢,¢)"*(I). Then, by Lemma 3.4.5, the
group P1CGXG(0) identifies with X'(I), that is, with X(L)x X(0). If (\,7) € X(L) x X(C),
then we denote by L, ,) the corresponding G' x G-linearized line bundle on O. Then, we
have the

Lemma 7.6.7 Let A € X(B). Consider the G x G-linearized line bundle Ly on X defined
by Proposition 4.4.4. Then, the restriction of Ly to O equals L, ~y with preceding notation

IC
( where (0, —)\‘5) e X(L) x X(C)).

Proof: Let X g, p- be the unique affine open B x B™-stable and open subset of X that
intersects Z. Let S be the closure of T"in X, g, p-. Then, by Proposition 2.6.7, S intersects
Z in a unique point z and Xy g, p- is isomorphic to U x U~ x S as B x B~ -variety . The
variety S is an affine T x T-equivariant embedding of 7', in particular its Picard group is
trivial. Thus, the restriction of £y to S is trivial as a line bundle on S (without linearization).
Furthermore, the T x T-linearization of L s obtained by restricting the G x G-linearization
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of £ defines a character of T x T: via the action of T x T on the fiber of £y at z. Since
z is the point of Z fixed by B~ x B and Ly = L(x-»), the group T' x T acts on (L)), by
(A, =A). N

By Proposition 4.3.2, there exists x in SN O fixed by I. But now, since £yg is trivial, the
stabilizer of z in ji x T acts on the fiber at z by (A, —=)). We deduce that AL acts trivially
on this fiber and C acts by —)\|5. The proposition follows. O

7.7 — Now, we can complete the proof of Proposition 7.3.2:

Let D € D(G/H) and O a colorless orbit of G x G in X. The aim is to determine
D" N O. As noted just before Lemma 7.5.6, we can assume that X is a simple toroidal
embedding of G' and contains a projective orbit Z of G x G.

Consider the weight (v, x,A) € X(B) x X(H) x X(L) of the equation in k[G x G] of the
pullback of D" N O in G x G (see Lemma 7.4.5). Let £,, and o be as in Lemma 7.5.6.
Since oo is an equation of D n O, we have: v = vp and x = xp. Moreover, by Lemma,
7.6.7, the restriction of £, to O is £(07_7D‘5). We deduce that A = 0. Then, Proposition

7.3.2 follows easily from Lemma 7.4.5. U

8 Quotients of projective embeddings of the group by
a spherical subgroup

8.1 — In Section 6, we started with a projective embedding of G/H and tried to realize it
as a quotient of a projective embedding of G. Conversely, in this section, we start with a
G x G-equivariant projective embedding X of G.

Let £ be an ample G x H-linearized line bundle on X and let x be a character of H. We
use the notation of Lemma 5.1.1 for the subgroup G x H of G x G. Since X(G) is trivial,
raxpg is injective. For simplicity, we denote rgy g (L) ® i(x) by L ® x. Then, Lemma 5.1.1
shows that any G x H-linearized line bundle has a non-zero tensor power of the form £ ® y
for some £ and y.

We fix our attention on the quotient of X by {1} x H associated to £ ® x, as in Section
5.1:

T XP(Leyx) — X¥(L®yx)/H.

Then, the action of G x {1} on X descends to an action of G on X*(L ® x)//H which
becomes a spherical variety (since B x H has a dense orbit in G).

Moreover, replacing £ ® x by a power, we can assume (see Section 5.4) that there exists
a “quotient” line bundle (£ ® x)//H. This line bundle has a natural G-linearization induced
by the G x {1}-one on L. For simplicity, we set:

Y =X*®L®x)//H and Ly:=(LQx)//H.

Consider the quotient:
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£®X4)£y

I

XS(Lx) ——Y

8.2 — Let B be a Borel subgroup of G opposite to H and B~ be another one, opposite
to B. As in Section 4.2, we embed P (X, L) in X(B)g. Then, we can describe the moment
polytope P (Y, Ly) by:

Theorem 2 Keep notation as above. Then, we have:
P(Y,Ly)=P(X,L)NP(G/H,L,).
Proof: We have:

P(X,L)={pcX(B)g: I >0, npe P", V, @V — (X, L")}
Moreover,

P(Y,Ly)={peX(B)g: In>0, npe P", V,, = (X, (L))"}
With the notation of Proposition 3.4.6, we deduce that:

P(Y,Ly)={p€ X(B)g : In >0, np € Ty et V,,, ® V,;, — (X, LZ")}.

But by definition P(G/H, L,) is the set of p € X(B)g such that there exists a positive
integer n such that np € I';,. The theorem follows. O

8.3 — In the sequel of the section, we show how to read properties of Y and 7 on the
polytopes P(X, £) and P(G/H, L,). For example, the following corollary gives a criterion
for Y to be an embedding of G/H.

Corollary 8.3.1 The G-variety Y is an embedding of G/H if and only if P(X, L) intersects
the relative interior of P(G/H, L,).

Proof: The necessary condition follows easily from Theorem 2 and Proposition 3.1.1.

Conversely, assume that P (X, £) intersects the relative interior of P(G/H,L,). Let I
denote the isotropy in G of m(1). Obviously, I contains H; in particular, I is a spherical
subgroup and Y is an embedding of G/I. By Proposition 3.1.1, the interior of P(X, L)
in X(B)g is not empty. Then, the diffenrences of elements of P(Y, Ly) span X(B)§".
In particular, the ranks of G/I and G/H equal. Then, Theorem 3.4.3 in [Bri97] (see also
[Kno91]) shows that the index of H in I is finite. So, Proposition 5.3.4 implies that each
fiber of m over G/I contains a unique open orbit of H. We deduce that H = I. O

Remark: Note that if YV satisfies Corollary 8.3.1, we can determine the fan F(Y') by
Theorem 2 and Propositions 3.3.4 and 3.5.8 (see [Res00]; 7.2.3 for examples).

8.4 — The following proposition describes the image by 7 of an orbit of G x G in X:
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Proposition 8.4.2 Let O be an orbit of G x G in X which intersects X*(L ® x). Then,
there exists a dense orbit (G x H).x of G x H in O. Moreover,

(i) T(ONXS(L® X)) = G.r(x), and
(ii) P(G.x(z), Ly) = P(O,L) NP(G/H, L,).

Proof: Proposition 2.6.6 shows that there exists a toroidal embedding X of G and
a G x G-equivariant surjective morphism X — X. Moreover, any orbit of G x G in X
contains a dense orbit of G x H by Lemma 7.2.1. Then, there exists a dense orbit of G x H
in O.

Since the variety 7(O N X(L ® x)) is irreducible and stable by G, it is the closure of an
orbit of G in Y. But (G x H).x is dense in O, and G.7(x) is dense in 7(O N XS(L ® x)).
Assertion (i) follows.

By Proposition 5.2.3, the restriction of 7 to O N X*(L ® x) is the quotient by H of
O”(L ® x). Then, the proof of Assertion (ii) is the same as that of Theorem 2. O

8.5 — Let us fix an orbit {2 of G in Y. We are now interested in the preimage of 2 by 7.
Recall that D(Y, 2) denotes the set of colors of 2 in Y. Set:

F(D(Y,Q) == {y € PG/H.L) : (X)€Y Qvp,xo)}.
D¢D(Y Q)

Then by Proposition 3.5.8, F(D(Y,(?) is the minimal face of P(G/H, L,) which contains
P(Q, Ly).

Proposition 8.5.3 With the preceding notation, we have:

(i) There exists a minimal orbit (for the order induced by the inclusion of the closures)
among the orbits O of G x G in X such that the closure of T(ONX®(L R X)) contains
Q. We denote this minimal orbit by O(£2).

(ii) P(O(Q), L) is the minimal orbital face of P(X, L) which contains P(Q, Ly).

(iii) P(Q, Ly) = P(O(Q), L) NF(D(Y,Q)).

(iv) If Q is colorless in' Y, then m(O(Q) N X=(L ® X)) = Q. In particular, the image of w
contains €.

Proof: Let O be an orbit of G x G in X and let x be a point in the open orbit of G x H
in O. Proposition 8.4.2 shows that 7(O(Q) N X%(L ® x)) contains € if and only if G.7(z)
contains 2. On the other hand, if O; and O,y are two orbits of G x G in X, Proposition
3.3.4 shows that:

P(O,L)NP(O0y, L) =P(O; N Oy, L).
Then, we deduce that:

QCTONXS(LBY) += P, Ly) CP@Gr(a) Ly)
= P(Q,Ly) CP(O,L)NP(G/H, L)
«— P(Q,Ly) CP(O,L). (1)



Then, Proposition 3.3.4 shows that there exists an orbit Q(G) of G x G in X satisfying (1)
and minimal for this property. This proves Assertions (i) and (i7).

Moreover, P(Q, Ly) is contained in F(D(Y,)). Since, P(O(Q), L)NF(D(Y,Q)) is a face
of P(Y, Ly), we deduce that P(£2, Ly) is a face of P(O(Q), L) NF(D(Y,)). But, P(Q, Ly)
intersects the relative interior of F(D(Y,Q2)). So, there exists a face F of P(O(2), £) such
that:

P(Q, Ly) = FNF(D(Y,Q)).

With the notation of Proposition 3.3.4, the minimality of O(Q2) implies that O(F) = O(12).

Let Pg denote the minimal face of P intersecting F. Since P(G/H, L,) is contained in
Pt and P(Q, Ly) is contained in F, F(D(Y,Q)) is contained in Pg. But now, Proposition
3.3.4 implies that:

FOF(D(Y,Q) = P(O(Q), L) N F(D(Y, Q).
Assertion (7i7) is proved. If €2 is colorless, we have, by Assertion (iii):
P(Q,Ly) =P(OQ),L)NP(G/H,L,).

Then, Assertion (iv) follows from Proposition 8.4.2. O

Remark: If H is reductive, then 7 is surjective. Moreover, if y is a point in €2 and x is a
point in the unique closed orbit of {1} x H in 7 !(y), then O(f) is the orbit of z by G x G.

Let p : Hom(X(B),Q) — Hom(X(B)?" Q) be the restriction map. Then, a connec-
tion between the colored fans of X and Y is the following

Lemma 8.5.4 With the notation of Proposition 8.5.3, we have:
p(C(X,0(Q))) € C(Y, Q).

Proof: Let p be a point in the relative interior of P(2, £y). By Proposition 3.5.8, the
cone C(Y,Q) is dual to —p + P(Y, Ly) in Hom(X(B)5"2 Q). Since P(Y, Ly) is contained
in P(X, L), C(Y, ) contains the image by p of the dual in Hom(X'(B),Q) of —p+ P (X, L).
Since p belongs to P(O(Q), L), applying Proposition 3.5.8 to X and O(Q2) completes the
proof of the lemma. 0

8.6 — Denote again by {2 an orbit of G in Y. The next proposition gives a description
of the preimage by 7 of the minimal affine B-stable open subset of Y intersecting €2, namely
Yo.5 (see Proposition 2.4.4).

Proposition 8.6.5 With preceding notation, we have:

W_I(YQ,B) = X(f)(Q) - U BX.

DED(Y,Q)

Proof: Let p be a point in the relative interior of P(Q, Ly). Let n be a positive integer
and o be a section of L™ which is a B-eigenvector of weight np. Then, by Proposition 3.3.4,
we have Yop =Y —{y €Y : o(y) =0}.
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But o belongs to T’ (X, (L ® x)®")), and 7 ! (Yo5) = X—{z € X : o(z) = 0}. Moreover,
by definition of O(Q) (see Proposition 8.5.3), the set 77! (Yy) is contained in Xp(q). So, we
have:

7 (Yo,8) = Xow) — {r € X : o(z) = 0}. (4)

We consider the set of those x € X such that o(x) = 0. Let M be an irreducible
component of this set which does not intersect G. Since the codimension of M equals one,
M is stable by G x G. But, 77! (Yq, ) intersects O(L2). Then, Equality (4) shows that M is
contained in X — Xp(q). We deduce that:

7 '(Yo,5) = Xow) — {z € G : o(x) =0}
Moreover, since p belongs to the relative interior of P(£2, Ly), we have:

[yeG/H :oly) =0} = |J D.

D¢D(Y,)

The proposition follows. O

8.7 — The main result of this section is a criterion (expressed orbit by orbit) in terms of
polytopes to decide if X®(L ® x) equals X*(L ® x), with notation of Section 5.3. We start
by the following

Lemma 8.7.6 Let €2 be an orbit of G in Y. With the notation of Proposition 8.5.3, we
assume that Q and O(Q) are colorless. Then, 7=1(Q) N O(Q) is the open orbit of G x H in
o).

Proof: Assertion (iv) of Proposition 8.5.3 shows that 71 (Q2) N O(Q) contains the open
orbit of G x H in O(Q?). Moreover, by Proposition 8.6.5, we have: 7 (Yo 5) = Xow) —
Ub¢nrvo) D¥ . But, since G is connected, an orbit of G’ x {1} is contained in Upgp(y,0) DY if
and only if it is contained in some D*. We deduce that 7 LYq) = XO — Upgprio) 5%,

where Q_x denotes the union of all orbits of G x {1} contained in D".
Moreover, with the notation of Diagram (7.2.1), each orbit of G x {1} in O intersects F’
in a unique orbit of P x {1}; that is, in a fiber of the natural map

¢ F5G/B— G/Q.

This identifies the set of all orbits of G x {1} contained in Dy with the set of all orbits of
() contained in D. In particular, any non open orbit of G x H in O is contained in Dy for
some D in D(G/H).

But, by Proposition 7.3.2, for any D € D(G/H), D NO contains Do. Then, no non-open
orbit of G x H in O is contained in 77(Yy). This completes the proof of the proposition.
O

Let & be a finite-dimensional vector space and let P be a polyhedron in £. The dimension
of the affine subspace generated by P in & is called the dimension of P and is denoted by
dim(P). If Q is another polyhedron in £, we say that the intersection of P and Q is
transversal if dim(P N Q) = dim(€) — dim(P) — dim(Q).
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Proposition 8.7.7 Let Q2 be an orbit of G in'Y. With the notation of Proposition 8.5.3, we
assume that Q and O(Q) are colorless. Then, the three following conditions are equivalent:

(i) m1(Yq) is contained in X5(L).
(ii) 7 1(Q) is contained in X5(L).

(tit) The intersection of P(O(Q), L) and P(G/H, L)) is transversal.

Proof: Note that Proposition 3.1.1 shows that the rank of Q (resp. O(2)) equals the

dimension of P($, Ly) (resp. P(O(R2), £)). Then, Condition (ii7) is equivalent to rk(G/H)—
rk(Q2) = rk(G) — rk(O(Q2)). By Lemma 2.6.8, this is also equivalent to:

dim(G/H) — dim(Q) = dim(G) — dim(O(R)). (5)

On the other hand, Proposition 8.5.3 shows that: 7(O(Q) N X=(L ® x)) = Q. We deduce
that the dimension of the general fibers of 7 over Q equals dim(O(9)) —dim(Q2). In particular,
the fiber over any point y in © has this dimension. But now, Condition (iii) (that is, Equality

(5)) is equivalent to:
Vy € Q dim(7~*(y)) = dim(H).

Now, using the Remark of Section 5.3, we conclude that Condition (i) implies (ii7). Since
(1) implies trivially (i7), it remains to prove: “(i7) implies (7)”.

Assume that dim(7~!(y)) = dim(H). Then , Proposition 8.4.2 implies easily that 7! (y)
is contained in O((2).

Consider the stabilizer Pg/y in G of BH/H. Let us fix a Levi subgroup La/n of Pg/n
adapted to H (see Proposition 2.5.5) and a maximal torus T g of Lg/p contained in B.

By Proposition 4.3.2, there exists a point x in O such that the isotropy of z in G x G is:

I=(P*x Q") x (AL x ({1} x 0)),

where @) is a parabolic subgroup of G containing B, P is the parabolic subgroup of GG
containing T g and opposite to (), L is the intersection of P and () and C' is a subgroup of
the connected center of L.

We claim that Pg/p is contained in Q.

Let o be a simple root of (B, T¢ i) such that P, is contained in Py n. Then, since the
complement of Pg/yH/H in G/H is the union of the colors of G/H, P, stabilizes each color
of G/H. Thus, the B-weight of the equation fp of any color D of G/H is orthogonal to the
coroot a’. Then, Lemma 4.3.3 shows that P(G/H, L, ) is contained in the orthogonal space
to ", In particular, P(O(£2), £) which contains P(£2, Ly) intersects the orthogonal of .
Thus, Lemma 4.3.3 shows that () contains P,. The claim follows.

Now, we claim that the isotropy of {1} x H at a general point of O({2) is finite.

Indeed, since (G x H).I/I is open in O(£2), we have to prove that the intersection of
I and {1} x H is finite. By the first claim, Q" is contained in Pg - Thus, since C' is
contained in Lg,g, Proposition 2.6.7 implies that H N Q“C' = H N C. On the other hand,
by Proposition 3.1.1, the differences of elements of P(G/H, L) span X(B)§™, and that
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of elements of P(O(Q2), £) span X' (B)E". The assumption implies that the intersection of
X(Tm)"erm™ and X (Tgyu)¢ is finite; hence H N C is finite. This proves the second claim.

Let us fix an affine open subset U of 2. The claims show that the general fibers of 7
over U and the general orbits of H in O(2) have the same dimension. But, by Lemma 8.7.6,
7 1(U) is contained in the open orbit of G X H in O(f2). In particular, 7~ *(U) is smooth.
Then, the proof of Proposition 5.3.4 shows that every general fiber of 7 over U contains a
unique open dense orbit of H. But now, the fact 77! (U) is contained in the open orbit of
G x H in O(Q) implies that the fibers of 7 over U are orbits of H. This implies Assertion
(i7).

But, Condition (i) holds for all orbits of G in Y. Thus, the same is true for (éi). Then,
Condition () holds. O

9 Toroidal embeddings as geometric quotients

9.1 — In Section 9, G/H is supposed to be sober and liftable. Fix a projective embedding
Y of G/H. As in Section 6, we want to obtain Y as a quotient of a G x G-equivariant
projective embedding X of G for an ample G x H-linearized line bundle £. But now, we
want to have: X*(L) = X°(L); that is, a geometric quotient. We start with the case when
Y is the canonical embedding of G/H:

Theorem 3 Assume that G/H is sober and liftable. Consider the canonical embedding Y
(resp. X) of G/H (resp. G). Then, there exists an ample G x H-linearized line bundle L
on X such that the quotient m : X®(L) — X*(L)//H of X by {1} x H associated to L
satisfies the following conditions:

(1) X¥(L)//H =Y,
(i) X*=(L) = X*(L),
(11i) m is surjective.
Before proving Theorem 3, we illustrate the ideas of the proof by examples.

9.2 — In this paragraph, G is PGL(3) and H is the subgroup of G consisting of matrices
of the form

* * O

0
*
*

S O %

It is easy to see that G/H is spherical and identifies with the pairs (p, d) € P2 x P2” (a point
and a line in P?) such that p does not belong to d. Set Y = P? x P2 viewed as an embedding
of G/H. Then Y is the canonical embedding of G/H.

We fix an ample G-linearized line bundle M on Y. The proof of Theorem 1 is constructive:
it gives the canonical embedding X of G and an ample G x H-linearized line bundle £ ® x
on X depending on M. The polytopes P(X, £) and P(Y, M) look like the following picture:
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Wq

P(Y,M)

Figure 1: The polytopes P(Y, M) and P(X, £)

Wq

P(Y,M)

Figure 2: The polytopes P(Y, M) and P(X, L.)
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By Proposition 8.7.7, we do not have X*(L ® x) = X*(L ® x). Yet, if we move a little
bit £ to L. we obtain the situation of Figure 9.2. Then Y is the geometric quotient of
X=(L. @ x).

9.3 — The proof of Theorem 3 will be a generalization of the preceding example. More
precisely, we start with an ample G-linearized line bundle on the canonical embedding Y of
G/H. Then, the construction used in the proof of Theorem 1 gives a G x H-linearized line
bundle £ on the canonical embedding X of G. Then, using Proposition 8.7.7, we are going
to prove that we can move L a little bit and obtain Y as a geometric quotient of X.

Two difficulties can appear. First, as shown by the example when G = SL(4) and
H = Sp(4) (see [Res00]) the construction of the proof of Theorem 1 may not give the
canonical embedding of GG; or equivalently, the line bundle £ on X may not be ample.

On the other hand, if the rank of G/H is less than that of G, replacing £ by a nearby
L., we may change the “shape” of the moment polytope of the quotient. That is, we can
change the quotient variety X*(L ® x)//H (see [Res00], for an example). We will show that
these problems can be avoided by moving £ carefully.

9.4 — In this paragraph, we obtain some technical results about the cone of valuations
of G/H.

Let us fix a W-invariant scalar product (.,.) on X(1') ® R. Denote by X(FPg/u) the set
of simple roots a such that Pg/y contains P,. Consider the basis (a*)scy; of Hom(X (B), Q)
dual to the basis (@)qex of X(B)g. Then, we obtain the following commutative diagram:

S Q*’a* ——— Hom(X(B),Q)

aEY
| g

> Qa" — Hom(X(Pg/u),Q),

a¢X(Pg/m)

where pp is the restriction homomorphism induced by the inclusion of X (Pg,/g) into X (B).
With this notation, we have:

Lemma 9.4.1 (i) The set (pg(a*)) . is a basis of the vector space Hom(X (Pg/ i), Q).

(Pa/u)

(i) Moreover,

#(Tete) - ¥ e

aEX agEE(Pg/H)
Proof: Let us consider the dual statements. The dual space of 0 S(Pay) Qa* identifies

with Yoex(p,, ) Qo, that is, with the orthogonal of X (Pg/u) for the W-invariant scalar

product. Assertion (i) follows easily.
Now, to prove Assertion (77), it is sufficient to show that the dual cones in X'(Pg/pn)q of

Y agn(Pe ) @7 () and of pP (Za@ ona*) are equal; that is, to show that:

X(Pg/H)Qm ( Z QZOOZ—F Z QCY) :X(Pg/H)Qr\I (Z Q20a> .

a¢S(Pa/m) a€X(Pg/m) acd

34



The inclusion of the right side in the left one is obvious. Conversely, let us fix v = Y cx Tav
with z, € Q2% if a ¢ X(Pg/u), and z, € Q if v € B(Pgyp).

Since X (Pg/u)o is the orthogonal space of ¥(Pg/y), we have (3Y,v) = 0 for all 3 in
¥(Pgi). Thus, for all §in X(Pg/i), we have:

<5v7 Z l‘aO[> = - Z <ﬁv,a>l‘a.

a€X(Pa/n) agX(Pg/u)

On the other hand, for all distinct « and § in X, (8Y, @) is non-positive. Moreover, for all
a ¢ X(Pg/m), T is non-negative. As a consequence, we have:

Vﬁ € E(Pg/H) <Bv, Z xaa> Z 0.

a€X(Pa/m)

Then, we can apply Lemma 6 of Chapter 5, no 3.5 of [Bou68] to the basis X(Pg/y). We
obtain that x, is non-negative for all c. Assertion (i¢) of the lemma follows. O

Since Py is parabolic, it is connected. Then, each D in D(G/H) is stable by Pg/u;
and the character yp for the action of B of the equation of D extends to Pg/m. Then, by
Lemma 2.2.1, we have the following inclusions: X(B)?™ C X (Pg/y) C X(B). Taking the
dual, we obtain:

Hom(X (B), Q) % Hom (X (Pg/x), Q) — Hom(X (B)*™ Q).

We denote by CV(G) the valuation cone associated to the G x G-homogeneous space G.
Consider also the restriction map p : CV(G) — CV(G/H) induced by the inclusion of
k(G/H) in k(G). Then, we have

Lemma 9.4.2 Keep notation as above . We assume in addition that G/H is sober and
liftable (i.e. CY(G/H) is strictly conver and p is surjective).

Then, there erists a subset Y g of ¥ — E(Pg/H) such that, in the following commutative
diagram:

CV(G) ——— Hom(X(B),Q) +— > Q*’a*

aEY
B {

p Hom(X (Po/u), Q) «— >, Q%o
a¢E(PG/H)

CV(G/H) = Hom(X(B)’™,Q) +— > Q’a*

aEZG/H

the images in Hom(X (B)B" Q) of the cones CV(G/H) and Yaesau Q=a* are equal.
Moreover, the hooked arrows — are injective.
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Proof: By Lemma 9.4.1, the assumption that p is surjective implies that the images in
Hom(X (B)"™,Q) of Yagsn(py,,) @°a” and of CV(G/H) are equal. Indeed, CV(G) equals
Sacx Q=a” (see Section 4).

Moreover, by [Bri90], since G/H is sober, the cone CV(G/H) is simplicial. For all rays
Q="y of CV(G/H), there exists a root a in ¥ — X(Pg/g) such that Q<" maps to Q=%
in Hom (X (B)?™ Q) by the diagram of the lemma. Choosing such an « for all rays of
CV(G/H), we obtain a set ¥g/y contained in ¥ — X(Pg/) which satisfies the condition of
the lemma. UJ

9.5 — We can now give the:

Proof of Theorem 3: Let M be an ample G-linearized line bundle on Y. Let PG_/H
be the parabolic subgroup of G' containing 1" and opposite to Pg . Then, by Proposition
2.6.7, the closed G-orbit Z in Y is isomorphic to G/Pg/H. Denote by v, the character of
PG_/H such that, with the notation of Lemma 3.4.5, the restriction of M to Z is £,,. We
start by proving:

Claim 1: the set vy + Za@a/H Q>%« contains a rational regular dominant weight.

Since, Xp, ,, is contained in ¥ — Xg/y, it is sufficient to prove Claim 1 for the cone
Yo + Laen(rg,a) @ .

Note that, since M is ample, £, is ample and vy belongs to the relative interior of the
cone generated by PN X (Pg/y). Recall that Py denotes the cone of X'(B)q generated by
P*. Then, Q=%a" is the dual cone of Py from the face > 5., Q=°ws. We deduce that the
dual cone of —vg + Py equals Yaes(pe ) @ aY.

If, by absurd, v, + Ya¢San
of —yy 4+ P3 does not intersect Y agSau Q%«. Thus, there exists o € Y ae(Paym) Qe
which is negative on Y ggx, Q>Y3. This contradicts the fact that (", 3) is non-positive
and proves Claim 1.

Q>%« does not intersect the interior of P, then the interior

Replacing M by a power, Claim 1 shows that there exists n € X'(B) which belongs to
Yo + Lagse,, @ a and to the relative interior of Py. Consider the G x G-linearized line
bundle £, on X with the notation of Proposition 4 4.4. Replacing M and hence £, by
a power if necessary, we can assume that the G x G-linearization of L, induces a G x G-
linearization. Denote by x the character of H such that the restriction of M to G/H is L,
(see Lemma 3.4.5). We are going to prove that £ = £, ® x has the properties announced in
the theorem.

First, since 7 is regular dominant, Proposition 4.4.4 shows that £ is ample. Note that
Proposition 3.5.8 shows here that:

POX.£) = P50 1+ X 0%,
1))
In particular, vy belongs to P(X, L,) "P(G/H, L,).
Let us denote by Oy the unique orbit of G X G in X such that C(X, Q) = Y aeve u Q=Y.
Then, we have:
Claim 2: Any orbit O of G x G in X such that P(O, £,) contains 7, is contained in Xo.
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Let O be such an orbit. If « is a simple root, we denote by X, the center in X of the
valuation of CV(G) which maps to —w,v in Hom(X'(B), Q). Then, there exists a subset I of
Y such that:

0= X.
acl

(see for example [CP83]). Thus, we have:

P(67 Ln) = (77+ ZQCV> ﬁP(X, Lﬂ))

agl

and by Claim 1:

Yo — 1M € (ZQ@) N ( > Q<0a> .
ad¢l atXa/n
We conclude that ¥ — X/ g is contained in ¥ — I; that is I is contained in Yg/g. Claim 2
follows.

The next step is to prove
Claim 3: P(Oy, £,) "P(G/H, L) = {1}

The diffenrences of elements of P(Oy, £,)) span Ea@a/ﬂ Qa. The one spanned by the
diffenrences of elements of P(G/H, L, ) is X (B)g"". Moreover, the intersection of these two
vector subspaces is {0}, since by Lemma 9.4.2 ¥ ocx,, ,, Q=% embeds in Hom(X(B)"", Q).

Then, P(Oy, £,) NP(G/H, L) is either the empty set or a single point. On the other hand,
the proof of Claim 2 shows that -y belongs to this intersection. Claim 3 is proved.

Now, we can prove Assertion (7).

Consider the quotient morphism 7 : X*(L, ® x) — X*(L, ® x)//H. Replacing M
by a power, we can assume that £, ® x admits a quotient by {1} x H denoted by Ly (see
Section 5.4). Let us fix a point x in the open orbit of B x H in Oy. By Proposition 8.4.2, we
have: P(G.7(z), Ly) = P(Oy, L,) NP(G/H, L,). Thus, Claim 3 and Proposition 3.1.1 show
that the rank of G.7(z) equals 0. Thus, G.7(x) is projective, hence closed in X*(L,®x)//H.

Moreover, Proposition 3.5.8 applied to the closed orbit of G in Y implies that (yp, xp)
belongs to the relative interior of the cone 3= pepi/m Q2°(vp, xp)- Now, Proposition 3.5.8
shows that G.7(x) is colorless in X**(L, ® x)//H.

Moreover, if p¢/; : Hom(X(B),Q) — Hom(X(B)”™ Q) denotes the restriction mor-

phism, we have:

V __
(=70 +P(XS(Ly @ X)//H, Ly)) 2 plu ((—70 + P (0o, £,))")
2 Pg/H 2aeSg,y nga*) .

Then, Proposition 3.3.4 shows that G.7(z) is the unique closed orbit of G in X*(L,®x)//H.
This easily implies that X*(L, ® x)//H =Y. The fact that £, ® x satisfies Assertion (¢) is
proved.

Since Y is toroidal, Proposition 8.5.3 implies Assertion (iii). It remains to prove
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Claim 5: X*(L, ® x) = X3(L, ® x).
We noted in the proof of Claim 3 that the subspaces spaned by the differences of elements
of P(G/H, L) and of P(O,, L,) intersect in {0}. We conclude by Proposition 8.7.7. O

9.6 — We come to our main theorem. It asserts that if G/H is sober and liftable then any
toroidal embedding of G/H can be obtained as a geometric quotient of a toroidal embedding
of G. A toroidal embedding of a spherical homogeneous space is said to be simplicial if its
fan is simplicial.

Theorem 4 Let G/H be a sober, liftable spherical homogeneous space. LetY be a projective,
toroidal embedding of G/H .

Then, there exist a projective, toroidal G x G-equivariant embedding X of G and an
ample G X H-linearized line bundle £ on X such that the quotient,

T X®(L) — X=(L)//H
of X by {1} x H associated to L satisfies:
(i) X*(L)//H =Y,
(i) X*>(L) = X*(L),
(iii) w is surjective.

If in addition Y 1is simplicial, then there exists a simplicial embedding X of G satisfying
the preceding conditions.

Proof: The first step of the proof is to construct the colored fan of X (see Proposition
2.3.3).
Consider the commutative diagram

Hom(X (B),Q) - Hom (X (B)?" Q)

[

CV(G) ——— CV(G/H),

where p denotes the restriction map.

Let X denote the canonical embedding of G. Let £; be an ample G x H-linearized line
bundle on X which satisfies Theorem 3. Let €, be the closed orbit of G in the canonical
embedding Y of G/H. Consider the orbit O(£)) of G x G in X defined in Proposition 8.5.3.

Then CV(X, 0(€Q)) is a face of CV(G); the latter is mapped by p isomorphically onto
CV(G/H). Consider the fan F; of CV(X,O(p)) obtained from F(Y) by p. Let F de-
note the face of CV(G) generated by those extremal rays of CV(G) which do not belong to
CV(X,0(Qp)). Consider the fan F with maximal cones generated by F and the maximal
cones of F;. Then, F is the fan of a complete toroidal G x G-equivariant embedding X of
G.
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We claim that X is projective. This will follow from a projectivity criterion of an embed-
ding of a spherical homogeneous space in term of its fan (see Corollary 5.2.2 of [Bri97] or see
[Bri89]). When applied to Y, this criterion shows existence of a function ! : CV(G/H) — Q,
which is linear on each cone of F(Y) and strictly convex (as defined in [Ful93| p.68). Then,
there exists a unique function l: CV(G) — Q, which equals zero on F, which equals [ op
on CV(X,O(€y)) and whose restrictions to the cones of F are linear. One checks that [ is
strictly convex. Since X is complete, Corollary 5.2.2 of [Bri97] shows that X is projective.

The next step is to chose an ample line bundle on X.

Replacing £, by a power if necessary, we can write £; = £, ® x, with £, € Pic®*“(X)
and y € X(H). By [Bri97], Theorem 2 (see also [Kno91]) there exists a G x G-equivariant
birational morphism ¢ : X — X. We fix our attention on ¢*(L3).

By Theorem 3, X (L2 ®x) is contained in X, and intersects O(€). We deduce that
for any orbit O of G x GG in X, the following equivalence holds:

P(0,9"(L2)) NP(G/H, Ly) #0 = 0S¢ {(Xoy)- (6)

Moreover, the intersection in (6) is transversal. We deduce that there exists a neighborhood
U of ¢*(Ly) in Pic®*%(X)g such that for all M in U, we have:

P(O,M)NP(G/H, L) #0 < O C ¢ Xoqy): (7)

On the other hand, the line bundle *(L;) is generated by its global sections. Then, by
Proposition 4.4.4, U contains an ample line bundle £5.

We claim that (X, £ = £5 ® x) satisfies the three conditions of the theorem.

Consider the quotient 7 : X%(L) — X*(L)//H. Let O be an orbit of G x G which
is closed in 1 (Xp(q,)). Denote by Q the open G-orbit in 7(O N X*(L)). Since X*(L)
is contained in ¢~ (Xp(q,)), we have O(2) = O. Thus, Lemma 8.5.4 shows that the cone
C(X™(L)//H,Q) contains p(C(X,O)). Moreover, the restriction of p to C(X, O(€y)) is in-
jective. Then, the interior of the cone C(X®*(L)//H,?) in CV(G/H) is not empty. It follows
that €2 is projective and that 7(ONX*(L)) = Q. Then, by Lemma 8.5.4 and by construction
of X, X**(L)//H is isomorphic to Y.

Since the cones p(C(X, O)), where O is an orbit of G x G in X as above, cover CV(G/H),
we have established a correspondence between closed orbits of G x G in ¢~ (Xpq,)) and
complete orbits of G in X*(L)//H. It is now easy to prove that X**(L) = X®(L), by using
Proposition 8.7.7.

Moreover, Proposition 8.5.3 show that 7 is surjective.

If in addition Y is simplicial, then by construction X is simplicial too. O

Now, we can apply Theorem 4 and describe the isotropy subgroups of the action of G
in Y (with the notation of Theorem 4). So, the following corollary extends results that C.
DeConcini and C. Procesi (see [CP83]) obtained when H is symmetric.
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Corollary 9.6.3 Let G/H and Y be as in Theorem 4. Let y be a point in'Y .
Then, there exist two opposite parabolic subgroups P and QQ of G such that

Gy = P"C, (LN QUQN 1)),

where L = PN Q, C s the connected center of L and, P* and Q" denote respectively the
unipotent radicals of P and Q).

Proof: Let X be a G x G-equivariant embedding of G and £ be a ample G x H-
linearized line bundle satisfying Theorem 4. Let z in X such that w(x) = y. Then, by
Proposition 4.3.2, there exists two opposite parabolic subgroups P and () of G and a sub-
group C' of the connected center of L = P N @ such that the isotropy of x in G x G is

I:=(P"xQ")x (AL x (C x {1})).
Since 7 !(y) = ({1} x H).z, we have:

Gy=1{9€G : (o)1 ({1} x H) £},
The corollary follows. O]

With preceding notation, Corollary 9.6.3 implies that L N Q"“(Q N H) is a spherical
subgroup of L. Moreover, G, is obtained by parabolic induction (see [Bri98], [Lun96] or
[Was96] for a precise definition) from the latter spherical subgroup of L.

Note that Corollary 9.6.3 does not necessary hold if G/H is not liftable (see Example
10.7.3 of [Res00]).
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