
Quotients of group ompletionsby spherial subgroupsN. RessayreAbstrat. Let G be a semi-simple algebrai group and let H be a spherial subgroup. Theground �eld k is algebraially losed and of harateristi zero. This artile is onernedby projetive embeddings Y of spherial homogeneous spaes G=H. Our approah in thestudy of suh a variety Y is to realize them as quotients under the ation of H of projetiveembeddings of G. First, we give a more preise sense to this projet by de�ning the quotientof a G-variety by a spherial subgroup H. Then, we give a ondition, in terms of G-invariantvaluations, under whih Y an be obtained by quotient of an embedding of G. Finally, ifthe index of H in its normalizer is �nite, we show that an important lass of embeddings ofG=H (toroidal and liftable) geometri quotients of embeddings of G.1 IntrodutionLet G be a semi-simple algebrai group and let H be a spherial subgroup. The ground�eld k is algebraially losed and of harateristi zero. This artile is onerned with theG-equivariant projetive embeddings Y of the homogeneous spae G=H. Indeed, whereasthe Luna-Vust Theory lassi�es these embeddings by ombinatorial objets (namely oloredfans), important questions about the geometry and the topology of these varieties remainsunsolved.We explain our strategy. Note that apart from ag varieties and tori varieties, the bestunderstood spherial varieties Y are the embeddings of the group G viewed as a G�G-homogeneous spae (see [Bri98, CP83, LP90, BCP90℄...). Our aim in this artile is to realizeprojetive embeddings Y of G=H as quotients of G�G-equivariant embeddings X of G.Indeed, suh a onstrution ombined with equivariant ohomology methods should giveexpliit generators of the ohomology ring of Y . On the other hand, the orbit losures of aBorel subgroup B of G in Y play a key role in the geometry of Y . Preliminary results (see[Res00℄) show that the losures of the B �H-orbits in X are simpler than B-orbit losuresin Y . This is another motivation of this artile and the subjet of an forthoming paper.In Setion 2, we ollet notation and results about the Theory of Spherial Embeddings.In Setion 3, we give essentially known auxiliary results about the moment polytopes (seeSetion 3.1 for the de�nition) of a projetive spherial variety. The properties of the em-beddings of G used through the paper are olleted in Setion 4. In Setion 5, we �x aprojetive variety X endowed with an ation of G. Then, as in Geometri Invariant The-ory (see [MFK94℄), we assoiate to any ample H-linearized line bundle on X a \quotient"Xss(L)==H of an open subset Xss(L) of X by H, even if H is not redutive. In Setion 6,we prove our �rst main result: 1



Theorem Assume that the kernel of the ation of G on G=H is �nite. Let Y be aprojetive embedding of G=H. Then, the following onditions are equivalent:(i) There exist a projetive G�G-equivariant embedding X of G and an ample G�H-linearized line bundle L on X suh that Y = Xss(L)==H.(ii) For any G-orbit O of odimension one in Y , there exists a G�G-equivariant em-bedding XO of G and a G� f1g-equivariant and f1g �H-invariant surjetive rationalmap: � : XO - G=H [ O � Y:Assertion (ii) an be expressed in term of the valuations used in the Luna-Vust Theory(see Theorem 1 below). The spherial homogeneous spaes G=H suh that any projetiveembedding of G=H an be realized as quotients of a group ompletion are said to be liftable.As examples, we show that if H is symmetri or if H is solvable and of �nite index in itsnormalizer then G=H is liftable.The former theorem is not suÆient for appliations. Indeed, the quotient Xss(L)==H isnot in general an orbit spae but only a ategorial quotient. In Setions 7 to 9, we obtainembeddings of G=H as spaes of f1g �H-orbits in some open subset of X. First in Setion7, we prove auxiliary results about the divisors of embeddings of G whih are stable by leftmultipliation by a Borel subgroup of G and by right multipliation by H. In Setion 8, we�x a projetive embeddingX of G and an ampleG�H-linearized line bundle L onX. Then,we study the quotient by H: � : Xss(L) �! Xss(L)==H, in relation with moment polytopesof X and Xss(L)==H. Our main result is ontained in Setion 9. To state it, we need ade�nition: an embedding Y of G=H is said to be toroidal if Y � (G=H) is an union of G-stable prime divisors and if any G-orbit losure of Y an be obtained by interseting properlyG-stable prime divisors (see 2.3 for an equivalent de�nition). These embeddings play a keyrole sine any embedding of G=H is the image of a toroidal embedding by a G-equivariantproper morphism (see Proposition 2.6.6 below). Our main result is the followingTheorem Let G=H be a liftable spherial homogeneous spae suh that the index of H inits normalizer is �nite. Let Y be a toroidal projetive embedding of G=H. Then, there exista toroidal projetive embedding X of G and an ample G�H-linearized line bundle L on Xsuh that the quotient, � : Xss(L) �! Xss(L)==H;of X by f1g �H assoiated to L satis�es:(i) � is surjetive and G-equivariant.(ii) the �bers of � are the orbits of f1g �H in Xss(L).Aknowledgments I would like to thank S. Pin for useful disussions. I am espeiallygrateful to M. Brion who gave me preious advie during the preparation of this artile.For an easier reading, we give in the following table the de�ning ourene of eah nota-tion. 2
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 �, 8.1 �G=H , 9.4CV(G=H), 2.1 L==H, 5.4 �(L), 7.3CV(X;O), 2.3 L(�;), 7.6 �(PG=H), 9.4fD, 2.2 L(�), 4.3 V , 3.1fD�1, 7.4 LY , 8.1 V H , 3.4D�, 4.1 V(G=H), 2.1 V H;�, 3.4DB, 7.2 V(X), 3.1 W , 4.1DX , 7.1 �D, 2.1 w�_, 4.1DO, 7.2 OÆB, 2.4 XF, 3.3DF, 3.5 O(F), 3.3 X�, 3.1D(G=H), 2.1 O(
), 8.5 XO, 2.3D(X;O), 2.3 P+, 3.1 XO;B, 2.4E�, 7.3 P�, 4.3 X�, 3.3EO, 7.2 P+Q , 4.2 Xs(L), 5.3fD, 2.2 PG=H , 2.5 Xss(L), 5.1F(D(Y;
)), 8.5 P (�), 4.3 Xss(L)==H, 5.2F(X), 2.3 P u(�), 4.3 �, 2.22 The embeddings of a spherial homogeneous spaeLet G be a semi-simple algebrai group and let H be a losed subgroup of G. We assumethat H is spherial, that is, a Borel subgroup of G has a dense orbit in G=H. Let X be anormal algebrai variety endowed with an algebrai ation of G. Then X is said to be anembedding of G=H if it is endowed with an open and G-equivariant immersion of G=H in X.The image of the point H=H by the immersion is alled the base point of X. In this setion,we ollet the notions and results of Theory of Spherial Embeddings (see [LV83, Kno91℄or [Bri97℄) whih will be used throughout this paper. We are partiularly interested in thelassi�ation and the loal geometry of these embeddings.2.1| In this paragraph, we introdue some material neessary to lassify the embeddingsof G=H. Let us �x a Borel subgroup B of G suh that BH is dense in G; suh a B is saidto be opposite to H. 3



We denote by k(G=H)(B) the set of all rational funtions on G=H whih are eigenvetorsforB. If � is an algebrai group, we denote by X (�) the group Hom(�; k�) of its multipliativeharaters. We set X (B)B\H := f 2 X (B) : jB\H = 1g: Assoiating to a funtion ofk(G=H)(B) its weight in X (B), we obtain an exat sequene:0 ! k� ! k(G=H)(B) !X (B)B\H ! 0:The rank of X (B)B\H is alled the rank of G=H.Let � : k(G=H) �! Z be a k-valuation of the �eld k(G=H). Then, for all f in k(G=H)(B),�(f) only depends on the weight of f in X (B)B\H . Thus, the restrition of � to k(G=H)(B)indues a group homomorphism � : X (B)B\H �! Z.Then, the map � 7! � de�nes an injetion (see [Kno91℄ or [Bri97℄) from the set V(G=H)of the G-invariant disrete k-valuations of k(G=H) into Hom(X (B)B\H ;Q).In this artile, a onvex subset of a real or rational vetor spae, stable by multipli-ation by non negative salars, is alled a one. We denote by CV(G=H) the one inHom(X (B)B\H ;Q) generated by the image of V(G=H).A prime B-stable divisor of G=H is alled a olor of G=H. The set of olors of G=H isdenoted by D(G=H); it is �nite. If D 2 D(G=H), we denote by �D the valuation of k(G=H)with enter D whih maps onto Z.2.2| In this paragraph, we assoiate to eah olor an equation.First, we endow G with the ation of B �H de�ned by: (b; h):g = bgh�1. We onsiderthe set k(G)(B�H) of all rational funtions on G whih are eigenvetors for B �H. Then,assoiating to eah element of k(G)(B�H) its weight, we obtain the following exat sequene:0 ! k� ! k(G)(B�H) !X (B)�X (B\H) X (H) ! 0;where X (B) �X (B\H) X (H) = f(; �) 2 X (B) � X (H) : jB\H = ��jB\Hg: Moreover, if(; �) belongs to X (B) �X (B\H) X (H) the formula f(b�1h) = (b)�(h) de�nes an element(denoted by [ : �℄) of k(G)(B�H) of weight (; �). Then, the map (; �) 7! [ : �℄ splits theexat sequene.Consider the universal overing � : eG �! G. Then, k[ eG℄ is a unique fatorizationdomain. Set eB = ��1(B) and fH = ��1(H). Then eG ats transitively onG=H whih identi�eswith eG=fH. Moreover, � indues an inlusion of X (B) �X (B\H) X (H) into X ( eB) �X (eB\eH)X (fH).Note that D(G=H) identi�es anonially with D( eG=fH). Let D 2 D(G=H). The pullbakfD of D in eG by the orbit-map is a eB � fH-stable divisor. Thus, there exists a unique fD ink( eG) suh that div(fD) = fD and fD(1) = 1. Then, there exists (D; �D) in X ( eB) �X (eB\eH)X (fH) suh that fD = [D : �D℄. We all fD the equation of D. Sine k[ eG℄ is a UFD, oneeasily heks the followingLemma 2.2.1 The mapX ( eB)�X (eB\eH) X (fH) �! LD2D(G=H) ZfD(; �) 7�! div([ : �℄)is an isomorphism of groups. 4



2.3| Let again X be an embedding of G=H and let O be an orbit of G in X. SetXO := fx 2 X : G:x ontains Og. Then XO is a G-stable open subset of X ontaining O asits unique losed orbit. As a onsequene, X is overed by embeddings of G=H ontaininga unique losed orbit (suh an embedding is said to be simple). Simple embeddings arequasi-projetive, see [Kno91℄.An element of D(G=H) whih ontains O in its losure is alled a olor of the orbit O.Let D(X;O) denote the set of olors of O. The orbit O is said to be olorless if D(X;O) isempty. We say that X is toroidal if all orbits O of G in X are olorless. The term \toroidal"will be explained by Proposition 2.6.7 below.Consider the one CV(X;O) in Hom(X (B)B\H ;Q) generated by the G-invariant valua-tions whih have a enter in XO and by the valuations �D with D 2 D(X;O).De�nitions(i) Let C be a stritly onvex one in Hom(X (B)B\H ;Q) and D be a subset of D(G=H).Then, (C;D) is alled a olored one if the two following onditions hold:� The onvex one C is generated by the �D with D 2 D, and by a �nite number ofelements of CV(G=H).� The relative interior of C intersets CV(G=H).(ii) A olored fae of a olored one (C;D) is a olored one (C 0;D0) suh that C 0 is a faeof C and D0 = fD 2 D : �D 2 C 0g.A link between the olored ones and the simple embeddings of G=H is the following:Proposition 2.3.2 Let X be a simple embedding of G=H with losed orbit Z. Then,(CV(X;Z);D(X;Z)) is a olored one. Moreover, the map O 7! (CV(X;O);D(X;O)) is a bi-jetion between the set of all G-orbits in X and the set of all olored faes of (CV(X;Z);D(X;Z)).For any embedding X of G=H, we setF(X) := n�C(X;O);D(X;O)� : O is an orbit of G in Xo :To explain the struture of F(X), we need the following:De�nition A olored fan is a set F of olored ones whih satisfy the two following ondi-tions:� Any olored fae of a olored one of F belongs to F .� For any � 2 CV(G=H), there exists at most one olored one (C;D) in F suh that Contains � in its relative interior.Then, the following lassi�ation statement holds:Proposition 2.3.3 The map X 7! F(X) is a bijetion between the set of isomorphismlasses of embeddings of G=H and the set of olored fans.5



2.4| Let X be an embedding of G=H and O be an orbit of G in X. One an hekthat O is spherial; let OÆB denote the open orbit of B in O. Set:XO;B := fx 2 X : B:x ontains Og:Then, it is proved in [Kno91℄ or [Bri97℄ thatXO;B is an aÆne 111 open subset inX ontainingOÆB as its unique losed B-orbit. One easily heks the following haraterizations of XO;B(see for example Proposition 2.4.1 of [Res00℄):Proposition 2.4.4 (i) The omplement of XO;B in X is the union of the losures of theD 2 D(G=H) whih do not ontain O.(ii) The subset XO;B is the intersetion of the open B-stable subsets of X whih intersetO.2.5| Let PG=H denote the stabilizer in G of the open subset BH=H of G=H. Then,PG=H is a paraboli subgroup of G ontaining B. Let P uG=H denote its unipotent radial. Thenext proposition (see [BP90℄ or [Bri97℄) de�nes Levi subgroups of PG=H in speial positionwith respet to H:Proposition 2.5.5 There exist Levi subgroups L of PG=H satisfying the following two on-ditions:(i) If [L;L℄ denotes the derived subgroup of L, then:PG=H \H = L \H � [L;L℄:(ii) Let C denote the onneted enter of L. Then, for any embedding X of G=H withbase point x, the set P uG=H :C:x (where C:x denotes the losure of C:x in X) ontains anon-empty open subset of any orbit of G in X.Suh a Levi subgroup of P uG=H is said to be adapted to H.2.6| In this setion, we �x our attention on the toroidal embeddings of G=H. Propo-sition 2.4.2 of [Bri97℄ explains the key role of these embeddings:Proposition 2.6.6 Let X be an embedding of G=H. Then, there exists a toroidal embeddingfX of G=H and a G-equivariant birational projetive morphism � : fX �! X.The next proposition (see [Bri97℄ or [Bri89℄) desribes the loal struture of the toroidalembeddings of G=H.Proposition 2.6.7 Let X be an embedding of G=H with base point x and O be a olorlessorbit of G. Let L be an adapted Levi subgroup of PG=H . Let S denote the losure in XO;B ofL:x. Then, we have: 6



(i) The map: P uG=H � S �! XO;B(g; x) 7�! gxis a PG=H�equivariant isomorphism.(ii) The group [L;L℄ ats trivially on S. The indued ation of L=[L;L℄ endows S with astruture of an aÆne tori variety.(iii) Eah orbit of G in XO intersets S transversely in a unique orbit of L.Proposition 2.6.7 means that the loal struture of the orbits of G in X looks like theorbits in a tori variety. A ommon feature between the tori varieties and the toroidalembeddings of G=H is the following easy lemma (see [Res00℄):Lemma 2.6.8 Let X be an embedding of G=H and O be a olorless orbit of G in X. Letrk(O) denote the rank of the spherial homogeneous spae O. Let dim(G=H) (resp. dim(O))denote the dimension of G=H (resp. O).Then, we have rk(G=H)� rk(O) = dim(G=H)� dim(O).2.7|Now we introdue an important lass of spherial homogeneous spaes. Proposition4.4.1 of [Bri97℄ isProposition 2.7.9 For a spherial homogeneous spae G=H, the following onditions areequivalent:(i) The index of H in its normalizer in G is �nite.(ii) There exists a simple omplete embedding of G=H.Suh a spherial homogeneous spae is said to be sober.Let G=H be a sober spherial subgroup of G. Then there exists a unique simple ompletetoroidal embedding Y of G=H: we all it the anonial embedding of G=H. Note that Y isprojetive.3 Moment polyhedron3.1| Let X be a quasiprojetive embedding of G=H and L be an ample G-linearized linebundle on X. In this setion, we reall the notion of moment polyhedron assoiated to L.After realling the lassial properties of these polyhedra (see [Bri97℄), we �x our attentionon the ase when X = G=H.If � is an Abelian group, we denote by �Q its tensor produt with Q . Let P+ denote theset of dominant weights for (G;B). For  2 P+, we denote by V the irreduible G-moduleof highest weight  for B. 7



For eah positive integer n, the set �(X;L
n) of setions of L
n is a rational G-module.Set P(X;L) := fp 2 X (B)Q : 9n > 0; np 2 P+; Vnp ,! �(X;L
n)g;where Vnp ,! �(X;L
n) means that the G-module Vnp is a sub-module of �(X;L
n).The onvex hull of a �nite number of points in a vetor spae will be alled a polytope.A subset of a vetor spae de�ned by a �nite number of linear inequalities will be alled apolyhedron. Then, we have (see [Bri97℄; 1.2 or [Bri89℄):Proposition 3.1.1 The set P(X;L) is a polyhedron in X (B)Q; the di�erenes of elementsof P(X;L) spans X (B)B\HQ . If moreover X is projetive, then P(X;L) is a polytope.We all P(X;L) the moment polyhedron (resp. moment polytope if X is projetive) of Xassoiated to L.3.2| If X 0 is a loally losed G-stable subset of X, we set P(X 0;L) := P(X 0;LjX0): Oneeasily proves (see [Bri97℄;5.3.2 and [Res00℄)Proposition 3.2.2 With above notation, we have:(i) If X 0 is a G-stable open subset of X, then P(X;L) is ontained in P(X 0;L).(ii) Moreover, P(X;L) = TZ P(XZ;L), intersetion over all losed orbits Z of G in X.To give a more preise desription of P(X;L), we introdue more notation. Let V(X)denote the set of the k-valuations of k(G=H) assoiated to the G-stable prime divisors ofX. If � 2 V(X), we denote by X� its enter. Let us �x a setion �0 of L, B-eigenvetor ofweight (�0). Then, we have div(�Æ) = P�2V(X) n�X� +PD2D(G=H) nDD; where the n� andthe nD are non-negative integers. We reall Proposition 5.3.1 of [Bri97℄ (see also Proposition3.3 of [Bri89℄):Proposition 3.2.3 With the above notation and those of Paragraph 2.1, P(X;L) is the setof all (�Æ) + p where p 2 X (B)B\HQ satis�es:(i) �(p) + n� � 0 8� 2 V(X).(ii) �D(p) + nD � 0 8D 2 D(G=H).3.3| In this paragraph, we assume that X is projetive. Consider a fae F of P(X;L)and a point p in the relative interior of F. Set �p + P(X;L) := f�p + q : q 2 P(X;L)g:Proposition 3.1.1 shows that �p + P(X;L) is ontained in X (B)B\HQ . Moreover, the set ofall linear forms in Hom(X (B)B\H ;Q), non-negative on �p+P(X;L), is alled the dual oneof �p+P(X;L) and is denoted by (�p+P(X;L))_. One heks that (�p+P(X;L))_ onlydepends on F. The latter one is alled the dual one of P(X;L) from F and is denoted byC(F).Let n be a positive integer and � be a setion of L
n, B-eigenvetor of weight np. Weonsider X� = fx 2 X : �(x) 6= 0g. Then, X� only depends on F and is denoted by XF.Moreover, there exists a unique orbit O(F) of G whih meets XF and whih is minimal forthe order de�ned by the inlusion of losures.8



Proposition 3.3.4 Keep notation as above. If X is projetive, we have:(i) If O is an orbit of G in X, then P(O;L) is a fae of P(X;L). Suh a fae is said tobe orbital.(ii) If O1 and O2 are two orbits of G in X, then:P(O1 \ O2;L) = P(O1;L) \P(O2;L):(iii) P(O(F);L) is the unique minimal orbital fae of P(X;L) whih ontains F.(iv) If F = P(O;L), for an orbit O of G in X, then:O(F) = O ; XF = XO;B and C(F) = C(X;O):(v) The map O 7! P(O;L) is a bijetion from the set of orbits of G in X onto the set ofthose faes F of P(X;L) suh that the relative interior of C(F) intersets CV(G=H).Proof: Assertions (i); (v) and (iv) are Proposition 5.3.2 of [Bri97℄. Assertions (ii); (iii)and (iv) are proved in Proposition 2.6.4 of [Res00℄. �3.4| In this paragraph, we are interested in the moment polyhedra of an orbit G=H.First, we reall the desription of all G-linearized line bundles on G=H.Let � be a harater of H. We endow G � k with an ation of G�H by the formula:(g; h):(g0; �) = (gg0h�1; �(h)�). Then the quotient by f1g � H exists and is a G-linearizedline bundle on G=H denoted by L�. It is shown in [KKV84℄:Lemma 3.4.5 The map � 7�! L� is an isomorphism of groups between X (H) and the groupof all G-linearized line bundles on G=H.Before desribing P(G=H;L�), we introdue some notation. If V is a G-module, we setV H;� := fv 2 V : 8h 2 H h:v = �(h)vg, V H := V H;0 and �� := n 2 P+ : (V � )H;� 6= 0o.Then we haveProposition 3.4.6 With above notation and those of Setion 2.2, we have:�� = f 2 X (B) : (; �) 2 MD2D(G=H) N(D ; �D)g:Moreover, for all  in �� the dimension of (V � )H;� equals one.Proof: Let  2 �� and � be a non-zero vetor in (V � )H;�. Let v 2 V (B) . Considerf 2 k[G℄ de�ned by f(g) = �(gv). Sine f 2 k(G)(B�H), (; �) belongs to X (B) �X (B\H)X (H). Moreover, sine f is regular on G, Lemma 2.2.1 implies that (; �) belongs toLD2D(G=H) N(D ; �D). The �rst inlusion is proved.Moreover, sine (; �) determines f up to a multipliative onstant, the same is true for�. So, the dimension of (V � )H;� equals one. 9



Conversely, let  2 X (B) suh that (; �) belongs to LD2D(G=H) N(D ; �D). Then, thefuntion [ : �℄ is regular on G. But, by Frobenius' theorem, the G�G-module k[G℄ isisomorphi to L�2P+ V� 
 V �� . By this isomorphism, k[G℄(B�H) identi�es with the disjointunion of the V (B)� 
 V �(H)� . Now, [ : �℄ belongs to k[G℄(B�H) implies that  belongs to ��.� Now we an desribe P(G=H;L�) inProposition 3.4.7 Keep notation as above. Then, we have:(i) P(G=H;L�) = f 2 X (B)Q : (;��) 2 LD2D(G=H) Q�0(D; �D)g:(ii) Let F be a fae of P(G=H;L�). Let I be the minimal subset of D(G=H) suh thatLD2I Q�0(D; �D) ontains F. With the notation of Setion 3.3, we have:(G=H)F = G=H � [D2ID:Proof: If f 2 k[G℄ satis�es h:f = �(h)�1f , the map G �! G�k; g 7! (g; f(g)) indues asetion of L�. So, we identify �(G=H;L�) with the set of those f 2 k[G℄ suh that for all h inH we have h:f = �(h)�1f (see [KKV84℄). Now, Frobenius' Theorem yields an isomorphismof G-modules between �(G=H;Ln�) and L2P+ V 
 (V � )H;�n�. Then, Assertion (i) followsfrom Proposition 3.4.6.Let us onsider F and I as in Assertion (ii) and �x a point p in the relative interior ofF. Let n be a positive integer and � a setion of L
n, B-eigenvetor of weight np. Then,(np; n�) = PD2I kD(D; �D) for some positive integers kD. With the notation of Setion 2.2,we onsider f = QD2I [D : �D℄kD . Then, the map G �! G � k; g 7! (g; f(g)) indues asetion of L�. Then, the latter setion is a salar multiple of �. Assertion (ii) follows. �3.5| In this paragraph, we apply the desription of the moment polyhedra ofG=H givenby Proposition 3.4.7 to the desription of the moment polytopes of a projetive embeddingX of G=H.By Lemma 3.4.5, there exists a harater � of H suh that the restrition of L to G=His L�. If P is a polytope in X (B)Q, we set P� � := f(p; �) 2 X (B)Q �X (H)Q : p 2 Pg: IfF is a fae of P(X;L), we set DF := fD 2 D(G=H) : D intersets XFg, where XF denotesthe open subset of X de�ned in Paragraph 3.3.Proposition 3.5.8 With preeding notation, if F is a fae of P(X;L), we have:(i) F� � = �P(O(F);L)� �� \ �D 62DFQ�0(D; �D).(ii) If in addition F = P(O;L), then DF = D(X;O).(iii) Moreover, P(X;L) = P(G=H;L�) \\Z �P(Z;L) + C(X;Z)_�;intersetion over all losed orbits Z of G in X.10



Proof: Propositions 3.3.4 and 3.4.7 show that F � � is ontained in the intersetion ofAssertion (i). Let (p; �) belong to this intersetion. Then, there exist a positive integer nand a setion � of L
n, B-eigenvetor of weight np. Sine � is non-zero on O(F), Assertion(ii) of Proposition 3.4.7 shows that XF is ontained in X�. Now, Assertion (i) follows fromProposition 3.3.4.If F = P(O;L), then XF = XO;B by Proposition 3.3.4. Now, Assertion (ii) follows fromProposition 3.4.7.The inlusion of P(X;L) in the intersetion of Assertion (iii) follows from Propositions3.2.2 and 3.3.4. Let p belong to this intersetion. Replaing L by a positive power ifneessary, we an assume that there exist a setion �0 of L, B-eigenvetor of weight (�0)and a rational funtion f onG=H, B-eigenvetor of weight p�(�0). Then, with the notationof Proposition 3.2.3, p belongs to P(G=H;L�) implies that:8D 2 D(G=H) h�D; p� (�Æ)i+ nD � 0:Let � 2 V(X) and let Z be a losed orbit of G in X�. Then, sine p belongs to P(Z;L) +C(X;Z)_, we have h�; p� (�Æ)i+ n� � 0: Now, Proposition 3.2.3 ompletes the proof. �4 The embeddings of the group4.1| Reall that G denotes a semi-simple algebrai group. We endow G with the ation ofG�G by the formula: (g1; g2):g = g1gg�12 . In this artile the G�G-equivariant embeddingsof G play a key role: in this setion, we ollet the results about these embeddings whihwill be used through this paper.Set G := G�G and H = f(g; g) : g 2 Gg. Then, G is the homogeneous spae G=H.Let B and B� be two opposite Borel subgroup of G and let T denote their intersetion.Set B := B � B�. Then, by the Bruhat deomposition B:H=H is dense in G=H. So, H isa spherial subgroup of G, and B is opposite to H.First, note that X (B)B\H = f(;�) :  2 X (T )g: From now on, we identify X (B)B\Hwith X (B) by (;�) 7! . Then, Hom(X (B)B\H;Q) identi�es with Hom(X (B);Q).Let � denote the set of simple roots of (B; T ) and � 2 �. Let W := N(T )=T denote theWeyl group of T . We denote by s� the simple reetion of W assoiated to �, by �_ theoroot assoiated to �, and by !�_ the fundamental weight of the oroot �_. So, (!�_)�2�is the dual basis of the basis (�)�2� of X (T )Q. Let D� denote the losure of Bs�B� in G.Then, by the Bruhat deomposition D(G=H) = fD� : � 2 �g. Moreover, with the notationof Setion 2.2, the equation of D� is the funtion [!� : �!�℄. Then, under the identi�ationof Hom(X (B)B\H;Q) with Hom(X (B);Q), the image of the valuation �D� identi�es withthe oroot �_.Set T = T � T . With the notation of Proposition 2.5.5, we have PG=H = B, and T isa Levi subgroup of PG=H adapted to H. Finally, the valuation one CV(G=H) is identi�edwith the negative Weyl hamber: CV(G=H) =L�2� Q�0!�_ (see [Bri97℄; 4.1).4.2| Now, we study moment polyhedra of embeddings of G=H.Let P+Q = ��2�Q�0!� denote the one generated by P+ in X (B)Q; this is the positiveWeyl hamber. Note that the only G-linearized line bundle on G=H is the trivial one11



L0. Moreover, we have: P(G=H;L0) = f(p;�p) : p 2 P+Q g. From now on, we embedP(G=H;L0) (and more generally any moment polyhedron of an embedding of G=H) intoX (B)Q, by (p;�p) 7! p.Let X be a projetive toroidal embedding of G=H and L be an ample G-linearized linebundle on X. Consider the orresponding moment polytope P(X;L) � X (B)Q. WhenF runs over the faes of P(X;L), the ones C(F) de�ned in Setion 3.3 form a fan inHom(X (B);Q) denoted by F(P(X;L)).If O is an orbit of G in X and I is a subset of �, we denote by C(I;O) the one ofHom(X (B);Q) generated by C(X;O) and by the �_ for � 2 I. The following propositiondesribes the fan F(P(X;L)):Proposition 4.2.1 With preeding notation, the ones of F(P(X;L)) are the ones C(I;O),where O is an orbit of G in X and I is a subset of � suh that C(X;O) is ontained inL�=2I Q!�_ .Proof: If O is an orbit of G in X, Proposition 3.3.4 shows that C(X;O) belongs toF(P(X;L)). Moreover, Proposition 3.5.8 gives:P(X;L) = P+Q \ \losed orbit Z of G in X P(Z;L) + C(X;Z)_:In partiular, every extremal ray of F(P(X;L)) is either Q�0�_ for some � 2 � or anextremal ray of F(X). Let C be a one in F(P(X;L)). Then, there exists a I � � and anorbit O of G in X suh that C = C(I;O).If I is empty there is nothing to prove. If I is non-empty, sine X is toroidal, Proposition3.3.4 shows that the relative interior of C does not interset CV(G=H) = ��2�Q�0!�_. Sine�_ is orthogonal to !�_ for all simple roots � 6= �, we dedue that C(X;O) is ontained inL�=2I Q!�_ .Conversely, let I and O be as in the proposition. Then,C(I;O) \ ��2�Q�0�_ = ��2IQ�0�_; and C(I;O) \ CV(G=H) = C(X;O):It follows easily that C(I;O) belongs to F(P(X;L)). �4.3| In this setion, we are interested in the isotropy subgroups of the ation of G inX. We begin with some notation.Let � be a one parameter subgroup of T . Set:P (�) := fg 2 G : limt!0 �(t)g�(t�1) exists in Gg:For example, if � is a simple root then P (�_) is the usual minimal paraboli subgroup P�assoiated to �. In general, by [MFK94℄, P (�) is a paraboli subgroup of G with unipotentradial: P u(�) := fg 2 G : limt!0 �(t)g�(t�1) = 1g:Moreover, P (�) and P (��) are opposite and their intersetion L(�) is the entralizer of theimage of �. Set �L(�) := f(l; l) 2 G : l 2 L(�)g. Denote by C(�) the onneted enter ofL(�).The proof of Theorem A1 in [Bri98℄ shows12



Proposition 4.3.2 Let X be an embedding of G=H and O be a olorless orbit of G in X.Then, there exists a one parameter subgroup � of T suh that limt!0 �(t) exists in X andbelongs to O. Set z := limt!0 �(t).The isotropy subgroup of z inG is generated by P u(�)�P u(��) and �L(�):(C(�)�f1g)z.In partiular, the onjugay lass of P (�) only depends on O; its representative ontainingB� is denoted by P (O).The paraboli subgroups P (O) an be read o� the moment polytopes of X byLemma 4.3.3 Assume that X is projetive and toroidal. Let L be an ample G-linearizedline bundle on X. Let � 2 �. Then, the following are equivalent:(i) fp 2 X (T )Q : �_(p) = 0g \P(O;L) 6= ;.(ii) P� � P (O).Proof: By Proposition 4.2.1, Assertion (i) is equivalent to the fat that C(X;O) isontained in �� 6=�Q!�_ .Let � be as in Proposition 4.3.2. Replaing � by a onjugated one parameter subgroup,we an assume that P (�) � B�, that is, P (�) = P (O). Then, one heks that �� belongs tothe relative interior of C(X;O). So, Assertion (i) is equivalent to: � belongs to �� 6=�Q!�_ .The lemma follows easily. �4.4| In this paragraph, X is a simple toroidal embedding of G=H suh that the losedorbit Z is projetive. We reall some results (see [Bri97℄ or [Bri89℄) about the Piard group,Pi(X) of X.Consider the universal overing � : eG �! G of G. As in Setion 2.2, if � is a subgroupof G, e� denotes its preimage in eG.If � is an algebrai group ating on a variety Y , we denote by Pi�(Y ) the group ofall �-linearized line bundles on Y . Then we have anonial isomorphisms: PieG�eG(X) 'Pi(X) = L�2� Z[Bs�B�℄.By Proposition 4.3.2, the orbit Z is isomorphi to eG= eB � eG= eB�. Then, Lemma 3.4.5allows us to identify PieG�eG(Z) with X ( eB)� X ( eB�). Let �Z : PieG�eG(X) �! PieG�eG(Z)be the restrition homomorphism. Then, by the preeding isomorphisms, �Z indues amorphism �Z : Pi(X) �! X ( eB)�X ( eB�). Then, we have (see [Bri97℄ and [Res00℄):Proposition 4.4.4 With above notation (X is simple and toroidal), we have:(i) The morphism �Z indues an isomorphismPi(X) �! f(�;��) : � 2 X ( eB)g:If � 2 X ( eB), we denote by L� the eG� eG-linearized line bundle suh that �Z(L�) =(�;��).(ii) If � 2 X ( eB), L� is generated by its global setions (resp. ample) if and only if � isdominant (resp. dominant regular). 13



5 GIT-quotient by a spherial subgroup5.1| In this setion, X denotes a normal projetive variety endowed with an ation of asemi-simple group G, and H denotes a spherial subgroup of G. As in Geometri InvariantTheory, to eah ample H-linearized line bundle on X, we will assoiate an open subset of Xwhih admits a ategorial quotient by H in the ategory of aÆne morphisms.Let rH : PiG(X) �! PiH(X) and r : PiH(X) �! Pi(X) denote the morphisms ofrestrition of the ations. A harater of H indues a linearization of the trivial line bundle.This de�nes an embedding i of X (H) into PiH(X).With these notation, it is shown in [KKV84℄ that the following sequene:0 !X (H)Q i! PiH(X)Q r! Pi(X)Q ! 0is exat. Applying this to G and H, we easily obtainLemma 5.1.1 The morphism� : PiG(X)Q � X (H)Q �! PiH(X)Q(L; �) 7�! rH(L)
 i(�)is surjetive.Now, we an prove the fundamental lemma of this setion:Lemma 5.1.2 Let L be anH-linearized line bundle on X. Then, the algebraLn�0 �(X;L
n)Hof H-invariant setions is �nitely generated.Proof: By Lemma 5.1.1, there exist a positive integer m, L0 in PiG(X) and � in X (H)suh that L
m = rH(L0)
 i(�): Then, with the notation of Setion 3.4, we have a anonialisomorphism: Mn�0�(X;L
mn)H 'Mn�0�(X;L
n0 )H;�n�:The grading of �n�0�(X;L
n0 ) and the G-linearization of L0 de�ne an ation of G� k� on�n�0�(X;L
n0 ). Consider H� = f(h; �(h)) : h 2 Hg: Then, we haveMn�0�(X;L
n0 )H;�n� = 0�Mn�0�(X;L
n0 )1AH� :Moreover, H� is a spherial subgroup of G� k� and the algebra Ln�0 �(X;L
n0 ) is �nitelygenerated. Then, Theorem 9.3. of [Gro97℄ shows that Ln�0 �(X;L
mn)H is �nitely gener-ated.On the other hand, the ring Ln�0 �(X;L
n)H is integral on Ln�0 �(X;L
mn)H . Weonlude by Theorem 2, Chap. V (x3.2) of [Bou64℄. �
14



By Lemma 5.1.2, if L is an ample H-linearized line bundle , we set, as in GIT forredutive groups:Y (L) = Proj �Ln�0 �(X;L
n)H� ;Xss(L) = fx 2 X : 9n > 0; � 2 �(X;L
n)H : �(x) 6= 0g; and� : Xss(L) �! Y (L) the morphism indued by the inlusion ofLn�0 �(X;L
n)Hin Ln�0 �(X;L
n):5.2| The preeding onstrution has the following properties:Proposition 5.2.3 Keep notation as above; in partiular, L is ample. Then, we have:(i) The map � is aÆne. Moreover, for every aÆne open subset U in Y (L), we havek[��1(U)℄H = ��(k[U ℄).(ii) If Y is a variety and � : Xss(L) �! Y is an aÆne H-invariant map then there existsa map e� : Y (L) �! Y suh that the following diagram is ommutative:Xss(L) �! YY (L)�# e� !In partiular, Y (L) only depends on Xss(L), and is denoted by Xss(L)==H.(iii) The variety Xss(L)==H is normal.(iv) The map � is surjetive in odimension one.(v) Let Z be a G-stable losed subvariety of X. If LjZ denotes the restrition of the H-linearized line bundle L to Z, then we have Zss(LjZ) = Z \ Xss(L). Moreover therestrition of � to Z \Xss(L) identi�es anonially with the quotient of Z by H.Proof: The proofs of Assertions (i) and (iii) are the same as for redutive quotients (see[Res00℄ for details). Assertion (ii) is a diret onsequene of the �rst one.To prove Assertion (iv) let us �x a prime divisor D in Xss(L)==H. Sine Xss(L)==H isnormal, there exists an aÆne open subset U and a regular funtion f on U suh that D \Uis non-empty and equal to fx 2 U : f(x) = 0g. Let ��U denote the inlusion of k[U ℄H ink[U ℄. Consider fD = ��1(D \ U) = fx 2 ��1(U) : ��U(f)(x) = 0g.If A is a ring and a belongs to A, then we denote by a:A the ideal generated by a. Sine��U (k[U ℄) = k[��1(U)℄ \ k(X)H and f 2 k(X)H , we have:���U(f):k[��1(U)℄� \ k(X)H = ��U (f:k[U ℄):This shows that k[U ℄=f:k[U ℄ embeds into k[��1(U)℄=f:k[��1(U)℄ and so �(fD) is dense in D.Assertion (iv) follows. 15



Let us prove Assertion (v). By Lemma 5.1.1, replaing L by a power if neessary, wean assume that there exist L0 2 PiG(X) and � 2 X (H) suh that L = rH(L0) 
 i(�).Replaing L by a power again, we an assume that the restrition morphism � : �(X;L0) �!�(Z;L0jZ) is surjetive. SineG is redutive and � isG-equivariant, there exists a sub-moduleM of �(X;L0) suh that � indues an isomorphism of G-modules betweenM and �(Z;L0jZ).In partiular, � indues a surjetion from �(X;L0)H;� onto �(Z;L0jZ)H;�. Assertion (v)follows easily. �Remark: 1) If H is redutive, then Assertion (ii) holds without assuming that � is aÆne.But in general, this assumption annot be omitted. Indeed, one an easily �nd an examplewhere H is a Borel subgroup of G (see [Res00℄).2) If H is redutive, then the quotient morphism is surjetive; but this does not hold ingeneral. Consider, indeed, the additive group G a of the �eld k. Let M2 denote the vetorspae of 2� 2-matries and let P(M2) be the orresponding projetive spae. We de�ne anation of G a on P(M2) by:�:[m℄ = [ 1 �0 1 !m℄ 8� 2 k and m 2M2; m 6= 0One heks easily that the quotient of P(M2) by G a assoiated to L = O(1) is not surjetive.5.3| Now, we set: Xs(L) := fx 2 Xss(L) : ��1(�(x)) = H:xg. Points in Xs(L) aresaid to be stable for L.Remark: Assume that there exists a point in X with �nite isotropy in H. Then, one hekseasily that any stable point x has a �nite stabilizer in H and a losed H-orbit in Xss(L).When H is redutive the onverse is also true. But this onverse is false in general (see[Res00℄; 5.2 for an example).We have the following riterion for existene of stable points:Proposition 5.3.4 Let d be the dimension of the general orbits of H in X. Then, thefollowing assertions are equivalent:(i) dim(Xss(L)==H) + d=dim(X).(ii) Eah general �ber of � ontains a unique dense orbit of H.Proof: The impliation (ii) ) (i) is trivial. Let us prove the onverse. Consider anaÆne open subset UH in Xss(L)==H and set U = ��1(UH). We laim that the quotient �eldFra(k[U ℄H) equals the �eld k(U)H of invariant rational funtions on U .By Rosenliht's Theorem (see [PV89℄; Theorem 2.3), the transendene degree of k(U)Hequals dim(U) � d. Sine k[U ℄H = k[UH ℄, the transendene degree of Fra(k[U ℄H) is thedimension of Xss(L)==H. So, k(U)H is a �nite extension of Fra(k[U ℄H).Let f 2 k(U)H . Then, there exist a0; � � � ; ak 2 k[U ℄H suh that a0fk+a1fk�1+� � �+ak = 0.Multiplying by ak�10 , we obtain that a0f is integral on k[U ℄. Now, the normality of X (andso of U) implies that a0f 2 k[U ℄. Then f belongs to Fra(k[U ℄H). This proves the laim.16



The other part of Rosenliht's Theorem then shows that there exists a restrition of � toan open subset of Xss(L) whih is a geometri quotient. Assertion (ii) follows. �5.4| In this paragraph, we show that some power of L desends to an ample line bundleon Xss(L)==H.Sine the graded algebraLn�0 �(X;L
n)H is �nitely generated, Proposition 3 of ChapterIII of [Bou61℄ shows that there exists a positive integer m suh that Ln�0 �(X;L
mn)H isgenerated by �(X;L
m)H . Then, we onsider the map:� : Xss(L)==H �! P �(�(X;L
m)H)��y 7�! n� 2 �(X;L
m)H : �(y) = 0o :We set L
m==H := ��(O(1)). Then, L
m==H is a very ample line bundle on Xss(L)==H.Moreover, ��(L
m==H) = L
mjXss(L) and we have a anonial isomorphism:Mn�0�(Xss(L)==H; (L
m==H)
n) 'Mn�0�(X;L
mn)H :6 Projetive embeddings of G=H as quotients of om-pletions of G: a riterion6.1| We �x again a semi-simple group G, a spherial subgroup H of G and a projetiveembedding Y of G=H. The following theorem answers the question: an Y be obtained asa quotient by f1g �H of a G�G-equivariant projetive embedding of G ?An ation of G is said to be quasi-faithful if its kernel is �nite.Theorem 1 Assume that the ation of G on G=H is quasi-faithful. Let Y be a projetiveembedding of G=H. Then, the two following onditions are equivalent:(i) There exist a projetive G�G-equivariant embedding X of G and an ample G�H-linearized line bundle L on X suh that Y = Xss(L)==H.(ii) For any G-stable prime divisor D in Y , the valuation �D of the �eld k(G=H) withenter D extends to a G�G-invariant valuation of k(G).Proof: (i)) (ii): Consider the quotient-morphism � : Xss(L) �! Y . Let D be aG-stable prime divisor of Y .Sine � is surjetive in odimension one, there exists a prime divisor E of X suh that�(E \Xss(L)) = D. Let �� : k(Y ) �! k(X) denote the map indued by �. Then,�D = �E Æ ��.Sine � is G-equivariant, we have �(G) = �(G=H). Then, E is ontained in X �G andso is stable by G�G. Moreover, the map �� is the anonial embedding of k(G=H) in k(G).Now, Assertion (ii) follows from the relation �D = �E Æ ��.(ii)) (i): Let M be a very ample G-linearized line bundle on Y . Set V = �(Y;M)�.Then, Y is embedded in P(V ). By Exerise 5.1.4 of [Har77℄, replaing M by a power if17



neessary, we an assume that the aÆne one ~Y over Y is normal. Let y be the base pointof Y and ey be a lift of y in V . The salar multipliation on the G-module V gives an ationof G� k� on V . There exists a harater � of H suh that the isotropy of ey in G� k� isequal to H� = f(h; �(h)) : h 2 Hg.We denote by � the ation map G �! PGL(V ) and by G1 its image. Consider the losureX1 of G1 in P(End(V )), gX1 the orresponding aÆne one in End(V ), and the map:e : fX1 �! eYm 7�! m:eyWe laim that e is surjetive in odimension one. Otherwise, there exists a prime divisorfD in the losure of eY � Im( e ). Then, fD is stable by G� k� and is the aÆne one over aG-stable divisor of Y .Let X1ss be the image in X1 of the pullbak in gX1 of eY � f0g by e . Then, e restrits to : X1ss �! Y .By assumption, there exists a G�G-invariant valuation � of k(G) whose restrition tok(G)H is �D. Sine X1 is omplete, � Æ �� has a enter Z in X1. So � Æ  � = �D and  (Z)is dense in D. This ontradition proves the laim.Via �, k(X1) is embedded into k(G). Let us onsider the normalization X of X1 in k(G)and the orresponding morphism, � : X �! X1.Let L1 denote the restrition to X1 of O(1) on P(End(V )) and L its pullbak by �. Sinethe ation of G on G=H is quasi-faithful, � and � are �nite. Thus, L is ample. ReplaingM (and so L) by a power if neessary, we an assume that X is embedded into P(�(X;L)�).Consider the aÆne one fX over X in �(X;L)� and the k�-equivariant map e� : fX �! gX1over �.Note that fX is endowed with an ation of G�G suh that e� is G�G-equivariant. Then,e� Æ e : fX �! eY indues a ommutative diagram:fX e�Æe ! eYSpe(k[fX℄H�)� !� !Sine � is G� k�-equivariant, the stabilizer of �(1) in G� k� is ontained in H�. So itis equal to H�, sine � is H�-invariant. In partiular, � is birational.Moreover, the laim implies that � is surjetive in odimension one. Sine eY is normal,Rihardson's Lemma (see [PV89℄) shows that � is an isomorphism. Then, Y equals Xss(L
�)==H. �Remarks 1- Note that a G-invariant valuation � of k(G=H) always extends to a G-invariant(for the left multipliation) valuation of k(G) (see [Kno91℄ or [Bri97℄). But, as shown bythe example in Appendix A of [Res00℄, a G�G-invariant extension of � may not exist. Inpartiular, Condition (ii) of Theorem 1 may not hold.2- The onstrution used in the proof of Theorem 1 is essentially due to L. Renner (see[Ren89℄). But, in his artile L. Renner forgot an essential assumption (that is, Condition(ii) of Theorem 1). Moreover, he assumed that H is semi-simple.18



6.2| Theorem 1 motivates the followingDe�nition A spherial homogeneous spae G=H is said to be liftable if any G-invariantvaluation of k(G=H) extends to a G�G-invariant valuation of k(G).Proposition 6.2.1 Let G be a semi-simple group. Then, we have:(i) Let H1 � H2 be two spherial subgroups of G. Then, if G=H1 is liftable then so isG=H2.(ii) Let H1 � H2 be two spherial subgroups of G suh that the index of H1 in H2 is �nite.Then, G=H1 is liftable if and only if G=H2 is.(iii) If H is symmetri (i.e. the set of the �x points of an automorphism of G of order 2)then G=H is liftable.Proof: Assertion (i): Let � be a G-invariant valuation of k(G=H2). Then, by Corollary3.1.1 of [Bri97℄ or by [Kno91℄ there exists a G� f1g-invariant valuation � of k(G) suh that� is the restrition of � to k(G=H2). Sine, G=H1 is liftable, the restrition of � to k(G=H1)extends to a G�G-invariant valuation of k(G). Assertion (i) follows.Assertion (ii): Let B be a Borel subgroup of G opposite to H2. With the assumptions of As-sertion (ii), Hom(X (B)B\H1 ;Q) identi�es anonially with Hom(X (B)B\H2 ;Q). Moreover,Corollary 3.1.1 of [Bri97℄ (see also [Kno91℄) shows that CV(G=H1) maps onto CV(G=H2).Sine for i = 1 or 2, CV(G=Hi) embeds in Hom(X (B)B\Hi ;Q), this implies that CV(G=H1)identi�es with CV(G=H2). Assertion (ii) follows.Assertion (iii): By Assertion (ii), we an assume that G is adjoint and that G=H has aanonial embedding X, with the notation of [CP83℄ (note that X is alled the wonderfulompati�ation of X). Let L be an ample G-linearized line bundle on X. Consider theverties p of the moment polytope P(X;L) orresponding to the unique losed orbit of G inX. Then, Proposition 8.2 of [CP83℄ desribes the one generated by �p+P(X;L). Indeed,this one is the intersetion of X (B)B\HQ and the one of X (B)Q generated by the oppositeof simple roots. Thus, the dual one of �p+P(X;L) in Hom(X (B)B\HQ ;Q ) is the image bythe restrition of the negative Weyl hamber of Hom(X (B)Q;Q). By Proposition 3.3.4, thisimplies that the one CV(G=H) is the image of the one CV(G) generated by the G�G-invariant valuations of k(G). �Remark: In [Kan99℄, S. Kannan showed that the anonial embedding of a symmetri spaeis a GIT-quotient of the anonial embedding of the group. This also follows from Theorem1 and Proposition 6.2.1.The symmetri spaes are a �rst family of liftable spherial homogeneous spaes. Thefollowing proposition gives another one:Proposition 6.2.2 Let G=H be a sober spherial homogeneous spae. If H is solvable thenG=H is liftable. 19



Proof: Let Y be the anonial embedding of G=H and y be its base point. Let B�be a Borel subgroup of G ontaining H. Then, by [Kno91℄ or [Bri97℄, the anonial mapG=H �! G=B� extends to a G-equivariant map � : Y �! G=B�. Consider the B�-variety� = ��1(B�=B�).Let B be a Borel subgroup of G opposite to H and hene to B�. Set T = B \ B�.Denote by U the unipotent radial of B. Consider the following ommutative diagram:U � � (u;s)7!usisomorphism! U:�U(u;s)7!u# u7!uB�=B�!G=B�:�#The subset U:� is open in Y . Then, T:y is dense in � whih is a tori variety. Sine Yontains a unique losed orbit of G, � ontains a unique losed orbit of B�. This orbit beingprojetive, it is a �xed point denoted by z. Consider the unique aÆne T -stable and opensubset �z of � ontaining z. Then, by the previous diagram U ��z is isomorphi to YG:z;B.We dedue that the one CV(G=H) identi�es with the one C assoiated to the aÆne torivariety �z.We want to determine the rays of the one C_ generated by the weights of the ation ofT in k[�z℄. Let x be a point in �z suh that dim(T:x) equals one. Consider the restritionmorphism � : k[�z℄(T ) �! k[T:x�z ℄(T ):Sine � is surjetive, the half-line generated by a weight of T in k[T:x�z ℄ is ontained inC_. Moreover, the lassial theory of tori varieties (see [Ful93℄ or [Oda88℄) shows that thishalf-line is a ray of C_ and that onversely all rays of C_ are obtained in this way. Thus, itremains to ompute the weights of the ation of T in k[T:x�z ℄.Consider the losure S of T:x in �. Sine Y is toroidal, all T -stable divisors in �ontaining z are stable by B�. Then, S is stable by B�. On the other hand, as a projetivetori variety of dimension one, S is isomorphi to P1. Moreover, B�:x is either isomorphi tok or k�. If B�:x is isomorphi to k�, then B� has two �xed point in S; that is not possible.We dedue that B�:x is isomorphi to k.Let B�x (resp. Tx) be the stabilizer of x in B� (resp. in Tx). Sine B�:x is isomorphito k, B�x does not ontain the unipotent radial of B�. Then, there exists a simple root �of (B�; T ) suh that the unipotent one parameter subgroup U� of B� assoiated to � doesnot �x x.We laim that the restrition of � to Tx is trivial. Indeed, let � : k �! U� be theanonial isomorphism. Sine T:x is open in S, there exist � 2 k� and t0 2 T suh that�(�):x = t0:x. Let t 2 Tx. Then, we have:�(�_(t)�):x= t�(�)t�1:x = t:�(�):x= tt0:x = t0t:x= �(�): (1)Moreover, sine k has no non-trivial subgroup, Bx \ U� is trivial. Then, Equality (1)implies that �(t) = 1. This proves the laim.20



By the laim, � or �� is a weight of the T -module k[�z \ S℄. On the other hand, it isshown in [BP90℄ (see also Setion 4.2 of [Bri97℄) that C_ is ontained in the one generatedby the negative roots. We dedue that � is a weight of the T -module k[�z \ S℄.We just proved that the rays of the dual one of CV(G=H) ontain the simple roots of(B�; T ). The proposition follows easily. �6.3| Consider G = PGL(3) and the symmetri subgroup H = PSO(3). Then G=H isthe set of (non-degenerated) onis in P2. Assoiating to eah oni its equation de�nes anembedding Y of G=H into P5.Theorem 1 and Proposition 6.2.1 show that Y is the quotient of a projetive embeddingof G. But it is not a geometri quotient of any projetive embedding of G (see [Res00℄; 7.5.2for details). Note that the embedding Y is not toroidal.In the sequene of this artile, our main aim is to obtain projetive embeddings of spher-ial homogeneous spaes as geometri quotients of projetive embeddings of the group. So,the preeding example explain why we pay now a partiular attention to olorless embeddings(and olorless orbits).7 B �H-stable divisors in embeddings of G7.1| Let X be an embedding of G and O be a olorless orbit of G�G in X. Let D 2D(G=H). We denote by DX the losure in X of the set of all g 2 G suh that gH=H 2 D.The aim of this setion is to determine the intersetion of O and DX .7.2| The �rst step is to show that O ontains an open B �H-orbit whose omplementin O is a divisor.By Proposition 4.3.2, there exist two opposite paraboli subgroups P and Q of G anda point x in O suh that the isotropy I of x in G�G is (P u � Qu):(�L:(f1g � C)) whereL = P \ Q; �L = f(l; l) : l 2 Lg and C is a subgroup of the onneted enter of L.Moreover, replaing x by another point in O if neessary, we an assume that Q ontains B.The inlusion of I in P �G de�nes a G� f1g-equivariant �bration p : O �! G=P . The�ber F over P=P is the P �G-homogeneous spae (P �G)=I. Note that F is homogeneousunder the ation of f1g �G. Moreover, the inlusion of I \ (f1g �G) in f1g �B indues af1g �G-equivariant �bration q : F �! G=B. We obtain a diagram:F !OG=Bq# G=Pp# (7.2.1)Let E 2 D(G=P ) be a prime B-stable divisor in G=P . Then, p�1(E) is a prime B �H-divisor of O denoted by EO. Now, we onsider O � SE2D(G=P )EO. Eah orbit of B �Hin O � SE2D(G=P )EO intersets F in a unique orbit of (P \ B) � H; so, for all y 2 O,(B �H):y \ F is either the empty set or the preimage by q of a unique orbit of H in G=B.21



If D 2 D(G=H), we set DB = fgB=B 2 G=B : g�1H=H 2 Dg. We denote by DO thelosure of (B �H):q�1(DB) in O. Then, DO is a B �H-stable divisor in O.The previous disussion showsLemma 7.2.1 With the previous notation (in partiular B � Q), we have:O = (B �H):x [ [D2D(G=H)DO [ [E2D(G=P )EO:7.3| Let �(L) denote the set of simple roots of (B \ L; T ). Then, the Bruhat deom-position yields D(G=P ) = fBs�P=P : � 2 � � �(L)g. We set E� = Bs�P=P . Returningto the situation of Setion 7.1, we an now formulate a desription of DX \ O:Proposition 7.3.2 Let X be an embedding of G and O a olorless orbit of G�G in X.Let P , Q and L be as in Setion 7.2. Let D 2 D(G=H) and let D be the B-weight of itsequation. Write D = P�2� k�!�, with k� 2 N.Then, with the notation of Lemma 7.2.1, we have:DX \ O = DO [ [�2���(L) s:t: k� 6=0E�O:7.4| From Paragraph 7.4 to Paragraph 7.7, we will prove Proposition 7.3.2. First, wede�ne and alulate\equations" of DO and EO as we have de�ned the equations of elementsof D(G=H) in Setion 2.2.Consider the universal overing � : eG �! G and the map qG�G : eG� eG �! O; (g1; g2) 7!(�(g1; g2)):x. If D 2 D(G=H), we denote by fDO the unique equation of q�1G�G(DO) ink[ eG� eG℄ suh that fDO(1) = 1. We de�ne fEO similarly.To ompute fDO and fEO , we �x our attention on O. Considering the ation of eG� eGon O, we an assume that G is simply onneted. Moreover, the inlusion of (P u �Qu):�Lin I indues a ommutative diagram:G�G=((P u �Qu):�L)G�G qG�G !! O� !Then, applying Lemma 7.4.3 below to �, we an assume that C is trivial.Lemma 7.4.3 Let � be a linear algebrai group, �1 and �2 two losed subgroups of � suhthat �1 � �2. Consider the natural map � : �=�1 �! �=�2. Let D be a prime divisorin �=�2. Then, the pullbak ��(D) of D by � is the sum of the irreduible omponents of��1(D), with multipliity being one.
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Proof: In this proof, if Y is a variety and y is a point in Y , we denote by OY;y theloal ring of rational funtions in Y de�ned at y. By absurd, we assume that there existsan irreduible omponent E of ��1(D) suh that ��(D)� 2E is e�etive. Sine all �bers of� have the same dimension, �(E) is dense in D. In partiular, there exists x 2 E suh that�(x) is smooth in D. Then, there exists a loal equation f 2 O�=�2;�(x) of D at �(x). Therealso exists a loal equation g 2 O�=�1;x of E at x. Sine, ��(D) � 2E is e�etive, h := fÆ�g2belongs to O�=�1;x. So, the di�erential of f Æ � at x is zero. But, sine � is equivariant, itsdi�erential is surjetive at any point of �=�1. Then, the di�erential of f at �(x) is zero.This is impossible beause of smoothness of D at �(x). The lemma is proved. �To ompute fDO and fEO , we will also use the followingLemma 7.4.4 Assume that G is simply onneted and C is trivial. Let D 2 D(G=H). SetfD�1 := fg 2 G : g�1H=H 2 Dg. Considerq2 : G �! Og 7�! (1; g):x:Then, the pullbak q�2(DO) of DO by q2 equals fD�1.Proof: Let us use the notation of Diagram (7.2.1). For this proof, we set U :=p�1(BP=P ). Sine q2 is a �bration, and U is an open subset of O whih intersets DOit suÆes to determine q�2(U \DO).Consider the ation of B \ L on F by right multipliation. Then, the quotient of B � Fby the diagonal ation of B \L exists and is denoted by B�B\L F . With obvious notation,we set � : B �B\L F �! U(b; f) 7�! b:fOne easily shows that � is bijetive; then, the normality of U implies that � is an isomorphism.Then, we have ��(DO \ U) = 1: �B �B\L q2(fD�1)�. Consider now:i : F �! B �B\L Ff 7�! (1; f):We have i� �B �B\L q2(fD�1)� = 1:q2(fD�1): To onlude, we fator q2 asG ! F i! B �B\L F �! U � !O:and use Lemma 7.4.3. �Consider on G�G the ation of B �H�I de�ned by: (b; h; i):(g1; g2) = (bg1; hg2)i for allb 2 B; h 2 H; i 2 I and (g1; g2) 2 G�G. Then, if D 2 D(G=H) (resp. E 2 D(G=P )), theequation fDO (resp. fEO) is an eigenvetor for the indued ation of B �H� I on k[G�G℄.The orresponding harater in X (B)� X (H)� X (I) whih determines fDO (resp. fEO) isstill denoted by fDO (resp. fEO). 23



Note that by the restrition homomorphism, X (I) identi�es with X (�L), that is, withX (L). Similarly, X (P ) and X (Q) identify with X (L). Moreover, X (L) is anonially em-bedded into X (B). From now on, we make these identi�ations impliitly.Now, we an desribe fDO and fEO as follows:Lemma 7.4.5 With the preeding notation, we have:(i) Let E� 2 D(G=P ) with � 2 ���(L). Then, the weight of fE�O in X (B)�X (H)�X (L)is (!�; 0;�!�).(ii) Let D belong to D(G=H) and [D : �D℄ 2 X (B)�X (B\H) X (H) be its equation. WriteD = P�2� k�!� with k� 2 N. Then,fDO = ( X�2�(L) k�!�; �D; X�2���(L) k�!�):Proof: Sine � 2 �� �(L), !� 2 X (T ) extends to P . Moreover, the equation of Bs�Pin G is a B � P -eigenvetor of weight (!�;�!�). On the other hand, by Lemma 7.4.3, wehave q�G�G(EO) = Bs�P �G. Assertion (i) follows.Consider the rational funtion f on G�G de�ned on B �H:I by the formula:f((b; h):i) = (b)�(h) 8b 2 B ; h 2 H and i 2 I: (2)Indeed, one easily veri�es that for all b 2 B and h 2 H suh that (b; h) 2 I, we haveD(b)�D(h) = 1; that is, (2) makes sense.SetDf =div(f). One easily shows that for all b 2 B and h 2 H, f(1; bh) = D(b�1)�D(h).So, Df\(f1g�G) = fD�1 (with notation as in Lemma 7.4.4). SineDf is stable by B �H�I,using Lemmas 7.2.1 and 7.4.4, it follows that:Df = q�G�G(DO) + XE2D(G=P )nE:q�G�G(EO); (3)where the nE are integers. Denote by � the harater of P suh that the equation ofPE2D(G=P ) nEE is [� : ��℄ (with the notation of Setion 2.2 for H = P ). Then, Assertion(i) and Equation (3) imply that fDO = (D � �; �D; �).Let � 2 ���(L). We laim that DO is stable by P��f1g. Indeed, sine DO is stable byB � f1g, (P� � f1g):DO is losed in O and thus equals DO or O. But, looking at Diagram(7.2.1), we see that ((P��f1g):DO)\F = ((P \P�)�f1g):(DO \F ). Sine � 2 ���(L),P \ P� equals B. So, ((P� � f1g):DO) \ F = DO \ F . The laim follows.The laim shows that D � � 2 X (B) extends to P� for all � 2 � � �(L). That is,D� � is a linear ombination of the !� for � 2 �(L). Moreover, � is a harater of P , thatis, a linear ombination of the !� for � 2 � � �(L). We dedue that � = P�2���(L) k�!�.Assertion (ii) follows. �7.5| The next step in the proof of Proposition 7.3.2 is to �nd an equation for DX .For this, we make some redutions. The theory of embeddings of G (see [Res00℄ or [Bri97℄and Setion 4) shows that there exists a simple toroidal G�G-equivariant embedding X 024



of G whih ontains XO and a projetive G�G-orbit Z. Replaing X by X 0 if neessary,to prove Proposition 7.3.2, we an assume (in the sequene of Setion 7) that X is simple,toroidal, with projetive losed orbit Z. Then, we have the followingLemma 7.5.6 Keep notation as above. Consider the eG� eG-linearized line bundle LD de-�ned in Proposition 4.4.4.Then, there exists a setion � of LD (unique up to salar multipliation) suh that � isan eigenvetor for eB � fH of weight (D; �D). Moreover, DX = div(�).Proof: The uniqueness of � follows from Proposition 3.4.6 and from the fat that�(X;LD) is a multipliity-free eG� eG-module.Sine D is dominant, LD is generated by its global setions. As a onsequene, therestrition morphism from �(X;LD) to �(Z;LD jZ) is non-zero. But, the eG� eG-module�(Z;LD jZ) is isomorphi to VD 
 V �D . Thus, there exists a eG� eG-equivariant embeddingi of VD 
 V �D into �(X;LD) (unique up to salar multipliation).By Proposition 3.4.6, there exists � 2 V �D , fH-eigenvetor of weight �D. Let v 2 VD bea B-eigenvetor. Then � = i(v 
 �) satis�es the �rst assertion of the lemma.Sine the restrition of � to Z is non-zero, no omponent of div(�) is stable by G�G.Then, eah omponent of div(�) intersets G. So, to prove the lemma it suÆes to determinediv(�) \G.Consider � : eG �! G. Sine Pi( eG) is trivial, �( eG; ��(LD jG)) is isomorphi as aeG� eG-module to k[ eG℄. Then, � Æ � equals [D : �D℄ up to a salar multipliation. Thus,div(�jG Æ �) = fD. Moreover, Lemma 7.4.3 shows that �� ��(fD)� = fD. Then, we havediv(�jG) = �(fD). The lemma follows. �7.6| Now, we want to understand the restrition of the equation of DX (given byLemma 7.5.6) to an orbit O of G�G.Consider the restrition morphism PieG�eG(X) �! PieG�eG(O). Then, by Proposition4.4.4, we identify PieG�eG(X) with X ( eB). Set eI = (�; �)�1(I). Then, by Lemma 3.4.5, thegroup PieG�eG(O) identi�es with X (eI), that is, with X (eL)�X ( eC). If (�; ) 2 X (eL)�X ( eC),then we denote by L(�;) the orresponding eG� eG-linearized line bundle on O. Then, wehave theLemma 7.6.7 Let � 2 X ( eB). Consider the eG� eG-linearized line bundle L� on X de�nedby Proposition 4.4.4. Then, the restrition of L� to O equals L(0;��jeC) with preeding notation( where (0;��jeC) 2 X (eL)� X ( eC)).Proof: Let XZ;B�B� be the unique aÆne open B�B�-stable and open subset of X thatintersets Z. Let S be the losure of T in XZ;B�B�. Then, by Proposition 2.6.7, S intersetsZ in a unique point z and XZ;B�B� is isomorphi to U � U� � S as B � B�-variety . Thevariety S is an aÆne T � T -equivariant embedding of T , in partiular its Piard group istrivial. Thus, the restrition of L� to S is trivial as a line bundle on S (without linearization).Furthermore, the eT � eT -linearization of L�jS obtained by restriting the eG� eG-linearization25



of L� de�nes a harater of eT � eT : via the ation of eT � eT on the �ber of L� at z. Sinez is the point of Z �xed by B� � B and L�jZ = L(�;��), the group eT � eT ats on (L�)z by(�;��).By Proposition 4.3.2, there exists x in S\O �xed by eI. But now, sine L�jS is trivial, thestabilizer of x in eT � eT ats on the �ber at x by (�;��). We dedue that �eL ats triviallyon this �ber and eC ats by ��jeC . The proposition follows. �7.7| Now, we an omplete the proof of Proposition 7.3.2:Let D 2 D(G=H) and O a olorless orbit of G�G in X. The aim is to determineDX \ O. As noted just before Lemma 7.5.6, we an assume that X is a simple toroidalembedding of G and ontains a projetive orbit Z of G�G.Consider the weight (; �; �) 2 X ( eB)�X (fH)�X (eL) of the equation in k[ eG� eG℄ of thepullbak of DX \ O in eG� eG (see Lemma 7.4.5). Let LD and � be as in Lemma 7.5.6.Sine �jO is an equation of DX \ O, we have:  = D and � = �D. Moreover, by Lemma7.6.7, the restrition of LD to O is L(0;�D jeC). We dedue that � = 0. Then, Proposition7.3.2 follows easily from Lemma 7.4.5. �8 Quotients of projetive embeddings of the group bya spherial subgroup8.1| In Setion 6, we started with a projetive embedding of G=H and tried to realize itas a quotient of a projetive embedding of G. Conversely, in this setion, we start with aG�G-equivariant projetive embedding X of G.Let L be an ample G�H-linearized line bundle on X and let � be a harater of H. Weuse the notation of Lemma 5.1.1 for the subgroup G�H of G�G. Sine X (G) is trivial,rG�H is injetive. For simpliity, we denote rG�H(L)
 i(�) by L 
 �. Then, Lemma 5.1.1shows that any G�H-linearized line bundle has a non-zero tensor power of the form L
 �for some L and �.We �x our attention on the quotient of X by f1g�H assoiated to L
 �, as in Setion5.1: � : Xss(L 
 �) �! Xss(L 
 �)==H:Then, the ation of G� f1g on X desends to an ation of G on Xss(L 
 �)==H whihbeomes a spherial variety (sine B �H has a dense orbit in G).Moreover, replaing L
 � by a power, we an assume (see Setion 5.4) that there existsa \quotient" line bundle (L
�)==H. This line bundle has a natural G-linearization induedby the G� f1g-one on L. For simpliity, we set:Y := Xss(L 
 �)==H and LY := (L 
 �)==H:Consider the quotient:
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L 
 � !LYXss(L
 �)# �! Y#8.2| Let B be a Borel subgroup of G opposite to H and B� be another one, oppositeto B. As in Setion 4.2, we embed P(X;L) in X (B)Q . Then, we an desribe the momentpolytope P(Y;LY ) by:Theorem 2 Keep notation as above. Then, we have:P(Y;LY ) = P(X;L) \P(G=H;L�):Proof: We have:P(X;L) = fp 2 X (B)Q : 9n > 0; np 2 P+; Vnp 
 V �np ,! �(X;L
n)g:Moreover,P(Y;LY ) = fp 2 X (B)Q : 9n > 0; np 2 P+; Vnp ,! �(X; (L 
 �)
n)Hg:With the notation of Proposition 3.4.6, we dedue that:P(Y;LY ) = fp 2 X (B)Q : 9n > 0; np 2 �n� et Vnp 
 V �np ,! �(X;L
n)g:But by de�nition P(G=H;L�) is the set of p 2 X (B)Q suh that there exists a positiveinteger n suh that np 2 �n�. The theorem follows. �8.3| In the sequel of the setion, we show how to read properties of Y and � on thepolytopes P(X;L) and P(G=H;L�). For example, the following orollary gives a riterionfor Y to be an embedding of G=H.Corollary 8.3.1 The G-variety Y is an embedding of G=H if and only if P(X;L) intersetsthe relative interior of P(G=H;L�).Proof: The neessary ondition follows easily from Theorem 2 and Proposition 3.1.1.Conversely, assume that P(X;L) intersets the relative interior of P(G=H;L�). Let Idenote the isotropy in G of �(1). Obviously, I ontains H; in partiular, I is a spherialsubgroup and Y is an embedding of G=I. By Proposition 3.1.1, the interior of P(X;L)in X (B)Q is not empty. Then, the di�enrenes of elements of P(Y;LY ) span X (B)B\HQ .In partiular, the ranks of G=I and G=H equal. Then, Theorem 3.4.3 in [Bri97℄ (see also[Kno91℄) shows that the index of H in I is �nite. So, Proposition 5.3.4 implies that eah�ber of � over G=I ontains a unique open orbit of H. We dedue that H = I. �Remark: Note that if Y satis�es Corollary 8.3.1, we an determine the fan F(Y ) byTheorem 2 and Propositions 3.3.4 and 3.5.8 (see [Res00℄; 7.2.3 for examples).8.4| The following proposition desribes the image by � of an orbit of G�G in X:27



Proposition 8.4.2 Let O be an orbit of G�G in X whih intersets Xss(L 
 �). Then,there exists a dense orbit (G�H):x of G�H in O. Moreover,(i) �(O \Xss(L 
 �)) = G:�(x), and(ii) P(G:�(x);LY ) = P(O;L) \P(G=H;L�).Proof: Proposition 2.6.6 shows that there exists a toroidal embedding fX of G anda G�G-equivariant surjetive morphism fX �! X. Moreover, any orbit of G�G in fXontains a dense orbit of G�H by Lemma 7.2.1. Then, there exists a dense orbit of G�Hin O.Sine the variety �(O \Xss(L 
 �)) is irreduible and stable by G, it is the losure of anorbit of G in Y . But (G�H):x is dense in O, and G:�(x) is dense in �(O \Xss(L
 �)).Assertion (i) follows.By Proposition 5.2.3, the restrition of � to O \ Xss(L 
 �) is the quotient by H ofOss(L 
 �). Then, the proof of Assertion (ii) is the same as that of Theorem 2. �8.5| Let us �x an orbit 
 of G in Y . We are now interested in the preimage of 
 by �.Reall that D(Y;
) denotes the set of olors of 
 in Y . Set:F(D(Y;
)) := f 2 P(G=H;L�) : (; �) 2 XD=2D(Y;
)Q :(D ; �D)g:Then by Proposition 3.5.8, F(D(Y;
) is the minimal fae of P(G=H;L�) whih ontainsP(
;LY ).Proposition 8.5.3 With the preeding notation, we have:(i) There exists a minimal orbit (for the order indued by the inlusion of the losures)among the orbits O of G�G in X suh that the losure of �(O\Xss(L
�)) ontains
. We denote this minimal orbit by O(
).(ii) P(O(
);L) is the minimal orbital fae of P(X;L) whih ontains P(
;LY ).(iii) P(
;LY ) = P(O(
);L) \ F(D(Y;
)).(iv) If 
 is olorless in Y , then �(O(
) \Xss(L
 �)) = 
. In partiular, the image of �ontains 
.Proof: Let O be an orbit of G�G in X and let x be a point in the open orbit of G�Hin O. Proposition 8.4.2 shows that �(O(
) \Xss(L 
 �)) ontains 
 if and only if G:�(x)ontains 
. On the other hand, if O1 and O2 are two orbits of G�G in X, Proposition3.3.4 shows that: P(O1;L) \P(O2;L) = P(O1 \ O2;L):Then, we dedue that:
 � �(O) \Xss(L
 �) () P(
;LY ) � P(G:�(x);LY )() P(
;LY ) � P(O;L) \P(G=H;L�)() P(
;LY ) � P(O;L): (1)28



Then, Proposition 3.3.4 shows that there exists an orbit 
(G) of G�G in X satisfying (1)and minimal for this property. This proves Assertions (i) and (ii).Moreover, P(
;LY ) is ontained in F(D(Y;
)). Sine, P(O(
);L)\F(D(Y;
)) is a faeof P(Y;LY ), we dedue that P(
;LY ) is a fae of P(O(
);L)\F(D(Y;
)). But, P(
;LY )intersets the relative interior of F(D(Y;
)). So, there exists a fae F of P(O(
);L) suhthat: P(
;LY ) = F \ F(D(Y;
)):With the notation of Proposition 3.3.4, the minimality of O(
) implies that O(F) = O(
).Let P+F denote the minimal fae of P+ interseting F. Sine P(G=H;L�) is ontained inP+ and P(
;LY ) is ontained in F, F(D(Y;
)) is ontained in P+F . But now, Proposition3.3.4 implies that: F \ F(D(Y;
)) = P(O(
);L) \ F(D(Y;
)):Assertion (iii) is proved. If 
 is olorless, we have, by Assertion (iii):P(
;LY ) = P(O(
);L) \P(G=H;L�):Then, Assertion (iv) follows from Proposition 8.4.2. �Remark: If H is redutive, then � is surjetive. Moreover, if y is a point in 
 and x is apoint in the unique losed orbit of f1g �H in ��1(y), then O(
) is the orbit of x by G�G.Let � : Hom(X (B);Q) �! Hom(X (B)B\H ;Q) be the restrition map. Then, a onne-tion between the olored fans of X and Y is the followingLemma 8.5.4 With the notation of Proposition 8.5.3, we have:� (C(X;O(
))) � C(Y;
):Proof: Let p be a point in the relative interior of P(
;LY ). By Proposition 3.5.8, theone C(Y;
) is dual to �p + P(Y;LY ) in Hom(X (B)B\H ;Q). Sine P(Y;LY ) is ontainedin P(X;L), C(Y;
) ontains the image by � of the dual in Hom(X (B);Q) of �p+P(X;L).Sine p belongs to P(O(
);L), applying Proposition 3.5.8 to X and O(
) ompletes theproof of the lemma. �8.6| Denote again by 
 an orbit of G in Y . The next proposition gives a desriptionof the preimage by � of the minimal aÆne B-stable open subset of Y interseting 
, namelyY
;B (see Proposition 2.4.4).Proposition 8.6.5 With preeding notation, we have:��1(Y
;B) = XO(
) � [D=2D(Y;
)DX :Proof: Let p be a point in the relative interior of P(
;LY ). Let n be a positive integerand � be a setion of L
nY whih is a B-eigenvetor of weight np. Then, by Proposition 3.3.4,we have Y
;B = Y � fy 2 Y : �(y) = 0g: 29



But � belongs to � (X; (L 
 �)
n)), and ��1(Y
;B) = X�fx 2 X : �(x) = 0g:Moreover,by de�nition of O(
) (see Proposition 8.5.3), the set ��1(Y
) is ontained in XO(
). So, wehave: ��1(Y
;B) = XO(
) � fx 2 X : �(x) = 0g: (4)We onsider the set of those x 2 X suh that �(x) = 0. Let M be an irreduibleomponent of this set whih does not interset G. Sine the odimension of M equals one,M is stable by G�G. But, ��1(Y
;B) intersets O(
). Then, Equality (4) shows that M isontained in X �XO(
). We dedue that:��1(Y
;B) = XO(
) � fx 2 G : �(x) = 0g:Moreover, sine p belongs to the relative interior of P(
;LY ), we have:fy 2 G=H : �(y) = 0g = [D=2D(Y;
)D:The proposition follows. �8.7| The main result of this setion is a riterion (expressed orbit by orbit) in terms ofpolytopes to deide if Xs(L 
 �) equals Xss(L 
 �), with notation of Setion 5.3. We startby the followingLemma 8.7.6 Let 
 be an orbit of G in Y . With the notation of Proposition 8.5.3, weassume that 
 and O(
) are olorless. Then, ��1(
) \ O(
) is the open orbit of G�H inO(
).Proof: Assertion (iv) of Proposition 8.5.3 shows that ��1(
) \O(
) ontains the openorbit of G�H in O(
). Moreover, by Proposition 8.6.5, we have: ��1(Y
;B) = XO(
) �SD=2D(Y;
)DX : But, sine G is onneted, an orbit of G� f1g is ontained in SD=2D(Y;
)DX ifand only if it is ontained in some DX . We dedue that ��1(Y
) = XO(
) � SD=2D(Y;
) 
DX ,where 
DX denotes the union of all orbits of G� f1g ontained in DX .Moreover, with the notation of Diagram (7.2.1), eah orbit of G� f1g in O intersets Fin a unique orbit of P � f1g; that is, in a �ber of the natural map� : F q! G=B ! G=Q:This identi�es the set of all orbits of G� f1g ontained in DO with the set of all orbits ofQ ontained in D. In partiular, any non open orbit of G�H in O is ontained in DO forsome D in D(G=H).But, by Proposition 7.3.2, for anyD 2 D(G=H),DX\O ontainsDO. Then, no non-openorbit of G�H in O is ontained in ��1(Y
). This ompletes the proof of the proposition.� Let E be a �nite-dimensional vetor spae and let P be a polyhedron in E . The dimensionof the aÆne subspae generated by P in E is alled the dimension of P and is denoted bydim(P). If Q is another polyhedron in E , we say that the intersetion of P and Q istransversal if dim(P \Q) = dim(E)� dim(P)� dim(Q):30



Proposition 8.7.7 Let 
 be an orbit of G in Y . With the notation of Proposition 8.5.3, weassume that 
 and O(
) are olorless. Then, the three following onditions are equivalent:(i) ��1(Y
) is ontained in Xs(L).(ii) ��1(
) is ontained in Xs(L).(iii) The intersetion of P(O(
);L) and P(G=H;L�) is transversal.Proof: Note that Proposition 3.1.1 shows that the rank of 
 (resp. O(
)) equals thedimension of P(
;LY ) (resp. P(O(
);L)). Then, Condition (iii) is equivalent to rk(G=H)�rk(
) = rk(G)� rk(O(
)). By Lemma 2.6.8, this is also equivalent to:dim(G=H)� dim(
) = dim(G)� dim(O(
)): (5)On the other hand, Proposition 8.5.3 shows that: �(O(
) \Xss(L
 �)) = 
: We deduethat the dimension of the general �bers of � over 
 equals dim(O(
))�dim(
). In partiular,the �ber over any point y in 
 has this dimension. But now, Condition (iii) (that is, Equality(5)) is equivalent to: 8y 2 
 dim(��1(y)) = dim(H):Now, using the Remark of Setion 5.3, we onlude that Condition (ii) implies (iii). Sine(i) implies trivially (ii), it remains to prove: \(ii) implies (i)".Assume that dim(��1(y)) = dim(H). Then , Proposition 8.4.2 implies easily that ��1(y)is ontained in O(
).Consider the stabilizer PG=H in G of BH=H. Let us �x a Levi subgroup LG=H of PG=Hadapted to H (see Proposition 2.5.5) and a maximal torus TG=H of LG=H ontained in B.By Proposition 4.3.2, there exists a point x in O suh that the isotropy of x in G�G is:I = (P u �Qu)n (�L� (f1g � C)) ;where Q is a paraboli subgroup of G ontaining B, P is the paraboli subgroup of Gontaining TG=H and opposite to Q, L is the intersetion of P and Q and C is a subgroup ofthe onneted enter of L.We laim that PG=H is ontained in Q.Let � be a simple root of (B; TG=H) suh that P� is ontained in PG=H . Then, sine theomplement of PG=HH=H in G=H is the union of the olors of G=H, P� stabilizes eah olorof G=H. Thus, the B-weight of the equation fD of any olor D of G=H is orthogonal to theoroot �_. Then, Lemma 4.3.3 shows that P(G=H;L�) is ontained in the orthogonal spaeto �_. In partiular, P(O(
);L) whih ontains P(
;LY ) intersets the orthogonal of �_.Thus, Lemma 4.3.3 shows that Q ontains P�. The laim follows.Now, we laim that the isotropy of f1g �H at a general point of O(
) is �nite.Indeed, sine (G�H):I=I is open in O(
), we have to prove that the intersetion ofI and f1g �H is �nite. By the �rst laim, Qu is ontained in P uG=H . Thus, sine C isontained in LG=H , Proposition 2.6.7 implies that H \ QuC = H \ C. On the other hand,by Proposition 3.1.1, the di�erenes of elements of P(G=H;L�) span X (B)B\HQ , and that31



of elements of P(O(
);L) span X (B)B\CQ . The assumption implies that the intersetion ofX (TG=H)TG=H\H and X (TG=H)C is �nite; hene H \C is �nite. This proves the seond laim.Let us �x an aÆne open subset U of 
. The laims show that the general �bers of �over U and the general orbits of H in O(
) have the same dimension. But, by Lemma 8.7.6,��1(U) is ontained in the open orbit of G�H in O(
). In partiular, ��1(U) is smooth.Then, the proof of Proposition 5.3.4 shows that every general �ber of � over U ontains aunique open dense orbit of H. But now, the fat ��1(U) is ontained in the open orbit ofG�H in O(
) implies that the �bers of � over U are orbits of H. This implies Assertion(ii).But, Condition (iii) holds for all orbits of G in Y
. Thus, the same is true for (ii). Then,Condition (i) holds. �9 Toroidal embeddings as geometri quotients9.1| In Setion 9, G=H is supposed to be sober and liftable. Fix a projetive embeddingY of G=H. As in Setion 6, we want to obtain Y as a quotient of a G�G-equivariantprojetive embedding X of G for an ample G�H-linearized line bundle L. But now, wewant to have: Xss(L) = Xs(L); that is, a geometri quotient. We start with the ase whenY is the anonial embedding of G=H:Theorem 3 Assume that G=H is sober and liftable. Consider the anonial embedding Y(resp. X) of G=H (resp. G). Then, there exists an ample G�H-linearized line bundle Lon X suh that the quotient � : Xss(L) �! Xss(L)==H of X by f1g �H assoiated to Lsatis�es the following onditions:(i) Xss(L)==H = Y ,(ii) Xss(L) = Xs(L),(iii) � is surjetive.Before proving Theorem 3, we illustrate the ideas of the proof by examples.9.2| In this paragraph, G is PGL(3) and H is the subgroup of G onsisting of matriesof the form 0B� � 0 00 � �0 � � 1CA :It is easy to see that G=H is spherial and identi�es with the pairs (p; d) 2 P2�P2_ (a pointand a line in P2) suh that p does not belong to d. Set Y = P2�P2_ viewed as an embeddingof G=H. Then Y is the anonial embedding of G=H.We �x an ampleG-linearized line bundleM on Y . The proof of Theorem 1 is onstrutive:it gives the anonial embedding X of G and an ample G�H-linearized line bundle L 
 �on X depending onM. The polytopes P(X;L) and P(Y;M) look like the following piture:32



!�P(X;L)
P(Y;M) !�Figure 1: The polytopes P(Y;M) and P(X;L)

P(X;L")
P(Y;M) !�

!�
Figure 2: The polytopes P(Y;M) and P(X;L")
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By Proposition 8.7.7, we do not have Xss(L 
 �) = Xs(L 
 �). Yet, if we move a littlebit L to L" we obtain the situation of Figure 9.2. Then Y is the geometri quotient ofXss(L" 
 �).9.3| The proof of Theorem 3 will be a generalization of the preeding example. Morepreisely, we start with an ample G-linearized line bundle on the anonial embedding Y ofG=H. Then, the onstrution used in the proof of Theorem 1 gives a G�H-linearized linebundle L on the anonial embedding X of G. Then, using Proposition 8.7.7, we are goingto prove that we an move L a little bit and obtain Y as a geometri quotient of X.Two diÆulties an appear. First, as shown by the example when G = SL(4) andH = Sp(4) (see [Res00℄) the onstrution of the proof of Theorem 1 may not give theanonial embedding of G; or equivalently, the line bundle L on X may not be ample.On the other hand, if the rank of G=H is less than that of G, replaing L by a nearbyL", we may hange the \shape" of the moment polytope of the quotient. That is, we anhange the quotient variety Xss(L
�)==H (see [Res00℄, for an example). We will show thatthese problems an be avoided by moving L arefully.9.4| In this paragraph, we obtain some tehnial results about the one of valuationsof G=H.Let us �x a W -invariant salar produt h:; :i on X (T )
 R. Denote by �(PG=H) the setof simple roots � suh that PG=H ontains P�. Consider the basis (��)�2� of Hom(X (B);Q)dual to the basis (�)�2� of X (B)Q . Then, we obtain the following ommutative diagram:X�2�Q�0�� � ! Hom(X (B);Q)X�=2�(PG=H)Q�0��[" ! Hom(X (PG=H);Q);�BP#where �BP is the restrition homomorphism indued by the inlusion of X (PG=H) into X (B).With this notation, we have:Lemma 9.4.1 (i) The set ��BP (��)��=2�(PG=H) is a basis of the vetor spae Hom(X (PG=H);Q).(ii) Moreover, �BP  X�2�Q�0��! = X�=2�(PG=H)Q�0�BP (��):Proof: Let us onsider the dual statements. The dual spae of P�=2�(PG=H) Q�� identi�eswith P�2�(PG=H ) Q�, that is, with the orthogonal of X (PG=H) for the W -invariant salarprodut. Assertion (i) follows easily.Now, to prove Assertion (ii), it is suÆient to show that the dual ones in X (PG=H)Q ofP�=2�(PG=H) Q�0�BP (��) and of �BP �P�2� Q�0��� are equal; that is, to show that:X (PG=H)Q \ 0� X�=2�(PG=H)Q�0� + X�2�(PG=H)Q�1A = X (PG=H)Q \  X�2�Q�0�! :34



The inlusion of the right side in the left one is obvious. Conversely, let us �x  = P�2� x��with x� 2 Q�0 if � =2 �(PG=H), and x� 2 Q if � 2 �(PG=H).Sine X (PG=H)Q is the orthogonal spae of �(PG=H), we have h�_; i = 0 for all � in�(PG=H). Thus, for all � in �(PG=H), we have:h�_; X�2�(PG=H ) x��i = � X�=2�(PG=H)h�_; �ix�:On the other hand, for all distint � and � in �, h�_; �i is non-positive. Moreover, for all� =2 �(PG=H), x� is non-negative. As a onsequene, we have:8� 2 �(PG=H) h�_; X�2�(PG=H ) x��i � 0:Then, we an apply Lemma 6 of Chapter 5, no 3.5 of [Bou68℄ to the basis �(PG=H). Weobtain that x� is non-negative for all �. Assertion (ii) of the lemma follows. �Sine PG=H is paraboli, it is onneted. Then, eah D in D(G=H) is stable by PG=H ;and the harater D for the ation of B of the equation of D extends to PG=H . Then, byLemma 2.2.1, we have the following inlusions: X (B)B\H � X (PG=H) � X (B). Taking thedual, we obtain:Hom(X (B);Q) �BP! Hom(X (PG=H);Q) ! Hom(X (B)B\H ;Q ):We denote by CV(G) the valuation one assoiated to the G�G-homogeneous spae G.Consider also the restrition map � : CV(G) �! CV(G=H) indued by the inlusion ofk(G=H) in k(G). Then, we haveLemma 9.4.2 Keep notation as above . We assume in addition that G=H is sober andliftable (i.e. CV(G=H) is stritly onvex and � is surjetive).Then, there exists a subset �G=H of ���(PG=H) suh that, in the following ommutativediagram: CV(G) � ! Hom(X (B);Q)  � X�2�Q�0��Hom(X (PG=H);Q)�BP #  X�=2�(PG=H)Q�0��["
CV(G=H)

�# �! Hom(X (B)B\H ;Q)#  � X�2�G=H Q�0��["the images in Hom(X (B)B\H ;Q) of the ones CV(G=H) and P�2�G=H Q�0�� are equal.Moreover, the hooked arrows ,! are injetive.35



Proof: By Lemma 9.4.1, the assumption that � is surjetive implies that the images inHom(X (B)B\H ;Q) of P�=2�(PG=H) Q�0�� and of CV(G=H) are equal. Indeed, CV(G) equalsP�2� Q�0�� (see Setion 4).Moreover, by [Bri90℄, sine G=H is sober, the one CV(G=H) is simpliial. For all raysQ�0 of CV(G=H), there exists a root � in � � �(PG=H) suh that Q�0�� maps to Q�0in Hom(X (B)B\H ;Q) by the diagram of the lemma. Choosing suh an � for all rays ofCV(G=H), we obtain a set �G=H ontained in � � �(PG=H) whih satis�es the ondition ofthe lemma. �9.5| We an now give the:Proof of Theorem 3: Let M be an ample G-linearized line bundle on Y . Let P�G=Hbe the paraboli subgroup of G ontaining T and opposite to PG=H . Then, by Proposition2.6.7, the losed G-orbit Z in Y is isomorphi to G=P�G=H . Denote by 0 the harater ofP�G=H suh that, with the notation of Lemma 3.4.5, the restrition of M to Z is L0 . Westart by proving:Claim 1: the set 0 +P�=2�G=H Q>0� ontains a rational regular dominant weight.Sine, �PG=H is ontained in � � �G=H , it is suÆient to prove Claim 1 for the one0 +P�2�(PG=H) Q>0�.Note that, sineM is ample, L0 is ample and 0 belongs to the relative interior of theone generated by P+ \ X (PG=H). Reall that P+Q denotes the one of X (B)Q generated byP+. Then, Q�0�_ is the dual one of P+Q from the fae P� 6=� Q�0!�. We dedue that thedual one of �0 + P+Q equals P�2�(PG=H ) Q�0�_.If, by absurd, 0+P�=2�G=H Q>0� does not interset the interior of P+Q , then the interiorof �0 + P+Q does not interset P�=2�G=H Q>0�. Thus, there exists � 2 P�2�(PG=H) Q�0�_whih is negative on P�=2�G=H Q>0�. This ontradits the fat that h�_; �i is non-positiveand proves Claim 1.ReplaingM by a power, Claim 1 shows that there exists � 2 X (B) whih belongs to0 +P�=2�G=H Q>0� and to the relative interior of P+Q . Consider the eG� eG-linearized linebundle L� on X with the notation of Proposition 4.4.4. Replaing M and hene L� bya power if neessary, we an assume that the eG� eG-linearization of L� indues a G�G-linearization. Denote by � the harater of H suh that the restrition ofM to G=H is L�(see Lemma 3.4.5). We are going to prove that L = L� 
 � has the properties announed inthe theorem.First, sine � is regular dominant, Proposition 4.4.4 shows that L is ample. Note thatProposition 3.5.8 shows here that:P(X;L�) = P+Q \  � + X�2�Q�0�! :In partiular, 0 belongs to P(X;L�) \P(G=H;L�).Let us denote byO0 the unique orbit ofG�G inX suh that C(X;O0) = P�2�G=H Q�0��.Then, we have:Claim 2: Any orbit O of G�G in X suh that P(O;L�) ontains 0 is ontained in XO.36



Let O be suh an orbit. If � is a simple root, we denote by X� the enter in X of thevaluation of CV(G) whih maps to �!�_ in Hom(X (B);Q). Then, there exists a subset I of� suh that: O = \�2IX�(see for example [CP83℄). Thus, we have:P(O;L�) = 0�� +X�=2I Q�1A \P(X;L�);and by Claim 1: 0 � � 2 0�X�=2I Q�1A \ 0� X�=2�G=H Q<0�1A :We onlude that �� �G=H is ontained in � � I; that is I is ontained in �G=H . Claim 2follows.The next step is to proveClaim 3: P(O0;L�) \P(G=H;L�) = f0g.The di�enrenes of elements of P(O0;L�) span P�=2�G=H Q�. The one spanned by thedi�enrenes of elements of P(G=H;L�) is X (B)B\HQ . Moreover, the intersetion of these twovetor subspaes is f0g, sine by Lemma 9.4.2P�2�G=H Q�0�� embeds in Hom(X (B)B\H ;Q).Then, P(O0;L�)\P(G=H;L�) is either the empty set or a single point. On the other hand,the proof of Claim 2 shows that 0 belongs to this intersetion. Claim 3 is proved.Now, we an prove Assertion (i).Consider the quotient morphism � : Xss(L� 
 �) �! Xss(L� 
 �)==H. Replaing Mby a power, we an assume that L� 
 � admits a quotient by f1g �H denoted by LY (seeSetion 5.4). Let us �x a point x in the open orbit of B �H in O0. By Proposition 8.4.2, wehave: P(G:�(x);LY ) = P(O0;L�)\P(G=H;L�). Thus, Claim 3 and Proposition 3.1.1 showthat the rank of G:�(x) equals 0. Thus, G:�(x) is projetive, hene losed in Xss(L�
�)==H.Moreover, Proposition 3.5.8 applied to the losed orbit of G in Y implies that (D; �D)belongs to the relative interior of the one PD2D(G=H) Q�0(D; �D): Now, Proposition 3.5.8shows that G:�(x) is olorless in Xss(L� 
 �)==H.Moreover, if �BG=H : Hom(X (B);Q) �! Hom(X (B)B\H ;Q) denotes the restrition mor-phism, we have:��0 +P(Xss(L� 
 �)==H;LY )�_ � �BG=H �(�0 +P(O0;L�))_�� �BG=H �P�2�G=H Q�0��� :Then, Proposition 3.3.4 shows that G:�(x) is the unique losed orbit of G in Xss(L�
�)==H.This easily implies that Xss(L� 
 �)==H = Y . The fat that L� 
 � satis�es Assertion (i) isproved.Sine Y is toroidal, Proposition 8.5.3 implies Assertion (iii). It remains to prove37



Claim 5: Xss(L� 
 �) = Xs(L� 
 �).We noted in the proof of Claim 3 that the subspaes spaned by the di�erenes of elementsof P(G=H;L�) and of P(O0;L�) interset in f0g. We onlude by Proposition 8.7.7. �9.6|We ome to our main theorem. It asserts that ifG=H is sober and liftable then anytoroidal embedding of G=H an be obtained as a geometri quotient of a toroidal embeddingof G. A toroidal embedding of a spherial homogeneous spae is said to be simpliial if itsfan is simpliial.Theorem 4 Let G=H be a sober, liftable spherial homogeneous spae. Let Y be a projetive,toroidal embedding of G=H.Then, there exist a projetive, toroidal G�G-equivariant embedding X of G and anample G�H-linearized line bundle L on X suh that the quotient,� : Xss(L) �! Xss(L)==Hof X by f1g �H assoiated to L satis�es:(i) Xss(L)==H = Y ,(ii) Xss(L) = Xs(L),(iii) � is surjetive.If in addition Y is simpliial, then there exists a simpliial embedding X of G satisfyingthe preeding onditions.Proof: The �rst step of the proof is to onstrut the olored fan of X (see Proposition2.3.3).Consider the ommutative diagramHom(X (B);Q) e�! Hom(X (B)B\H ;Q )CV(G)[" � ! CV(G=H);["where e� denotes the restrition map.Let X denote the anonial embedding of G. Let L1 be an ample G�H-linearized linebundle on X whih satis�es Theorem 3. Let 
0 be the losed orbit of G in the anonialembedding Y of G=H. Consider the orbit O(
0) of G�G in X de�ned in Proposition 8.5.3.Then CV(X;O(
0)) is a fae of CV(G); the latter is mapped by � isomorphially ontoCV(G=H). Consider the fan F1 of CV(X;O(
0)) obtained from F(Y ) by �. Let F de-note the fae of CV(G) generated by those extremal rays of CV(G) whih do not belong toCV(X;O(
0)). Consider the fan F with maximal ones generated by F and the maximalones of F1. Then, F is the fan of a omplete toroidal G�G-equivariant embedding X ofG. 38



We laim that X is projetive. This will follow from a projetivity riterion of an embed-ding of a spherial homogeneous spae in term of its fan (see Corollary 5.2.2 of [Bri97℄ or see[Bri89℄). When applied to Y , this riterion shows existene of a funtion l : CV(G=H) �! Q ;whih is linear on eah one of F(Y ) and stritly onvex (as de�ned in [Ful93℄ p.68). Then,there exists a unique funtion el : CV(G) �! Q ; whih equals zero on F, whih equals l Æ �on CV(X;O(
0)) and whose restritions to the ones of F are linear. One heks that el isstritly onvex. Sine X is omplete, Corollary 5.2.2 of [Bri97℄ shows that X is projetive.The next step is to hose an ample line bundle on X.Replaing L1 by a power if neessary, we an write L1 = L2 
 �, with L2 2 PiG�G(X)and � 2 X (H). By [Bri97℄, Theorem 2 (see also [Kno91℄) there exists a G�G-equivariantbirational morphism  : X �! X. We �x our attention on  �(L2).By Theorem 3, Xss(L2
�) is ontained in XO(
0) and intersets O(
0). We dedue thatfor any orbit O of G�G in X, the following equivalene holds:P(O;  �(L2)) \P(G=H;L�) 6= ; () O �  �1(XO(
0)): (6)Moreover, the intersetion in (6) is transversal. We dedue that there exists a neighborhoodU of  �(L2) in PiG�G(X)Q suh that for allM in U , we have:P(O;M) \P(G=H;L�) 6= ; () O �  �1(XO(
0)): (7)On the other hand, the line bundle  �(L2) is generated by its global setions. Then, byProposition 4.4.4, U ontains an ample line bundle L"2.We laim that (X;L = L"2 
 �) satis�es the three onditions of the theorem.Consider the quotient � : Xss(L) �! Xss(L)==H. Let O be an orbit of G�G whihis losed in  �1(XO(
0)). Denote by 
 the open G-orbit in �(O \ Xss(L)). Sine Xss(L)is ontained in  �1(XO(
0)), we have O(
) = O. Thus, Lemma 8.5.4 shows that the oneC(Xss(L)==H;
) ontains �(C(X;O)). Moreover, the restrition of � to C(X;O(
0)) is in-jetive. Then, the interior of the one C(Xss(L)==H;
) in CV(G=H) is not empty. It followsthat 
 is projetive and that �(O\Xss(L)) = 
. Then, by Lemma 8.5.4 and by onstrutionof X, Xss(L)==H is isomorphi to Y .Sine the ones �(C(X;O)), where O is an orbit of G�G in X as above, over CV(G=H),we have established a orrespondene between losed orbits of G�G in  �1(XO(
0)) andomplete orbits of G in Xss(L)==H. It is now easy to prove that Xss(L) = Xs(L), by usingProposition 8.7.7.Moreover, Proposition 8.5.3 show that � is surjetive.If in addition Y is simpliial, then by onstrution X is simpliial too. �Now, we an apply Theorem 4 and desribe the isotropy subgroups of the ation of Gin Y (with the notation of Theorem 4). So, the following orollary extends results that C.DeConini and C. Proesi (see [CP83℄) obtained when H is symmetri.39



Corollary 9.6.3 Let G=H and Y be as in Theorem 4. Let y be a point in Y .Then, there exist two opposite paraboli subgroups P and Q of G suh thatGy = P u:Cy:�L \Qu(Q \H)�;where L = P \ Q, C is the onneted enter of L and, P u and Qu denote respetively theunipotent radials of P and Q.Proof: Let X be a G�G-equivariant embedding of G and L be a ample G�H-linearized line bundle satisfying Theorem 4. Let x in X suh that �(x) = y. Then, byProposition 4.3.2, there exists two opposite paraboli subgroups P and Q of G and a sub-group C of the onneted enter of L = P \Q suh that the isotropy of x in G�G isI := (P u �Qu)n (�L� (C � f1g)):Sine ��1(y) = (f1g �H):x, we have:Gy = fg 2 G : (g; 1)I \ (f1g �H) 6= ;g:The orollary follows. �With preeding notation, Corollary 9.6.3 implies that L \ Qu(Q \ H) is a spherialsubgroup of L. Moreover, Gy is obtained by paraboli indution (see [Bri98℄, [Lun96℄ or[Was96℄ for a preise de�nition) from the latter spherial subgroup of L.Note that Corollary 9.6.3 does not neessary hold if G=H is not liftable (see Example10.7.3 of [Res00℄).Referenes[BCP90℄ E. Bifet, C. De Conini, and C. Proesi. Cohomology of regular embeddings. Adv.Math., 82(1):1{34, 1990.[Bou61℄ N. Bourbaki. �El�ements de math�ematique. Fasiule XXVIII. Alg�ebre ommutative.Chapitre 3: Graduations, �ltrations et topologies. Chapitre 4: Id�eaux premiersassoi�es et d�eomposition primaire. Hermann, Paris, 1961. Atualit�es Sienti�queset Industrielles, No. 1293.[Bou64℄ N. Bourbaki. �El�ements de math�ematique. Fas. XXX. Alg�ebre ommutative.Chapitre 5: Entiers. Chapitre 6: Valuations. Hermann, Paris, 1964. Atualit�esSienti�ques et Industrielles, No. 1308.[Bou68℄ N. Bourbaki. �El�ements de math�ematique. Fas. XXXIV. Groupes et alg�ebres deLie. Chapitre VI: syst�emes de raines. Hermann, Paris, 1968.[BP90℄ M. Brion and C. Proesi. Ation d'un tore dans une vari�et�e projetive. In A. JosephA.Connes, M.Duo and R.Rentshler, editors, Operator algebras, unitary repre-sentations, enveloping algebras, and invariant theory, pages 509{539. Birkh�auser,1990. 40
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