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Abstract

Let G be a connected reductive subgroup of a complex connected
reductive group Ĝ. Fix maximal tori and Borel subgroups of G and Ĝ.
Consider the cone LR(G, Ĝ) generated by the pairs (ν, ν̂) of dominant
characters such that V ∗

ν is a sub-G-module of Vν̂ . It is known that
LR(G, Ĝ) is a closed convex polyhedral cone. In this work, we show
that every regular face of LR(G, Ĝ) gives rise to a reduction rule for
multiplicities. More precisely, for (ν, ν̂) on such a face, the multiplicity
of V ∗

ν in Vν̂ is proved to be equal to a similar multiplicity for represen-
tations of Levi subgroups of G and Ĝ. This generalizes, by different
methods, results obtained by Brion, Derksen-Weyman, Roth. . .

1 Introduction

Let G be a connected reductive subgroup of a complex connected reductive
group Ĝ. The branching problem consists in

decomposing irreducible representations of Ĝ as sum of irreducible
G-modules.

Fix maximal tori T ⊂ T̂ and Borel subgroups B ⊃ T and B̂ ⊃ T̂ of G
and Ĝ. Let X(T ) denote the group of characters of T and let X(T )+ denote
the set of dominant characters. For ν ∈ X(T )+, Vν denotes the irreducible
representation of highest weight ν. Similarly we use notation X(T̂ ), X(T̂ )+,
Vν̂ relatively to Ĝ. For any G-module V , the subspace of G-fixed vectors is
denoted by V G. For ν ∈ X(T )+ and ν̂ ∈ X(T̂ )+, set

cν ν̂(G, Ĝ) = dim(Vν ⊗ Vν̂)G. (1)

Sometimes we simply write cν ν̂ for cν ν̂(G, Ĝ). Let V ∗ν denote the dual
representation of Vν . The branching problem is equivalent to the knowledge
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of these coefficients since

Vν̂ =
∑

ν∈X(T )+

cν ν̂V
∗
ν . (2)

The set LR(G, Ĝ) of pairs (ν, ν̂) ∈ X(T )+ × X(T̂ )+ such that cν ν̂ 6= 0 is
known to be is a finitely generated subsemigroup of the free abelian group
X(T )×X(T̂ ) (see [É92]). Consider the convex cone LR(G, Ĝ) generated in
(X(T ) ×X(T̂ )) ⊗ Q by LR(G, Ĝ). It is a closed convex polyhedral cone in
(X(T )×X(T̂ ))⊗Q.

Let F be a face of LR(G, Ĝ). Assume that F is regular, that is that
it contains pairs (ν, ν̂) of regular dominant weights. Let Ŵ be the Weyl
group of Ĝ and T̂ . If S is a torus in G and H is a subgroup of G containing
S, HS denotes the centralizer of S in H. By [Res10b], the regular face F
corresponds to a pair (S, ŵ) where S is a subtorus of T and ŵ ∈ Ŵ such
that

ĜS ∩ ŵB̂ŵ−1 = B̂S , (3)

and the span of F is the set of pairs (ν, ν̂) ∈ (X(T )×X(T̂ ))⊗Q such that

ν|S + ŵν̂|S = 0 ∈ X(S)⊗Q. (4)

Theorem 1 Let (ν, ν̂) ∈ X(T )+ × X(T̂ )+ be a pair of dominant weights.
Assume that (ν, ν̂) belongs to the span of F (equivalently that it satisfies
condition (4)). Then

cν ν̂(G, Ĝ) = cν ŵν̂(GS , ĜS).

Theorem 1 is the algebraic conterpart of the geometric Theorem 2 below.
Let X = G/P × Ĝ/P̂ be a flag manifold for the group G × Ĝ. Let λ be
a one-parameter subgroup of G and C be an irreducible component of the
fixed point set Xλ of λ in X. Let Gλ be the centralizer of the image of λ in
G. We assume that (C, λ) is a (well) covering pair in the sense of [Res10a,
Definition 3.2.2] (see also Definition 2 below).

Theorem 2 Let L be a G-linearized line bundle on X generated by its global
sections such that λ acts trivially on the restriction L|C . Then the restriction
map induces an isomorphism

H0(X,L)G −→ H0(C,L|C)G
λ
,

between the spaces of invariant sections of L and L|C .
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Several particular cases of Theorems 1 and 2 was known before. If G = T
is a maximal torus of G = GLn, our theorem is equivalent to [KTT07, The-
orem 5.8]. If Ĝ = G×G (or more generally Ĝ = Gs for some integer s ≥ 2)
and G is diagonally embedded in Ĝ then cν ν̂(G, Ĝ) (resp. cν ŵν̂(GS , ĜS))
are tensor product multiplicities for the group G (resp. GS). This case was
recently proved independently by Derksen and Weyman in [DW11, Theorem
7.4] and King, Tollu and Toumazet in [KTT09, Theorem 1.4] if G = GLn
and for any reductive group by Roth in [Rot11]. If ν is regular then Theo-
rem 2 can be obtained applying [Bri99, Theorem 3] and [Res10a]. Similar
reductions can be found in [Bri93, Man97, Mon96].

Note that our proof is new and uses strongly the normality of the Schu-
bert varieties. For example, in Roth’s proof (which may be the closest from
our) the normality of Schubert varieties play no role. In [DW11], the case
GLn ⊂ GLn × GLn is obtained as a consequence of a more general result
on quivers. Derksen-Weyman’s theorem on quivers can be proved by the
method used here.

In Section 4, Theorem 2 is applied to recover known results in represen-
tation theory.

Acknowledgment. This work was motivated by Roth’s paper [Rot11].
I want to thank Mike Roth for stimulating discussions on it.

2 Proof of Theorem 2

Consider the variety X = G/P × Ĝ/P̂ endowed with the diagonal G-action:
g′.(gP/P, ĝP̂ /P̂ ) = (g′gP/P, g′ĝP̂ /P̂ ).

Let λ be a one-parameter subgroup of G. Consider the centralizer Gλ of
λ in G and the parabolic subgroup (see [MFK94])

P (λ) =
{
g ∈ G : lim

t→0
λ(t).g.λ(t)−1 exists in G

}
.

Let C be an irreducible component of the fixed point set Xλ of λ in X.
Set

C+ := {x ∈ X : lim
t→0

λ(t)x belongs to C}. (5)

Note that C+ is P (λ)-stable and locally closed in X. Consider the subvariety
Y of G/P (λ)×X defined by

Y = {(gP (λ)/P (λ), x) : g−1x ∈ C+}.
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The morphism π : G × C+ −→ Y, (g, x) 7−→ (gP (λ)/P (λ), gx) identifies
Y with the quotient of G × C+ by the action of P (λ) given by p.(g, x) =
(gp−1, px). The variety Y is denoted by G ×P (λ) C

+. Set [g : x] = π(g, x)
and consider the G-equivariant map

η : G×P (λ) C
+ −→ X

[g : x] 7−→ g.x.

Recall from [Res10a] the notion of well covering pairs.
Definition The pair (C, λ) is said to be covering if η is birational. The

pair (C, λ) is said to be well covering if there exists a P (λ)-stable open subset
Ω of C+ intersecting C such that η induces an isomorphism from G×P (λ) Ω
onto an open subset of X.
Proof.[of Theorem 2] Consider the closure C+ of C+ in X. Since (C, λ) is
covering the map

η : G×P (λ) C+ −→ X

[g : x] 7−→ gx

is proper and birational. Hence it induces a G-equivariant isomorphism

H0(X,L) ' H0(G×P (λ) C+, η∗(L)).

In particular
H0(X,L)G ' H0(G×P (λ) C+, η∗(L))G.

We embed C+ in G×P (λ)C+, by x 7−→ [e : x]. Note that the composition of

the immersion of C+ in G×P (λ)C+ with η is the inclusion map from C+ to
X. In particular η∗(L)|C+ = L|C+ and the restriction induces the following

isomorphism (see for example [Res10a, Lemma 4]):

H0(G×P (λ) C+, η∗(L))G ' H0(C+,L|C+)P (λ).

Since once more, the composition of the immersion of C+ in G ×P (λ) C+

with η is the immersion of C+ in X, we just proved that the restriction
induces the following isomorphism

H0(X,L)G ' H0(C+,L|C+)P (λ). (6)

Since λ acts trivially on L|C , [Res10a, Lemma 5] proves that the restric-
tion maop induces the following isomorphism
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H0(C+,L|C+)P (λ) ' H0(C,L|C)G
λ
. (7)

By isomorphisms (6) and (7), it remains to prove that the restriction
induces the following isomorphism

H0(C+,L|C+)P (λ) ' H0(C+,L|C+)P (λ);

that is, that any regular P (λ)-invariant section σ of L on C+ extends to
C+.

Note that λ is also a one-parameter subgroup of Ĝ and that P̂ (λ) is
defined. Fix a maximal torus T of G containing the image of λ and a
maximal torus T̂ of Ĝ containing T . Note that P and P̂ have not been fixed
up to now; we have only considered the G×Ĝ-variety X. In other words, we
can change P and P̂ by conjugated subgroups. Fix a T × T̂ -fixed point x0

in C, and denote by P × P̂ its stabilizer in G× Ĝ. Hence x0 = (P/P, P̂ /P̂ ).
It is well known that C+ = P (λ)P/P × P̂ (λ)P̂ /P̂ . In particular C+

is a product of Schubert varieties and is normal. Hence it is sufficient to
proved that σ has no pole. Since σ is regular on C+, it remains to prove
that σ has no pole along any codimension one irreducible component D of
C+ − C+. We are going to compute the order of the pole of σ along D by
a quite explicit computation in a neighborhood of D in C+.

If β is a root of (T,G), sβ denotes the associated reflection in the Weyl

group. The divisor D is the closure of P (λ).sβP/P × P̂ (λ)P̂ /P̂ for some

root β or of P (λ)P/P × P̂ (λ)sβ̂P̂ /P̂ for some root β̂. Consider the first
case. The second one works similarly.

Set y = (sβP/P, P̂ /P̂ ); it is a point in D. Consider the unipotent radical
U− of the parabolic subgroup of G containing T and opposite to P . Similarly
define Û−. Consider the groups Uy = P (λ)∩ sβU−sβ and Ûy = P̂ (λ)∩ Û−.
Let δ be the T -stable line in G/P containing P/P and sβP/P . Consider the
map

θ : Uy × Ûy × (δ − {P/P}) −→ X

(u, û, x) 7−→ (ux, ûP̂ /P̂ ).

The map θ is an immersion and its image Ω is open in C+. Since Ω intersects
D, it is sufficient to prove that σ extends on Ω. Equivalently, we are going
to prove that θ∗(σ) extends to a regular section of θ∗(L).

The torus T acts on Uy×Ûy×(δ−{P/P}) by t.(u, û, x) = (tut−1, tût−1, tx).
This action makes θ equivariant. The curve (δ−{P/P}) is isomorphic to C.
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The group Uy is unipotent and so isomorphic to its Lie algebra. It follows
that Uy × Ûy × (δ − {P/P}) is isomorphic as a T -variety to an affine space
V with linear action of T .

Fix root (for the action of T × T̂ ) coordinates ξi on the Lie algebra of
Uy × Ûy. Fix a T -equivariant coordinate ζ on δ − {P/P}. Then (ξi, ζ) are
coordinates on V . Let (ai, a) be the opposite of the weights of the variables
for the action of λ. The weights of T corresponding to the part Uy are roots
of P (λ) and the weights of T̂ corresponding to the part Ûy are roots of P̂ (λ).
The weight of the action of T on TsβP/P δ is a root of G but not of P (λ).
Then we have

ai ≥ 0 and a < 0. (8)

Note that (ι ◦ θ)−1(D) is the divisor (ζ = 0) on V .
Consider now, the C∗-linearized line bundle θ∗(L) on V . It is trivial as

a line bundle (the Picard group of V is trivial) and so, it is isomorphic to
V × C linearized by

t.(v, τ) = (λ(t)v, tµτ) ∀t ∈ C∗,

for some integer µ.

We first admit that

µ ≤ 0 (9)

and we end the proof. The section θ∗(σ) corresponds to a polynomial in
the variables ξi, ζ and ζ−1; that is, a linear combination of monomials m =∏
i ξ
ji
i .ζ

j for some ji ∈ Z≥0 and j ∈ Z. The opposite of the weight of m for
the action of C∗ is

∑
i jiaj + ja. The fact that σ is C∗-invariant implies that

the monomials occurring in the expression of (ι ◦ θ)∗(σ) satisfy∑
i

jiaj + ja = µ.

Hence

j =
−1

a
(
∑
i

jiai − µ).

Now, inequalities (8) and (9) imply that j ≥ 0. In particular (ι ◦ θ)∗(σ)
extends to a regular function on V . It follows that σ has no pole along D.

It remains to prove inequality (9). Consider the restriction of L to δ.
Note that δ is isomorphic to P1 and L|δ is isomorphic to O(d) as a line bundle
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for some integer d. Since L is semiample, d is nonnegative. The group C∗
acts on TP/P δ by the weight −a and on Tyδ be the weight a. By assumption,
the group C∗ acts trivially on the fiber Lx0 (recall that x0 belongs to C). It
acts on the fiber Ly by the weight µ. Now, the theory of P1 implies that:

d =
µ− 0

a
.

But, d ≥ 0 and a < 0. It follows that µ ≤ 0. �

3 Proof of Theorem 1

Let T , B, T̂ and B̂ be like in the introduction. For any character ν of B,
Lν denotes the G-linearized line bundle on G/B such that B acts on the
fiber in Lν over B/B with the weight −ν. By Borel-Weil’s theorem, the line
bundle Lν is generated by its global sections if and only if ν is dominant
and in this case H0(G/B,Lν) is isomorphic to the dual V ∗ν (G) of the simple
G-module Vν(G) with highest weight ν.

Consider the complete flag variety X = G/B× Ĝ/B̂ of the group G× Ĝ.
Let ν and ν̂ be like in Theorem 1. Let L be the exterior product on X of
Lν and Lν̂ . By Borel-Weil’s theorem (applied to the group G× Ĝ), we have

Vν(G)∗ ⊗ V ∗ν̂ (Ĝ) = H0(X,L).

In particular cν ν̂(G, Ĝ) is the dimension of H0(X,L)G.
Set C = GSB/B× ĜSŵB̂/B̂. By [Res10b], there exists a one-parameter

subgroup λ of S such that (C, λ) is well covering and GS = Gλ. Moreover,
assumption (4) implies that λ acts trivially on L|C . Hence Theorem 2 implies
that

H0(X,L)G ' H0(C,L|C)G
S
.

However C is isomorphic to the complete flag manifold of the group GS×ĜS .
By condition (3), L|C is the line bundle Lν ⊗ Lŵν̂ . Hence Borel-Weil’s

theorem implies that H0(C,L|C) is isomorphic to V ∗ν (GS) ⊗ V ∗ŵν̂(ĜS). In

particular cν ŵν̂(GS , ĜS) is the dimension of H0(C,L|C)G
S
. The theorem is

proved.

4 Examples

4.1 Tensor product decomposition

In this subsection, we consider the case when Ĝ = G×G and G is diagonally
embedded in Ĝ. Assume that B̂ = B×B and T̂ = T ×T . Then a dominant
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weight ν̂ of T̂ is a pair (λ, µ) of dominant weights of T and Vν̂(G × G) =
Vλ(G)⊗ Vµ(G). For short, we denote by cλµ ν(G) the coefficient cν ν̂(G, Ĝ).
Then

Vλ(G)⊗ Vµ(G) =
∑
ν

cλµ ν(G) V ∗ν (G), (10)

and cλµ ν(G) is a tensor product multiplicity for G. With the notations of

Theorem 1, we have ĜS = GS×GS . In particular the coefficient cν ŵν̂(GS , ĜS)
is a tensor product multiplicity for the Levi subgroup GS of G. Hence The-
orem 1 implies to the main result of [Rot11].

Consider the case when G = GLn(C), T consists in diagonal matrices and
B in upper triangular matrices. Then a dominant weight λ is a nonincreasing
sequence (λ1, · · · , λn) of n integers and cλµ ν(G) is a Littlewood-Richardson
coefficient denoted by cnλµ ν .

Notations are useful to describe LR(G, Ĝ). Let G(r, n) be the Grassmann
variety of r-dimensional subspaces of Cn. Let F•: {0} = F0 ⊂ F1 ⊂ F2 ⊂
· · · ⊂ Fn = Cn be the standard flag of Cn. Let P(r, n) denote the set of
subsets of {1, · · · , n} with r elements. Let I = {i1 < · · · < ir} ∈ P(r, n).
The Schubert variety ΩI(F•) in G(r, n) is defined by

ΩI(F•) = {L ∈ G(r, n) : dim(L ∩ Fij ) ≥ j for 1 ≤ j ≤ r}.

The Poincaré dual of the homology class of ΩI(F•) is denoted by σI . The
classes σI form a Z-basis for the cohomology ring of G(r, n). The class
associated to [1; r] is the class of the point; it is denoted by [pt].

By [Kly98] , [KT99] and finally [Bel01], we have the following statement.

Theorem 3 Let (λ, µ, ν) be a triple of nonincreasing sequences of n inte-
gers. Then cnλµ ν 6= 0 if and only if∑

i

λi +
∑
j

µj +
∑
k

νk = 0 (11)

and ∑
i∈I

λi +
∑
j∈J

µj +
∑
k∈K

νk ≤ 0, (12)

for any r = 1, · · · , n− 1, for any (I, J,K) ∈ P(r, n)3 such that

σI .σJ .σK = [pt] ∈ H∗(G(r, n),Z). (13)
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Knutson, Tao and Woodward proved in [KTW04] that this statement is
optimal in the following sense.

Theorem 4 In Theorem 3, no inequality can be omitted.

In other words, each inequality (12) corresponds to a regular face FIJK
of the cone LR(G, Ĝ). For I = {i1 < · · · < ir} ∈ P(r, n) and λ a sequence
of n integers, set λI = (λi1 , · · · , λir) ∈ Zr. Denote by Ic ∈ P(n − r, n) the
complement of I in {1, · · · , n}. It is easy to check that Theorem 1 gives in
this case the following statement.

Theorem 5 Let (λ, µ, ν) be a triple of nonincreasing sequences of n inte-
gers. Let (I, J,K) ∈ P(r, n) such that

σI .σJ .σK = [pt]. (14)

If ∑
i∈I

λi +
∑
j∈J

µj +
∑
k∈K

νk = 0 (15)

then

cnλµ ν = crλI µJ νK . cn−rλIc µJc νKc
. (16)

Theorem 5 has been proved independently in [KTT09] and [DW11]. Note
that if equation (15) does not hold then crλI µJ νK = 0.

It is known that Theorem 3 also holds if condition (13) is replaced by

σI .σJ .σK = d[pt] ∈ H∗(G(r, n),Z), (17)

for some positive integer d. The following example shows that condition
(14) cannot be replaced by condition (17) in Theorem 5.

Example. Here n = 6, r = 3 and I = J = K = {1, 3, 5}. Then σI .σJ .σK =
2[pt] and for any (λ, µ, ν) in LR(G, Ĝ), the inequality

∑
i∈I λi +

∑
j∈J µj +∑

k∈K νk ≤ 0 holds. Consider λ = µ = ν = (1 1 0 0 − 1 − 1). Then

cnλµ ν = 3. Hence (λ, µ, ν) belongs to LR(G, Ĝ). Moreover λI = µJ = νK =
λIc = µJc = νKc = (1 0 − 1) and

∑
i∈I λi +

∑
j∈J µj +

∑
k∈K νk = 0. But

crλI µJ νK = cn−rλIc µJc νKc
= 2 and crλI µJ νK .c

n−r
λIc µJc νKc

= 4 6= 3 = cnλµ ν .

Remark With notation of Section 2, if η is dominant, the map

H0(X,L)G −→ H0(C,L)G
λ
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is injective. When applied to X = F l(n)3 this observation showh that if
σI .σJ .σK 6= 0 then equality 15 implis that cnλµ ν ≤ crλI µJ νK . cn−rλIc µJc νKc

according to the example.

Note that Knutson and Purbhoo proved in [KP11] some equalities (16)
with assumptions different from those of Theorem 5.

4.2 Kronecker coefficients

Let α = (α1 ≥ α2 ≥ . . .) be a partition. Denote by l(α) the number of
nonzero parts of α. Set |α| =

∑
i αi, α is called a partition of |α|. Consider

the symmetric group Sn acting on n letters. The irreducible representations
of Sn are parametrized by the partitions of n, let [α] denote the represen-
tation corresponding to α. The Kronecker coefficients kαβ γ , depending on
three partitions α, β, and γ of the same integer n, are defined by the identity

[α]⊗ [β] =
∑
γ

kαβ γ [γ]. (18)

The following classical result of Murnaghan and Littlewood (see [Mur55])
shows that Kronecker coefficients generalize Littlewood-Richardson coeffi-
cients.

Corollary 1 (i) If kαβ γ 6= 0 then

(n− α1) + (n− β1) ≥ n− γ1. (19)

(ii) Assume that equality holds in formula (19) but not necessarily that
kαβ γ 6= 0. Define ᾱ = (α2 ≥ α3 · · ·) and similarly define β̄ and γ̄.
Then

kαβ γ = cγ̄
ᾱ β̄
, (20)

where cγ̄
ᾱ β̄

is the Littlewood-Richardson coefficient.

Proof. Let us first introduce some notation on the linear group. Let V be a
complex finite dimensional vector space and let GL(V ) be the corresponding
linear group. If α is a partition with at most dim(V ) parts, SαV denotes the
Schur power of V ; it is the irreducible GL(V )-module of heighest weight α.
Let F l(V ) denote the variety of complete flags of V . Given integers ai such
that 1 ≤ a1 < · · · < as ≤ dim(V ) − 1, F l(a1, · · · , as; V ) denotes the set of
flags V1 ⊂ · · · ⊂ Vs ⊂ V such that dim(Vi) = ai for any i.

10



Let us choose integers e and f such that


l(α) ≤ e,
l(β) ≤ f,
l(γ) ≤ e+ f − 1.

(21)

Let E and F be two complex vector spaces of dimension e and f . Con-
sider the group G = GL(E) × GL(F ). The Kronecker coefficient kαβ γ can
be interpreted in terms of representations of G. Namely (see for example
[Mac95, FH91]) kαβ γ is the multiplicity of SαE ⊗ SβF in Sγ(E ⊗ F ). To
interpret this multiplicity geometrically, consider the variety

X = F l(E)×F l(F )×F l(1, · · · , e+ f − 1;E ⊗ F )

endowed with its natural G-action. Consider the GL(E)-linearized line bun-
dle Lα on F l(E) such that H0(F l(E),Lα) = SαE (with usual notation,
Lα = L−w0α). Similarly, fix Lβ on F l(F ) such that H0(F l(F ),Lβ) = SβF .
Because of assumption (21), there exists a GL(E⊗F )-linearized line bundle
Lγ on F l(1, · · · , e + f − 1;E ⊗ F ) such that H0(F l(1, · · · , e + f − 1;E ⊗
F ),Lγ) = Sγ(E∗ ⊗ F ∗). Observe that Sγ(E∗ ⊗ F ∗) is not a polynomial
representation of GL(E) × GL(F ). The line bundle L = Lα ⊗ Lβ ⊗ Lγ on
X is G-linearized. Then

kαβ γ = dim(H0(X,L)G). (22)

Let HE , HF , lE and lF be hyperplanes and lines respectively in E and F
such that E = HE ⊕ lE and F = HF ⊕ lF . Let λ be the one-parameter
subgroup of G acting on HE and HF with weight 1 and on lE and lF with
weight 0. Let CE be the set of complete flags of E whose the hyperplane is
HE . Note that CE is an irreducible component of F l(E)λ. Similarly define
CF . Let CE⊗F be the set of points V1 ⊂ · · · ⊂ Ve+f−1 in F l(1, · · · , e + f −
1;E⊗F ) such that V1 = lE⊗lF and Ve+f−1 = (lE⊗lF )⊕(HE⊗lF )⊕(lE⊗HF ).
Note that CE⊗F is an irreducible component of F l(1, · · · , e+ f − 1;E⊗F )λ

isomorphic to F l(HE ⊕HF ). Then C = CE × CF × CE⊗F is an irreducible
component of Xλ.

Observe that C+
E⊗F is open in F l(1, · · · , e + f − 1;E ⊗ F ), (CE , λ) and

(CF , λ) are covering in F l(E) and F l(F ) for the actions of GL(E) and
GL(F ). It follows that (C, λ) is covering.

Let x be a point in C. Let µL(x, λ) be the opposite of the weight of
the action of λ on the fiber of L over x. [Res10a, Lemma 3] implies that
if dim(H0(X,L)G) > 0 then µL(x, λ) ≤ 0 which is the inequality of the
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corollary. Assume that µL(x, λ) = 0, that is that λ acts trivially on L|C .
Theorem 1 shows that

dim(H0(X,L)G) = dim(H0(C,L|C)G
λ
).

Moreover dim(H0(C,L|C)G
λ
) is the multiplicity of the simple GL(HE) ×

GL(HF )-module SᾱHE⊗Sβ̄HF in the GL(HE⊕HF )-module Sγ̄(HE⊕HF ).
By for example [Mac95, Chapter I, 5.9], this multiplicity is precisely cγ̄

ᾱ β̄
. �
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