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Abstract

Let G be a connected reductive subgroup of a complex connected
reductive group G. Fix maximal tori and Borel subgroups of G and G.
Consider the cone LR(G, () generated by the pairs (v, ) of dominant
characters such that V' is a sub-G-module of V;. It is known that
LR(G, G') is a closed convex polyhedral cone. In this work, we show
that every regular face of LR(G, C’) gives rise to a reduction rule for
multiplicities. More precisely, for (v, ) on such a face, the multiplicity
of V¥ in Vj is proved to be equal to a similar multiplicity for represen-
tations of Levi subgroups of G and G. This generalizes, by different
methods, results obtained by Brion, Derksen-Weyman, Roth. ..

1 Introduction

Let G be a connected reductive subgroup of a complex connected reductive
group G. The branching problem consists in

decomposing irreducible representations of G as sum of irreducible
G-modules.

Fix maximal tori 7' C 7" and Borel subgroups B D T and BoTof G
and G. Let X (T) denote the group of characters of T' and let X (7')* denote
the set of dominant characters. For v € X(T)", V,, denotes the irreducible
representation of highest weight v. Similarly we use notation X (T), X (T)*,
V; relatively to G. For any G-module V', the subspace of G-fixed vectors is
denoted by VE. For v € X(T)t and © € X(T)", set

e 5(G,G) = dim(V, @ V;)C. (1)

Sometimes we simply write ¢, for ¢, (G, G) Let V' denote the dual
representation of V,,. The branching problem is equivalent to the knowledge



of these coeflicients since

Vi = Z Cy DVV* (2)

veX(T)*

The set LR(G, G) of pairs (v,0) € X(T)* x X(T)* such that ¢, # 0 is
known to be is a finitely generated subsemigroup of the free abelian group
X(T) x X(T)) (see [E92]). Consider the convex cone LR(G, &) generated in
(X(T) x X(T)) ® Q by LR(G,G). Tt is a closed convex polyhedral cone in

(X(T) x X(T)) ® Q.

Let F be a face of LR(G,G). Assume that F is regular, that is that
it contains pairs (v, ) of regular dominant weights. Let W be the Weyl
group of G and T. If S is a torus in G and H is a subgroup of G containing
S, H¥ denotes the centralizer of S in H. By [Resl0b], the regular face F
corresponds to a pair (S,w) where S is a subtorus of T" and w € W such
that

G5 nwBw™' = B, (3)
and the span of F is the set of pairs (v, 7) € (X(T) x X(T)) ® Q such that
V|S+Tf)l>|S:0€X(S)®@. (4)

Theorem 1 Let (v,0) € X(T)t x X(T)" be a pair of dominant weights.
Assume that (v,0) belongs to the span of F (equivalently that it satisfies
condition (4)). Then

i (G, G) = cypn(G°,GY).

Theorem 1 is the algebraic conterpart of the geometric Theorem 2 below.
Let X = G/P x G/P be a flag manifold for the group G x G. Let A be
a one-parameter subgroup of G and C be an irreducible component of the
fixed point set X* of A in X. Let G* be the centralizer of the image of ) in
G. We assume that (C, ) is a (well) covering pair in the sense of [Resl0a,
Definition 3.2.2] (see also Definition 2 below).

Theorem 2 Let L be a G-linearized line bundle on X generated by its global
sections such that A acts trivially on the restriction L. Then the restriction
map induces an isomorphism

H(X, L)% — H(C,£,6)®",

between the spaces of invariant sections of L and L)c.
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Several particular cases of Theorems 1 and 2 was known before. If G =T
is a maximal torus of G = GL,,, our theorem is equivalent to [KTT07, The-
orem 5.8]. If G = G x G (or more generally G = G* for some integer s > 2)
and G is diagonally embedded in G then ¢, (G, G) (resp. ¢, 40(GS,G5))
are tensor product multiplicities for the group G (resp. G*®). This case was
recently proved independently by Derksen and Weyman in [DW11, Theorem
7.4] and King, Tollu and Toumazet in [KTT09, Theorem 1.4] if G = GL,,
and for any reductive group by Roth in [Rot11]. If v is regular then Theo-
rem 2 can be obtained applying [Bri99, Theorem 3] and [Resl0Oa]. Similar
reductions can be found in [Bri93, Man97, Mon96.

Note that our proof is new and uses strongly the normality of the Schu-
bert varieties. For example, in Roth’s proof (which may be the closest from
our) the normality of Schubert varieties play no role. In [DW11], the case
GL, C GL, x GL,, is obtained as a consequence of a more general result
on quivers. Derksen-Weyman’s theorem on quivers can be proved by the
method used here.

In Section 4, Theorem 2 is applied to recover known results in represen-
tation theory.

Acknowledgment. This work was motivated by Roth’s paper [Rot11].
I want to thank Mike Roth for stimulating discussions on it.

2 Proof of Theorem 2
Consider the variety X = G/P x G/ P endowed with the diagonal G-action:
9'(gP/P, gP|P) = (g'gP/P, g'gP/P).

Let X be a one-parameter subgroup of G. Consider the centralizer G* of
A in G and the parabolic subgroup (see [MFK94])

P = {g €G ¢ limA(t).gA(t) ™" exists in G}.

Let C be an irreducible component of the fixed point set X* of A in X.
Set

Cti={zeX: 1%in(l) A(t)z belongs to C'}. (5)
_>

Note that CT is P(\)-stable and locally closed in X. Consider the subvariety
Y of G/P(\) x X defined by

Y ={(gP(\)/P(N),z) : g lze Cty.



The morphism 7 : G x Ct — Y, (g,2) — (gP(\)/P()), gz) identifies
Y with the quotient of G x C* by the action of P()\) given by p.(g,z) =
(gp~1, px). The variety Y is denoted by G xpoy CT. Set [g : 2] = n(g,x)
and consider the G-equivariant map

n: G X PN ct — X
[g: 7] —  g.x.

Recall from [Resl0a] the notion of well covering pairs.

Definition The pair (C,\) is said to be covering if n is birational. The
pair (C, \) is said to be well covering if there exists a P(\)-stable open subset
Q of C* intersecting C such that 1 induces an isomorphism from G x P 2
onto an open subset of X.

Proof.[of Theorem 2] Consider the closure CT of C* in X. Since (C, \) is
covering the map

ﬁ: C;'Xp()\)cur — X
[g: x] — gT

is proper and birational. Hence it induces a G-equivariant isomorphism
H(X,L) ~ H(G x p(n) CH, 7" (L)).

In particular

HO(X, £)6 ~ HO(G % pgs) OF,7°(£))°
We embed C+ in G X p(\) CF, by  +— [e : x]. Note that the composition of
the immersion of Ct in G' X p(y) C with 7 is the inclusion map from C* to
X. In particular 77* (E)|F = £|F and the restriction induces the following
isomorphism (see for example [Resl0a, Lemma 4]):

H(G XP(X) CH (L) ~ H(CH, ﬁ‘ci)P(/\)-

Since once more, the composition of the immersion of C* in G' X p(y) C*

with 7 is the immersion of CT in X, we just proved that the restriction
induces the following isomorphism

HO(X, L)% ~ HO(CT, ﬁﬁ)PW. (6)

Since A acts trivially on £¢, [Res10a, Lemma 5] proves that the restric-
tion maop induces the following isomorphism



H(CF, £j0)P™ ~ BO(C, £10) . (7)

By isomorphisms (6) and (7), it remains to prove that the restriction
induces the following isomorphism

H(C* Lir) PO~ gO(CT, £10+) W

that is, that any regular P())-invariant section o of £ on C't extends to
CT.

Note that A is also a one-parameter subgroup of G and that ]5()\) is
defined. Fix a maximal torus T of G containing the image of A\ and a
maximal torus 7 of G containing T'. Note that P and P have not been fixed
up to now; we have only considered the G x G—variety X. In other words, we
can change P and P by conjugated subgroups. Fix a T' x T-fixed point g
in C, and denote by P x P its stabilizer in G x G. Hence g = (P/P, P/P)

It is well known that Ct = P(A\)P/P x P(\)P/P. In particular CF
is a product of Schubert varieties and is normal. Hence it is sufficient to
proved that ¢ has no pole. Since ¢ is regular on C", it remains to prove
that ¢ has no pole along any codimension one irreducible component D of
C+ — C*. We are going to compute the order of the pole of ¢ along D by
a quite explicit computation in a neighborhood of D in C+.

If § is a root of (T',G), sz denotes the associated reflection in the Weyl
group. The divisor D is the closure of P(\).sgP/P x P(\)P/P for some
root 3 or of P(A\)P/P x P(\)s P/P for some root 3. Consider the first
case. The second one works s1m11arly

Set y = (sgP/P, P/P); it is a point in D. Consider the unipotent radical
U~ of the parabolic subgroup of G containing T" and opposite to P. Slmllarly
define U~. Consider the groups U, = P(\) NsgU " s3 and U, = P(\)NU".
Let 0 be the T-stable line in G/ P containing P/P and sgP/P. Consider the
map

0: U,xU,x(@6-{P/P}) — X
(u, @, ) —  (ux,0P/P).

The map 6 is an immersion and its image € is open in C+. Since  intersects
D, it is sufficient to prove that ¢ extends on (). Equivalently, we are going
to prove that 6*(o) extends to a regular section of 0*(L).

The torus T acts on Uy, xUy, x (6—{P/P}) by t.(u, 4, z) = (tut™", tat ", tz).
This action makes 6 equivariant. The curve (6 — {P/P}) is isomorphic to C.



The group U, is unipotent and so isomorphic to its Lie algebra. It follows
that Uy, x Uy x (0 — {P/P}) is isomorphic as a T-variety to an affine space
V' with linear action of T'.

Fix root (for the action of T' x T) coordinates & on the Lie algebra of
Uy x ﬁy. Fix a T-equivariant coordinate ( on 6 — {P/P}. Then (¢;,() are
coordinates on V. Let (a;,a) be the opposite of the weights of the variables
for the action of A. The weights of T corresponding to the part U, are roots
of P(\) and the weights of T’ corresponding to the part U, are roots of P()).
The weight of the action of T on T, p/pd is a root of G but not of P().
Then we have

a; > 0and a <0. (8)

Note that (10 6)~1(D) is the divisor (¢ = 0) on V.

Consider now, the C*-linearized line bundle #*(£) on V. It is trivial as
a line bundle (the Picard group of V' is trivial) and so, it is isomorphic to
V x C linearized by

t.(v,7) = (A(t)v, t'r) Vt e C*,
for some integer pu.
We first admit that
p<0 9)

and we end the proof. The section 6*(o) corresponds to a polynomial in
the variables &;, ¢ and ¢ —1: that is, a linear combination of monomials m =
[1,&/.¢7 for some j; € Z>o and j € Z. The opposite of the weight of m for
the action of C* is ), j;a; + ja. The fact that ¢ is C*-invariant implies that
the monomials occurring in the expression of (¢ o 0)*(o) satisfy

> dia + ja=p.
%

Hence 1
Jj= 7(5 Jiai — ).
i

Now, inequalities (8) and (9) imply that j > 0. In particular (v o 8)*(o)
extends to a regular function on V. It follows that ¢ has no pole along D.

It remains to prove inequality (9). Consider the restriction of £ to §.
Note that 4 is isomorphic to P! and L5 is isomorphic to O(d) as a line bundle
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for some integer d. Since L is semiample, d is nonnegative. The group C*
acts on Tp/pd by the weight —a and on T},0 be the weight a. By assumption,
the group C* acts trivially on the fiber £,, (recall that xy belongs to C). It
acts on the fiber £, by the weight . Now, the theory of P! implies that:
q="—0
a
But, d > 0 and a < 0. It follows that p < 0. O

3 Proof of Theorem 1

Let T, B, T and B be like in the introduction. For any character v of B,
L, denotes the G-linearized line bundle on G/B such that B acts on the
fiber in £, over B/B with the weight —v. By Borel-Weil’s theorem, the line
bundle £, is generated by its global sections if and only if v is dominant
and in this case H°(G/B, L) is isomorphic to the dual V;*(G) of the simple
G-module V,(G) with highest weight v.

Consider the complete flag variety X = G/B x G /B of the group G x G.
Let v and o be like in Theorem 1. Let £ be the exterior product on X of
L, and L;. By Borel-Weil’s theorem (applied to the group G x G), we have

V(G @ Vi(G) = H(X,L).

In particular ¢, (G, @) is the dimension of HO(X, £)C.

Set C = G°B/B x GSwB/B. By [Res10b], there exists a one-parameter
subgroup A of S such that (C,\) is well covering and G° = G*. Moreover,
assumption (4) implies that A acts trivially on Lc. Hence Theorem 2 implies
that

HO(X,£)¢ =~ HY(C, £,0)%°.

However C' is isomorphic to the complete flag manifold of the group G*° x G*.
By condition (3), £|c is the line bundle £, ® Ly,. Hence Borel-Weil’s
theorem implies that H%(C, Li¢) is isomorphic to V;/(G¥) ® Vi (GP). In
particular ¢, 45(G°, G¥) is the dimension of HO(C, £|C)GS. The theorem is
proved.

4 Examples

4.1 Tensor product decomposition

In this subsection, we consider the case when G = G x G and G is diagonally
embedded in G. Assume that B= B x Band T =T xT. Then a dominant



weight ¥ of 1" is a pair (A, p) of dominant weights of T' and V;(G x G)
VA(G) ® V,(G). For short, we denote by ¢y, (G) the coefficient ¢, 5 (G,
Then

).
VA(G) @ V(@) =) expwl(@) V(G), (10)

and ¢y, (G) is a tensor product multiplicity for G. With the notations of
Theorem 1, we have G° = G5 xGS. In particular the coefficient ¢, an(GS, @S)
is a tensor product multiplicity for the Levi subgroup G° of G. Hence The-
orem 1 implies to the main result of [Rot11].

Consider the case when G = GL,,(C), T consists in diagonal matrices and
B in upper triangular matrices. Then a dominant weight A is a nonincreasing
sequence (A1, -+ -, A,) of n integers and ¢y ,,,(G) is a Littlewood-Richardson
coefficient denoted by cY wv

Notations are useful to describe LR(G, Q). Let G(r,n) be the Grassmann
variety of r-dimensional subspaces of C". Let F,: {0} = Fy C F} C F» C
-+ C F,, = C" be the standard flag of C". Let P(r,n) denote the set of
subsets of {1,---,n} with r elements. Let I = {i; < --- < i} € P(r,n).
The Schubert variety Q;(F,) in G(r,n) is defined by

Qr(Fe) ={L € G(r,n) : dim(L N Fy;) > jfor 1 <j <r}.

The Poincaré dual of the homology class of Q(F,) is denoted by o7. The
classes oy form a Z-basis for the cohomology ring of G(r,n). The class
associated to [1;7] is the class of the point; it is denoted by [pt].

By [Kly98] , [KT99] and finally [Bel01], we have the following statement.

Theorem 3 Let (A, u,v) be a triple of nonincreasing sequences of n inte-
gers. Then CC\L;W # 0 if and only if

Zx\i—l-z,uj‘—l-ZVk:O (11)

and

ZN%—ZM—FZ%SO, (12)

el jeJ keK
foranyr=1,---,n—1, for any (I,J, K) € P(r,n)> such that

or.oj.0x = [pt] € H(G(r,n),Z). (13)



Knutson, Tao and Woodward proved in [KTWO04] that this statement is
optimal in the following sense.

Theorem 4 In Theorem 3, no inequality can be omitted.

In other words, each inequality (12) corresponds to a regular face Frjx
of the cone LR(G,G). For I = {iy < --- < i,} € P(r,n) and X a sequence
of n integers, set A\ = (A\;;,- -+, \i,.) € Z". Denote by I € P(n — r,n) the
complement of I in {1,---,n}. It is easy to check that Theorem 1 gives in
this case the following statement.

Theorem 5 Let (A, u,v) be a triple of nonincreasing sequences of n inte-
gers. Let (I,J,K) € P(r,n) such that

or.05.05 = [pt]. (14)
If
icl jed keK
then

AT (16)

N, = Cy
Apv T SArpg VK SAre pge vie®

Theorem 5 has been proved independently in [KTT09] and [DW11]. Note
that if equation (15) does not hold then ¢, = 0.
It is known that Theorem 3 also holds if condition (13) is replaced by

or.0y.0x =d[pt] € H(G(r,n),Z), (17)

for some positive integer d. The following example shows that condition
(14) cannot be replaced by condition (17) in Theorem 5.

Example. Heren =6, r =3and [ = J = K = {1, 3, 5}. Thenoj.05.0x =
2[pt] and for any (A, p1,v) in LR(G, G), the inequality > ;c; Ai +>_ ey 1y +
Y e Yk < 0 holds. Consider A = p = v = (1100 —1 — 1). Then
X v = 3- Hence (A, 1, v) belongs to LR(G,G). Moreover A\; = juj = vg =
Are = pge = vge = (10 — 1) and > ;o  Ni + 3 50 5 + D pere vk = 0. But
r n—r

_ _ r n—r _ _n
ANrnsve = e pgevge = 2 and CXr g v Chpe pge viee — 4#3= Apv

Remark With notation of Section 2, if 7 is dominant, the map

H(X, L)% — H(C, £)C"



is injective. When applied to X = FI(n)3 this observation showh that if
or.05.0x # 0 then equality 15 implis that cY P cf\L;CTMC Vi
according to the example.

Note that Knutson and Purbhoo proved in [KP11] some equalities (16)
with assumptions different from those of Theorem 5.

4.2 Kronecker coefficients

Let @« = (o > ag > ...) be a partition. Denote by [(«) the number of
nonzero parts of .. Set |a| =), a4, o is called a partition of |«|. Consider
the symmetric group .S, acting on n letters. The irreducible representations
of S,, are parametrized by the partitions of n, let [a] denote the represen-
tation corresponding to a. The Kronecker coefficients k, -, depending on
three partitions «, 3, and  of the same integer n, are defined by the identity

0] ® 18] = kg (18)
Y

The following classical result of Murnaghan and Littlewood (see [Murb5])
shows that Kronecker coefficients generalize Littlewood-Richardson coeffi-
cients.

Corollary 1 (i) If ko # 0 then

(n—ai)+(n—p1) >n—. (19)

(ii) Assume that equality holds in formula (19) but not necessarily that
kagy # 0. Define & = (g > ag---) and similarly define B and 7.
Then

) (20)

kaﬁ'y =cC B’

where ¢! - is the Littlewood-Richardson coefficient.

7
ap
Proof. Let us first introduce some notation on the linear group. Let V be a
complex finite dimensional vector space and let GL(V') be the corresponding
linear group. If « is a partition with at most dim(V") parts, S*V denotes the
Schur power of V' ; it is the irreducible GL(V')-module of heighest weight .
Let FI(V) denote the variety of complete flags of V. Given integers a; such
that 1 < a; < --- <as <dim(V) — 1, Fl(ay,---,as; V) denotes the set of
flags V3 C --- C V5 C V such that dim(V;) = a; for any i.
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Let us choose integers e and f such that

()
1(B)
()

Let E and F' be two complex vector spaces of dimension e and f. Con-
sider the group G = GL(E) x GL(F). The Kronecker coefficient k, 3. can
be interpreted in terms of representations of G. Namely (see for example
[Mac95, FHO1]) k4 - is the multiplicity of S*E ® SPF in SY(E ® F). To
interpret this multiplicity geometrically, consider the variety

/. (21)
e+ f—1.

ININIA

X = FUE) x FI(F) x FI(1,-,e+ f — L, E® F)

endowed with its natural G-action. Consider the GL(E)-linearized line bun-
dle £* on FI(E) such that HY(FI(E),LY) = S*E (with usual notation,
LY =L _yoa). Similarly, fix £8 on FI(F) such that H(FI(F), L") = SPF.
Because of assumption (21), there exists a GL(E ® F)-linearized line bundle
L, on Fl(l,---,e+ f—1;E® F) such that H(FI(1,---,e+ f - L E®
F),LY) = S7Y(E* ® F*). Observe that S7(E* ® F*) is not a polynomial
representation of GL(E) x GL(F). The line bundle £ = £* ® £’ ® L, on
X is G-linearized. Then

ko~ = dim(H(X, £)C). (22)

Let Hg, Hr, lgp and lr be hyperplanes and lines respectively in E and F'
such that ¥ = Hp ®lg and FF = Hp ® lp. Let X be the one-parameter
subgroup of G acting on Hgr and Hp with weight 1 and on lg and [p with
weight 0. Let C'r be the set of complete flags of E whose the hyperplane is
Hp. Note that Cg is an irreducible component of FI(E)*. Similarly define
CF. Let Cggr be the set of points Vi C -+ C Veyp—1 in FI(1,---,e+ f —
1; E®F) such that V] = [p®[r and V6_|_f_1 = (lE®lF)@(HE®lF)@(lE®HF).
Note that Cpgr is an irreducible component of FI(1,---,e+ f —1; E® F)*
isomorphic to FI(Hg @ Hp). Then C = Cg x Cr x Cggr is an irreducible
component of X*.

Observe that CE®F isopen in FI(1,---,e+ f— 1, E®F), (Cg,\) and
(Cr, ) are covering in FI(E) and FI(F') for the actions of GL(E) and
GL(F). It follows that (C, \) is covering.

Let 2 be a point in C. Let p“(z,)\) be the opposite of the weight of
the action of A on the fiber of £ over z. [ReslOa, Lemma 3] implies that
if dim(H%(X,L£)%) > 0 then p*(z,\) < 0 which is the inequality of the

11



corollary. Assume that p“(z,A) = 0, that is that A acts trivially on £c.
Theorem 1 shows that

dim(H°(X, £)) = dim(H°(C, £,)%").

Moreover dim(H O(C,[,|C)GA) is the multiplicity of the simple GL(Hg) x
GL(Hp)-module SHp® SPHp in the GL(Hg ® Hp)-module S7(Hp & Hp).
By for example [Mac95, Chapter I, 5.9], this multiplicity is precisely cg 5 O
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