
Spherical homogeneous spaces of minimal rank

N. Ressayre

Abstract. Let G be a complex connected reductive algebraic group and G/B denote the
flag variety of G. A G-homogeneous space G/H is said to be spherical if H has a finite
number of orbits in G/B. A class of spherical homogeneous spaces containing the tori, the
complete homogeneous spaces and the group G (viewed as a G×G-homogeneous space) has
particularly nice proterties. Namely, the pair (G, H) is called a spherical pair of minimal
rank if there exists x in G/B such that the orbit H.x of x by H is open in G/B and the
stabilizer Hx of x in H contains a maximal torus of H . In this article, we study and classify
the spherical pairs of minimal rank.

1 Introduction

Let G be a complex connected reductive algebraic group. Let B denote the flag variety
of G. Let H be an algebraic subgroup of G which has a finite number of orbits in B ; the
subgroup H and the homogeneous space G/H are said to be spherical.

In this article, we study and classify a class of spherical homogeneous spaces containing
the tori, the complete homogeneous spaces and the group G viewed as a G×G-homogeneous
space. Namely, the pair (G, H) is called a spherical pair of minimal rank if there exists x in
B such that the orbit H.x of x by H is open in B and the stabilizer Hx of x in H contains
a maximal torus of H . In [Kno95] the rank rk(G/H) of the homogeneous space G/H is
defined. Moreover, we have rk(G/H) ≥ rk(G)− rk(H) (where rk(G) and rk(H) denotes the
ranks of the groups G and H) with equality if and only if (G, H) is of minimal rank. This
explains the name. The spherical pairs (G, H) of minimal rank such that H is a symmetric
subgroup of G firstly appear in [Bri04]. During the redaction of this article the compactifica-
tions of the spherical homogeneous spaces of minimal rank was studied in [Tch05] and [BJ06].

Let us state our main result. Propositions 3.1, 3.2 and 4.2 reduce the classification to
the special case when G is semi-simple adjoint and H is simple. Indeed, any spherical pair
of minimal rank is obtained from special ones and toric ones by products, finite covers and
parabolic inductions. Next, we prove

Theorem A The spherical pairs (G, H) of minimal rank with G semi-simple adjoint and
H simple are:

(i) G = H.

(ii) H is simple and diagonally embedded in G = H × H.

(iii) (PSL2n, PSp2n) with n ≥ 2.

(iv) (PSO2n, SO2n−1) with n ≥ 4.
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(v) (SO7, G2).

(vi) (E6, F4).

We denote by H(B) the set of the H-orbit closures in B. If H = P is a Borel subgroup of
G, the elements of H(B) are the famous Schubert varieties. Most of combinatorial and geo-
metric properties of the Schubert varieties cannot be generalized to the elements of H(G/B)
if H is only spherical. However, if H is of minimal rank the elements of H(G/B) have nice
properties. Let us give details.

The Weyl group W of G acts transitively on the set of Schubert varieties; this action
parametrizes these varieties by W/WP . In general, F. Knop has defined in [Kno95] an action
of W in H(B); but, it seems to be difficult to deduce a parametrization of H(B) from this
action. We show in Proposition 2.1 that G/H is of minimal rank if and only if the action of
W is transitive on H(B). In this case, the isotropy groups are isomorphic to the Weyl group
WH of H ; and, W/WH parametrizes H(B).

The Schubert varieties are normal; but, in general elements of H(B) are not normal
(see [Bri01] or [Pin01] for examples). By a result of Brion, if G/H is of minimal rank, the
elements of H(B) are normal.

In [Kno95], F. Knop also defined an action of a monoid W̃ (constructed from the gener-
ators of W ) on H(B). Moreover, the inclusion defines an order on H(B) which generalizes
the Bruhat order for the Schubert varieties. The description of the Bruhat order from the
action of W̃ is well known as the cancellation lemma. In general, no such description of this
order is known. Corollary 2.1 is a cancellation lemma in the minimal rank case.

The number of Schubert varieties of dimension d equal those of the codimension d. In
Proposition 2.3 we show such a symmetry property of H(B) for any spherical pair (G, H) of
minimal rank.

Let us explain another important motivation for this work. Let T be a maximal torus of
G and X be a G-equivariant embedding of a spherical homogeneous space G/H of minimal
rank. In Proposition 2.4, we show that for all fixed point x of T in X, G.x is complete. This
property seems to play a key role in several works about the embeddings of G × G/G (see
for example, [Tch02]).

In Section 2, we study the properties of H(B) and of the toroidal embeddings of G/H for
the spherical pairs (G, H) of minimal rank. This allows us to give several characterizations
of the minimal rank property. In Section 3, we reduce the classification to the case when
G and H are semisimple. In Section 4, we classify such pairs by associating to (G, H) an
involution on the vertices of the Dynkin diagram of G.

2 Equivalent definitions and first properties

2.1 Minimal rank and orbits of H in B

2.1.1 — Let us fix some general notation. If X is a variety, dim(X) denotes the dimension

2



of X. It x belongs to X, TxX denotes the Zariski-tangent space of X at x. If Γ is an algebraic
group a Γ-variety X is a variety endowed with an algebraic action of Γ. Let Γ be an affine
algebraic group and X be a Γ-variety. For x a point in X, we denote by Γx the isotropy
group of x and by Γ.x its orbit. We denote by XΓ the set of fixed point of Γ in X. We
denote by Γu the unipotent radical of Γ.

2.1.2 — Let us recall that G is a connected complex reductive group, B its flag variety,
H a spherical subgroup of G and H(B) the set of the H-orbit closures in B. If V belongs to
H(B), we denote by V ◦ the unique open H-orbit in V .

We recall the definition of [Res04] of a graph Γ(G/H) whose vertices are the elements of
H(B). The original construction of Γ(G/H) due to M. Brion is equivalent but very slightly
different (see [Bri01]).

Consider the set ∆ of conjugacy classes of minimal non solvable parabolic subgroups of
G. If α belongs to ∆, we denote by Pα the G-homogeneous space with isotropy α. Then,
there exists a unique G-equivariant map φα : B −→ Pα which is a P1-bundle.

Let V ∈ H(B) and α ∈ ∆. We assume that the restriction of φα to V ◦ is finite and we
denote its degree by d(V, α). Then, φ−1

α (φα(V )) is an element denoted V ′ of H(B); in this
case, we say that α raises V to V ′. One of the three following cases occurs.

• Type U : H has two orbits in φ−1
α (φα(V ◦)) (V ◦ and V ′◦) and d(V, α) = 1.

• Type T : H has three orbits in φ−1
α (φα(V ◦)) and d(V, α) = 1.

• Type N : H has two orbits in φ−1
α (φα(V ◦)) (V ◦ and V ′◦) and d(V, α) = 2.

Definition. Let Γ(G/H) be the oriented graph with vertices the elements of H(B) and
edges labeled by ∆, where V is joined to V ′ by an edge labeled by α if α raises V to V ′.
This edge is simple (resp. double) if d(V, α) = 1 (resp. 2). Following the above cases, we
say that an edge has type U , T or N .

2.1.3 — Let us fix a Borel subgroup B of G. Let Y be a B-variety. The character group
X (Y ) of Y is the set of all characters of B that arise as weights of eigenvectors of B in the
function field K(Y ). Then X (Y ) is a free abelian group of finite rank rk(Y ), the rank of Y
(see [Kno95]). It is well known that a B-orbit O is isomorphic as a variety to Kl × (K∗)r

where r = rk(O) and l = dim(O) − rk(O).
If V belongs to H(B), we set:

VH = {gH/H : g−1B/B ∈ V }.

Then, VH is a B-orbit closure in G/H . Moreover, the map V 7−→ VH is a bijection from
H(B) onto the set of the B-orbit closures in G/H . The rank of VH is also denoted by rk(V )
and called the rank of V.

2.1.4 — Let T be a maximal torus of B. Let W denote the Weyl group of T . Every
α in ∆ has a unique representative Pα which contains B. Moreover, there exists a unique
sα in W such that BsαB is dense in Pα; and this sα is a simple reflexion of W . The map,
∆ −→ W, α 7−→ sα is a bijection from ∆ onto the set of simple reflexions of W .
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F. Knop defined in [Kno95] an action of W on the set H(B) by describing the action of
the sα, for any α ∈ ∆:

• Type U : sα exchanges the two vertices of an edge of type U labeled by α.

• Type T : If α raises V1 and V2 to V , then sαV1 = V2 and sαV = V .

• Type N : sα fixes the two vertices of a double edge labeled by α.

• sα fixes all others vertices of Γ(G/H).

2.1.5 — We can now characterize the spherical pairs of minimal rank in terms of H(B):

Proposition 2.1 With above notation, the following are equivalent:

(i) There exists x ∈ B such that H.x is open in B and Hx contains a maximal torus of H.

(ii) rk(G) − rk(H) = rk(G/H).

(iii) All the elements of H(B) have same rank.

(iv) All the edges in Γ(G/H) have type U .

(v) W acts transitively on Γ(G/H).

If (G, H) satisfies these properties, we say that (G, H) is of minimal rank.

Proof. The equivalence between the two first assertions follows from [Res05, Corollary 3.1].
Let us recall some properties of the graph Γ(G/H) from [Bri01]. If α raises V to V ′ by

an edge of type U (resp. T or N) then rk(V ′) = rk(V ) (resp. rk(V ′) = rk(V )+1). Moreover,
all V in H(B) is joined to B by an increasing path in Γ(G/H) (property of connectedness).
Finally, the rank of a closed H-orbit in B equals rk(G) − rk(H).

Now, one easily checks the equivalence between Assertions (ii), (iii), (iv) and (v). �

2.1.6 — Let (G, H) be a spherical pair of minimal rank. Then, the elements of H(B) can
be parametrized. Indeed, let W0 be the stabilizer of B for the action of W . In [Res05], it is
shown that W0 is isomorphic to the Weyl group WH of H . Moreover, Proposition 2.1 shows
that the Knop’s action gives a bijection between W/W0 and H(B). In particular, we have:

|H(B)| = |W |
|WH |

, where |E| denotes the cardinality of the finite set E.

Each orbit closure V of H in B is multiplicity-free in the sense of [Bri01]. In particular,
by [Bri01, Theorem 5] V is normal.

2.1.7 — In this paragraph, we are interested in reading the generalized Bruhat order off
the graph Γ(G/H). Let us start by showing the following nice property of this graph:

Proposition 2.2 There exists a unique closed orbit of H in B and it is the only minimal
element of Γ(G/H).
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Proof. Let V0 be a closed orbit of H in B. Let H0 be the set of the H-orbit closures in B
linked with V0 by an oriented path in Γ(G/H). It is sufficient to prove that H0 = H(B).

We assume that H(B) − H0 is not empty. Since B belongs to H0 and all the orbits are
joined to B by an oriented path, there exists Z ∈ H(B) − H0 and α ∈ ∆ such that α raises
Z to an element Z ′ of H0 (it is sufficient to take Z of maximal dimension in H(B) − H0).
Let us fix such a pair (Z, α) such that Z is of minimal dimension.

Since Z ′ 6= V0, there exists β ∈ ∆ and Y ∈ H0 such that β raises Y to Z ′. Since the
edges of Γ(G/H) are of type U and Y 6= Z, we have β 6= α.

Using [Bri01, Lemma 3], one easily checks that one of the two following graphs is a
subgraph of Γ(G/H):

Z ′

Y

β

Z

α

V

α

V ′

β

V ′′
αβ

Z ′

Y

β

Z

α

V
βα

In the first case, Z, V ′ and V ′′ does not belong to H0. By minimality of the dimension of
Z and by considering (V ′′, β) we deduce that V does not belong to H0. Now, the pair (V, α)
contradicts the minimality of the dimension of Z. A similar argue works in the second case. �

Let V in H(B) and V0 denote the unique closed H-orbit B. By Proposition 2.2, there
exists an increasing path in Γ(G/H) from V0 to V . Let (α1, · · · , αs) be the sequence of the
labels of the edges of such a path. Notice that s = dim(V )−dim(V0). The inclusion relation
H(B) can be read off the graph Γ(G/H) by the following cancellation corollary:

Corollary 2.1 We use above notation and fix V ′ in H(B). Set k = dim(V ′) − dim(V0).
Then, V ′ ⊂ V if and only if there exists i1 < · · · < ik such that the increasing path starting
from V0 and with labels (αi1, · · · , αik) ends at V ′.

Proof. Using Proposition 2.2, the proof of [RS90] works here. �

2.1.8 — Let dG (resp. dH) denote the dimension of the complete flag variety of G (resp.
H). Then, we have the following “symmetry” on the set H(B):

Proposition 2.3 Here we assume that H is connected. For all 0 ≤ δ ≤ dG−dH , the number
of elements in H(B) of dimension dG − δ equal those of dimension dH + δ.

Proof. Consider PG(t) and PH(t) the Poincaré polynomials of the complete flag varieties
of G and H . By Poincaré duality, they are symmetric polynomials of degrees dG and dH ;
that is, tdGPG(1/t) = PG(t) and tdHPH(1/t) = PH(t).
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Consider the following polynomial:

Q(t) =
∑

V ∈H(B)

tdim(V )−dH .

We claim that Q(t).PH(t) = PG(t). The claim implies that Q(t) is symmetric and so the
proposition.

Let BH denote the flag variety of H . For any x ∈ B, Hx is a solvable subgroup of H
containing a maximal torus of H . It follows that Hx is contained in a Borel subgroup of H :
consider ϕx : H.x −→ BH the map induced by this inclusion. Moreover, the fiber ϕ−1

x (ϕx(x))
is isomorphic to an affine space of dimension dim(H.x) − dH .

We choose one point in each orbit of H in B and consider the associated morphisms ϕx.
There exists a finitely generated extension K of Q such that G, H , the inclusion of H in
G, the chosen points in B, the morphisms ϕx, the isomorphisms between the fibers the ϕx

and affine spaces are all defined. By taking an extension if necessary, we may (and shall)
also assume that the Schubert cells (for fixed Borel subgroups of G and H) of B and BH are
defined and isomorphic to affine spaces over K.

Now, we consider a finite quotient Fq of K and the points B(Fqn) of B over Fqn for all
positive integer n. By using the decompositions of B and BH in Schubert cells, one obtain:

|B(Fqn)| = PG(qn) and |BH(Fqn)| = PH(qn).

Now, we count the points in B(Fqn) by using the decomposition in H-orbits:

|B(Fqn)| =
∑

V ∈H(B)

|V ◦(Fqn)| =
∑

V ∈H(B)

|BH(Fqn)|.(qn)dim(V )−dH = PH(qn).Q(qn).

The claim follows. �

2.2 Minimal rank and toroidal embeddings

2.2.1 — In this subsection, (G, H) is a spherical pair not necessarily of minimal rank.
An embedding of G/H is a pair (X, x) where X is a normal and irreducible G-variety and x
is a point of X such that G.x is open in X and Gx = H . Such an embedding is said to be
toroidal if any irreducible B-stable divisor of X which contains a G-orbit is G-stable.

Lemma 2.1 Let G/H be a spherical homogeneous space (not necessarily of minimal rank).
Let (X, x) be a toroidal embedding of G/H and y be a point in X.

Then, we have the inequality:

rk(G/H) + rk(H) ≥ rk(G.y) + rk(Gy).

In particular, if G/H is of minimal rank, G.y is.
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Proof. Firstly, we prove that it is sufficient to show the lemma when dim(G.y) = dim(X)−
1. By [BL87, Lemma 2.1.1], since X is toroidal, there exists G-orbits O0, · · · ,Os such
that G.y = O0 ⊂ O1 ⊂ · · · ⊂ Os = X (where Oi denotes the closure of Oi in X) and
dim(Oi+1) = dim(Oi) + 1 for all i = 0, · · · , s − 1. For all i we fix a point yi in Oi. Since Oi

is normal, we can apply the case when dim(G.y) = dim(X) − 1 to each Oi ⊂ Oi+1 showing
that:

rk(G.yi+1) + rk(Gyi+1
) ≥ rk(G.yi) + rk(Gyi

).

The inequality of the lemma follows.

We now assume that dim(G.y) = dim(X) − 1. Set O = G.y. Consider the linear action
of the group Gy acts on quotient TyX/TyO of TyX by TyO. Since X is normal, it is smooth
at y and TyX/TyO is a line. So, the action of Gy defines a character χ : Gy −→ K∗.

Let Ty be a maximal torus of Gy. Let S denote the neutral component of the kernel of
the restriction of χ to Ty. We claim that S has fixed points in G.x. Set Ω = G.x ∪ O; it
is open in X and hence it is a smooth variety. By a result of Bialynicki-Birula, we have
Tx(Ω

S) = (TxΩ)S . In particular, ΩS is not contained in O. This proves the claim.
By the claim, a subgroup conjugated to S fixes x and:

rk(H) ≥ dim(S) = dim(Ty) − 1 = rk(Gy) − 1.

Moreover, since X is toroidal rk(G/H) = rk(O) + 1. The lemma follows. �

2.2.2 — The fixed points of a maximal torus of G in the toroidal embeddings of spherical
homogeneous spaces of minimal rank are easy to localize. Indeed, we have:

Proposition 2.4 Let (G, H) be a spherical pair and T be a maximal torus of G. The
following are equivalent:

(i) (G, H) is of minimal rank.

(ii) There exists a complete toroidal embedding (X, x) of G/H such that for all x ∈ XT

G.x is complete.

(iii) For all complete toroidal embedding (X, x) of G/H and for all x ∈ XT , G.x is complete.

Proof. We assume that (G, H) is of minimal rank and fix a complete toroidal embedding
(X, x) of G/H . Let y ∈ XT . Lemma 2.1 shows that rk(G.y) = 0; that is G.y is complete.
This proves that Assertion (i) implies Assertion (iii).

Conversely, let (X, x) satisfying Assertion (ii). It remains to prove that (G, H) is of
minimal rank.

Let λ be a one-parameter subgroup of T such that T is the centralizer of the image of
λ (that is, λ is regular) and Xλ = XT (where Xλ denote the set of fix points of the image
of λ). Since λ is regular, the set g ∈ G such that limt→0 λ(t)gλ(t−1) exists in G is a Borel
subgroup of G denoted by B(λ). By Proposition 2.1, it is sufficient to prove that for all
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y ∈ G.x we have rk(B(λ).y) = rk(G/H). This holds by Lemma 2.2 below since the rank of
a complete G-orbit equals zero. �

Lemma 2.2 Let (X, x) be a complete toroidal embedding of the spherical homogeneous space
G/H. Let y be a point in the open G-orbit in X Let λ be a regular one-parameter subgroup
of T such that Xλ = XT . Set z = limt→0 λ(t)y.

Then, we have:
rk(G/H) − rk(B(λ).y) = rk(G.z).

Proof. Let us introduce some material and notation from [BL87]. There exists a parabolic
subgroup P of G containing T such that Pz is reductive. Let Q denote the parabolic subgroup
of G containing T and opposite to P . We have Gu

z ⊂ Qu and there exists a closed subvariety
A ⊂ Qu Pz-stable such that the product in G induces an isomorphism A × Qu

z −→ Qu. By
[BL87, Lemma 1.1], there exists a locally closed affine normal and irreducible subvariety S
of X such that S ∩ G.z = {z}, S is Pz-stable and the morphism G × S −→ X induced by
the action is smooth at (1, z). In particular, we have:

dim(S) = dim(G/H) − dim(G.z) = rk(G/H) − rk(G.z). (1)

Let P ×Pz
(A×S) denote the quotient of P ×A×S by the action of Pz defined by p.(q, a, s) =

(qp−1, pap−1, ps), where p ∈ Pz, (q, a, s) ∈ P × A × S. The group P acts naturally on this
variety. By [BL87, Theorem 5], the morphism

Θ : P ×Pz
(A × S) −→ X

(p : (a, s)) 7−→ (pa).s

is an open immersion.
Consider the Bialynicki-Birula cell

X(λ, z) = {p ∈ X : lim
t→0

λ(t)p = z}.

Notice that y ∈ X(λ, z). By [BL87, Propositions 2.1 and 2.3], X(λ, z) ∩ G.x = B(λ).y and
G.x ∩ S = T.y′ for some y′ ∈ B(λ).y. Then, the proof of [BL87, Proposition 2.3] shows that
Θ induces by restriction an isomorphism:

(

P ∩ B(λ)
)

×B(λ)z

(

(A ∩ B(λ)) × T.y′
)

−→ B(λ).y.

Since T is contained in B(λ)z, this isomorphism implies that

rk(B(λ).y) = dim(T.y′) = dimS. (2)

The lemma follows from Equalities 1 and 2. �
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3 Reduction to the case when G and H are semi-simple

The goal of this section is to reduce the classification of the spherical pairs (G, H) to
those with G semi-simple adjoint and H semi-simple.

Proposition 3.1 Let (G, H) be a spherical pair of minimal rank.
Then, there exists a parabolic subgroup P of G with a Levi decomposition P = P uL and

a reductive subgroup K of L such that:

(i) H = P uK

(ii) (L, K) is a spherical pair of minimal rank.

Proof. We can write H = HuK, where K is a reductive subgroup of H . But, by
[Humphreys, 30.3], there exists a parabolic subgroup P = P uL of G such that Hu ⊆ P u and
K ⊆ L. We claim that P and L satisfy the proposition.

Let firstly prove that P u = Hu.
Let T (H) be a maximal torus of K (and hence of H). The variety B contains on open

subset stable by P (and hence by H) isomorphic to P u ×B(L) (with obvious notation). By
assumption, there exists a point x in B fixed by T (H) such that H.x is open in B. But,
x = (u, y) belongs to P u × B(L). Since the H-orbit of x is open in P u × B(L), so is its
intersection with P u×{y}. Hence, the set of the hkuk−1 ∈ P u such that h ∈ Hu and k ∈ Ky

is open and dense in P u. In particular, the Ky-orbit Ky.(uHu) is open and dense in P u/Hu.
Since x ∈ BT (H), uHu ∈ (P u/Hu)T (H). But, Ky is a solvable group with T (H) as maximal

torus. So, K◦
y .uHu is one orbit of the unipotent radical Ku

y of K◦
y . In particular, it is closed

in the affine variety P u/Hu. But it is also open. We deduce that Ky acts transitively on
P u/Hu.

But Ku
y is contained is K and normalizes Hu. So, Hu is a fix point of Ky in P u/Hu. We

deduce that P u/Hu has only one point ; that is, that P u = Hu.

On the other hand, K.y is open in B(L) and y is fixed by the maximal torus T (H) of K.
We deduce that (L, K) is a spherical pair of minimal rank. �

Since the parabolic subgroups of a given reductive group are very well known, Proposi-
tion 3.1 reduces the problem of classification of the spherical pairs (G, H) of minimal rank
to the case when H is reductive.

Proposition 3.2 Let G be a connected reductive group. Set Gad = G/Z(G) and consider
the projection p : G −→ Gad. Let H be a reductive subgroup of G. Then,

(i) The pair (G, H) is spherical of minimal rank if and only if the pair (Gad, p(H)) is.

(ii) The pair (G, H) is spherical of minimal rank if and only if the pair (G, H◦) is.
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(iii) If G/H is of minimal rank, the neutral component p(H)◦ of p(H) is semi-simple.

Proof. Assertions (i) and (ii) are obvious from Assertion (i) of Proposition 2.1.
To prove the last assertion, it is sufficient to prove that the connected center S of H is

contained in the center of G. There exists x ∈ B fixed by S such that H.x is open in B.
Since, H ⊂ GS, GS.x is open in B. But, GS.x is an irreducible component of BS. Therefore,
BS = B and S is central in G. �

Proposition 3.2 reduces the problem of classification of the spherical pairs (G, H) of
minimal rank to the case when G is semi-simple adjoint and H is semi-simple. From now
on, we only consider such pairs.

4 Classification of Lie algebras

Let (G, H) be a spherical pair of minimal rank with G semi-simple adjoint and H semi-
simple. Let g (resp. h) denote the Lie algebra of G (resp. H).

4.1 Root systems of g and h

Let T (H) be a maximal torus of H . Let T ⊃ T (H) be a maximal torus of G. Let
X (T ) = Hom(T, K∗) (resp. X (T (H)) = Hom(T (H), K∗)) denote the character group of T
(resp. T (H)). Let φg ⊂ X (T ) (resp. φh ⊂ X (T (H))) be the set of roots of g (resp. h). Let
ρ : X (T ) −→ X (T (H)) be the restriction map.

In this subsection, we will prove some very constraining relations between φg, φh and ρ.

4.1.1

The following stability of the set spherical pairs of minimal rank will be used to localize
the study over some fixed roots of h:

Lemma 4.1 Let S be a subtorus of H.
Then, (GS, HS) is a spherical pair of minimal rank.

Proof. Let T (H) be a maximal torus of H which contains S. Let x be a fixed point of
T (H) in B such that H.x is open in B. Since V ∩ GS.x is open in GS.x, it is irreducible.
So, it is an irreducible component of V S. Now, [Ric82] implies that V ∩ GS.x = HS.x. In
particular, HS.x is open in GS.x ≃ B(GS) and x is fixed by the maximal torus T (H) of HS.
The lemma follows. �

Lemma 4.2 With the above notation, we have ρ(φg) = φh.
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Proof. Let α ∈ φg. Set S = Ker(ρ(α))◦ ⊂ T (H). By Lemma 4.1, HS is a spherical
subgroup of GS and rk(GS/HS) = rk(GS) − rk(HS). Since the semi-simple rank of GS is
one, this implies that HS◦

is not a torus. So, ρ(α) is a root of h.
Moreover, since h ⊂ g, φh ⊂ ρ(φg). �

By Lemma 4.2, we can define the map ρφ : φg −→ φh, α 7−→ ρ(α).

Lemma 4.3 The spherical pairs (G, H) of minimal rank with G semi-simple adjoint, H
connected and h = sl2 are:

(i) (PSL2, PSL2).

(ii) PSL2 diagonally embedded in PSL2 × PSL2.

Proof. By Assertion (i) of Proposition 2.1, the dimension of B is at most 2. We deduce
that G = PSL2 or PSL2 × PSL2. The lemma follows easily. �

Lemma 4.4 Let α ∈ φh.
Then, ρ−1

φ (α) contains either one root of g or two orthogonal roots of g. Moreover, if

ρ−1
φ (α) = {α◦} then hα = gα◦ ; and if ρ−1

φ (α) = {α−, α+} with α− 6= α+ ∈ φg then hα 6= gα±.

Proof. Set S = ker(α)◦. Since hS ≃ sl2 and by Lemma 4.1, we can apply Lemma 4.3 to
(GS/S, HS/S). The lemma follows immediately. �

Lemma 4.4 divides the set of roots of h in two kinds:

φ1
h := {α ∈ φh : |ρ−1

φ (α)| = 1} and φ2
h := {α ∈ φh : |ρ−1

φ (α)| = 2}.

We denote by WH the Weyl group NH(T (H))/T (H) of H .

Lemma 4.5 The sets φ1
h and φ2

h are stable by the action of WH .

Proof. By Lemma 4.1, (GT (H), T (H)) is a spherical pair of minimal rank. So, GT (H) is a
torus and GT (H) = T . In particular, NH(T (H)) is contained in NG(T ); this inclusion induces
an injection of WH = NH(T (H))/T (H) into W = NG(T )/T . By this injection, we obtain an
action of WH on X (T ) such that ρ is WH-equivariant. The lemma follows. �

4.1.2 Simple roots

In Section 4.1.1, we just proved that ρ induces a map from φh onto φh. In this section,
we will prove that ρ induces a map from the Dynkin diagram of g onto those of h.

Let us fix a choice φ+
h of positive roots for h. Set φ+

g = ρ−1
φ (φ+

h ). Let ∆g (resp. ∆h) be
the set of simple roots of φg (resp. φh).
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Lemma 4.6 Let α be a root of g. Then, α ∈ ∆g if and only if ρφ(α) ∈ ∆h.

Proof. Since α ∈ φ+
g if and only if ρ(α) ∈ φ+

h , we may assume that α ∈ φ+
g .

Let us assume that α 6∈ ∆g. Then, there exists β and γ in φ+
g such that α = β + γ. By

applying ρ, we see that ρ(α) does not lie in ∆h.

Let us assume that α ∈ ∆g. By absurd, we assume that there exists β and γ in φ+
h such

that ρ(α) = β + γ. Three cases occurs:
Case 1: β and γ belong to φ1

h.
Let β◦ and γ◦ be in φg such that ρ(β◦) = β and ρ(γ◦) = γ. By Lemma 4.3, gβ◦ = hβ and

gγ◦ = hγ. So, we have:
[gβ◦ , gγ◦ ] = [hβ , hγ] = hρ(α).

In particular this bracket is non zero and β◦+γ◦ is a root of g. Moreover, gβ◦+γ◦ = hρ(α). So,
Lemma 4.3 shows that ρ(α) ∈ φ1

h. But α and β◦ + γ◦ belong to ρ−1
φ (ρ(α)). So, α = β◦ + γ◦;

and this root is not simple.
Case 2: β ∈ φ1

h and γ ∈ φ2
h.

Let β◦ as above. We can write ρ−1
φ (γ) = {γ+, γ−}. We have:

gβ◦+γ+ + gβ◦+γ− ⊃ [gβ◦ , gγ+ + gγ− ] ⊃ [gβ◦ , hγ] = [hβ , hγ] = hβ+γ = hρ(α).

Moreover, since hγ is different from gγ+ and gγ− , hρ(α) is different from gβ◦+γ+ and gβ◦+γ− .
In particular, β◦ + γ+ and β◦ + γ− are roots of g; and ρ−1

φ (ρ(α)) = {β◦ + γ+, β◦ + γ−}. So,
α = β◦ + γ+ or β◦ + γ−; and this root is not simple.
Case 3: β and γ belong to φ2

h.
With obvious notation, we have:

gβ++γ+ + gβ++γ− + gβ−+γ+ + gβ−+γ− ⊃ [hβ, hγ] = hβ+γ .

If hβ+γ equals one of the four spaces gβ±+γ±, Lemma 4.4 shows that α equals β± + γ±

and is not a simple root. Else, two of the four spaces gβ±+γ± are not zero and α equals one
of the two corresponding roots; in particular α is not simple. �

Consider the map
ρ∆ : ∆g −→ ∆h

α 7−→ ρφ(α).

Set ∆2
h = ∆h ∩ φ2

h and ∆1
h = ∆h ∩ φ1

h.
On the Dynkin diagram of h, we color in black the simple roots in ∆2h. The so obtained

diagram is called the colored Dynkin diagram of h and is denoted by Dh. From now on,
when we draw the Dynkin diagram Dg of g, two simple roots α and β are placed on the
same vertical line if and only if ρ∆(α) = ρ∆(β); in such a way, ρ∆ identifies with the vertical
projection. Note that by Lemma 4.4, α and β are orthogonal. For (PSL4, PSp4), we obtain
the following picture:
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Dg

Dh

By exchanging the simple roots in a fiber of ρ∆, we define an involution σh on the set of
vertices of the Dynkin diagram of g.

4.2 A result of unicity

Proposition 4.1 For a fixed pair (Dg, σh) there exists at most one (up to conjugacy by an
element of G) spherical pair (G, H) where G is adjoint and H connected.

Proof. Obviously, G is determined by Dg. Let us fix a Borel subgroup B of G and a
maximal torus T of B. Let ∆g denote the set of simple roots of G. For any α ∈ ∆g, we fix
a sl2-triple (Xα, Yα, Hα). Consider

Θ : T −→ (K∗)∆2
h

t 7−→ (β(t)α(t−1))
α 6= β ∈ ∆g

ρ∆(α) = ρ∆(β)

.

The neutral component S of the kernel of Θ is a subtorus of T of dimension |∆g|−|∆2
h| = |∆h|.

Moreover, Θ is surjective.
Let H be a semi-simple subgroup of G such that (G, H) is a spherical pair of minimal

rank with (Dg,Dh, ρ∆) as associated triple. Let T (H) be a maximal torus of G. Up to
conjugacy, we may assume that T (H) is contained in T . But, T (H) is contained in S; by an
argument of dimension, we conclude that T (H) = S.

For all α ∈ ∆1
g, we have gα = hρ(α). Moreover, we claim that up to conjugacy, we may

assume that for all α 6= β ∈ ∆g such that ρ∆(α) = ρ∆(β) we have hρ(α) = K.(Xα + Xβ).
We write ∆2

h = {α1, · · · , αk} and ∆2
g = {α−

1 , · · · , α−
k } ∪ {α+

1 , · · · , α+
k } such that for all

i = 1, · · · , k, ρ(α±
i ) = αi. By Lemma 4.4, there exist (x1, · · · , xk) ∈ K∗ such that for all

i = 1, · · · , k, hαi
= K.(Xα−

i

+ xiXα+

i

). Since Θ is surjective, there exists t ∈ T such that

Θ(t) = (x1, · · · , xk). By conjugating H by t, we obtain the claim.
Let i ∈ {1, · · · , k}. There exists y ∈ K∗ such that h−αi

= K.(Yα−

i

+ yYα+

i

). Since α−
i and

α+
i are orthogonal, ξ := [Xα−

i

+ Xα+

i

, Yα−

i

+ yYα+

i

] = Hα−

i

+ yHα+

i

. But, ξ belongs to the Lie

algebra of T (H), that is to S, so (α−
i − α+

i )(ξ) = 0. We conclude that y = 1.
Finally, since h is generated as Lie algebra by the h±α for α ∈ ∆h; h is generated by:

{Xα}α∈∆1
g
∪ {Yα}α∈∆1

g
∪ {Xα−

i

+ Xα+

i

}α∈∆2
h
∪ {Yα−

i

+ Yα+

i

}α∈∆2
h
.

In particular, h only depends on the triple (Dg, σh). �
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4.2.1 The case when rk(H) = 2

Lemma 4.3 considers the case when rk(H) = 1. We now consider the case when rk(H) =
2:

Lemma 4.7 We assume that rk(H) = 2. Then, the possibilities for (Dg, σh) are:

(i) (Dh, Identity) obtained with G = H.

(ii) (Dh ∪ Dh, Exchange) obtained with H embedded diagonally in H × H.

(iii) Dg = A3 and σh fixes the central vertex and exchanges the two others; obtained with
H = PSp4 ⊂ G = PSL4:

Dg

Dh

(iv) Dg = B3 and σh fixes the central vertex and exchanges the two others; obtained with
G2 ⊂ SO7:

Dg

Dh

Proof. If φ2
h is empty, the dimensions of g and h are equal and hence g = h. From now on,

we assume that φ2
h is not empty. Since φ2

h is stable by the action of the Weyl group WH of
H , ∆2

h is non empty.
By invariance by WH the possibilities for colored Dynkin diagrams of h are:

In each case, using the action of WH , one can determine φ1
h and φ2

h and thus, compute
the cardinality |φg| of φg which equals |φ1

h|+ 2|φ2
h|. Moreover, by Lemma 4.3 the two simple

roots of g which map on a simple root of φ2
h are orthogonal. These constraints imply a small

number of possibilities for (Dg,Dh, ρ∆). In the following tabular, we list these possibilities
omitting those corresponding to h ⊂ h × h and sl2 × sl2 → sl2 × sl2 × sl2, (ξ, η) 7→ (ξ, ξ, η).
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Case h

Colored
Dynkin diagram

of h

(|φ1
h|, |φ

2
h|) |φg|

Dynkin diagram
of g

g

1 sl3 (0, 6) 12 sp4 × sl2 × sl2

2 sp4 (0, 8) 16 sp4 × sp4

3 sp4 (4, 4) 12 sl4

4 sp4 (4, 4) 12 sl4

5 G2 (0, 12) 24 sp8

6 G2 (6, 6) 18 so7

7 G2 (6, 6) 18 so7

There is no nontrivial action of the group PSL3 on P1. But in Case 1, P1 is a factor of
B; and H cannot have a dense orbit in B. In Case 2, the projections of h on each factor of
g are isomorphisms: Case 2 also cannot occur.

Consider Case 3. Let α (resp. β) denote the short (resp. long) simple root of h. Set
α◦ = ρ−1

∆ (α) and (α + β)◦ = ρ−1
∆ (α). By Lemma 4.5, α + β ∈ φ1

h. So,

h2α+β = [hα, hα+β] = [gα◦ , g(α+β)◦ ] = gα◦+(α+β)◦ .
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Now, Lemma 4.4 shows that 2α + β ∈ φ1
α. With Lemma 4.5, this contradicts β ∈ φ2

h.
By elimination, the inclusion of PSp4 in PSL4 corresponds to Case 4.
Consider Case 5. We label the simple roots of g and h as follows:

α3 α4

α1 α2

Dg

α β Dh

We have ρ(α3 +α4) = ρ(α2 +α1) = ρ(α2 +α3) = α+β; but α3 +α4, α2 +α1 and α2 +α3

are three distinct roots of g. This contradicts Lemma 4.4.
Consider Case 6. Let α (resp. β) denote the short (resp. long) simple root of h. By

Lemma 4.5, β + 2α belongs to φ1
h. By the argument used in Case 3 before, one easily checks

that β + 3α = (β + 2α) + α belongs to φ1
h. This contradicts Lemma 4.5, since β + 3α is a

long root.
Case 7 corresponds to the inclusion of G2 in SO7. �

We may now assume that H is simple. Indeed, we have:

Proposition 4.2 Let (G, H) be a spherical pair of minimal rank with G semi-simple adjoint
and H connected. If H is not simple then there exists two spherical pairs (G1, H1) and
(G2, H2) of minimal rank such that G = G1 × G2 and H = H1 × H2.

Proof. By assumption, Dh is the disjoint union of two Dynkin diagrams D1 and D2. By
Lemmas 4.7 and 4.1, for all α, β ∈ ∆g such that ρ(α) and ρ(β) are orthogonal, α and β are
orthogonal. We deduce that Dg is the disjoint union of ρ−1

∆ (D1) and ρ−1
∆ (D2). The proposi-

tion follows. �

By Proposition 4.2, to classify all the spherical pairs (G, H) of minimal rank with G
simple-simple adjoint and H semi-simple, we may assume that H is simple. The Theorem A
stated in the introduction lists all such spherical pairs. We can now prove this classification.

Proof.[of Theorem A] By Proposition 4.1, it is sufficient to classify the possible triples
(Dg,Dh, ρ∆). By Lemma 4.7, we may assume that rk(H) ≥ 3. Moreover, we may assume
that ∆2

h is non empty and different from ∆h. Let α ∈ ∆2
h and β ∈ ∆1

h. By Lemma 4.7, either
α and β are orthogonal or α is the short root joined to the long root β by a double edge.
One easily deduces that the colored Dynkin diagram of h is one of the following:
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One easily deduces from Lemmas 4.1 and 4.7 than in the three preceding case the Dynkin
diagram Dg is respectively:

The theorem follows. �
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