ADJACENCY OF YOUNG TABLEAUX
AND THE SPRINGER FIBERS

N.G.J. PAGNON AND N. RESSAYRE

ABSTRACT. In this article we connect different works about the irreducible
components of the Springer fibers of type A. Firstly, we show a relation
between the Spaltenstein’s partition of the fibers and a total order < on the
set of standard Young tableau. Next, using a result of Steinberg, we connect a
work of the first author to the Robinson-Schensted map. We also perform the
Spaltenstein’s study of the relative position of the Springer fibers and the P1-
fibrations of the flag manifold. This leads us to consider the adjacency relation
on the set of standard Young tableaux and to define oriented and labeled
graphs with the standard Young tableaux as vertices. Using this adjacency
relation, we describe some smooth irreducible components of the Springer
fibers. Finally we show that this graph identify with some full subgraphs of
the Bruhat graph.

1. INTRODUCTION

Let V be an n-dimensional vector space over a field k, F = F(V) be the
(full) flag manifold of V' and z be a nilpotent endomorphism of V. In this article,
we perform the study of the Springer fiber

Fo ={({0} =Vo,V1,---,Va) € F : Vi=1,---,n x(V;) CVi_1}.

N. Spaltenstein has defined in each irreducible component of F, a non sin-
gular open subvariety. Moreover, these subvarieties form a partition of F, and are
parametrized. To explain more precisely the Spaltenstein’s results, let us intro-
duce some notation. Let A\; > Ay > --- > A, the sizes of the Jordan blocks of x
ordered by decreasing. So, A\; + --- + A, = n ; in other words, we have a partition
of n denoted by A F n. This partition is called the type of xz. To the partition
A is associated its Young diagram Y (\) = Y (z) whose the r lines are composed
respectively of A1, As,..., A, squares. A filling of the Young diagram Y ()\) with
the integers 1,2,...,n such that the entries along any line or column are strictly
increasing is called a standard Young tableau of shape A. Let Sty denote the set of
standard Young tableaux of shape A.
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For any flag £ in F,, by considering the relative position of the subspaces of
¢ and the images of the powers of z, N. Spaltenstein associates to £ a standard
Young tableau o¢. He showed that for any o € Sty, the set F, , of the £ such
that o¢ = o is a non singular open irreducible subvariety of JF,. Moreover, each
irreducible component of F, contains exactly one F, ,; that is, the irreducible
components of F, are the closures F, of the F, ,.

Let us recall from [6] the definition of a total order < on Sty. For each o € Sty
and for i € {1,2,...,n}, let ¢, (i) (resp. (7)) denote the number of the column
(resp. line) in which ¢ lies for ¢. For 01,02 € Sty, we denote o7 < oy if for some
1 < ig < n we have l,, (ig) < l,,(i0), and for ig < j < n we have l,, (j) = l,(5)-
The notation o7 < 09 means o1 < 03 or 1 = 09. We can now state our first result:

Theorem 1. For any o € Sty, we have:
Fo € U For
730

Let 0max (resp. omin) denote the maximal (resp. minimal) element of Sty
for the order <. Theorem 1 shows that Fy 5., = Fo,..; thus, by a Spaltenstein’s
result, this irreducible component of F, is smooth.

min?

In Section 4 we connect the result in [6] with the Robinson-Schensted map.
Let us fix a base B such that the matrix of z in B has Jordan’s form with decreasing
block sizes. Let B denote the subgroup of GI(V') consisting of the endomorphisms
with upper triangular matrices in B. The orbits of B in F are the Schubert cells;
they are parametrized by the group &,, of the permutations of the set {1,--- ,n}.
For every o € Sty, in [7] for the hook case and in [6] for the general one, we can
find a description of the element w, € &,, corresponding to the Schubert cell C,,,
which intersects F,, in an open dense subset of F,. In [3] and [10], one can find a
combinatorial definition and a geometric interpretation of the Robinson-Schensted
bijection RS : ,.,, Sty x St, — &, (0,7) — RS(0,7). Our main result in
Section 4 is

uEn

Theorem 2. For all o € Sty, we have
wy = RS(0max,0").

In Section 5 we are interested in the open subset C,,, N F, of F,. Since the
map RS is injective, Cy, N F, is not dense in F, for all v # o. The following
theorem precises this observation:

Theorem 3. For every o € Sty, we have Cy,, NFy C Fy . In particular, Cy,, NF,
s smooth.

Let k£ be an integer between 1 and n — 1. We denote by Fj the variety
consisting of the partial flags (V4 C--- C Vjy—1 C Vg1 C--- C V,, = V) such that
dim(V;) = i for all i. We denote by ¢ : F — F, the P'-fibration which omits
the subspace Vj. A subset X in F is said to be ¢y -stable if X = ¢} ' (¢x(X)). We



ADJACENCY OF TABLEAUX AND THE SPRINGER FIBERS 3

prove again the Spaltenstein’s result (see [9]) about the ¢y -stability of F, and give
a more precise description about this (see Proposition 6.1).

In the classical combinatorial theory of standard Young tableaux, the Schiit-
zenberger’s involution, o — oV of the set Sty is known. Combined with the geomet-
ric interpretation of this involution due to Van Leeuwen (see [5]), the Spaltenstein’s
result implies that: ¢, (k — 1) > ¢, (k) if and only if ¢,v(n — k) > cov(n + 1 — k),
for any 2 < k < n.

For any 3 < k < n, two standard Young tableaux of shape A are said to be
k-adjacent if they are obtained one from the other by switching the places of k&
and k — 1. From our description of the ¢g-stability, we deduce that if o and v are
k-adjacent then F, intersects J, in codimension one.

Let T'y be the oriented graph with vertices set St) and the edges labeled by
the integers 3, - - - ,n, where o is joined to v by an edge labeled by & if o and ~y are
k-adjacent and o < . The graph Ty is called the adjacency graph of \. We show
that omin (resp. omax) is the unique minimal (resp. maximal) vertex of T'y.

An irreducible component F, of F, which is homogeneous under the action of
a parabolic subgroup of G1(V') is called a Richardson component. In Section 7.1, we
recall the standard Young tableaux corresponding to the Richardson components.
We determine others smooth components:

Theorem 4. Let 0o be a standard Young tableau such that F5, is a Richardson
component. Let o be a standard Young tableau k-adjacent to o9 such that o < oy.
Then F, is smooth.

Fori=1,---,n—1, let s; denote the transposition of &,, which permutes
i and 7 + 1. The s;’s generate &,,; the length [(w) of the element w in &,, is the
minimal number of s; necessary to write w. A writing of w is said to be reduced
if it makes use I(w) transpositions s;. In Section 8, we show that the expression
of w, given in [6] is reduced. Generalizing this result, we give a (new ?) reduced
canonical writing of the elements of &,,.

Let T';, be the oriented graph with vertices set &,, and the edges labeled by the
integers 2, - - - ,m, where w is joined to w' by an edge labeled by k if w' = wsp41_k
and I(w') = [(w) + 1. The graph T, is called the Bruhat graph. Our main result
connects the Bruhat and the adjacency graphs:

Theorem 5 (Main Theorem). By the map Sty — &,, 0 —> w,, the adja-
cency graph is a full subgraph of the Bruhat graph.

In particular, for all o and v in Sty, w, and w, are not joined by an edge
labeled by 2 in the Bruhat graph.

Let us recall that in [6], the first author gives an expression of w, as a
product of simple reflexions in term of the standard Young tableau o. The study
of this writing is central in this article. Our last result gives an alternative reduced
expression of w, (see Theorem 8.9).
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2. SPALTENSTEIN MAP

In this section, we recall some usual facts about Spaltenstein map. For later
use, we also include some proofs. Other proofs can be found in [9, 1, 11].

A base B is said to be adapted to x if the matrix of z in B is a Jordan ma-
trix with decreasing block sizes. For any base B, the flag whose the i*? subspace is
spanned by the first ¢ vectors of B is called the canonical flag associated to B. A flag
is said to be adapted to z if it is the canonical flag associated to an adapted base B.

Let us fix a line V] in Kerz. Consider V' = V/V;, the canonical projection
qg:V—Viandz : V' — V' v+ V; — z(v) + V.

Let (Fy,---, F,) be a flag adapted to z. Set
2.1) [ { (Fi+V1)/Wh, if 1<i <K,

g Fi /i, it K+1<i<n-1,

where K denote the minimum of the ¢ such that V; C F;. Since V; C Ker z, then
K =X+---+X\, +1 for some ig <r—1 (obviously, if io = 0, Ay +-- -+ Aj, =0).
Lemma 2.1. With above notation, the flag (F{,---,F,_,) is adapted to z'.

Moreover, the partition X' associated to x' is obtained from X by replacing
Xiy by Niy — 1 (obviously if \;; equals one we have to omit \;, to obtain X'), where
il = max{j | /\j = /\io}'
Proof. Let B = (e1,--- ,ey) be a basis of V adapted to x such that (Fy,---, Fy,)
is the canonical flag associated to B. Consider the following base B’ of V':

B' = (Q(el)7 Tt 7Q(6K)7 Q(6K+2)7 T 7Q(en))'
The matrix of 2’ in B’ has the following form:

*
0
I :
0
Iriy
By an easy change of base, one can check the lemma. O

:[-Jet]E:(‘/i7 ’Vn) EszOrZ:]_, , M, we set,
(22) ;= max{k . m g Vi'fl —}—Im(xk’l)}
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Notice that by convention Vy = {0}.

Proposition 2.2. There exists a unique standard Young tableau o such that ¢, (n+
1-d)=a, foralli=1,--- ,n.

Proof. The unicity is obvious. Let us prove the existence by induction on n. We
use notation of Lemma 2.1. For ¢ = 1,--- ,;n — 1, set §; = max{k : q(Vi41) C
q(V;) + Im(z'*~1)}. By induction, there exists a standard Young tableau o' of
shape A such that ¢, (n — i) = §; for all i = 1,--- ,n — 1. One easily checks that
the standard Young tableau o obtained from ¢’ by adding a case indexed by n at
the line 4; satisfies the lemma. O

Corollary 2.3. Let £ = (Vi,---,V,) € Fy and o € Sty. The following are equiv-
alent:

(1) V; CViq 4+ Im(zc-H1=9-1) for glli=1,--- ,n — 1.

V; C Vioq + Im(gee(n+i=9-1) .
(2) { Vi @ Vi1 + Im(ac (+1-0) foralli=1,--- ,n—1.

Proof. We assume that £ satisfies Condition (1). Consider the integers «; defined
by Formula (2.2). By Proposition 2.2, there exists a standard Young tableau v such
that £ satisfies Conditions (2) for « in place of o. Since ¢ satisfies Condition (1),
we haveforalli=1,--- ,n,c,(n+1—1i) = a; < ¢ (n+1—1). One easily deduces
that vy =o. O

We can now explain the Spaltenstein partition of F,. For o € Sty , we denote
by F;,. the set of flags £ which satisfy the conditions of Corollary 2.3. Proposi-
tion 2.2 shows the following result of Spaltenstein: (F, ;)sest, iS a partition of
Fz- Moreover, Spaltenstein showed that the F, , are smooth open and irreducible
subvarieties of 7. For any o € Sty, the closure F,, of F, , is an irreducible compo-
nent of F,. Let ZF, denote the set of irreducible components of F,. Spaltenstein
showed in [8] that the map

Spal : Sty — ZF,, 0 +— F,
is a bijection.

Corollary 2.4. Let (V1,---,Vi) be a partial flag stable by x and satisfying Con-
ditions (2) of Corollary 2.8 fori=1,--- k.
Then there exists £ € Fy 5 starting with (Vi,---, V).

Proof. Firstly we notice that the map
Fro = P(Kerz N Im(z¢= (™ ~1)) — P(Kerz N Im(z% ™)), (Vi) — V1.

is a surjective fibration with a typical fiber isomorphic to Fyr o If (V1,--- , Vi) isa
partial flag stable by = and satisfies Conditions (2) of Corollary 2.3, then the partial
flag (V{ :=Vo/V1,---,V}/_; :=V}/V}) is stable by z' and satisfies Conditions (2)
of Corollary 2.3 for z' and the standard Young tableau ¢’ obtained by deleting
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the square labeled by n. By induction on dim(V'), there exists & = £/Vi € Fpr o
starting with (V/,...,V,_,) and the result follows with &. O

3. CLOSURE OF SPALTENSTEIN’S CELLS

3.1. Let us recall from [6] the definition of a total order < on Sty. For 01,09 € Stj,
we denote o1 < o9 if for some 1 < 49 < n we have l,, (i9) < ls,(ig), and for
io < j <n we have l,, (j) =I5, (4)-

Let omax (resp. omin) denote the maximal (resp. minimal) element of Sty
for the order <. Notice that omax is obtained by filling first line of the Young
diagram Y () with the integers {1,..., A1}, the second one with the integers {\; +
1,--+ ;A +X2}, and so on. .. The tableau omin is obtained by filling the first column
of the Young diagram Y'(\) with the integers {1,--- ,r}, the second one with the
integersr + 1,7+ 2,..., and so on...

Lemma 3.1. Let o be a standard Young tableau (different from omin) and vy its
predecessor for the order <. Let iy denote the integer such that 1, (io) < l5(i0), and
for io < j < n we have 1,(j) = l,(j).

Let o' (resp. v') denote the standard Young tableau obtained from o (resp.
v) by deleting the squares labeled by the integers {ig,...,n}.

Then, we have:

(1) the cases occupied by i =1i9+1,--- ,n are the same in vy and o.

(2) Consider the Young diagram Y obtained from o' (or v') by adding the
square labeled by ig in o (or~y). In'Y, there is no corner between the cases
labeled by ig in o and ~.

(3) o' (resp. ') is the mazimal (resp. minimal) element for the corresponding
shape.

Proof. Assertion 1 is obvious. By omitting the cases occupied by ig + 1,--- ,m,
we may assume that ig = n. By absurd, let us assume that there exits a corner
between the two squares labeled by n in 4 and o. Let § be a standard Young
tableau for which this corner is occupied by n. We have v < § < o; this is absurd
and Assertion 2 follows.

Any tableau § of shape Y (A\) with n in the same case as in v satisfies § < o.
Therefore, 7' is maximal. Any tableau § of shape Y (\) with n in the same case as
in o satisfies v < §. Therefore, o’ is minimal. d

If i9 = n, Lemma 3.1 can be summarized by Figure 1.

3.2. Let o0 € Sty be a standard Young tableau. Define the boundary of F, as
O0Fy := Fy — Fau,o- The goal of this section is the following

Theorem 3.2.
0F, C |J 7

y=o

Firstly, we prove the following
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o Predecessor of o

FIGURE 1. Predecessor for <

Lemma 3.3. There exist integersdy, - -- ,dp—1 such that for all& = (V1,--- ,V,) €
Fz,o and for alli=1,--- ,n—1 we have

dim (v;_1 +1Im (x%("ﬂ“l*i)*l)) - d;.

Proof. We proceed by induction on 4. For ¢ = 1, there is nothing to prove. Consider
V', x', o' £ as before. For 2<i<n—1wehavec,(n+1—i)=c(n+1—1i)=
¢or(n — (i — 1)), by induction for all & = (V{,---,V,!_;) € Fp o and for every
i=1,---,n—2,wehaved, , = dim(V} ,+Im(z' ("~C-D)=1) = dim(V;_, /V} +
(Im(a®= ("F1=9=1) 4 V) /1) = dim((Vi—1 + Im(a® ("H=9-1)) /1) = dim(Vi_y +
Im(z¢-("+1-9-1)) 4 1. These equalities show that d; = d,_, — 1 and the proof is
complete. d
We also need the following well known

Lemma 3.4. Let F' be a vector subspace of V. Let
Grp (V)i :={W € Grp(V) : dim(F + W) = i}.

Then, Gry(V); is a locally closed in Gry, (V). Moreover, the map ¢ : Gry(V); —
Gr;(V), W — F + W is a morphism.

We can now prove Theorem 3.2:

Proof. Let £ = (V1,---,V,) € F, and a; be the integers defined by Formula (2.2).
Set ip := min{i : a; # ¢cs(n + 1 —14) — 1}. Consider the integers d; defined in
Lemma 3.3. Denote by 2 the set of the (Wy,--- ,W,) € F such that

Vi <io dim (W,-_1 +1Im (x%<"+1—i>—1)) - d;.

By Lemma 3.4,  is a locally closed subvariety of F. Moreover, for all ¢ =
1,--+ ,io, themap ¢; : @ — Grg,(V), (W1, - ,Wy) — Wi_1+Im (¢~ (n+1-9-1)
is a morphism. We deduce that

Qo :={¢= W, -, W) €Q:Vi<ioc W;C¢i(()}

is closed in €.
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But, since i is minimal, Corollary 2.4 and Lemma 3.3 imply that £ € Q. So,
& belongs to the closure of F, , in ). Therefore, it belongs to {2y. We deduce that
@iy > ¢g(n+1—1ip) — 1. The theorem follows. O

Corollary 3.5. We have
‘7:1‘,0'77“'” = ‘7:

Omin *

In particular F, is a smooth subvariety.

4. ROBINSON-SCHENSTED MAP

4.1. We now introduce a dual Spaltenstein map. Let V* be the dual of V. If F’
is a vector subspace of V', we denote by F* the orthogonal of F in V*. Consider
the isomorphism:

n: f(V) _)f(V*% (‘/17 7Vn) o (VnJ_—D 7Vv1L7V*)'

Consider the transposed map !z € Hom(V*,V*) of x. One easily checks that 7
induces by restriction an isomorphism from F, onto F:,. In particular, it induces
a bijection 7 : ZF, — ZF:,. By composing the Spaltenstein map of ‘z with 7,
one obtains a new bijection

Spal* : Sty — ZF,, 0 — F.

In [5], one can find a combinatorial definition of the Schiitzenberger invo-
lution: Sty — Sty, 0 — o¥. We now recall from [5] the following geometric
interpretation of this involution: for all ¢ € Sty, we have

Fr=Fov.

ag

4.2. Let RS : Sty x Sty — &,, denote the Robinson-Schensted map. We now
explain the Steinberg geometric interpretation of the Robinson-Schensted map.

Let us start with a geometric interpretation to the permutations. Let (£, ¢£') €
F x F. There exists a unique w € &,, such that there exists a basis (e1,--- ,ey)
of V such that & (resp. &') is the canonical flag associated to (e1,--- ,ep) (resp.
(ew(1)s "+ »€w(n)))- The permutation w is called the relative position of { and &', or
of the pair (&,¢'). In fact, by the Bruhat’s lemma w determines the GL(V')-orbit
of (§,¢").

Let (C,C") € IF, x IF,. Since GL(V) has finitely many orbits in F x F,
there exits a unique one O(¢ ¢y such that O ,cry N (C x C') is open and dense
in C x C'. Let wc,cry € &, be the relative position of an element of O(¢,cry.
Consider the Robinson-Schensted-Steinberg map

RSS : ZF, xIF, — Sy, (C, Cl) — w(c,c)-
We can now state the result of Steinberg: for any (o,0') € Sty X Sty, we have
RSS(F;, Fr) = RS(o,0").

In other words, RS is obtained by composing RSS and the parametrization Spal®
of TF,.
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4.3. We now recall from [6] the definition of a map Pa : Sty — &,,.

Let us fix a flag & adapted to z. For any w € &,,, we denote by O, the
set of the flags £ such that w is the relative position of (&, ). For any o € Sty,
there exists a unique w, € &, such that O,, N F, is open and dense in F,.
Obviously, w, does not depend on the choice of the adapted flag &. We set
Pa : Sty — &, 0 — w,.

We now recall from [6] a combinatorial description of w,. Set
ne(i) == card{j > i | I,(j) > l,(i)}.
Let ¢; denote the increasing cycle of &, of length n, (i) ending on n +1 —i. In
other words,
Ci = Spn—(i+n,(i)—1) - - - Sn—(i+1)Sn—i-
The main result of [6] is the following formula for wy:
(41) Wy :=C1 """ Cp—1-

We now introduce a diagram useful to understand w,, . Firstly, we number n
vertical lines from 1 to n. Then, the cycle ¢; is represented by an horizontal arrow
ending at the line n +1—4 and of length n, (7). We draw successively ¢, 1,--- ,c1.
For example, if n = 6, n,(5) =1, ny(4) =2, n,(3) =0, n,(2) = 2 and n,(1) =4
we obtain:

— () =1
— ne(4) =2
SR ny(3) =0
— ny(2) =2
ne(1) = 4

4.4. Let o¢ be the unique standard Young tableau such that an adapted flag &

belongs to F,,,- One can describes oo as follows: Firstly, n,--- ,n — Ay + 1 are
placed such that ¢,(n) = A1, ¢co,(n —1) = A1 —1,--- ,¢o(n — A1 + 1) = 1. Next,
n—Ap,--- ,n— A — Ay + 2 are placed in the same way among the free cases; and
so on. As an example we give og for the partition (6,4,3,1):

1]3]4][8][13[14]

216|7]|12

5110]11

9]
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We can now state a relation between RSS and Pa:
Theorem 4.1. For all o € Sty, we have
RSS(Fy, Frp) = Wy

Proof. Let €2, denote the set of the flags adapted to x. Firstly, we notice that €2, is
one orbit of Z(z) := {g € GL(V) : gzg~! = z}. Indeed, let £ and &’ be two points
of Q. Let B and B’ be two bases adapted to x such that £ and &' are respectively
the flags associated to B and B'. Let g € GL(V) such that g(B) = B’. Since the
matrices of x in B and B’ are the same, g € Z(z). But, £ = g£. Conversely, if
g € Z(x) and £ € Q,, g€ € Q.

Since 2, is one orbit, 2, is a locally closed subvariety of F,. We now claim
that dim Q, = Y77, (i — 1)\,
We make a proof by induction on r. Consider the following locally closed

subvariety of Gry, (V):
Gy :={F € Gry,(V) : 2(F) C F and 2™~ (F) # {0}},

and the morphism
@ : Qz — ga:
(V1,50 ,Va) +— Vi

Let us fix F in G,. Set V' = V/F and denote ¢ : V — V' the canonical
projection. Let y denote the restriction of z to F' and 2’ € Hom(V', V") the linear
map induced by z. Let £ = (Vi,---,V,) € O7Y(F). Then, for i = 1,--- ,\; we
have V; = Ker(y?). On the other hand, (Vy,41/F,---,V,_1/F) is a flag of V'
adapted to z'. Conversely, if (Vy ,;,---,V,_;) is a flag of V' adapted to =’ then
the flag

(Ker(y)a o aKer(yxl_l)a Fa q_l(V):1+1)a T aq_l(Vrifl))

is adapted to . One easily deduces that © 1 (F) is isomorphic to .. In particular,
we have:

dim Q, = dim Q, + dim G,.

But, by induction, dim Q. = >.5,(i — 2)A;. It remains to prove that dim G, =
/\2+---+/\r=n—/\1. B

Consider the set Vg of the vectors v in V such that (v,z(v),--- ,z} 71 (v))
are linearly independent, and the map I' : V5 — G, which associates to each
v € Vp the subspace spanned by (v, z(v),--- ,2*~1(v)). The set V; is non empty

and open in V. Moreover, T is surjective and for all F € G,, ["}(F) is an open
subset of F'. We deduce that dim G, = dimV —dim F = n — A;. The claim follows.

By Proposition 2.2 of [5], dimF, = > (¢ — 1)A;. So, we just proved that
dimQ, = dim F,. Moreover, we have already noticed that 2, is contained in
Fz,00- Finally, Q, is open and dense in F,.
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Let o € Sty. By definition, for all £ € F, NC,, and & € 2, the relative
position of £ and & is w,. Since Fy NCy, and 2, are open and dense respectively
in F, and F,,, we have RSS(F,, Fs,) = w,. O

Remark 4.2. We have proved that F,, contains a dense orbit of the neutral
component Z(xz)° of Z(z). By duality, F, has the same property. An interesting

Omax

question is to determine all the irreducible components F, with this property.

5. ROBINSON-SCHENSTED AND SPALTENSTEIN MAPS

For every irreducible component F, of F,, Cy, NF, is an open subset of F,.
On the other hand, Spaltenstein has defined another open subset F, , in F,. Our
next theorem compares these two open subsets of F,:

Theorem 5.1. For every o € Sty, we have Cy,, N Fy C Fp -
Before proving Theorem 5.1, we show some lemmas.

5.1. Let o be a standard Young tableau of shape A. In this subsection, we collect
some useful results about w, and C,, .

Lemma 5.2. Let { = (Vi,---,V,) € Cy, . Set K := min{k : V; C F}}.
Then, we have: K = Aj + -+ -4+ XN_(ny—1 + 1 and w, (1) = K.

Proof. In this proof, we will say that a flag (W1,---,W,) has Property (%) if
A+ 4 N my—1 + 1 =min{k : W; C Fy}. By Corollary 2.3 and since ¢, (n) =
A, (n), generically a point of F,, has Property (). So, there exists a flag in
Cw, N Fy,, which has Property (x). By definition of the Bruhat cells, any point of
Cuw, has Property (x).

Let us fix a base B = (e1,- - ,e,) adapted to z such that & is the canonical
flag associated to B. Then, the canonical flag associated to (ey, (1), - ;€w,(n))
belongs to C,,, and has Property (). One easily deduces that w,(1) = K. |

Lemma 5.3. Let ¢ : {1,--- ,n} —w,(1) — {1,--- ,n — 1} defined by ¢(k) = k
if k <wy(1) and ¢(k) =k —1 if k > w,(1). Let ¢' be the standard Young tableau
obtained from o by deleting the case occupied by n.

Then, wy (i) = ¢(wy (i + 1)) for alli=1,--- ,n—1.

Proof. Set w'(i) = ¢(wy(i + 1)). We have to prove that w' = w,. Let n =
(Vi,---,Vp) € Cy, N Fy . Consider Fy, the subvariety of F consisting of the
flags with V4 as line. The map «# : Fy, — F(V'),n = (V1,Wa,--- ,W,) —
n' = (Wa/Vi,--- ,W,/V1) is an isomorphism.

We use notation of Lemma 2.1 with V; and set § = (FY,--- ,F}_;). We con-
sider the Schubert decomposition of F (V') associated to &j. Since by Lemma 2.1,
& is adapted to 2, Cy_, N Fyr,or is open and dense in F.

Since the stabilizer of V7 and & in GI(V) acts on F(V') as the stabilizer of
& in GL(V') does, w(Cy, N Fy,) is a Schubert cell C,, of F(V').
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Let us fix a non zero vector vy in V;. Let B = (e1, - ,e,) be a base of V
such that & is the canonical flag associated to B. By Lemma 5.2, the canonical flag
associates to (e1, - ,ex 1,V1,€K+1, " ;€n) is also &: from now on, we assume
that ex = v1.

By Lemma 5.2 again, the canonical flag associated to (ew, (1), " »€w,(n))
belongs to Fy,. Moreover, its image by 7 is the canonical flag associated to
(Ew'(1)>"** »Ew'(n—1)) Where (g; = q(e;) if i < K — 1 and &; = q(ezy1) if i >
K +1). Since the canonical flag associated to (e1,--- ,en—1) is &, we deduce that
W(Cwa N .7:V1) = Cw/.

On the other hand, by Corollary 2.3, 7(Fy - NFv,) = Fur 0. We deduce that
Cw N Fyr o is dense in Fy 40, and so that w' = w,r.

Moreover, by Corollary 2.3, we have 7w(Fy, NFy,s) = Far o0 S0, W(Fyy NCyy, N
Fa,5) is open in Fy o and contains n'. Therefore, 7(Fy, N Cy,) equals Cy, .
The lemma, follows. O

5.2. Proof of Theorem 5.1. The proof proceeds by induction on the dimension
of V. Let o € Sty. Let £ = (W1, Vs, ..., V,) € Cy, N Fy. It remains to prove that
forall k=1, ---,n we have

Vi € Vi1 + Im (ge-(n+1=k)—1)

Vi & Viy + Im (25 (n+1-0))

Firstly, V1 C F,_(1)NKerz. But, by Lemma 5.2 F,,_(;yNKer z C Im (:ccf’(")_l).
It follows that V; C Im (z¢(™~1). On the other hand, Vi & F,_q)_1; so Vi &
Im (z¢=(™). So, Relations (5.1) are fulfilled for k = 1.

(5.1)

Let V! = V/V4 and 2’ be as in Lemma 2.1. Obviously, &' = (Va/V1,--- , Vo /V1)
belongs to F,. Let ¢’ be the standard Young tableau obtained from ¢ by deleting
the case occupied by n. By Lemma 5.3, £’ € Cyy . So, by induction £ € Fyr 5r. One
easily deduces that Relations (5.1) hold for £ > 1. The theorem is proved. O

6. Pl-FIBRATIONS OF F AND F,

6.1. Notation. Let k£ be an integer between 1 and n — 1. We denote by F}, the
variety consisting of the partial flags (1 C--- C V3,1 C V1 C---CV, =V)
such that dim(V;) =i for all 4. The group GL(V') acts naturally on F}. We denote
by ¢, : F — F the map which omits the subspace V},. This map is a P!-fibration
and is GL(V)-equivariant. Let X be a subset of F. The subset ¢, (¢x(X)) is
called the ¢g-saturation of X and X is said to be ¢y-stable if it is equal to its
¢r-saturation.

6.2. ¢y-stability of F,.

Proposition 6.1. Let o be a standard Young tableau of shape A and 2 < k < n.
Then,

(1) Fu,o i Gny1—k-stable if and only if c,(k — 1) = ¢, (k);
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(2) Fy is pnr1—k-stable if and only if co(k — 1) > ¢, (k);

(3) If co(k — 1) > ¢, (k) then by switching the places of k and k — 1 in o, we
obtain a standard Young tableaw y. Moreover, for all§ € Fy o, the ppi1-_1-
saturation of & excepted one point which belongs to Fy . is contained in
Foo-

Proof. Set V! :=V/V, pand z' : V! — V' v+ V,  — z(v) + V,_¢. By
replacing z by z’, we may assume that k = n.

Firstly, we assume that c,(n — 1) > ¢, (n). Let £ = (Vi,---,V,,) € Fup. We
claim that V5 C Kerx.
By Corollary 2.3 we have:

z(V2) C (V1) + z(Im (va<"—1>—1)) =TIm (xcﬂn—l)) CIm (xcam)) 7

since ¢,(n — 1) > ¢y(n). But, by Corollary 2.3, Vi ¢ Im (z°(™); and so, Vi N
Im (z° (")) = {0}. Since z(V3) C V4, the claim follows.

By the claim, the ¢;-saturation of F, , is contained in F,. But it is irre-
ducible, and so contained in F,. Since F, is the closure of F, ,, we deduce that
Fo is ¢1-stable.

Notice that since Im (z¢-("~1)=1) C Im (z° (™~1), V5 C Im (- (™—1).

Let W1 be a line in V. Then, ¢ := (Wy,Va,--- ,V,_1) € F,. Let 7y be the
unique standard Young tableau such that { € F, . By Corollary 2.3, we have for
all k =1,---,n -2, ¢;(k) = ¢y(k). Therefore, either v = ¢ or ~ is obtained from
o by switching the places of n and n — 1.

By Corollary 2.3, Vi ¢ Im (2¢-(™); and so, the dimension of V5 NIm (z° (™)
equals zero or one. We distinguish these two cases.

Case 1: V5 N Im (z¢= (M) = {0}.

Since Wi C Vo, Wi € Im (2¢-(™), and Wi C Im (z°-(™~1). By Corollary 2.3,
we deduce that ¢, (n) = ¢,(n); and so, that v = . It follows that F, , is ¢1-stable.

By the assumption on the dimension of VanIm (z° (™), Vo ¢ Wy +Im (z° (™).
But V3 C Im (z°(™~1) C V; + Im (2°(™~1). We deduce that c,(n — 1) = ¢, (n);
but v = g, and so, ¢, (n — 1) = ¢;(n).

Case 2: Vo N Im (wc"(")) is a line denoted by .

If Wi = I, we have Wi C Im (2¢=(™); and so, ¢,(n) > ¢,(n). In particular
v # o, and « is obtained from ¢ by switching the places of n and n — 1. So,
co(n—1) > c,(n).

It Wy #1, ¢y(n) = ¢, (n); and so, vy = 0.
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To complete the proof of the proposition, it is sufficient to prove that if
co(n—1) < ¢;(n) then F, is not ¢;-stable. Let v be in Im (z° (M~1) —Im (z°- (™)
such that z(v) = 0.

Since z(Im (z¢-™~V~1)) = Im (z¢("=Y) 5 Im (2 (™~1), there exists w
in Im (¢ ("~Y=1) such that z(w) = v. Set Vi (resp. V2) be the vectors spaces
spanned by v (resp. v and w). By Corollary 2.4, we can complete (V1,V5) in a flag
€ of Fy . Since z(Va) = V4, for all ¢ € ¢ (41 (€)) — {¢}, ¢ € Fu. This completes
the proof. |

Proposition 6.1 has the following purely combinatorial corollary:

Corollary 6.2. Let o be a standard Young tableau of shape X and 2 < k <mn.
Then (with notation of Section 4.1), c¢,(k—1) > ¢, (k) if and only if cov(n —
k) > cov(n+1—k).

Proof. By Proposition 6.1, ¢, (k — 1) > ¢,(k) if and only if F, is ¢n41_g-stable
which is equivalent to n(F,) ¢x-stable, and so to F,v ¢y-stable. O

Remark 6.3. With notation of Proposition 6.1, Assertion 3 shows that ., inter-
sects F, in codimension one. It would be interesting to find out all the standard
Young tableaux § such that Fj intersects F, in codimension one.

Assertion 2 of Proposition 6.1 deals with the Spaltenstein’s parametrization
of the irreducible components of F, (and was already obtained in [8]), but not with
the Spaltenstein’s partition by the F, ,. Assertion 3 is more precise but concerns
the Spaltenstein’s partition. It would be interesting to be able to read on the
standard Young tableaux v and o, if F,NJF, contains an irreducible component C
whose F, is the @41 g-saturation. If ¢, (k — 1) # ¢, (k) Proposition 6.1 answers
this question. If ¢,(k — 1) = ¢,(k) the two following examples show that the
situation is less clear.

—
[\

Example 6.4. Consider o = ; i . Then, F, , = F5 is ¢1-stable. Set v =

and C = F, N F,. One easily checks that the ¢;-saturation of C' equals F,.

1]2]
Example 6.5. Consider the three standard Young tableaux omax :={3| , 0 :=
4

3]
and opin 1=

4] |
of shape . One easily checks that F,_, —(F,

Omin Omax

UFs)

o]

e[

is ¢1-stable.
6.3. From now on, we keep our attention on the case ¢, (k — 1) > ¢, (k).

Definition 6.6. Let 3 < k < n. Two standard Young tableauz of shape X are said
to be k-adjacent if they are obtained one from the other by switching the places of
k and k — 1.
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Definition 6.7. Let ') be the oriented graph with vertices set Sty and the edges
labeled by the integers 3,--- ,n, where o is joined to vy by an edge labeled by k if o

and 7y are k-adjacent and o < 7.

The graph Ty is called the adjacency graph of X.

Example 6.8. The adjacency graph of the partition (3, 2) is:

[y
[\

3]

—
[\V]

4]

[y
[\

5]

—
w

5]

6.4. We can state the first property of T'y:

4]

Proposition 6.9. Each vertex in Ty is joined t0 omax (7€8p- Omin) by an increas-

ing (resp. decreasing) path.

Before showing Proposition 6.9, we prove two lemmas:

Lemma 6.10. Let o € Sty and 3 < k < n. Consider the following partition of the

cases of o:
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Then,

(1) the number k — 1 cannot belong to a case 1,
(2) if k—1 belongs to a case |:|, o is k-adjacent to no standard Young tableau.

(3) if k—1 belongs to a case , o is k-adjacent to a standard Young tableau
v such that v < o.

(4) if k—1 belongs to a case E.L o is k-adjacent to a standard Young tableau
v such that o < 7.

Proof. Tt is trivial. O

Lemma 6.11. Let o be a standard Young tableau and v be its predecessor for <.
Let iy be such that 1,(io) < l;(i0) and for all j > io, 1,(j) = 1+(j).

Then, there exists a standard Young tableaw §% (resp. = ) which is ig-adjacent
to y (resp. o). Moreover, o < 67 and §= < .

Proof. By omitting the cases occupied by ig + 1,--- ,n in each tableau, we may
assume that igp = n. By Figure 1, n — 1 belongs to the last line of . Then,
Lemma 6.10 shows that there exists 6+ n-adjacent to -y such that v < §+. Since v
is the predecessor of o, one deduces that ¢ < §+. The proof is similar for —. O

Proof of Proposition 6.9. We make the proof for o.,,x. The reader can easily de-
duce those for omijn-

Let £ denote the set of the standard Young tableaux joined to omax by a
increasing path. We have oy, € £ and assume by absurd that £ # Sty. Consider
the maximal element y of Sty —& and o its successor. By Lemma 6.11, there exists
ot ig-adjacent to « such that v < 6 (with some 3 < ig < n). Since v < 6+, §+
belongs to £ ; and so v belongs to £: contradiction. O

7. SOME SMOOTH COMPONENTS OF F,

7.1. Some homogeneous components of F,. In this subsection, we will de-
scribe all the irreducible components of F, which are homogeneous under a par-
abolic subgroup of G1(V'). These components are already classified by Kraft and
Hesselink in [4] and [2]. Here, we recover their results and precise the standard
Young tableaux corresponding to these components. Let us first introduce some
notation. . o

If X\ is a partition of n, we denote by A = (A1, Aa,...) the dual partition
defined by N o= card{j | A; > i}; we can notice that we have M >
An ordered partition of n is an uple (u1,---,u,) of positive integers whose the
sum equal n. If we omit the order on the set of the u;’s, we obtain the underlying
partition of the form p; > --- > p;.. We denote by O(A) the set of ordered
partition with \ as underlying partition. In other words, an element of O(A) is a
A1-uple of integers whose the components are the \i’s.
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Let us fix a base B = (e, -+ ,e,) of V adapted to z. We number the cases of
Y ()\) as in omax- In the case number i, we put the vector e;. Let 0 = (p1,-- -, pa,) €
O(X). We define a partial flag &, = ({0} = W2 Cc Wl cC---C WM =V) by:
e W1 is the subspace spanned by the vectors in the y; first lines and in the
first column of Y (\);
e W2 is the subspace spanned by W} and the vectors in the us first lines
and on the left among the vectors not in W};
e and so on... -

Forall j =1,---, A, we set d; := 5;1 i = dim WQJ Consider
For={(Vi,-- Vo) €EF : Vj=1,--- A Vg, =W/}

Notice that F, is homogeneous under the action of the stabilizer in GI(V') of
(Wrc..-.cWwh).

~ We now define a standard Young tableau o, associated to o. In the u,
first lines of the first column of o,, we put the numbers 1,---, . In the p,_;
first lines and on the left among the not numbered cases, we put the numbers
P+ 1,0 pr + pr_1. And, so on. ..

Let us give an example of &, and o,.

Example 7.1. For the partition A = (4 > 4 > 3 > 1), its dual partition is (4 >
3 > 3 > 2). Then there is exactly 12 elements in O()\). Set 0 = (3,2,4,3) € O(X).
We have:

ei|esles|es 1 8 (10
€5 |€Eg|E7|€g 215(9]11
€9 [e10l€11 3(6|12
€12] Op= | 7]

& = ({0} C< e1,e5,e9 >C< ng;€27€6 >C<L WQ2763,67,€10,612 >C W).
We can now describe the Richardson components:

Theorem 7.2. For any o € O()\), we have F, = F,,. Moreover, any irreducible
component of F, homogeneous under a parabolic subgroup equals F,, for some
o€ O(\).

Proof. Let Fj, denote the flag variety of a vector space of dimension k. Let us
fix o € O(X). Since for all j = 1,---,\ z(WJ) = WJ™', F, is contained in
Fz. Since F, is isomorphic to F5 X --- X .7-'5“1, it is irreducible and of dimen-
sion ), XA — 1) /2 which is the dimension of each irreducible component of F,
(see [8]). We deduce that F, is a Richardson component of F,.
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Conversely, let o € Sty be such that F, is a Richardson component. There
exists a partial flag ({0} = W° c W! C ---W?* = V) such that F, is the set
of the flags containing the WJ’s. Let dy,--- ,ds denote the dimensions of the
W3i’s. Consider the projection 7 : F(V) — P(V), (Vi,---,Vn) — Vi. By
Corollary 2.4, W' = n(F,) = Im(z(™~1) Nkerz. We deduce that d; = I,(n)
equals j\il for some 4;. Consider the endomorphism z' : V/W! — V/W1,
v+ W — z(v) + W One easily checks that the dual partition of the parti-
tion associated to &' is obtained from \ by omitting 5\,-1. We deduce by induction
on the dimension of V that o := (di,--- ,ds) belongs to O(A). Moreover, from the
equality W' = Im(z¢(™~1) Nkerz (and by an immediate induction) we deduce
that Fp = Fo.

We now prove by induction on n that o, = o. Since l5(n) = di, we have
Cs,(n) = cs(n). Set o' = (dy —1,--- ,ds). Notice that o, is obtained from o, by
deleting the case occupied by n. Let ¢’ be the standard Young tableau obtained
from ¢ by deleting the square occupied by n. Let us fix V; € (Im(z¢(™~1) —
Im(z° (™)) N ker z. By considering V/V}, the induction shows that g, = o'. The
theorem follows. O

Remark 7.3. By the above description we also see that F,_,  is the Richardson
component corresponding to ordered partition (Ar,---,Ax;). This is an another
way to show that F, . is smooth. (cf. Corollary 3.5).

7.2. Some smooth components of F,. The main result of this section is

Theorem 7.4. Let 0 € O(\). Let 0 a standard Young tableau k-adjacent to o,
such that 0 < 0,. Then F, is smooth.

Proof. We use notation of Section 7.1. Set jo = ¢,, (k) and k' =dj, =n+1— k.
Since z(Wjott) = Wio, Wiett ng =1 (Vi 1) is an hyperplane of W7°*! containing
Wjo. Consider

C = {(‘/1, o ,Vn) € fg : Vk’+1 C ngo-ﬁ-l N ﬂf_l(vkl_l)}.

Notice that the map Vjr_; — Wit N x=1(Vjy_1) is a morphism between
the projective space of the hyperplanes of W° containing W7o ~! to the projective
space of the hyperplanes of W7+ containing W°. One easily deduces that C is a
smooth irreducible subvariety of F,. Moreover, since o exists, we have pj,4+1 > 1.
Therefore, the codimension of C in F, equals one.

Since for all (Vy,---,V,) € C, we have z(Vi41) C Vir_1, the ¢ saturation
of C is an irreducible component F., of F,. Moreover, the restriction of ¢/ to C is
an isomorphism. We deduce that F, is smooth.

It remains to prove that v = 0. Set D := F, ,, N F,; D is a closed subvariety
of F,,,,. By Proposition 6.1, for any ¢ € F, , the line ¢, " (¢x(£)) intersects T, ,,
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is exactly one point of D. In particular, F, is the closure of the ¢g-saturation of
D.
Notice that
C={eF: ¢ (dr(€) C Fu}.
We deduce that D is contained in C. Therefore, F, which is contained in F,, is
the ¢g-saturation of C. It follows that o = . O

8. THE ROBINSON-SCHENSTED MAP AND THE ADJACENCY GRAPH

8.1. Let I', be the oriented graph with vertices set &,, and the edges labeled
by the integers 2,--- ,n, where w is joined to w' by an edge labeled by k if
w' = wspy1—k and l(w') = l(w) + 1. The graph T, is called the Bruhat graph
of &,,.

We can now state our
Theorem 8.1 (Main Theorem). By the map Sty — &,,, 0 —> w,, the graph
Ty identifies with a full subgraph of T',,.

In particular, for all o and v in Sty, w, and w, are not joined by an edge
labeled by 2 in the Bruhat graph.

Remark 8.2. Since the Robinson-Schensted map is injective, Theorem 4.1 shows
that when A varies among the partitions of n the subgraphs of I';, obtained by
Theorem 8.1 are pairwise disjoint.

Before showing Theorem 8.1,we prove some useful combinatorial properties
about &,,.

8.2. Consider the set
A= {(n1, - ,np_1) EN"L |0 < n; <n—i}.
Lemma 8.3. The map 7 : A = &,,(n;) = ¢c1¢2...¢n—1, where

Ci 1= Sn—(i+n;—1) - - - Sn—(i+1)Sn—i ifn; >1
¢ id, otherwise,

is a bijection.

Proof. Firstly consider the subset A’ := {(n;) € A| ny = 0}, then for every
w € w(A") we have w(n) = n; by induction the restriction of 7 to A’ induces a
bijection onto H = {w € &,, : w(n) = n}. Since ¢;(n) = n — (i + n; — 1), every
element w € &,, such that w(n) = k can be uniquely written as w = c;w’ with

w' € H and ¢; = 8kSg41 - - -Sn—1- The lemma follows. O

We now introduce some structure on the set A. For k = 2,--- ,n — 1, we
set Ay = {(n1, - ,Mp1) € A : np < n—k} and AF := {(ny,--- ,n, 1) €
A : ng_q # 0}). We define 7, : AF — A, (ng,-++ ,np_1) — (nf,--+,n! ;)

where n; = n; for i € {k —1,k}, nj,_, = np and nj, = ny_; — 1. We also define
pr : Ap — A, (nq,--- ,np_1) —> (n},--- ,nl,_,) wheren} =n; fori ¢ {k—1,k},
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ny_; =ng and nj, = ng—1 + 1. For @ = (ny,--- ,np—1) € A, we define the length
I(a@) of a by l(a)) = > n;. Notice that I(7(a)) = l(a) — 1 and I(pr(a)) = l(a) + 1.
Via m, we can read the Bruhat order on A. We obtain

Lemma 8.4. Leta € A and k € {2,--- ,n}. Then, we have:

(1) If ng_1 > ng then a € AF and m(1(a)) = 7(Q)Snp1—k-
(2) If ng—1 < ng then a € Ay and m(pr(@)) = (@) Snt1—k-

Proof. We use notation of Lemma 8.3 for a. Set w1 = ¢1---cx—2 and ws =
Ck+1 " Cn—1; SO, we have: () = wicg_1cpws. But wa(n—k+1) =n—k+1 and
wa(n—k+2) =n—k+2,s0wy and s,_r4+1 commutes. Therefore, 7(a)spt1—k =
W1Ck—1CkSn+1—kW2. We compute Cr_1CkSnt+1—k with the help of the diagrams of
Figure 2.

L = L —
—_—— — -
—— — :

Ng—1 > N ngp—1 < Nk

FIGURE 2. A product of cycles

Notice that these two computations can be deduced one from the other. The
lemma follows easily. O

Proposition 8.5. With above notation, for all a € A, we have l(a) = I(w(a)).
In other words, the expression of w(c) given in Lemma 8.3 is reduced.

Proof. Firstly, notice that since the definition of 7 gives a formula of length /()
for m(a), we have: l(m(a)) < l(a). By absurd, we assume that the proposition is
false. Let us consider an element o = (ny,--- ,n,_1) € A such that l[(a) > I(7(a))
of maximal length. Two cases occurs.
Case A: there exists k € {2,--- ,n — 1} such that ng > ng—_;.

Since o € Ay, we can set 8 = pg(a). By Lemma 8.4, we have 7(8) =
m(@)sp—k+1. In particular, I(m(a)) = I(x(B)) £ 1. Since I(B) > l(a), I(x(B)) =
1(B) = l(a) + 1. So, I(n(a)) equals I(a) or I(a) + 2. Contradiction.

CaseB:forall k=2,---n—1,ng <ng_1-

Wehave:n—1>mn; >ng > -+ > np_q1 > 0. So, there exists k € {0,--- ,n—1}
such that n; =n—idiforalli <k—1and n; =n—i—1for all i > k. We can draw
the cycles ¢; on Figure 3.
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Cn—k+2

Cn—k+1 |

01.

FIGURE 3. Decomposition of m(a)

One easily reads on the picture the following values of () (4):

T 1] ] k=1 [k| k+1 | - ]n
(@)@ |n| - | n+2—k|1|n+l—-k| ---|2
In particular, {(i < j) : 7(a)(?) < w(a)())} = {(k,k+1),---,(k,n)}. We deduce

that I(m(a)) = M%) _ (n — k). On the other hand, I(e) = Y0 ' n —i — (n — k).

Contradiction. 0

Since the dimension of C,, equals the length of w, Proposition 8.5 implies
Corollary 8.6. For any o € Sty, we have dimC,,, = >, ns (7).
The partition X is said to be of hook type if Ao =--- = A, = 1.

Corollary 8.7. Let o be a standard Young tableau of shape X. Then, there exists
w € &, such that F, is the closure of Cy if and only if X\ is of hook type and
0 = Omin-

Proof. It F, is the closure of C,, then w = w,. Now, there exists w € &,, such that
F, is the closure of C,, if and only if dim(F,) = l(w,). Notice that the inequality
dim(F,) < l{wy) is obvious. But, by [8], the dimension of F, only depends on
A; and, by Propositions 6.9 and 8.5 for any standard Young tableau v # oy, of
shape A, we have l(omin) < (7). Therefore, if dim(F,) = l(w,) then ¢ = omin. It
remains to prove that dim(F,) < l(w,,,,) if and only if A is of hook type.

We have: dim(F,) = 37, (i—=1)A\; = 31— N, (). In particular, dim(F,) <
l(w,,,,,) implies that n,_, (r + 1) = 0; and so, that X is of hook type. Conversely,
if X is of hook type, one easily checks that 37— ny... (0) = S0 14,0 (3)- O
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8.3. Now, we can prove Theorem 8.1:
Lemma 8.8. Via the map Pa, Ty identifies with a full subgraph of T,,.

Proof. The map Sty — A, 0 —> (ny(1),--- ,ny(n — 1)) is obviously injective.
Now, Lemma 8.3 implies that Pa : Sty — &,, is injective.

Let 0 < v be two k-adjacent standard Young tableaux. One easily checks
that ng(k—1) > ny (k) and 7(ny(1),- -+ ,ns(n—1)) = (n,(1),--- ,n,(n—1)). So,
by Lemma 8.4 w, = wySp4+1—k. Moreover, by Proposition 8.5 l(w,) = l(w,) + 1.
Finally, via the map Pa, I'y identifies with a subgraph I'y of I',,.

Conversely, consider an edge in T, labeled by k joining w to w' with I(w")
l(w)+1. Consider & = (nq,- -+ ,np—1) and g = (n}, - ,n!,_;) such that 7(a) =
and 7(8) = w'. By Lemma 8.4, either § = 71(a) or a = 7% (8). Since I(w')
I(w) + 1, Proposition 8.5 shows that a = 74 (8) and ng_1 < ng.

We now assume that w = w, for some o € Sty; and we distinguish three
cases:
Case A: np_1 <ni and k > 2.

By Lemma 6.10, there exists a standard Young tableau v which is k-adjacent
to 0. Moreover, the first part of the proof shows that w, = w'. In particular, the
considered edge is an edge of T'}.

Case B: nj_1 =nj and k > 2.
We assume that w' = w.,, for some v € St). Lemma 8.4 shows that

Tk(ny (1), -+, my(n = 1)) = (ne(1),- -+ ,ng(n —1)).

We have to prove that v and o are k-adjacent; by the injectivity of the map Pa, it
is sufficient to prove that there exists a standard Young tableau k-adjacent to .
Since ny,(k — 1) = ny(k), by Lemma 6.10 it is sufficient to prove that k — 1 and k
are not in the same line in .

Let us assume by absurd that I, (k—1) = [, (k). Since for all i < k—2n, (i) =
n (i), an immediate induction shows that the integers 1,-- -,k —2 are in the same
case in o and ~y. Notice that n,(k—1) = n (k). Moreover, n,(k—1) = n,(k—1)—1
and so l,(k — 1) > I,(k — 1). Since ny(k) > n,(k), we deduce that I, (k) < I, (k).
But now, n,(k) > n,(k) ; which is a contradiction.

Case C: k = 2.

Since ny = n— A1, the condition n; < ng implies that ny = ny and [,(2) = 1.
In particular, nj = ny—1 =mn—A; —1. But for all ¥ € Sty, we have n, (1) = n—A;.
Therefore, w' does not belong to Pa(Sty). O

8.4. We now give another description of w,. For i = 2,--- ,n, set
n? (i) == card{j <i | I,(j) < l,(3)}.

For any j = 1,---,n — 1, let ¢/ denote the decreasing cycle of &, of length
n°(n + 1 — j) ending on j.
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Theorem 8.9. With above notation, we have

wy =ct--- L

Proof. During this proof, we set w® = ¢! ---¢"~!. Firstly, we prove by induction

on n that the theorem holds for omin. Set ¢ = Omin-
By Lemma 5.2, wo (1) = A + -+ + X, (n)—1 + 1 =n(n) + 1 = w7 (1).
Consider ¢’ the standard Young tableau obtained from o by deleting the case
occupied by n. One can easily check that for all ¢ = 2,--- | n,

w’ (i) = ¢! (w”’ (i—1)+ 1) .
Moreover, by Lemma, 5.3 (and using its notation), we have, for all i = 2,--- ,n:
we (i) = ¢~ (wor (i — 1)) .

Therefore, we have to prove that forall k = 1,--- ;n—1, we have ¢ (k) = c!(k+1).
This follows easily from n?(n) + 1 = w,(1).

Let o and v be two k-adjacent standard Young tableaux (with some 3 < k <
n). One can easily check that w” = w?7s,41—,. Then, by Theorem 8.1 if w” satisfies
the theorem if and only if w” does. Now, the theorem follows from Proposition 6.9
and the first part of this proof. O

Remark 8.10. Theorem 8.9 implies that for any o we have 3=, n?(i) = >_; ns(j)-
This is obvious, since these two quantities are the cardinality of the set of the
(i < j) such that I,(i) < I,(j). But, the equality of the theorem does not seem so
obvious and keeps mysterious for the authors.
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