Feuille 1 : Réduction des endomorphismes

Exercice 1. Pour $n \ge 1$, on considère les endomorphismes de $\mathbb{C}_n[X]$ donnés par $P \mapsto P'$ et $P \mapsto P(X + 1) - P(X)$. Quelle est leur forme normale de Jordan?

Exercice 2. Parmi les matrices

$$A_{1} = \begin{pmatrix} 0 & 1 & & \\ & 0 & 1 & \\ & & 0 & 0 \\ & & & 0 \end{pmatrix}, \quad A_{2} = \begin{pmatrix} 0 & 1 & & \\ & 0 & 0 & \\ & & 0 & 1 \\ & & & 0 \end{pmatrix}, \quad A_{3} = \begin{pmatrix} 0 & 1 & & \\ & 0 & 0 & \\ & & 0 & 0 \\ & & & 0 \end{pmatrix} \quad \text{et } A_{4} = \begin{pmatrix} 0 & 1 & 1 & \\ & 0 & 0 & \\ & & 0 & 0 \\ & & & 0 \end{pmatrix},$$

y en a-t-il deux semblables?

Exercice 3. Autour de la forme normale de Jordan

- 1. Soit $A \in \mathcal{M}_n(\mathbb{C})$. Montrer que les matrices A et 2A sont semblables si et seulement si A est nilpotente.
- 2. Soit $A \in \mathcal{M}_n(\mathbb{C})$ une matrice inversible. Étant donnée la forme normale de Jordan de A, déterminer la forme normale de Jordan de A^{-1} .
- 3. Combien de classes de conjugaison de matrices à coefficients réels A verifient ont pour polynôme minimal $(X-1)^2(X-2)$ et pour polynôme caractéristique $(X-1)^4(X-2)^2$? Donner un représentant par classe de conjugaison.

Exercice 4. Jordan et rang des puissances

- 1. Soit $A \in \mathcal{M}_{10}(\mathbb{C})$ une matrice telle que $\operatorname{rg}(A) = 5$, $\operatorname{rg}(A^2) = 3$, $\operatorname{rg}(A^3) = 1$ et $\operatorname{rg}(A^4) = 0$. Quelle est la forme normale de Jordan de A?
- 2. Plus généralement, soit A une matrice nilpotente. On note j_p le nombre de blocs de Jordan nilpotents de taille p ($p \ge 1$) dans la forme normale de Jordan de A et r_k le rang de A^k ($k \ge 0$). Quelle formule permet de déterminer la suite (j_p) en fonction de la suite (r_k)?

Exercice 5. Combien y a-t-il de classes de conjugaison de matrices 6×6 nilpotentes?

Exercice 6. Racines carrées de matrices nilpotentes

- 1. Soit J un bloc de Jordan nilpotent. Quelle est la forme normale de Jordan de J^2 ?
- 2. Soit A une matrice nilpotente. Donner une condition nécessaire et suffisante portant sur sa forme normale de Jordan pour que A admette une racine carrée.

Exercice 7. Soit $A \in \mathcal{M}_n(\mathbb{C})$. On note

$$\operatorname{ad}_A: \mathcal{M}_n(\mathbb{C}) \longrightarrow \mathcal{M}_n(\mathbb{C}), \quad M \longmapsto AM - MA.$$

- 1. Montrer que si A est diagonalisable, l'endomorphisme ad_A l'est aussi.
- 2. Montrer que si A est nilpotente, l'endomorphisme ad_A l'est aussi.

Exercice 8. Transposée

- 1. Montrer que toute matrice $M \in \mathcal{M}_n(\mathbb{C})$ est semblable à sa transposée.
- 2. Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{R})$ semblables en tant qu'éléments de $\mathcal{M}_n(\mathbb{C})$. Montrer que A et B sont semblables dans $\mathcal{M}_n(\mathbb{R})$.
- 3. Montrer que toute matrice $M \in \mathcal{M}_n(\mathbb{R})$ est semblable à sa transposée.

Exercice 9. Endomorphismes cycliques

Soit u un endormorphisme du K-espace vectoriel E de dimension n. On veut montrer l'équivalence entre :

- (a) il existe $x \in E$ tel que $(x, u(x), \dots, u^{n-1}(x))$ est une base;
- (b) $\deg(\mu_u) = n$;
- (c) $\mu_u = \pm \chi_u$;
- (d) $\operatorname{Com}(u) = K[u]$;
- (e) $\dim(\operatorname{Com}(u)) = n$.

On dit alors que u est cyclique.

- 1. Montrer (a) \Longrightarrow (b) \Longleftrightarrow (c).
- 2. Soit $x \in E$. L'ensemble des polynômes $P \in K[X]$ les que P(u)(x) = 0 est un idéal non réduit à $\{0\}$ donc de la forme $(\mu_{u,x})$ pour $\mu_{u,x} \in K[X]$, qu'on appelle polynôme annulateur de u en x. Montrer qu'il existe x tel que $\mu_{u,x} = \mu_u$ et en déduire l'implication (b) \Longrightarrow (a).
- 3. Montrer (a) \Longrightarrow (d) et (a) \Longrightarrow (e).
- 4. Soit $K \subset L$ une extension de corps. et $A \in \mathcal{M}_n(K)$. Montrer que la valeur de dim(Com(A)) est la même calculée dans K ou dans L. Même question pour $\deg(\mu_A)$.
- 5. Montrer que $\dim(\text{Com}(u)) \geq n$, avec égalité si et seulement si $\deg(\mu_u) = n$ (utiliser la question précédente). En déduire les implications manquantes.

Exercice 10. Bicommutant

Soit $E \subset \mathcal{M}_n(\mathbb{C})$. On note

$$Com(E) = \{ B \in \mathcal{M}_n(\mathbb{C}) : AB = BA \quad \forall A \in E \},$$

pour $E = \{A\}$ on notera Com(A). Montrer à l'aide du théorème de Jordan que

$$Com(Com(A)) = \{ P(A) : P \in \mathbb{C}[X] \}.$$

L'énoncé analogue est-il vrai sur $\mathcal{M}_n(\mathbb{R})$?

Exercice 11. Réduction de Jordan sur les réels. Pour $x \in \mathbb{R}$ et $k \in \mathbb{N}^*$, on pose

$$J_k(x) = \begin{pmatrix} x & 1 & 0 & 0 \\ 0 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & 1 \\ 0 & \cdots & 0 & x \end{pmatrix} \in \mathcal{M}_k(\mathbb{R}).$$

Pour $z = a + ib \in \mathbb{C} - \mathbb{R}$ (avec $a \in \mathbb{R}$ et $b \in \mathbb{R}^*$), on pose

$$\Lambda(z) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$

et

$$K_k(z) = \begin{pmatrix} \Lambda(z) & I_2 & 0 & 0 \\ 0 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & I_2 \\ 0 & \cdots & 0 & \Lambda(z) \end{pmatrix} \in \mathcal{M}_{2k}(\mathbb{R}).$$

Montrer que toute matrice $A \in \mathcal{M}_n(\mathbb{R})$ est semblable à une matrice diagonale par blocs de la forme $J_k(x)$ et $K_k(z)$.

Exercice 12. Soit

$$A := \left[\begin{array}{ccccc} 0 & -1 & 2 & -2 & -1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 1 & 0 \end{array} \right].$$

- 1. Calculer A^2 et A^3 .
- 2. En déduire la forme normale de Jordan (notée J) de A.
- 3. Trouver une matrice inversible P telle que

$$A = PJP^{-1}.$$