

L3 - Math VI- Représentation des groupes finis 2011-2012

REPRÉSENTATIONS DES GROUPES NON ABÉLIENS

1. Exemples de représentations

Exercice 1. On considère la représentation ρ de S_3 sur \mathbb{C}^3 par permutation des coordonnées :

$$\sigma \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_{\sigma^{-1}(1)} \\ x_{\sigma^{-1}(2)} \\ x_{\sigma^{-1}(3)} \end{pmatrix}.$$

- a. Montrer que la droite D engendrée par (1,1,1) est une sous-représentation de \mathbb{C}^3 .
- **b.** Montrer que la forme hermitienne $h(z_1, z_2, z_3) = |z_1|^2 + |z_2|^2 + |z_3|^2$ est S_3 -invariante.
- c. En déduire que l'orthogonal P de D est une sous-représentation de \mathbb{C}^3 . Donner les matrices de l'image d'un système de générateurs de S_3 dans une base fixée de P.
- **d**. Donner la décomposition de \mathbb{C}^3 en représentations irréductibles.
- e. Considérons l'action naturelle de S_n sur $X = \{1, ..., n\}$ ainsi que l'action linéaire de S_n sur \mathbb{C}^X induite.

Pour n = 3, montrer que \mathbb{C}^X est isomorphe comme S_3 à la représentation construite à la question précédente.

- f. Montrer que, pour tout g dans S_n , $\chi_{\mathbb{C}^X}(g)$ est égal au nombre de points fixes de g dans X.
- **g.** Trouver une droite D_X et un hyperplan H_X de \mathbb{C}^X qui soient stables par \mathcal{S}_n .
- h. Montrer que H_X est irréductible et calculer son caractère.

Exercice 2. Dans le plan \mathbb{R}^2 muni de sa structure euclidienne, on note \mathcal{T} le triangle ABC, où A=(1,0), $B=(-\frac{1}{2},\frac{\sqrt{3}}{2})$ et $C=(-\frac{1}{2},-\frac{\sqrt{3}}{2})$. Précisons que \mathcal{T} désigne le triangle plein c'est-à-dire l'enveloppe convexe de A,B et C.

- \mathbf{a} . Montrer que \mathcal{T} est un triangle équilatéral.
- b. Notons G l'ensemble des isométries du plan qui préservent \mathcal{T} . Montrer que G est un groupe, appelé groupe des isométries de \mathcal{T} .
- c. On veut montrer que G est isomorphe à S_3 .
 - (1) Montrer que G permute les points A, B et C.
 - (2) Montrer que si une isométrie laisse fixe les trois sommets, alors c'est l'identité.
 - (3) Conclure.
- d. Montrer que l'isomorphisme $S_3 \simeq G$ donne une représentation de degré 2 de S_3 .
- e. Donner son caractère. Est elle irréductible ? Est-elle isomorphe à la représentation vue dans l'exercice précédent ?
- f. Soit σ une similitude de \mathbb{R}^2 et $\mathcal{T}' = \sigma(\mathcal{T})$. Montrer que le groupe d'isométries de \mathcal{T}' est $\sigma G \sigma^{-1}$. Pourquoi peut-on parler du groupe d'isométrie du triangle équilatéral?

Exercice 3. Montrer que le groupe d'isométrie du rectangle est isomorphe à $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, lui-même isomorphe au groupe d'isométrie du losange. Quelles sont les représentations associées par la méthode de l'exercice précédent? Sont-elles irréductibles?

Exercice 4. On suppose que G est un groupe fini dont toutes les représentations irréductibles sont de dimension 1.

- a. Montrer que G possède une représentation fidèle, i.e. de noyau trivial.
- ${\bf b}$. En déduire que G s'injecte dans un groupe de matrices diagonales.
- \mathbf{c} . Montrer que G est abélien.

2. Lemme de Schur

Exercice 5. Soit G un groupe fini et V une représentation irréductible de G. On note ρ_V le morphisme $G \to GL(V)$ correspondant.

- a. Montrer que $z_h := \sum_q \rho_V(ghg^{-1})$ est une homothétie de V.
- b. Montrer que son rapport est égal à $\frac{|G|}{\dim V}\chi_V(h)$, où χ_V est le caractère associé à la représentation V de G.

Exercice 6. Soit $G \longrightarrow GL_n(\mathbb{R})$ une représentation telle que la composition $G \longrightarrow GL_n(\mathbb{R}) \subset GL_n(\mathbb{C})$ soit irréductible. Soit $Q : \mathbb{R}^n \longrightarrow \mathbb{R}$ une forme quadratique G-invariante (c'est-à-dire satisfaisant Q(gv) = Q(v)).

Montrer que $\pm Q$ est définie positive.

3. Semi-simplicité, Irréductibilité

Exercice 7. Montrer que $t \mapsto \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$ définit une représentation de $(\mathbb{C}, +)$. Est-elle semi-simple?

Exercice 8.

- a. Montrer qu'il existe une unique représentation réelle ρ de $(\mathbb{Z}/4\mathbb{Z},+)$ telle que $\rho(\bar{1})=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.
- **b**. Est-elle irréductible sur \mathbb{R} ? Sur \mathbb{C} ?
- c. Trouver le commutant dans $M_2(\mathbb{R})$ de $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. Pourquoi est-il isomorphe à l'espace des morphismes $\mathbb{Z}/4\mathbb{Z}$ -invariants de $\operatorname{End}(\mathbb{R}^2)$?
- **d**. Le lemme de Schur est-il encore vrai sur \mathbb{R} ?

Exercice 9. Montrer que tout sous-groupe fini de $GL_n(\mathbb{C})$ est conjugué à un sous-groupe du groupe unitaire $U_n(\mathbb{C})$.

4. Propriété des Caractères

Exercice 10. Soit G un groupe fini et X un ensemble fini. Une action par permutation de G sur X est un morphisme ϕ de G vers le groupe de permutation $\mathcal{S}(X)$. On supposera dans la suite un tel morphisme. On considère l'espace vectoriel \mathbb{C}^X muni de sa base canonique $(e_x)_{x\in X}$. On note φ la représentation linéaire de G sur \mathbb{C}^X donnée par $\varphi(g)(e_x) = e_{\phi(g)(x)}$.

- a. On suppose que la multiplicité de la relation triviale dans \mathbb{C}^X vaut 1. Montrer (par la contraposée) alors que pour tout x, $\mathrm{Im}(\phi)(x)=X$. Montrer que cette propriété ne dépend pas de x (si elle vraie pour un x alors elle l'est pour tout x). On dira que l'action de G sur X est transitive.
- b. Pour tout x de X, on pose $i_x = \sum_g e_{\phi(g)(x)}$. Montrer que si un élément de \mathbb{C}^X est invariant par G, alors il est combinaison linéaire de i_x . En déduire que réciproquement, si l'action est transitive, alors la multiplicité de la représentation triviale dans \mathbb{C}^X est 1.
- c. Déduire de ce qui précède que l'action de G sur X est transitive si et seulement si $\sum_{g} |X^{g}| = |G|$.

d. On dit que l'action est doublement transitive si pour tout (x,y), (x',y') avec $x \neq y$ et $x' \neq y'$, il existe g dans G tel que $\phi(g)(x) = x'$ et $\phi(g)(y) = y'$. Montrer que si l'action est doublement transitive, alors elle est transitive. Puis montrer que V_X est irréductible.

On pourra tout d'abord exhiber une action transitive de G sur $\{(x,y), x \neq y\}$ et une autre sur

On pourra tout d'abord exhiber une action transitive de G sur $\{(x,y), x \neq y\}$ et une autre sur $\{(x,y), x=y\}$, puis déduire que $\sum_{g} |X^{g}|^{2} = 2|G|$.

Exercice 11. On reprend la décomposition en S_3 -représentations $\mathbb{C}^3 = D \oplus P$ de l'exercice 1.

- **a**. Montrer que $\pi_D = \frac{1}{6} \sum_{\sigma \in \mathcal{S}_3} \rho(\sigma)$ est la projection sur D selon P. Puis montrer que $\pi_P = \frac{1}{3} \sum_{\sigma \in \mathcal{S}_3} \chi_P(\sigma) \rho(\sigma)$ est la projection sur P selon D.
- b. On veut maintenant généraliser ces résultats. Soit V une représentation d'un groupe G. Montrer que $\pi = \frac{1}{|G|} \sum_{g} \rho_V(g)$ est une projection de V sur la composante triviale V^G .
- ${\bf c}$. Pour toute représentation irréductible W de G, on pose

$$\pi_W = \frac{\dim W}{|G|} \sum_g \overline{\chi_W(g)} \rho_V(g).$$

- (1) Soit W' une sous-représentation irréductible de V. Montrer que π_W laisse W' stable, puis que la restriction de π à W' est une homothétie.
- (2) Montrer que le rapport de l'homothétie vaut 1 si W est isomorphe à W' et 0 sinon.
- (3) En déduire que π_W est une projection de V sur la composante isotypique de type W, parallèlement aux autres composantes isotypiques.
- **d**. Retrouver le résultat de b. et donner le noyau de π .

Exercice 12. Soit V une représentation irréductible de G et ρ_V le morphisme correspondant. Soit ε un morphisme de G dans \mathbb{C}^* , c'est à dire une représentation de dimension 1 de G. On considère le morphisme $\rho_{\varepsilon}: G \to \operatorname{End}(V), g \mapsto \epsilon(g)\rho_V(g)$.

- a. Montrer que ρ_{ϵ} fournit une représentation irréductible de G.
- b. On considère la représentation standard ρ de S_3 et sa représentation alternée ε . Montrer que ρ_{ε} est isomorphe à ρ (à l'aide du cours puis à la main).

Exercice 13. Soit ρ une représentation irréductible de G et ε une représentation de dimension 1 de G'.

- a. Montrer que $(g, g') \mapsto \varepsilon(g') \rho(g)$ fournit une représentation irréductible du produit direct $G \times G'$.
- b. Montrer comment la table de caractère de $G \times \mathbb{Z}/n\mathbb{Z}$ peut se déduire de celle de G.

5. Exemples de tables de caractères

Exercice 14. On veut trouver la table de caractères de S_4 .

- a. Donner le caractère des représentations triviale, alternée et standard de S_4 .
- b. Montrer que la représentation alternée ε et la représentation standard ρ fournissent une nouvelle représentation irréductible ρ_{ε} .
- c. Montrer qu'il ne reste plus qu'une seule représentation irréductible à trouver. Donner son caractère à l'aide d'une formule du cours sur la représentation régulière.

Exercice 15. Montrer que le groupe d'isométries du tétraèdre est isomorphe à S_4 (on s'inspirera du cas du triangle équilatéral). Quelle représentation de S_4 obtient-on ainsi?

Exercice 16. Soit V une représentation irréductible de G et χ_V son caractère. On note

$$K_V := \{ g \in G, \, \chi_V(g) = \chi_V(e) \},$$

où e désigne l'élément neutre.

- a. En utilisant le fait que les valeurs propres de $\rho_V(g)$ sont des racines de l'unité ainsi que le cas d'égalité de l'inégalité triangulaire, montrer que g appartient à K_V si et seulement si g est dans le noyau de ρ .
- b. En déduire que K_V est un sous-groupe distingué et montrer alors que par passage au quotient, V est une représentation irréductible du groupe G/K_V .

c. Quel est le lien entre la représentation de degré 2 de S_4 et celle de degré 2 de S_3 ?

Exercice 17. Dans cet exercice, n désigne l'entier 3 ou 4.

- a. Regarder toutes les représentations irréductibles de S_n . Dire si leur restriction au sous-groupe A_n est irréductible et le cas échéant, donner la décomposition en représentations irréductibles. On pourra commencer par trouver les classes de conjugaison de A_n , puis faire utiliser la base orthonormée des caractères.
- b. Montrer que l'on obtient ainsi toutes les représentations irréductibles de A_n

Exercice 18. Le groupe D_4 est le groupe des isométries du carré. Il est engendré par r et s avec $r^4 = s^2 = 1$ et $srs^{-1} = r^{-1}$.

- a. Montrer que le groupe D_4 possède 5 classes de conjugaison.
- b. Montrer qu'il possède à isomorphisme près 4 représentations irréductibles de dimension 1 et une de dimension 2. Donner explicitement les représentations de dimension 1 et en déduire le caractère de celle de dimension 2.
- c. Pouvez-vous reconnaître géométriquement cette représentation?

Exercice 19. Le groupe H_8 est le groupe engendré par i et j avec $i^2 = j^2 = -1$, ij = -ji (et bien sûr, $(-1)^2 = 1$).

- ${\bf a}.$ Montrer que le groupe ${\cal H}_8$ possè de 5 classes de conjugaison.
- b. Montrer qu'il possède à isomorphisme près 4 représentations irréductibles de dimension 1 et une de dimension 2. Donner explicitement les représentations de dimension 1 et en déduire le caractère de celle de dimension 2.
- c. Montrer que H_8 et D_4 ne sont pas isomorphes alors qu'ils ont même table de caractères.

Exercice 20. Revenons sur la table des caractères du groupe S_4 obtenu à l'exercice 5.

- a. Montrer que S_4 admet une unique représentation de dimension 3 dont l'image est incluse dans $SL_3(\mathbb{C})$. On notera ρ cette représentation.
- b. Montrer que ρ s'obtient en composant une représentation réelle $\rho_{\mathbb{R}}$ avec l'inclusion $GL_3(\mathbb{R}) \subset GL_3(\mathbb{C})$. Reparque. En fait cette propriété est conséquence du fait que les valeurs du caractère soit réelle et d'un théorème qui dépasse le cadre de ce cours.
- c. Montrer que quitte à conjuguer $\rho_{\mathbb{R}}$ par un élément de $GL_3(\mathbb{R})$ on peut supposer que l'image de $\rho_{\mathbb{R}}$ soit incluse dans $SO_3(\mathbb{R})$.
- d. Pour chaque élément g de S_4 , déterminer l'angle de la rotation $\rho_{\mathbb{R}}(g)$. Trouver la formulation de la réponse fait partie de question.
- e. Expliquer comment construire le cube et le dodécaè dre à partir de $\rho_{\mathbb{R}}$.