Université Claude Bernard Lyon 1

M2 de Mathématiques : Groupes algébriques

Année 2013-2014

I Espace tangent

1° Espace tangent et nombres duaux

L'algèbre des nombres duaux est l'algèbre $\mathbb{C}[\varepsilon] = \mathbb{C}[t]/(t^2)$, où t est une indéterminée et ε est l'image de t dans le quotient. On a donc : $\varepsilon^2 = 0$ (alors que $\varepsilon \neq 0$).

a) Version plongée. On suppose que X est une sous-variété fermée de \mathbb{C}^s , c'est-à-dire que $\mathbb{C}[X]$ est un quotient de $\mathbb{C}[X_1,\ldots,X_s]$. Soient F_1,\ldots,F_r des générateurs de $\mathscr{I}(X)$.

Soit $x + \varepsilon h \in \mathbb{C}[\varepsilon] \otimes_{\mathbb{C}} \mathbb{C}^s$, où $x = (x_j)_{1 \leq j \leq s}, h = (h_j)_{1 \leq j \leq s} \in \mathbb{C}^s$. Montrer que l'on a $F_i(x + \varepsilon h) = 0$ pour $1 \leq i \leq r$ si et seulement si $x \in X$ et $h \in T_x^{(\mathbb{C}^s)}X$.

Il s'agit essentiellement de faire un développement limité à l'ordre 1!

- b) Application. Déterminer l'espace tangent en l'identité, puis en un point quelconque, au groupe orthogonal $O_n(\mathbb{C})$ et au groupe spécial linéaire $SL_n(\mathbb{C})$.
- c) Version conceptuelle. Soit X une variété affine, x un point de X et \mathfrak{m}_x l'idéal maximal correspondant dans $\mathbb{C}[X]$. Montrer que l'espace tangent T_xX s'identifie naturellement à

$$\{\chi \in \operatorname{Hom}_{\operatorname{alg}}(\mathbb{C}[X], \mathbb{C}[\varepsilon]), \ \chi(\mathfrak{m}_x) \subset (\varepsilon)\}.$$

Pour χ comme ci-dessus et $f \in \mathbb{C}[X]$, montrer que $\chi(f)$ est de la forme $f(x) + \varepsilon D(f)$ et montrer que $D : \mathbb{C}[X] \to \mathbb{C}$ est une dérivation ponctuelle en x. De là l'identification.

d) Relation entre les versions. Montrer que la donnée d'un morphisme d'algèbres $\chi: \mathbb{C}[X] \to \mathbb{C}[\varepsilon]$ équivaut à la donnée d'un point x et d'un vecteur tangent (« plongé ») en x à X. Soit $\pi: \mathbb{C}[\varepsilon] \to \mathbb{C}$, $\varepsilon \mapsto 0$. Le noyau de la composée $\pi \circ \chi$ est un idéal maximal qui correspond à un point de X par le Nullstellensatz.

2° Différentielles

Soit X une variété affine, x un point de X et U un ouvert contenant x. Soit f une fonction de $\mathbb{C}[X]$ ou de $\mathcal{O}_X(U)$ ou de l'anneau local \mathcal{O}_x . On appelle différentielle de f en x et, à tort ou à raison, on note d f_x la classe de f - f(x) dans $\mathfrak{m}_x/\mathfrak{m}_x^2$ (où \mathfrak{m}_x est l'idéal maximal associé à x).

- a) Vérifier que les expressions de la forme df_x engendrent $\mathfrak{m}_x/\mathfrak{m}_x^2$.
- **b)** On suppose $X \subset \mathbb{C}^s$. Vérifier que l'on a, pour $f \in \mathbb{C}[X]$: $\mathrm{d}f_x = \sum_{j=1}^s \frac{\partial f}{\partial X_j}(x)(\mathrm{d}X_j)_x$.
- c) Montrer que pour $h \in T_x^{(\mathbb{C}^s)}X$ et $f \in \mathbb{C}[X]$, $\langle df_x, h \rangle$ est le coefficient de ε dans $f(x + \varepsilon h)$.

3° Critères différentiels

- a) Soient $F_1 = X_1^2 \in \mathbb{C}[X_1]$, $I = (F_1)$ et $X = \mathcal{V}(I)$ un moyen un peu idiot de définir un point! L'espace tangent à X en son point est $\{0\}$; cependant, on a : $\frac{\partial F_1}{\partial X_1}(0) = 0$, dont le noyau est \mathbb{C} .
- **b)** Soient $F = X_1^3 + X_3 2X_1X_2$, $G = X_2^2 X_1X_3$ et I = (F, G). Montrer que $\mathscr{V}(F, G)$ est la cubique tordue $C = \{(t, t^2, t^3), t \in \mathbb{C}\}$. Constater que le rang de (dF_x, dG_x) est 1 en tout point $x \in C$. Que se passe-t-il? Vérifier que $(X_2 X_1^2) \in \sqrt{I}$ mais que $X_2 X_1^2 \notin I$.
- c) Soit $I = (F_1, \dots, F_r)$ un idéal de $\mathbb{C}[X_1, \dots, X_s]$ et $X = \mathcal{V}(I)$. On suppose que le rang de la matrice $\left(\frac{\partial F_i}{\partial X_j}(x)\right)_{i,j}$ est $s \dim(X)$ en un point $x \in X$. Montrer que X est lisse en x.

A priori, on ne sait pas si I engendre $\mathscr{V}(I) = \sqrt{I}$. Néanmoins, \sqrt{I} est engendré par F_1, \ldots, F_p et d'autres générateurs, qui ne peuvent que « faire diminuer » la dimension de l'espace tangent.

d) Soit $I = (F_1, \ldots, F_r)$ un idéal de $\mathbb{C}[X_1, \ldots, X_s]$ et $X = \mathcal{V}(I)$. On suppose que le rang de la matrice $\left(\frac{\partial F_i}{\partial X_i}(x)\right)_{i,j}$ est r pour tout $x \in \mathcal{V}(I)$. Montrer que $\sqrt{I} = I$ et que $\mathcal{V}(I)$ est lisse.

Soit $G \in \sqrt{I}$. Il existe $k \in \mathbb{N}^*$ et $H_1, \ldots, H_r \in \mathbb{C}[X]$ tels que $G^k = \sum_{i=1}^r H_i F_i$. Montrer que k = 1 ou que $H_i \in \sqrt{I}$. Et après...

4° Cône affine de la grassmannienne des plans

- Soit $n \geq 3$. Considérons le cône épointé $X = \{w \in \bigwedge^2 \mathbb{C}^n, \ w \wedge w = 0\} \setminus \{0\}$. **a)** Montrer que X est l'ensemble des bivecteurs $w \in \bigwedge^2 \mathbb{C}^n$ qui peuvent s'écrire sous la forme $f_1 \wedge f_2$ avec $f_1, f_2 \in \mathbb{C}^n$.
- b) On note (x_{ij}) les coordonnées de $w \in \bigwedge^2 \mathbb{C}^n$ dans la base $(e_i \wedge e_j)$. L'égalité $w \wedge w$ se traduit par un certain nombre d'équations $F_k(x_{ij}) = 0$ (combien?). En admettant provisoirement que les F_k engendrent $\mathscr{I}(X)$, déterminer des équations de l'espace tangent à X en w.

Utiliser les nombres duaux pour trouver cet espace tangent putatif.

c) Toujours sous la même hypothèse, identifier l'espace tangent putatif à $\mathbb{C}w \oplus \text{Hom}(P,\mathbb{C}^n/P)$ où P est le plan correspondant au bivecteur w.

Si $w = f_1 \wedge f_2$, envoyer $\varphi \in \text{Hom}(P, \mathbb{C}^n/P)$ sur $f_1 \wedge \varphi(f_2) - \varphi(f_1) \wedge f_2$.

d) Déterminer la dimension de X et montrer que « les équations » $w \wedge w = 0$ engendrent $\mathscr{I}(X)$. Utiliser la fiche précédente pour trouver des ouverts isomorphes à un \mathbb{C}^d et le critère différentiel ci-dessus pour prouver que l'idéal est radical. On ignorera prudemment le problème en 0.

$\mathbf{5}^{\circ}$ Variété des algèbres associatives

Soit $n \in \mathbb{N}^*$ et $\mathbf{e} = (e_1, \dots, e_n)$ la base canonique de \mathbb{C}^n . Une structure d'algèbre sur \mathbb{C}^n est une application bilinéaire $\mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}^n$, déterminée par sa table de multiplication :

$$\forall i, j, \quad e_i e_j = \sum_k c_{ij}^k e_k$$

- a) Identifier l'espace des algèbres à $(\mathbb{C}^n)^* \otimes (\mathbb{C}^n)^* \otimes \mathbb{C}^n$. Que représente alors $\mathbf{c} = (c_{ij}^k)$?
- b) Soit V l'ensemble des produits \mathbf{c} qui sont associatifs; montrer que $c \in V$ si et seulement si

$$\forall i, j, k, m, \quad \sum_{\ell} c_{ij}^{\ell} c_{\ell k}^{m} = \sum_{\ell} c_{i\ell}^{m} c_{jk}^{\ell}.$$

c) On suppose qu'en un point (non nul) c, les équations ci-dessus engendrent un idéal radical. Soit $f: \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}^n$ bilinéaire définie par $f(e_i, e_j) = \sum_k \alpha_{ij}^k e_k$ pour tous i, j. Montrer que (α_{ij}^k) est un vecteur tangent à V en \mathbf{c} si et seulement si

$$\forall x, y, z \in \mathbb{C}^n, \quad xf(y, z) + f(x, yz) = f(xy, z) + f(x, y)z.$$

Ainsi f est un cocycle pour c (voir http://www.math.umn.edu/~voronov/8390/lec16.pdf).

\mathbf{II} Actions de groupes compacts

$\mathbf{1}^{\circ}$ Exemples

Décrire et classer les orbites des actions suivantes :

- O_n(ℝ) sur ℝⁿ (resp. U_n(ℂ) sur ℂⁿ); U(1) sur la sphère unité S³ de ℂ², où $t \cdot (z_1, z_2) = (tz_1, tz_2)$ ($t \in U(1), (z_1, z_2) \in \mathbb{C}^2, |z_1|^2 + (tz_1, tz_2)$) $|z_2|^2=1$); on identifiera le quotient à la droite projective \mathbb{P}^1 ou à la sphère \mathbb{S}^2 ;
- $O_n(\mathbb{R})$ (resp. $U_n(\mathbb{C})$) par congruence sur l'espace $\mathscr{S}_n(\mathbb{R})$ (resp. $\mathscr{H}_n(\mathbb{C})$) des matrices symétriques réelles (resp. hermitiennes complexes);
- $O_n(\mathbb{R})$ (resp. $U_n(\mathbb{C})$) par multiplication à droite sur $GL_n(\mathbb{R})$ (resp. $GL_n(\mathbb{C})$);
- $O_n(\mathbb{R}) \times O_n(\mathbb{R})$ (resp. $U_n(\mathbb{C}) \times U_n(\mathbb{C})$) sur $GL_n(\mathbb{R})$ (resp. $GL_n(\mathbb{C})$) par $(k_1, k_2) \cdot g = k_1 g k_2^{-1}$.

2° Points fixes dans un convexe

Deuxième preuve de l'existence d'un point fixe pour l'action d'un groupe compact dans une partie convexe d'un espace réel de dimension finie. À préciser...

III Théorème de Stone-Weierstrass

Soit X un espace compact, $\mathscr{C}(X)$ l'algèbre des fonctions continues sur X à valeurs dans $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$. Soit $\mathscr{A} \subset \mathscr{C}(X)$. On dit que \mathscr{A} est auto-adjoint si, pour tout $f \in \mathscr{A}$, la fonction conjuguée complexe \overline{f} appartient à \mathscr{A} (condition vide sur \mathbb{R}). On dit que \mathscr{A} sépare les points si, pour tous $x, y \in X$ distincts, il existe $f \in \mathscr{A}$ telle que $f(x) \neq f(y)$). Par exemple, $\mathscr{C}(X)$ sépare les points car compacité présuppose la séparation.

Théorème. Soit X un espace compact, \mathscr{A} une sous-algèbre de $\mathscr{C}(X)$ qui est auto-adjointe, contient les constantes et sépare les points. Alors \mathscr{A} est dense dans $\mathscr{C}(X)$ pour la norme $||\cdot||_{\infty}$.

1° Approximation de la valeur absolue par des polynômes

Soit $g: [-1,1] \to \mathbb{R}, x \mapsto |x|$.

- a) Montrer que la fonction $g_{\varepsilon}:[-1,1]\to\mathbb{R},\ x\mapsto\sqrt{x^2+\varepsilon^2}$ converge uniformément vers g lorsque ε tend vers 0.
- **b)** Soit $\varepsilon > 0$. Justifier que Q_n , le développement de Taylor de $h: u \mapsto \sqrt{1+u}$ d'ordre n en 0, converge vers h uniformément sur $[\varepsilon^2 1, \varepsilon^2]$ lorsque n tend vers l'infini.
- c) Soit $\varepsilon > 0$. Montrer que $R_n^{(\varepsilon)}: x \mapsto Q_n(x^2 + \varepsilon^2 1)$ converge uniformément vers g_{ε} sur [-1, 1].
- d) Soit (ε_n) une suite qui décroît vers 0. Montrer que $(R_n^{(\varepsilon_n)})$ converge uniformément vers g.

2° Cas des fonctions réelles

On se place dans les hypothèses du théorème, version fonctions réelles.

- a) Soient $f, g \in \mathscr{A}$. Montrer que $|f| \in \overline{\mathscr{A}}$. En déduire que $\min(f, g) \in \overline{\mathscr{A}}$ et que $\max(f, g) \in \overline{\mathscr{A}}$.
- **b)** Soient x_1 et x_2 deux points distinct de X et α_1, α_2 deux réels. Montrer qu'il existe $h \in \mathscr{A}$ tel que $h(x_1) = \alpha_1$ et $h(x_2) = \alpha_2$.

On se donne $f \in \mathscr{C}(X)$: on veut approcher f par des éléments de \mathscr{A} .

c) Soit $x \in X$. Montrer qu'il existe $h_x \in \overline{\mathscr{A}}$ telle que $h_x(x) = f(x)$ et $h_x \leq f + \varepsilon/2$.

Pour $y \in X$ distinct de x, on choisit $h_{xy} \in \mathscr{A}$ telle que $h_{xy}(x) = f(x)$ et $h_{xy}(y) = f(y)$. Justifier l'existence d'un voisinage U_y de y sur lequel on a l'inégalité voulue, choisir opportunément un nombre fini de y_i et prendre $\tilde{h}_x = \min(h_{xy_i})$.

En déduire qu'il existe $h_x \in \mathscr{A}$ tel que $h_x(x) = f(x)$ et $h_x < f + \varepsilon$.

d) On fait varier x: prouver l'existence de $g \in \overline{\mathscr{A}}$ telle que $||f - g||_{\infty} \leq \varepsilon$.

Justifier l'existence d'un voisinage V_x sur lequel on $a: h_x \ge f - \varepsilon$, choisir opportunément un nombre fini de x_i et prendre $g = \max(h_{x_i})$.

e) Conclure.

3° Cas des fonctions complexes

On se place dans les hypothèses du théorème avec des fonctions complexes. On note $\mathscr{A}_{\mathbb{R}} = \{ f \in \mathscr{A}, \ \forall x, \ f(x) \in \mathbb{R} \}.$

a) Prouver que $\mathscr{A}_{\mathbb{R}}$ sépare les points.

Étant donnés $x_1 \neq x_2$, exhiber une fonction $g \in \mathcal{A}$ telle que $g(x_1) = 0$, $g(x_2) = 1$.

b) En déduire la version complexe du théorème.