Université Claude Bernard Lyon 1

M2 de Mathématiques : Groupes algébriques

Année 2013-2014

III Formule de Molien et applications

1° Série de Poincaré

Si $R = \bigoplus_{n \in \mathbb{N}} R_n$ est une algèbre graduée $(R_n R_p \subset R_{n+p})$ ou plus généralement un espace vectoriel gradué, on définit sa série de Poincaré ¹ par :

$$P_R(t) = \sum_{n \geqslant 0} \dim_{\mathbb{C}}(R_n) t^n$$
 (où t est une indéterminée).

a) Pour l'algèbre symétrique S(V) d'un espace V de dimension d, on a : $P_{S(V)} = \frac{1}{(1-t)^d}$

b) On suppose que R est intègre et engendrée par r éléments homogènes de degrés d_1, \ldots, d_r . On veut montrer qu'existe un polynôme $F \in \mathbb{Z}[t]$ tel que

$$P_R(t) = \frac{F(t)}{(1 - t^{d_1}) \cdots (1 - t^{d_r})}.$$

L'indication proposée suivait la « preuve » de la proposition 1.9 de [1] (c'est pas beau de dénoncer). Comme vous l'avez justement remarqué, elle est fausse et même irratrapable : le pas de récurrence repose sur l'idée fausse que $R/(f_r)$ est intègre, ce qui permet de montrer que F=1. Aucune de ces deux assertions n'est vraie en général.

Exemple. On prend $R = \mathbb{C}[x, y, z]/(xy - z^2)$, où $x = f_1$, $y = f_2$, $z = f_3$ sont trois générateurs de degré 1 : aucun des quotients $R/(f_i)$ n'est intègre!

Voici une version plus générale – elle parle de modules et ne comporte pas d'hypothèse parasite d'intégrité – et plus juste.

Théorème (Hilbert-Serre). Soit $R = \bigoplus_{n \geq 0} R_n$ une algèbre graduée engendrée par un nombre fini d'éléments homogènes f_1, \ldots, f_r de degrés respectifs d_1, \ldots, d_r et soit $M = \bigoplus_{n \geq 0} M_n$ un R-module gradué² engendré par un nombre fini de générateurs homogènes³. Alors la série de Poincaré de M est de la forme

$$P_M(t) = \frac{F(t)}{\prod_{i=1}^{r} (1 - t^{d_i})}$$

pour $F \in \mathbb{Z}[t]$ convenable.

DÉMONSTRATION. On procède par récurrence sur r. Si r=0, M est un espace vectoriel gradué de dimension finie et sa série de Poincaré est un polynôme $F\in\mathbb{N}[t]$. Pour $r\geqslant 1$, on introduit comme dans l'indication initiale l'application $\varphi:M\to M,\ m\mapsto f_rm$. Il n'y a aucune raison pour que φ soit injective, soit K son noyau; comme φ est homogène, le R-module K est gradué : $K=\bigoplus_{n\geqslant 0}K_n$ où $K_n=K\cap M_n$. De même, l'image f_rM est graduée : $(f_rM)_{n+d_r}=f_rM_n$ pour $n\geqslant 0$ et les composantes de degré $< d_r$ sont nulles.

On a deux suites exactes:

$$0 \to K \longrightarrow M \xrightarrow{\varphi} f_r M \to 0,$$

$$0 \to f_r M \xrightarrow{\iota} M \longrightarrow M/f_r M \to 0.$$

^{1.} On l'appelle aussi série de Hilbert, voire série de Hilbert-Poincaré.

^{2.} Cela signifie que $R_n M_p \subset M_{n+p}$ pour tous $n, p \in \mathbb{N}$.

^{3.} Cela entraı̂ne que les espaces M_n sont de dimension finie. Pourquoi?

En observant les dimensions ⁴ degré par degré, on trouve pour tout $n \in \mathbb{Z}$ (si $n < 0, M_n = 0$):

$$\dim M_n = \dim K_n + \dim(f_r M)_{n+d_r} = \dim(f_r M)_{n+d_r} + \dim(M/f_r M)_{n+d_r}$$

On multiplie ces égalités par t^{n+d_r} et on somme sur n, il vient :

$$t^{d_r}P_M(t) = t^{d_r}P_K(t) + P_{f_rM}(t)$$
 et $P_M(t) = P_{f_rM}(t) + P_{M/f_rM}(t)$,

d'où en simplifiant :

$$(1 - t^{d_r})P_M(t) = P_{M/f_rM}(t) - t^{d_r}P_K(t).$$

Variante: on a une suite exacte

$$0 \to K \longrightarrow M \xrightarrow{\varphi} M \longrightarrow M/f_rM \to 0,$$

où φ est de degré d_r et les autres applications préservent le degré. Cela signifie que l'on a des suites exactes pour tout $n \in \mathbb{Z}$:

$$0 \to K_n \longrightarrow M_n \stackrel{\varphi}{\longrightarrow} M_{n+d_r} \longrightarrow (M/f_r M)_{n+d_r} \to 0,$$

d'où des égalités :

$$\dim(K_n) - \dim M_n + \dim M_{n+d_r} - \dim(M/f_r M)_{n+d_r} = 0.$$

En multipliant par t^{n+d_r} et en sommant, on retrouve :

$$t^{d_r} P_K(t) - t^{d_r} P_M(t) + P_M(t) - P_{M/f_rM}(t) = 0.$$

Il ne reste plus qu'à remarquer que K et M/f_rM sont des modules de type fini sur l'algèbre $R'=R/(f_r)$, qui est engendrée par r-1 éléments de degrés respectifs d_1,\ldots,d_{r-1} – les classes de f_1,\ldots,f_{r-1} module l'idéal engendré par f_r . Par hypothèse de récurrence, il existe F_1 et F_2 dans $\mathbb{Z}[t]$ tels que $P_K(t)=F_1(t)/\prod_{i=1}^{r-1}(1-t^{d_i})$ et $P_{M/f_rM}(t)=F_2(t)/\prod_{i=1}^{r-1}(1-t^{d_i})$, ce qui permet de conclure.

Corollaire. Soit $R = \bigoplus_{n \geqslant 0} R_n$ une algèbre graduée engendrée par des éléments homogènes f_1, \ldots, f_r de degrés respectifs d_1, \ldots, d_r . Alors la série de Poincaré de R est de la forme

$$P_R(t) = \frac{F(t)}{\prod_{i=1}^{r} (1 - t^{d_i})}$$

pour $F \in \mathbb{Z}[t]$ convenable.

DÉMONSTRATION. Bien sûr, R est un R-module noethérien!

^{4.} Rappelons que si $0 \to A \to B \to C \to 0$ est une suite exacte d'espaces vectoriels de dimension finie, on a : $B/A \simeq C$ d'où : $\dim B = \dim A + \dim C$.

c) Soit $R = \mathbb{C}[x_1, \dots, x_r]^{\mathfrak{S}_r}$. On sait que R est l'algèbre de polynômes $\mathbb{C}[e_1, \dots, e_r]$ où les e_i sont les fonctions symétriques élémentaires. Si on développe en série

$$\prod_{i=1}^{r} \frac{1}{(1-t^i)} = \prod_{i=1}^{r} \sum_{k_i \geqslant 0} \frac{1}{t^{ik_i}},$$

le coefficient de t^n est le nombre de multi-indices $(k_1,\ldots,k_r)\in\mathbb{N}^r$ tels que $\sum_{i=1}ik_i=n$; c'est aussi le nombre de monômes $e_1^{k_1}\cdots e_r^{k_r}$ de degré n. Ainsi : $P_R=\prod_{i=1}^r(1-t^i)^{-1}$. Soit $S=\mathbb{C}[x_1,\ldots,x_r]^{\mathfrak{A}_r}$. On a vu que S est un R-module libre de rang 2, puisque $S=R\oplus vR$ où $v(x_1,\ldots,x_r)=\prod_{i< j}(x_i-x_j)$. On a donc, puisque v est de degré n(n-1)/2:

$$P_S(t) = P_R(t) + t^{\frac{n(n-1)}{2}} P_R(t) = \frac{1 + t^{\frac{n(n-1)}{2}}}{\prod_{i=1}^r (1 - t^i)} = \frac{1 - t^{n(n-1)}}{(1 - t^{\frac{n(n-1)}{2}}) \prod_{i=1}^r (1 - t^i)}.$$

On va en déduire une présentation de S. Plus précisément, on montre grâce à la forme de la série qu'il y a une relation de degré n(n-1) entre les générateurs et qu'il n'y a pas d'autre relation. « Trouver » la relation est très facile. On sait que v^2 est invariant par \mathfrak{S}_n : c'est à une constante près le discriminant de $\prod_{i=1}^r (X-x_i)$. Il existe donc un unique polynôme F tel que $v^2=F(e_1,\ldots,e_r)$ dans R. Par exemple, si n=2, on a : $v^2=(x_1-x_2)^2=(x_1+x_2)^2-4x_1x_2=e_1^2-4e_2$. Il est homogène 5 de degré n(n-1) en les e_i puisque v est homogène de degré n(n-1)/2. Soient E_1,\ldots,E_r,V des indéterminées et $T=\mathbb{C}[V,E_1,\ldots,E_r]$. On gradue T en donnant à V le degré n(n-1)/2 et à E_i le degré i. Le morphisme surjectif $T\to S, V\mapsto v, E_i\mapsto e_i$ $(1\leqslant i\leqslant r)$ se factorise à travers le quotient $\mathbf{S}=T/(V^2-F(E_1,\ldots,E_r))$. De plus, la multiplication $T\to T$, $H\mapsto (V^2-F)H$ est une injection dont le conoyau est le quotient \mathbf{S} . Aussi, il vient :

$$P_{\mathbf{S}}(t) = P_{T}(t) - t^{n(n-1)} P_{T}(t) = \frac{1 - t^{n(n-1)}}{(1 - t^{\frac{n(n-1)}{2}}) \prod_{i=1}^{r} (1 - t^{i})}.$$

Ainsi, S est un quotient de S et a la même série de Poincaré. Autrement dit : $S \simeq S$.

2° Énoncé et preuve de la formule de Molien

a) D'abord, Im θ est inclus dans W^G : si $w = \theta(v)$, on a pour $g \in G$ (en posant h' = gh):

$$gw = \frac{1}{|G|} \sum_{h \in G} ghv = \frac{1}{|G|} \sum_{h' \in G} h'v = \theta v = w.$$

Inversement, si w est G-invariant, on a:

$$\theta(w) = \frac{1}{|G|} \sum_{h \in G} hw = \frac{1}{|G|} \sum_{h \in G} w = w.$$

En particulier, W^G est égal à $\operatorname{Im}(\theta)$ et la restriction de θ à $\operatorname{Im}(\theta)$ est l'identité. Cela signifie que $\theta \circ \theta = \theta$, c'est-à-dire que θ est un projecteur sur $\operatorname{Im}(\theta) = W^G$. Vérifions qu'il est équivariant. Soit $g \in G$, on a dans $\operatorname{End}_{\mathbb{C}}(W)$, par le changement de variable $h' = ghg^{-1}$:

$$g\theta = \frac{1}{|G|} \sum_{h \in G} gh = \frac{1}{|G|} \sum_{h' \in G} h'g = \theta g.$$

^{5.} Vérifiez-le!

- **b)** Le rang d'un projecteur est sa trace : dim $W^G = \operatorname{rg} \theta = \operatorname{tr} \theta$.
- c) On a, avec $\theta = \frac{1}{|G|} \sum_{g \in G} g$ l'élément de l'algèbre de groupe et par linéarité de la trace :

$$P_{G,V}(t) = \sum_{k \geqslant 0} \dim S^k(V)^G t^k = \sum_{k \geqslant 0} \operatorname{tr}(\theta|_{S^k(V)}) t^k = \frac{1}{|G|} \sum_{g \in G} \sum_{k \geqslant 0} \operatorname{tr}(g|_{S^k(V)}) t^k.$$

Fixons $g \in G$. Comme G est fini, g est d'ordre fini et comme on est sur \mathbb{C} , $g|_V$ est diagonalisable. Soient (v_1, \ldots, v_n) une base de vecteurs propres et $(\lambda_1, \ldots, \lambda_n)$ les valeurs propres associées. Pour tout k, les monômes de degré k, c'est-à-dire la famille $(v_1^{m_1} \cdots v_n^{m_n})_{(m_1, \ldots, m_n) \in \mathbb{N}^n, m_1 + \cdots + m_n = k}$, forment une base de vecteurs propres de g. D'où :

$$\operatorname{tr}(g|_{S^k(V)}) = \sum_{m_1 + \dots + m_n = k} \lambda_1^{m_1} \cdots \lambda_n^{m_n}.$$

En sommant sur k, il vient :

$$\sum_{k \geqslant 0} \operatorname{tr}(g|_{S^{k}(V)}) t^{k} = \sum_{(m_{1}, \dots, m_{n}) \in \mathbb{N}^{n}} \lambda_{1}^{m_{1}} \cdots \lambda_{n}^{m_{n}} t^{m_{1} + \dots + m_{n}}$$

$$= \prod_{i=1}^{n} \sum_{m_{i} \geqslant 0} (t\lambda_{i})^{m_{i}} = \prod_{i=1}^{n} \frac{1}{1 - t\lambda_{i}} = \frac{1}{\det(I_{n} - tg)}.$$

En moyennant sur G, il vient :

$$P_{G,V}(t) = \frac{1}{|G|} \sum_{g \in G} \frac{1}{\det(I_n - tg)}.$$

3° Cône (singularité de type A_1)

On fait agir l'élément non trivial de $G = \mathbb{Z}/2\mathbb{Z}$ sur $V = \mathbb{C}^2 = \mathbb{C}x \oplus \mathbb{C}y$ comme –Id.

a) Bien sûr, $\mathbb{C}[x^2, xy, y^2]$ est inclus dans l'algèbre des invariants $\mathbb{C}[x, y]^{\mathbb{Z}/2\mathbb{Z}}$.

Pour l'inclusion inverse, on diagonalise l'action de G: les monômes en x et y de degré pair (resp. impair) sont invariants (resp. transformés en leur opposé par Id). Par suite, les polynômes invariants sont les combinaisons linéaires des monômes x^ay^b avec a+b, c'est-à-dire que a et b ont la même parité. Mais alors, $a-\min(a,b)$ et $b-\min(a,b)$ sont pairs et on peut par exemple écrire :

$$x^ay^b=x^{a-\min(a,b)}(xy)^{\min(a,b)}y^{b-\min(a,b)}\in\mathbb{C}[x^2,xy,y^2].$$

De plus, par la formule de Molien, on a :

$$P_{S(V)^G}(t) = \frac{1}{2} \left(\frac{1}{\det(\mathbf{I}_2 - t\mathbf{I}_2)} + \frac{1}{\det(\mathbf{I}_2 - t\mathbf{I}_2)} \right) = \frac{1}{2} \left(\frac{1}{(1-t)^2} + \frac{1}{(1+t)^2} \right) = \frac{1+t^2}{(1-t^2)^2}.$$

- **b)** On donne à u, v et w le degré 2; alors, $f = uv w^2$ est homogène de degré 4 et $T = \mathbb{C}[u,v,w]/(uv-w^2)$ est graduée. Comme on l'a déjà fait ci-dessus, on réalise T comme quotient de $\mathbb{C}[u,v,w]$ par l'image de l'application injective $\varphi:\mathbb{C}[u,v,w]\to\mathbb{C}[u,v,w], h\mapsto fh$. L'algèbre $\mathbb{C}[u,v,w]$ a pour série de Poincaré $1/(1-t^2)^3$ et l'image de φ , $t^4/(1-t^2)^3$. D'où : $P_T(t) = (1-t^4)/(1-t^2)^3 = (1+t^2)/(1-t^2)^2$.
- $(1-t^4)/(1-t^2)^3=(1+t^2)/(1-t^2)^2$. c) Comme $x^2y^2-(xy)^2=0$, on a un morphisme $T\simeq S(V)^G$, $u\mapsto x^2, v\mapsto y^2, w\mapsto xy$. Ce morphisme préserve la graduation, il est surjectif et T et $S(V)^G$ ont la même série de Poincaré : c'est donc un isomorphisme.

4° Singularités de type A

Mise en garde (Erreur d'énoncé!). On fixe un générateur g de $\mathbb{Z}/n\mathbb{Z}$ et on le fait agir comme la matrice diagonale dont les valeurs propres sont $\zeta = e^{2i\pi/n}$ et ζ^{-1} . Si on fait agir g comme ζ Id, l'algèbre est engendrée par les monômes x^ay^b avec $a + b \equiv 0$ [n],

c'est beaucoup plus compliqué : les invariants sont engendrés par (n+1) monômes $u_i = x^{n-i}y^i$ $(0 \le i \le n)$ et on a (n-1) relations : $u_{i-1}u_{i+1} = u_i^2$ $(1 \le i \le n-1)$.

 $(0 \le i \le n)$ et on a (n-1) relations : $u_{i-1}u_{i+1} = u_i^2$ $(1 \le i \le n-1)$. a) On veut montrer que $S(V)^G = \mathbb{C}[x^n, xy, y^n]$. On constate que les monômes en x et y sont une base de vecteurs propres de G dans S(V); la valeur propre de x^ay^b est ζ^{a-b} . L'algèbre des invariants est donc engendrée par les monômes invariants : x^ay^b avec $a-b \equiv 0$ [n]. Si cette condition

est remplie et a > b, on a : $x^a y^b = (x^n)^{(a-b)/n} (xy)^{a-b}$; si a < b, on a : $x^a y^b = (xy)^{b-a} (y^n)^{(b-a)/n}$. On en déduit que $S(V)^G \subset \mathbb{C}[x^n, xy, y^n]$, l'inclusion réciproque étant évidente.

Appliquons la formule de Molien. Pour $k \in \mathbb{Z}/n\mathbb{Z}$, le déterminant de $\mathrm{Id}-tg^k$ est $(1-t\zeta^k)(1-t\zeta^{-k})$. Pour autant que $\zeta^k \neq \zeta^{-k}$, c'est-à-dire $2k \neq 0$ [n], on a :

$$\frac{1}{(1-t\zeta^k)(1-t\zeta^{-k})} = \frac{\frac{1}{\zeta^k - \zeta^{-k}}}{t-\zeta^k} - \frac{\frac{1}{\zeta^k - \zeta^{-k}}}{t-\zeta^{-k}}.$$

Il vient en sommant:

$$P_{G,V}(t) = \frac{1}{n} \sum_{k \in \mathbb{Z}/n\mathbb{Z}} \frac{1}{(1 - t\zeta^k)(1 - t\zeta^{-k})} = \sum_{2k \neq 0[n]} \frac{\frac{2}{n(\zeta^k - \zeta^{-k})}}{t - \zeta^k} + \frac{1}{n(t-1)^2} + \frac{1}{n(t+1)^2},$$

où le dernier terme n'apparaît que si n est pair.

Inspiré par la suite, on peut écrire cette fraction sous forme irréductible en remarquant que ζ^k est un pôle simple si $2k \not\equiv 0$ [n], que 1 est un pôle double et que -1 est un pôle simple si n est impair et double si n est pair. Autrement dit, il existe un polynôme $F \in \mathbb{C}[t]$ tel que

$$P_{G,V}(t) = \frac{F(t)}{(1-t^n)(1-t^2)},$$

où -1 est un zéro simple de F si n est impair et pas un zéro si n est pair. On peut jouer à chercher F à partir de la décomposition en éléments simples ci-dessus...

b) Dans l'algèbre $\mathbb{C}[u,v,w]$, on donne le degré n à u et v et 2 à w. Alors, $uv-w^n$ est homogène de degré 2n et le quotient $T=\mathbb{C}[u,v,w]/(uv-w^n)$ est gradué. Sa série de Poincaré se calcule comme ci-dessus avec n=2: d'une part, $\mathbb{C}[u,v,w]$ a pour série de Poincaré est $1/(1-t^n)^2(1-t^2)$; d'autre part, l'application $h\mapsto (uv-w^n)h$ préserve le degré et est injective donc son image a pour série $t^{2n}/(1-t^n)^2(1-t^2)$. Le quotient T a donc pour série de Poincaré :

$$P_T(t) = \frac{1 - t^{2n}}{(1 - t^n)^2 (1 - t^2)} = \frac{1 + t^n}{(1 - t^n)(1 - t^2)}.$$

c) Montrons que l'on a : $T \simeq S(V)^G$. Le morphisme $\mathbb{C}[u,v,w] \to S(V)^G$, $u \mapsto x^n$, $v \mapsto y^n$, $w \mapsto xy$ préserve les degré et est surjectif. Comme $x^ny^n = (xy)^n$, il se factorise à travers l'idéal engendré par $uv - w^n$, d'où une surjection graduée $T = \mathbb{C}[u,v,w]/(uv-w^n) \to S(V)^G$. Pour montrer c'est un isomorphisme, il suffit de montrer l'égalité des séries de Poincaré, ce qui revient à décomposer $P_T(t)$ en éléments simples.

Les pôles de P_T sont les ζ^k (simples si $2k \not\equiv 0 [n]$), 1 (double) et, si n est pair, -1 (double). Soit k tel que $2k \not\equiv 0 [n]$. Le polynôme $t^n - 1$ a pour dérivée nt^{n-1} ; le résidu en ζ^k est donc :

$$\left. \frac{1+t^n}{nt^{n-1}(t^2-1)} \right|_{t=\zeta^k} = \frac{2}{\zeta^{(n-1)k}(\zeta^{2k}-1)} = \frac{2}{\zeta^k-\zeta^{-k}}.$$

Pour le pôle en 1, on pose $H(t)=(t-1)^2P_T(t)=(t^n+1)/(t+1)(t^{n-1}+\cdots+1)$, qui est régulière en 1. On a donc :

$$P_T(t) = \frac{H(1) + (t-1)H'(1)}{(t-1)^2} +$$
(régulier en 1).

On vérifie que H(1) = 1/n et H'(1) = 0.

Reste à traiter le pôle en -1 lorsque n est pair. Mais alors, $P_T(t)$ est une fraction paire et donc :

$$P_T(t) = \frac{1}{(t+1)^2} + (\text{régulier en } -1).$$

Au bilan, on a bien : $P_T(t) = P_{S(V)^G}$, ce qui entraı̂ne que $S(V)^G \simeq \mathbb{C}[u,v,w]/(uv-w^n)$.

5° Groupe quaternionique

Les calculs sont analogues, les faire ou voir le premier chapitre de [1].

Bibliographie

[1] Shigeru Mukai: An introduction to invariants and moduli, volume 81 de Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2003. Translated from the 1998 and 2000 Japanese editions by W. M. Oxbury.