Université Claude Bernard Lyon 1

M2 de Mathématiques : Groupes algébriques

Année 2013-2014

Référence : [2], § 2.4.

On fixe des espaces vectoriels complexes de dimension finie V, W... On rappelle qu'un endomorphisme de V est semi-simple si V admet une base formée de vecteurs propres ; qu'un élément g de $\mathrm{GL}(V)$ est unipotent si $g-\mathrm{Id}_V$ est nilpotent ; (sur $\mathbb C$) il revient au même de dire que sa seule valeur propre est 1. On commence par un rappel.

Proposition (décomposition de Jordan additive). Soit $a \in \text{End}_{\mathbb{C}}(V)$. Il existe $a_s, a_n \in \text{End}_{\mathbb{C}}(V)$ uniques tels que : (i) $a = a_s + a_n$; (ii) a_s est semi-simple et a_n est nilpotent; (iii) a_s et a_n commutent. De plus, a_s et a_n sont des polynômes en a.

1° La base

- a) Soient $a \in \operatorname{End}_{\mathbb{C}}(V)$ et $b \in \operatorname{End}_{\mathbb{C}}(W)$. Montrer que si a et b sont semi-simples (resp. nilpotents, resp. unipotents), alors $a \oplus b \in \operatorname{End}_{\mathbb{C}}(V \oplus W)$ et $a \otimes b \in \operatorname{End}_{\mathbb{C}}(V \otimes W)$ le sont aussi.
- b) Soient $a \in \operatorname{End}_{\mathbb{C}}(V)$ et W un sous-espace vectoriel stable par a. Montrer que W est stable par a_s et a_n et que la décomposition de Jordan commute à la restriction : $(a|_W)_s = a_s|_W$ et $(a|_W)_n = a_n|_W$. Décrire de même la décomposition de Jordan de l'endomorphisme de V/W induit par a.
- c) Établir la version multiplicative suivante de la décomposition de Jordan.

Proposition. Soit $g \in GL(V)$. Il existe $g_s, g_u \in GL(V)$ uniques tels que : (i) $g = g_s g_u$; (ii) g_s est semi-simple et g_u unipotent; (iii) $g_s g_u = g_u g_s$. De plus, g_s et g_u sont des polynômes en g_s .

d) Soient $g \in GL(V)$ et $h \in GL(W)$. Décrire la décomposition de Jordan de $g \oplus h \in GL(V \oplus W)$ et de $g \otimes h \in GL(V \otimes W)$.

2° Décomposition de Jordan dans un groupe algébrique

Soit V un espace vectoriel de dimension quelconque, finie ou pas. Soit $a \in \operatorname{End}_{\mathbb{C}}(V)$ endomorphisme localement fini. On dit que a est semi-simple (resp. localement nilpotent, localement unipotent) si sa restriction à tout sous-espace stable de dimension finie est diagonalisable (resp. nilpotent, unipotent).

- a) Montrer que a est semi-simple SSI V admet une base formée de vecteurs propres de a.
- **b)** Soient $a \in \operatorname{End}_{\mathbb{C}}(V)$ et W_1 , W_2 deux sous-espaces stables de dimension finie de V. Justifier que les endomorphismes $(a|_{W_1})_s$ et $(a|_{W_2})_s$ (resp. $(a|_{W_1})_n$ et $(a|_{W_2})_n$) coïncident sur $W_1 \cap W_2$.
- c) En déduire une décomposition de Jordan additive : $a = a_s + a_n$. En supposant a inversible, définir une décomposition de Jordan multiplicative : $a = a_s a_u$.
- d) Soit G un groupe algébrique et $A = \mathbb{C}[G]$. On note $\rho : G \to GL(A)$ la représentation régulière à droite ¹. On a défini $\rho(g)_s$ et $\rho(g)_u$ ci-dessus. Montrer que $\rho(g)_s$ et $\rho(g)_u$ sont des morhismes d'algèbres.

Soit $\mu: A \otimes A \to A$ le produit de fonctions. Dire que $\phi \in \operatorname{End}_{\mathbb{C}}(A)$ est un morphisme d'algèbres, c'est dire : $\mu((\phi \otimes \phi)(F_1 \otimes F_2)) = \phi(F_1F_2)$ pour $F_1, F_2 \in A$. Utiliser 1° d).

Montrer qu'existent g_s et g_u uniques dans G tels que $\rho(g_s) = \rho(g_s)$ et $\rho(g_u) = \rho(g_u)$.

Montrer que $\varepsilon: A \to \mathbb{C}$, $F \mapsto (\rho(g)_s F)(e)$, où e est le neutre de G, est un morphisme d'algèbres : il correspond à un point g_s de G. Montrer alors que $\rho(g_s) = \rho(g)_s$ en utilisant la commutation des $\rho(h)$ avec les $\lambda(h')$. Pour l'unicité, la régulière est fidèle...

^{1.} On a donc : $\rho(g)(F)(h) = F(hg)$ pour $g, h \in G$ et $F \in \mathbb{C}[G]$. On pose de même : $\lambda(g)(F)(h) = F(g^{-1}h)$.

e) Soit $\varphi: G \to G'$ un morphisme de groupes algébriques. Montrer que l'on a, pour tout g de $G: \varphi(g)_s = \varphi(g_s)$ et $\varphi(g)_u = \varphi(g_u)$.

Si φ est injectif, φ^* identifie $\mathbb{C}[G]$ à un quotient $\mathbb{C}[G']/I$. Montrer que $G = \{g \in G', \ \rho(g)I = I\}$ et conclure dans ce cas. Si φ est surjectif, φ^* identifie $\mathbb{C}[G']$ à un sous-espace de $\mathbb{C}[G]$ stable par $\rho(g)$ $(g \in G)$; conclure dans ce cas. Enfin, conclure pour φ quelconque.

f) Montrer que si g appartient à $G = GL_n(\mathbb{C})$ et $V = \mathbb{C}^n$, g_s et g_u sont les parties semi-simple et unipotente du paragraphe précédent.

Soit f un élément non nul du dual de V. Pour $v \in V$, on définit $\tilde{f}(v) \in \mathbb{C}[G]$ par : $\tilde{f}(v)(g) = f(gv)$. Vérifier que cela définit une injection $V \hookrightarrow \mathbb{C}[G]$ et que l'on $a : \tilde{f}(gv) = \rho(g)\tilde{f}(v)$ pour tout g et tout v.

3° Quelques applications

a) Montrer que l'ensemble $G_u = \{g \in G, g = g_u\}$ des éléments unipotents de G est fermé. On peut supposer que G est un sous-groupe fermé de $\mathrm{GL}_n(\mathbb{C})$ (pourquoi?).

Donner un exemple où $G_s = \{g \in G, g = g_s\}$ des éléments semi-simples n'est pas ouvert et un exemple où G_s n'est pas fermé.

b) Supposons que $G = G_u$ et soit $\varphi : G \to \operatorname{GL}(V)$ une représentation de dimension finie. Montrer que si V est un G-module irréductible, alors sa dimension est 1.

Par le « théorème de densité de Jacobson-Chevalley » (voir [1]), $\operatorname{End}_{\mathbb{C}}(V)$ est engendré par les $\varphi(g)$ ($g \in G$). Vérifier que $\operatorname{tr}((\operatorname{Id}_V - \varphi(g))\varphi(h)) = 0$ pour tous $g, h \in G$. En déduire que $\operatorname{tr}((\operatorname{Id}_V - \varphi(g))h) = 0$ pour tout $h \in \operatorname{End}_{\mathbb{C}}(G)$ et conclure.

Pour V quelconque, montrer qu'il existe une base de V dans laquelle la matrice de $\varphi(g)$ est triangulaire supérieure pour tout g.

Procéder par récurrence sur la dimension de V.

- c) On suppose que $G = G_u$. Montrer que G est nilpotent (et donc résoluble).
- d) On suppose encore $G = G_u$. Montrer que dans toute action de G sur une variété affine X, toutes les orbites sont fermées (théorème de Kostant-Rosenlicht).

Soit \mathscr{O} une orbite. On peut supposer que \mathscr{O} est dense dans X, donc ouverte (pourquoi ?). Montrer l'existence de f non nulle fixée par G dans $\mathscr{I}_X(Y)$, où $Y=X\setminus\mathscr{O}$. Montrer que f est constante et en déduire que $\mathscr{I}_X(Y)=\mathbb{C}[X]$.

Bibliographie

- [1] Serge Lang: Algebra, volume 211 de Graduate Texts in Mathematics. Springer-Verlag, New York, third édition, 2002.
- [2] T. A. Springer: *Linear algebraic groups*. Modern Birkhäuser Classics. Birkhäuser Boston Inc., Boston, MA, second édition, 2009.