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1. Introduction

1.1. A brief history of the Horn conjecture. In some sense, the very starting
point of this work is the problem of determining the possible spectra of a sum of
Hermitian matrices each with known spectrum. Problem of which a brief history
reads as follows (see [Ful00, Bri12, Kum15]). In 1912, Herman Weyl [Wey12] gave
some necessary conditions on the spectrum of the sum, called Weyl inequalities,
which had many applications. In 1962, Alfred Horn [Hor62] gave a list of necessary
conditions (called Horn inequalities) and conjectured that it is also sufficient, i.e.
solves the problem completely. Horn’s conjecture remained open for 36 years until
the works of Klyachko [Kly98] and Knutson and Tao [KT99] . Klyachko showed
that Horn’s conjecture follows from the Saturation conjecture, and Knutson and
Tao proved this conjecture.

To state the saturation conjecture, consider the set of triples (λ1, λ2, µ) of ra-
tional dominant weights for the unitary group U(n) such that there is a positive
integer N for which the tensor product of the highest weight U(n)-representations
V (Nλ1) and V (Nλ2) contains V (Nµ); it is called the tensor cone of U(n). One can
show that the closure of this cone is exactly the set of spectra of Hermitian matrices
A, B, C such that A+B = C. The saturation conjecture (proved by Knutson and
Tao) says that if λ1, λ2, µ are integral and the product of V (Nλ1) with V (Nλ2) con-
tains V (Nµ) for some positive integer N then the product V (λ1)⊗ V (λ2) contains
V (µ).

The tensor cone can be defined for any connected compact Lie group, or equiv-
alently, for any complex connected reductive group, or still equivalently, for any
reductive complex Lie algebra. Following Klyachko and Berenstein-Sjamaar [BS00],
Belkale-Kumar [BK06] obtained an explicit finite list of inequalities describing the
tensor cone of any connected compact Lie group. The Saturation conjecture, on the
other hand, is false in this generality, but there exist positive integers d such that
if the product V (Nλ1) and V (Nλ2) contains V (Nµ) for some N and λ1 + λ2 − µ
belongs to the root lattice then it holds for N = d (and hence for any multiple of d).
Such integers are called saturation factors, and Belkale, Kumar, Kapovich-Millson
and Hong-Shen obtained various upper bounds for the smallest saturation factor
for every group. Nevertheless, the precise value is still not known even for classical
groups. For example, Kapovich-Millson’s conjecture stating that 1 is a saturation
factor for any simply laced group is still open.

In 2014 Brown-Kumar [BK06] studied the tensor cone for symmetrizable Kac-
Moody algebras, and gave an infinite list of inequalities analogous to Belkale-Kumar
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inequalities which conjecturally describes the tensor cone. The main contribution
of the paper is a new approach which allows to prove the Brown-Kumar conjecture
for untwisted affine Lie algebras, which is the most important class of infinite-
dimensional Kac-Moody algebras. Another important result is the calculation of
upper bounds for saturation factors for such algebras. The proof of the Berown-
Kumar conjecture decomposes in several steps, many of which generalize to any
symmetrizable Kac-Moody algebra.

1.2. The tensor cone. Let A be a symmetrizable irreducible generalized Cartan
matrix of size l + 1. Let h ⊃ {α∨0 , . . . , α∨l } and h∗ ⊃ {α0, . . . , αl} =: ∆ be a
realization of A. We fix an integral form hZ ⊂ h containing each α∨i , such that
h∗Z := Hom(hZ,Z) contains ∆ and such that hZ/ ⊕ Zα∨i is torsion free. Set h∗Q =

h∗Z ⊗ Q ⊂ h∗, P+,Q := {λ ∈ h∗Q | 〈α∨i , λ〉 ≥ 0 ∀i}, and P+ = hZ ∩ P+,Q.
Let g = g(A) be the associated Kac-Moody Lie algebra with Cartan subalgebra

h. For λ ∈ P+, V (λ) denotes the irreducible representation of g with highest weight
λ. Define the tensor semigroup as

ΓN(g) := {(λ1, λ2, µ) ∈ P 3
+ | V (µ) ⊂ V (λ1)⊗ V (λ2)},

and the tensor cone as

Γ(g) := {(λ1, λ2, µ) ∈ P 3
+,Q | ∃N > 1 V (Nµ) ⊂ V (Nλ1)⊗ V (Nλ2)}.

1.3. The main result. Let G be the minimal Kac-Moody group as in [Kum02,
Section 7.4] and B its standard Borel subgroup. Let ($α∨0

, . . . , $α∨l
) ⊂ hQ be el-

ements dual to the simple roots. Let W be the Weyl group of A. To any simple
root αi, is associated a maximal standard parabolic subgroup Pi, its Weyl group
WPi ⊂W and the set WPi of minimal length representative of elements of W/WPi .
We also consider the partial flag ind-variety G/Pi containing the Schubert varieties
Xw = BwPi/Pi, for w ∈ WPi . Let {εw}w∈WPi ⊂ H∗(G/Pi,Z) be the Schubert
basis dual to the basis of the singular homology of G/Pi given by the fundamen-
tal classes of Xw. Inspired by the Belkale–Kumar definition [BK06, Section 6] in
the finite-dimensional case, Kumar defined in [Kum10] a deformed product �0 on
H∗(G/Pi,Z), which is commutative and associative.

Theorem 1. Assume that g is an affine untwisted Kac-Moody Lie algebra with
central element c. Let (λ1, λ2, µ) ∈ P 3

+,Q be such that λ1(c) > 0 and λ2(c) > 0.
Then,

(λ1, λ2, µ) ∈ Γ(g)

if and only if

(1) µ(c) = λ1(c) + λ2(c),

and

(2) 〈µ, v$α∨i
〉 ≤ 〈λ1, u1$α∨i

〉+ 〈λ2, u2$α∨i
〉

for any i ∈ {0, . . . , l} and any (u1, u2, v) ∈ (WPi)3 such that, in H∗(G/Pi,Z), εv
occurs with coefficient 1 in the deformed product

εu1
�0εu2

.
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The statement of Theorem 1 is very similar to [BK06, Theorem 22] that describes
Γ(g), if g is finite-dimensional. In the next subsection, we review shortly, several
approaches used in the literature to study Γ(g) and argue why these methods do
not apply in the Kac-Moody setting. Then we present our new approach.

1.4. Various approaches. Several tolls have already been used to tackle the Horn
conjecture and its generalizations. Numerous inequalities (necessary conditions)
[Wey12, Lid50, Wie55, TF71, Hor62] were first obtained using the min-max de-
scription of eigenvalues and the Rayleigh trace. Next, the introduction of sym-
plectic geometry and moment map techniques allowed to get qualitative convexity
results (see [Hec82, Kir84, Sja98]). The interpretation of the problem in terms
of tensor product decomposition [Nes84, Appendice] is another decisive step. In
1994, Klyachko’s breakthrough was to interpret the Horn inequalities as semista-
bility conditions, allowing him [Kly98] to prove sufficient conditions for a triple of
weights to belong to the Horn cone. Next, semistability, and more precisely the
Hilbert-Mumford theorem is used in [BS00, Bel01, BK06, Res10] in a crucial way.

For the Lie algebra sln(C), the multiplicities of the tensor product decompo-
sition are the Littlewood-Richardson coefficients. These coefficients are also, the
structure constants of the cohomology rings of Grassmannians. This remark allows
to transpose the Horn problem in the world of Schubert calculus. Belkale [Bel06]
used a very nice interpretation of Horn inequalities. Namely, the non-vanishing
of a given Littlewood-Richardson coefficient can be interpreted as the possibility
to translate Schubert varieties to get a transverse intersection. Then, some linear
map between tangent spaces has to be injective. It turns out that this linear map
is block triangular, with rectangular blocks. Here, the Horn inequalities are inter-
preted as necessary conditions on the size of these blocks to allow the existence of
such invertible linear maps.

Still another approach, introduced by Knutson-Tao [KT99], consists in using
combinatorial models to express Littlewood-Richardson coefficients like BZ-paterns,
honeycombs or puzzles. This approach allowed to prove saturation [KT99], irre-
dundancy [KTW04] and gave recent developments [APS17].

The theory of Bruhat-Tits buildings gives a connection between metric geome-
try and representation theory of complex semisimple algebraic groups. In this ap-
proach, the Horn inequalities are interpreted as triangle inequalities (see [KLM08]
or [Kum14, Appendix]).

Another tool used to study the Horn problem is representation theory of quiv-
ers. Here, both semi-stability and transversality conditions appear with subtle and
fruitful interplays (see [DW00, CBG02, BVW17]).

One can observe that none of these approaches seem useful to show Theorem 1.
Indeed, Geometric Invariant Theory does not apply to the action of a loop group
on an ind-variety and there is no known extension of the Hilbert-Mumford theorem
in this context. The methods of semistability was adapted to the so called multi-
plicative Horn problem (e.g. the question of describing the possible eigenvalues of
the product of two unitary matrices with known spectra) using principal parabolic
bundles on curves (see [AW98, BK16, Res13]). For Theorem 1, no such notion of
semi-stability seems to be known.

The approach in terms of Schubert calculus relies on a numerical coincidence:
the Littlewood-Richardson coefficients encode both tensor product decoposition for
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U(n)-representations and Schubert calculus for the Grassmannians. Such coinci-
dences are not known beyond the type A.

The use of combinatorial models like honeycomb was used only in type A.
In [GR14], Gaussent-Rousseau defined an avatar of the Bruhat-Tits building for

Kac-Moody groups, called masures. It is an intersting open question to see if the
masures can be used to prove Theorem 1 or saturation results like Theorem 3 below.

1.5. Our approach. We now explain (roughly speaking) our strategy.
Consider the cone C(g) defined by equality (1) and inequalities (2). It remains

to prove that, up to the assumption “λ1(c) and λ2(c) are positive”, the cone C(g) is
equal to Γ(g). The proof proceeds in five steps.

Step 1. Γ(g) is convex.
This is a well-known consequence of Borel-Weil’s theorem (see Lemma 4).

Step 2. The set Γ(g) is contained in C(g).
This step is proved in [BK14] and reproved here. The first ingredient is the easy

implication in the Hilbert-Mumford’s theorem. Indeed “semistable ⇒ numerically
semistable” is still true for ind-varieties and Kac-Moody groups. In the finite-
dimensional case, the second argument is Kleiman’s transversality theorem. In
[BK14], it is replaced by an argument in K-theory which express the structure
constants of H∗(G/Pi,Z) as the Euler characteristic of sheaves supported by the
intersection of three translated Schubert or Birkhoff varieties. Here, we refine this
argument by proving a version of Kleiman’s theorem that allows to express these
structure constants as the cardinality of the intersection of three translated Schubert
or Birkhoff varieties.

Step 3. The cone C(g) is locally polyhedral.
This is a consequence of Proposition 4 below. We study the inequalities (2)

defining C(g). In particular, we use some consequences of the non-vanishing of
a structure constant of the ring H∗(G/Pi,Z) (see Lemmas 17 and 18 below and
[BK14]).

Step 4. Study of the boundary of C(g).
Let (λ1, λ2, µ) be an integral point in the boundary of C(g). Step 3 implies that

some inequality (2) has to be an equality for (λ1, λ2, µ). Then, one can use the
following Theorem 2 to describe inductively the multiplicity of V (µ) in V (λ1) ⊗
V (λ2). Let αi be a simple root and let Li denote the standard Levi subgroup of
Pi. For w ∈ WPi and λ ∈ P+, w−1λ is a dominant weight for Li: we denote by
VLi(w

−1λ) the corresponding irreducible highest weight Li-representation.

Theorem 2. Here, g is any symmetrizable Kac-Moody Lie algebra and αi is a
simple root. Let (λ1, λ2, µ) ∈ P 3

+. Let (u1, u2, v) ∈ (WPi)3 such that εv occurs with
coefficient 1 in the ordinary product εu1 .εu2 . We assume that

(3) 〈µ, v$α∨i
〉 = 〈λ1, u1$α∨i

〉+ 〈λ2, u2$α∨i
〉.

Then the multiplicity of V (µ) in V (λ1) ⊗ V (λ2) is equal to the multiplicity of
VLi(v

−1µ) in VLi(u
−1
1 λ1)⊗ VLi(u−1

2 λ2).
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Note that Theorem 6 and its corollary in Section 6 are a little bit more general
than Theorem 2.

Step 5. Induction.
While there are numerous technical difficulties, the basic idea is simple. By

convexity, it is sufficient to prove that the boundary of C(g) is contained in Γ(g).
Using Step 4, this claim can be proved by induction.

Namely, consider a face F of codimension one of C(g) associated with some
structure constant of H∗(G/Pi,Z) for �0 equal to one. We have to prove that F is
contained in Γ(g). By Theorem 2, it remains to prove that the points of F satisfy
the inequalities that characterize the tensor cone Γ(li) of the Lie algebra li of Li.
Fix such an inequality associated with a structure constant of H∗(Li/(Pj ∩ Li),Z)
for �0 equal to one. Consider the flag ind-varieties:

Li/(Pj ∩ Li) G/(Pi ∩ Pj)

G/Pi G/Pj

Proposition 3 shows a property of multiplicativity for structure constants of the
rings H∗(G/P,Z) that gives us a structure constant of H∗(G/(Pi ∩ Pj),Z) equal to
one, for the ordinary product. A crucial point is Theorem 7 that proves that, if the
considered inequality of Γ(li) is “useful” then this structure constant of H∗(G/(Pi ∩
Pj),Z) is actually nonzero for �0. Then we get a structure constant of H∗(G/Pj ,Z)
for �0 equal to one. In particular, this gives an inequality of C(g) that corresponds
to the desired inequality of Γ(li) when restricted to the span of F .

If we prove Theorem 1 only for the untwisted affine case, the general strategy
should work more generally. For this reason, we prove some intermediate results for
any symmetrizable Kac-Moody Lie algebra. In particular Steps 1, 2 and 4 works
with this generality. Proposition 3 of multiplicativity also holds in this context.

1.6. Saturation factors. Let Q denote the root lattice of g. We are now intersted
in the tensor semigroup. The semigroup ΓN(g) is not finitely generated when g
is affine. Despite this, we obtain explicit saturation factors d0 such that, for any
(λ1, λ2, µ) ∈ Γ(g)∩ (P+)3 such that λ1 +λ2−µ ∈ Q, V (d0µ) is a sub-representation
of V (d0λ1)⊗ V (d0λ2). Observe that the condition λ1 + λ2 − µ ∈ Q is necessary to
have V (µ) ⊂ V (λ1)⊗ V (λ2), because of the action of the center of G.

To describe our saturation factors, we need additional notation. Up to now, g
is the affine Lie algebra associated with the simple Lie algebra ġ. Let us define
the constant ks to be the least common multiple of saturation factors of maximal
Levi subalgebras of g. The value of ks depends on known saturation factors for
the finite-dimensional Lie algebras. With the current literature (see Section 10),
possible values for ks are given in the following tabular.

Type of g Ã˜l B̃˜l(˜l ≥ 4) C̃˜l(˜l ≥ 2) D̃˜l(˜l ≥ 5) D̃4 B̃˜l(˜l = 2, 3)

ks 1 4 2 4 1 2

Type of g Ẽ6 Ẽ7 Ẽ8 F̃4 G̃2 G̃2

ks 36 144 3 600 144 2 3
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Let kġ be the least common multiple of coordinates of the highest root θ̇ written
as a combinaison of simple roots. The values of kġ are

Type A˜l B˜l(˜l ≥ 2) C˜l(˜l ≥ 3) D˜l(˜l ≥ 5) E6 E7 E8 F4 G2

kġ 1 2 2 2 6 12 60 12 6

Theorem 3. Let (λ1, λ2, µ) ∈ (P+)3 such that there exists N > 0 such that V (Nµ)
embeds in V (Nλ1)⊗ V (Nλ2). We also assume that λ1 + λ2 − µ ∈ Q.

Then,
(i) if ks = 1 then for any integer d ≥ 2, V (dkġµ) embeds in V (dkġλ1) ⊗

V (dkġλ2);
(ii) if ks > 1 then V (kġksµ) embeds in V (kġksλ1)⊗ V (kġksλ2).

Observe that, in type A, kġks = 1 and Theorem 3 proves that any d ≥ 2 is a
saturation factor. Note that d = 1 is not a saturation factor in this case. The case
Ã1 was previously obtained in [BK14].

Let δ denote the fundamental imaginary root. We also obtain the following
variation.

Theorem 4. Let (λ1, λ2, µ) ∈ (P+)3 such that there exists N > 0 such that V (Nµ)
embeds in V (Nλ1)⊗ V (Nλ2). We also assume that λ1 + λ2 − µ ∈ Q.

Then, for any integer d ≥ 2, V (kġksµ− dδ) embeds in V (kġksλ1)⊗ V (kġksλ2).

In Section 11, we collect some technical lemmas used in the paper.
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2. Ind-varieties

2.1. Ind-varieties. In this section, we collect definitions, notation and properties
on ind-varieties. The results are certainly well-known, but we include some proofs
by lack of references. They will be applied to ind-varieties derived from flag ind-
varieties of Kac-Moody groups.

2.1.1. The category. Let (Xn)n∈N be a sequence of quasi-projective complex va-
rieties given with closed immersions ιn : Xn → Xn+1. The inductive limit
X = lim

−→
Xn is called a filtered ind-variety. The Zariski topology on X is de-

fined by setting a subset F closed if F ∩Xn is closed for any n ∈ N. A continuous
map f : X −→ Y = lim

−→
Yn between two filtered ind-varieties is a morphism if

for any n ∈ N there exists m ∈ N such that f(Xn) ⊂ Ym and the restriction
fn,m : Xn −→ Ym of f is a morphism of quasiprojective varieties. A closed subset
Z of X is said to be finite-dimensional if there exists n ∈ N such that Z ⊂ Xn.

Roughly speaking, an ind-variety is obtained from a filtered ind-variety by for-
getting the filtration. Let X ′n ⊂ X be finite-dimensional closed subsets such that
X = ∪n∈NX

′
n and X ′0 ⊂ X ′1 ⊂ · · ·X ′n ⊂ · · · . Then X ′ = lim

−→
X ′n is a filtered

ind-variety. The filtrations (Xn)n∈N and (X ′n)n∈N are said to be equivalent if the
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identity maps X −→ X ′ and X ′ −→ X are morphisms. An ind-variety is a fil-
tered ind-variety endowed with the collection of all the equivalent filtrations or,
equivalently, a filtered ind-variety up to isomorphism.

The above definitions are available on any algebraically closed field. Over com-
plex numbers (or more generally an uncountable field) this definition can be sim-
plified thanks to Lemma 1. We will use it repeatedly to change the filtrations of a
given ind-variety.

Lemma 1. Recall that we work over complex numbers. Let X = ∪n∈NXn be a
filtered ind-variety. Assume, we have a family (X ′n)n∈N of closed finite-dimensional
subsets in X such that X ′n ⊂ X ′n+1 and X = ∪n∈NX

′
n.

Then the two filtrations (Xn)n∈N and (X ′n)n∈N are equivalent.

Proof. Set X ′ = lim
−→

X ′n. By assumption, for any n there exists m such that X ′n ⊂
Xm. Hence the identity map Id : X ′ −→ X is a morphism.

Conversely, show that Id : X −→ X ′ is a morphism. Let C be an irreducible
component of some Xn0

. Then C = ∪nX ′n ∩C and X ′n ∩C is closed in C. Assume
that for any n, X ′n∩C 6= C. Then, for any n, dim(X ′n∩C) < dimC. Hence C is the
union of countably many subvarieties of smaller dimension. This is a contradiction
since we are working on the uncountable field of complex numbers: there exists nC
such that X ′nC ∩ C = C.

Since Xn0
has finitely many irreducible components, there exists N0 such that

Xn0
⊂ X ′N0

. Then the identity map X −→ X ′ is a morphism. �

A filtrationX = ∪nXn of an ind-variety is a collection of closed finite-dimensional
subsets Xn such that X is the nondecreasing union of the Xn.

For x ∈ X, the tangent space TxX of X at x is defined to be lim
−→

TxXn.

2.2. Irreducibility. An ind-variety X is said to be irreducible if it is as a topolog-
ical space for the Zariski topology. Assume a filtration X = ∪nXn is given. If the
poset of irreducible components of the Xn’s is directed for inclusion then X is irre-
ducible. Here, a poset is said to be directed if for any two elements x, y there exists
z bigger or equal to both x and y. Contrary to what [Sha81, Proposition 1] claims,
the converse of this assertion is not true (see [Kam96, Sta12] for examples). Here,
the filtered ind-variety X is said to be ind-irreducible if the poset of irreducible
components of the Xn’s is directed for inclusion. The following lemma shows that
the ind-irreducibility does not depend on the filtration and can be defined for ind-
varieties.

Lemma 2. Let X be an ind-variety. The following assertions are equivalent:
(i) for any filtration X = ∪n∈NXn, the poset of irreducible components of the

Xn’s is directed;
(ii) there exists a filtration X = ∪n∈NXn such that the poset of irreducible

components of the Xn’s is directed;
(iii) there exists a filtration X = ∪n∈NXn with Xn irreducible, for any n.

If X satisfies these properties then X is said to be ind-irreducible.

Proof. We prove (i)⇒ (ii)⇒ (iii)⇒ (i). The first implication is tautological.
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Show (ii)⇒ (iii). The variety Xn having finitely many irreducible components,
the assumption implies that

∀n ∃N and an irreducible component CN of XN such that Xn ⊂ CN .

Then one can construct by induction an increasing sequence ϕ : N −→ N and
irreducible components Cϕ(n) of Xϕ(n) such that

∀n Xϕ(n) ⊂ Cϕ(n+1) ⊂ Xϕ(n+1).(4)

Note that the Cϕ(n)’s are closed, satisfy Cϕ(n) ⊂ Cϕ(n+1) and X = ∪n∈NCϕ(n).
Hence by Lemma 1, they form a filtration of X by irreducible subvarieties.

Show (iii)⇒ (i). Fix a filtration X = ∪n∈NXn by irreducible finite-dimensional
closed subsetsXn. LetX = ∪n∈NX

′
n be another filtration. Consider two irreducible

components C ′n1
and C ′n2

of some X ′n1
and X ′n2

. There exist N1 and N2 in N
such that C ′n1

∪ C ′n2
⊂ XN1

⊂ X ′N2
. Now, XN1

being irreducible, there exists an
irreducible component C ′N2

of X ′N2
containing XN1 . Hence the poset of irreductible

components of the X ′n is directed. �

Examples.
(i) The simplest examples A(∞) = lim

−→
An, P(∞) = lim

−→
Pn of ind-varieties are

ind-irreducible.
(ii) A nonempty open subset of an ind-irreducible ind-variety is ind-irreducible.

A product of two ind-irreducible ind-varieties is ind-irreducible.
(iii) Consider a surjective morphism f : X −→ Y of ind-varieties. If X is

ind-irreducible then so is Y . Indeed, let X = ∪nXn be a filtration of X by
irreducible finite-dimensional subvarieties. Denote by Yn the closure in Y
of f(Xn). Then, by Lemma 1, Y = ∪nYn is a filtration of Y by irreducible
subvarieties. Hence Y is ind-irreducible.

(iv) If G is a Kac-Moody group and P is a standard parabolic subgroup then
G/P is a projective ind-irreducible ind-variety. Indeed, a filtration of G/P
is given by the unions of Schubert varieties of bounded dimension. The
Bruhat order being directed (see e.g. [BB05, Proposition 2.2.9]), G/P is
ind-irreducible.

(v) The Richardson varieties being irreducible (see [Kum02]), the Birkhoff
subvarieties of G/P are ind-irreducible.

(vi) LetG be the minimal Kac-Moody group as defined in [Kum02, Section 7.4].
Then G is an ind-irreducible ind-variety. Indeed, for each real root β,
denote by Uβ : C −→ G the radicial subgroup. Consider an infinite word
w = β1 . . . βn . . . in the real roots of g such that any finite word in these
roots is a subword of w. Consider the map

θ : A(∞) −→ G
(τi)i∈N 7−→

∏
i Uβi(τi),

where the product is made in the order given by w. Since G is a group-
ind-variety and the Uβ ’s are morphisms of ind-varieties, θ is a morphism
of ind-varieties. By definition, it is surjective. By Example (iii), G is
ind-irreducible.

Another result we need, is the following.
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Lemma 3. Let X be an ind-irreducible ind-variety. Let Ω be a nonempty open
subset of X.

Let (Xn)n∈N be a collection of closed finite-dimensional subsets of X such that
Xn ⊂ Xn+1 and ∪n∈NXn contains Ω.

Then X = ∪n∈NXn is a filtration of X.

Proof. Fix a filtration X = ∪n∈NX
′
n by irreducible subsets of X intersecting Ω.

Let n0 ∈ N. Observe that X ′n0
∩ Ω ⊂ ∪n∈N(X ′n0

∩Xn ∩ Ω). But X ′n0
∩Xn ∩ Ω

is a locally closed subvariety of X ′n0
and the sequence n 7→ dim(X ′n0

∩Xn ∩ Ω) is
nondecreasing.

Assume that dim(X ′n0
∩Xn∩Ω) < dim(X ′n0

∩Ω), for any n. Then X ′n0
∩Ω is the

union of countably many strict subvarieties. This is a contration since the base field
is uncountable. Hence there exists N such that dim(X ′n0

∩XN ∩Ω) = dim(X ′n0
∩Ω).

Then, X ′n0
∩Ω being irreducible, it is contained inXN . ButXN is closed andX ′n0

is irreducible. Hence X ′n0
has to be contained in XN . In particular, X = ∪nXn.

We conclude using Lemma 1. �

2.3. Line bundles. Let X = ∪n∈NXn be a filtered ind-variety. Denote by ιn :
Xn −→ X the inclusion. A line bundle L over X is an ind-variety with a morphism
π : L −→ X such that ι∗n(L) is a line bundle over Xn, for any n.

A section of L is a morphism σ : X −→ L such that π ◦σ = IdX . We denote by
H0(X,L) the vector space of sections. Given a section σ, the sequence of sections
(σn = ι∗n(σ))n∈N satisfies

(5) σn+1|Xn = σn.

Conversely, a sequence σn of sections of ι∗n(L) onXn satisfying condition (5) induces
a well defined section σ of L such that σn = ι∗n(σ) for any n.

3. Using the Borel-Weil Theorem

Using the Borel-Weil theorem, we express the tensor multiplicities as the dimen-
sions of spaces of invariant sections of line bundles. The infinite dimensional setting
needs to be careful with duality.

3.1. Tensor multiplicities. Recall that g is a symmetrizable Kac-Moody Lie al-
gebra. For given λ1 and λ2 in P+, V (λ1)⊗V (λ2) decomposes as a sum of integrable
irreducible highest weight representations (see [Kum02, Corrolary 2.2.7]), with fi-
nite multiplicities:

V (λ1)⊗ V (λ2) =
⊕
µ∈P+

V (µ)⊕c
µ
λ1 λ2 .

LetM be a g-representation in the category O; under the action of h, M decom-
poses as ⊕µMµ with finite-dimensional weight spaces Mµ. Set M∨ = ⊕µM∗µ: it is
a sub-g-representation of the dual space M∗.

3.2. Multiplicities as dimensions. Recall that G is the minimal Kac-Moody
group associated with g. Let B be the standard Borel subgroup of G and B− be
the opposite Borel subgroup. Consider G/B and G/B− endowed with the usual
ind-variety structures. Set o = B/B (resp. o− = B−/B−), the base point of G/B
(resp. G/B−). For λ ∈ h∗Z = Hom(T,C∗) = Hom(B,C∗) = Hom(B−,C∗), we
consider the G-linearized line bundle L(λ) (resp. L−(λ)) on G/B (resp. G/B−)
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such that B (resp. B−) acts on the fiber over o (resp. o−) with weight −λ (resp.
λ). For λ ∈ P+, we have G-equivariant isomorphisms (see [Kum02, Section VIII.3])

H0(G/B,L(λ)) ' Hom(V (λ),C),
H0(G/B−,L−(λ)) ' Hom(V (λ)∨,C).

Set
X = (G/B−)2 ×G/B.

A significant part of the following lemma is contained in [BK14, Proof of Theo-
rem 3.2].

Lemma 4. Let λ1, λ2, and µ in P+. Then the space

H0(X,L−(λ1)⊗ L−(λ2)⊗ L(µ))G

of G-invariant sections has dimension cµλ1 λ2
. In particular, this dimension is finite.

Proof. Set L = L−(λ1)⊗L−(λ2)⊗L(µ). We have the following canonical isomor-
phisms:

H0(X,L)G' Hom(V (λ1)∨ ⊗ V (λ2)∨ ⊗ V (µ),C)G

' Hom(V (µ), (V (λ1)∨ ⊗ V (λ2)∨)∗)G

' Hom(V (µ), (V (λ1)∨ ⊗ V (λ2)∨)∨)G by h-invariance
' Hom(V (µ), V (λ1)⊗ V (λ2))G

Thus this space of invariant sections has dimension cµλ1 λ2
. We already mentioned

that cµλ1 λ2
is finite. Nevertheless, we prove independently that H0(X,L)G is finite-

dimensional, reproving that cµλ1 λ2
is finite.

Consider the T -equivariant map ι : G/B− −→ X, x 7−→ (o−, x, o). Then ι∗(L)
is a T -linearized line bundle on G/B−. Consider

ι∗ : H0(X,L) −→ H0(G/B−, ι∗(L)).

The orbit G.(o−, o) being dense in G/B−×G/B, the restriction of ι∗ to H0(X,L)G

is injective. Furthermore, the T -equivariance of ι implies that ι∗(H0(X,L)G) is
contained in H0(G/B−, ι∗(L))T . But ι∗(L) ' L−(λ2)⊗ (λ1 − µ), where ⊗(λ1 − µ)
means that the T -action on L−(λ2) induced by the G-action is twisted by the
character λ1 − µ of T . Then

H0(G/B−, ι∗(L))T ' H0(G/B−,L−(λ2))(T )µ−λ1

' Hom(V (λ2)∨,C)(T )µ−λ1

' V (λ2)(T )µ−λ1

Here, if V is a T -representation and χ is a character of T , V (T )χ denotes the set
of vectors v ∈ V such that tv = χ(t)v, for any t ∈ T . But V (λ2) belongs to the
category O and the dimension of V (λ2)(T )µ−λ1 is finite. We just proved that ι∗

embeds H0(X,L)G in a finite-dimensional vector space. �

4. Enumerative meaning of structure constants of H∗(G/P,Z)

We now consider the cohomology ring of the flag ind-variety G/P , where P is a
standard parabolic subgroup of G. For v ∈ WP , set XP

v = BuP/P . Consider the
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homology group H∗(X,Z) = ⊕v∈WP Z[XP
v ]. Then H∗(X,Z) ' Hom(H∗(X,Z),Z)

has a “basis” (εu)u∈WP defined by

εu([XP
v ]) = δuv , ∀v ∈WP .

For u1, u2, and v ∈WP , define nvu1u2
∈ Z by

εu1 .εu2 =
∑
v∈WP

nvu1u2
εv.

By [KN98], nvu1u2
is nonnegative. The aim of this section is to express nvu1u2

as the
cardinality of an intersection of three subvarieties of X. In the finite dimensional
setting, the job is made by Kleiman’s transversality theorem.

4.1. Richardson varieties. Recall that the neutral component of the automor-
phism group of a finite-dimensional projective variety Y is a finite-dimensional
algebraic group denoted by Aut◦(Y ) (see [Ram64]).

Let U denote the commutator subgroup of B.
For u, v ∈WP , set Xu

P = B−uP/P and XP
v = BvP/P . Set also X̊u

P = B−uP/P

and X̊P
v = BvP/P . Let 4 denote the Bruhat order on WP : u4v means that

XP
u ⊂ XP

v . In the following lemma, we collect some well known facts about the
Schubert and Richardson varieties. For w ∈W , l(w) denotes its length.

Lemma 5. Let u, v ∈WP .
(i) The variety XP

v is projective and has dimension l(v). The group Aut◦(XP
v )

is affine.
(ii) The image of U in Aut◦(XP

v ) is a unipotent group denoted by Uv.
(iii) If u4v then the intersection Xu

v := Xu
P∩XP

v is an irreducible closed normal
subvariety (called Richardson variety) of XP

v of dimension l(v)− l(u). The
intersection is empty if u4v does not hold.

(iv) If u4v then X̊u
P ∩ X̊P

v is a nonempty open subset contained in the smooth
locus of Xu

v .
(v) If u4v and l(v) = l(u) + 1, then the Richardson variety Xu

v is isomorphic
to P1 and X̊u

P ∩ X̊P
v is isomorphic to C∗.

(vi) Assume that u4v and x ∈ X̊u
P ∩ X̊P

v . Then the sequence induced by the
inclusions

0 Tx(X̊u
P ∩ X̊P

v ) TxX̊
P
v

TxG/P

TxX̊uP
0

is exact.

Proof. The normality of Richardson’s varieties is proved in [Kum17, Proposition 6.5]).
The last assertion is an easy consequence of [Kum02, Lemma 7.3.10]). The other
assertions are banal (see [Kum02]). �

4.2. Kleiman’s lemma.

Lemma 6. Let u1, u2, and v in WP such that u14v and u24v. Assume that
l(v) = l(u1) + l(u2).

For general h ∈ Uv, Xu1
v ∩ hXu2

v = X̊u1

P ∩ h(X̊u2

P ∩ X̊P
v ) is finite and transverse.

More precisely, for any x ∈ Xu1
v ∩ hXu2

v the following map induced by inclusions

TxX
P
v −→

TxG/P

TxX
u1

P

⊕ TxG/P

Txh̃X
u2

P



TENSOR SEMIGROUP OF AFFINE KM LIE ALGEBRA 13

is an isomorphism, where h̃ ∈ U satisfies h̃|XPv = h.

Proof. We want to apply Kleiman’s theorem. Decompose XP
v in B-orbits: XP

v =

∪σ4vX̊P
σ .

Fix σ4v such that σ 6= v. For any h ∈ Uv, we have Xu1
v ∩ hXu2

v ∩ XP
σ =

Xu1
σ ∩ hXu2

σ .
Assume first that u14σ and u24σ. Since l(σ) < l(v), (dimXP

σ − dimXu1
σ ) +

(dimXP
σ −dimXu2

σ ) > dimXP
σ . Kleiman’s theorem applied in the Uv-homogeneous

space X̊P
σ shows that Xu1

v ∩ hXu2
v ∩ X̊P

σ is empty for general h ∈ Uv.
Otherwise, Xu1

σ or Xu2
σ is empty.

The set of σ ∈WP such that σ4v being finite, we can conclude that, for general
h ∈ Uv, the intersection Xu1

v ∩ hXu2
v ∩ ∂XP

v is empty. Here, ∂XP
v = XP

v − X̊P
v .

Similarly, for general h ∈ Uv, ∂Xu1

P ∩ hXu2
v and Xu1

P ∩ h(∂Xu2

P ∩XP
v ) is empty.

Here ∂Xu
P = Xu

P − X̊u
P . Indeed, only finitely many B−-orbits in X̊u1

P intersect XP
v .

Hence, for general h ∈ Uv, we have Xu1
v ∩ hXu2

v = X̊u1

P ∩ h(X̊u2

P ∩ X̊P
v ).

Now, by Kleiman’s theorem in the Uv-homogeneous space X̊P
v , for general h ∈

Uv, Xu1
v ∩ hXu2

v = X̊u1

P ∩ h(X̊u2

P ∩ X̊P
v ) is finite and for any x ∈ Xu1

v ∩ hXu2
v the

map

TxX
P
v −→

TxX
P
v

TxX
u1
v
⊕ TxX

P
v

TxhX
u2
v

is an isomorphism. The point x belonging to X̊P
v ∩ X̊

u1

P , Lemma 5 implies that

the natural map TxX
P
v

TxX
u1
v
−→ TxG/P

TxX
u1
P

is an isomorphism. Similarly, Th−1xX
P
v

Th−1xX
u2
v
−→

Th−1xG/P

Th−1xX
u2
P

is an isomorphism. Since both G/P and XP
v are h̃-stable, by applying h̃,

one deduces that TxX
P
v

TxhX
u2
v
−→ TxG/P

Txh̃X
u2
P

is an isomorphism. �

Lemma 7. Let u1, u2, and v in WP such that u14v and u24v. Assume that
l(v) = l(u1) + l(u2). Let h ∈ Uv satisfying Lemma 6. Then

](Xu1
v ∩ hXu2

v ) = nvu1u2
.

Proof. We first claim that it is sufficient to prove the lemma when P = B is
the Borel subgroup. Indeed, consider the projection π : G/B −→ G/P and the
associated morphism π∗ : H∗(G/P,Z) −→ H∗(G/B,Z) in cohomology. Then, for
any u ∈ WP , π∗(εu(G/P )) = εu(G/B). In particular, nvu1u2

(G/B) = nvu1u2
(G/P ),

for any u1, u2 and v in WP .
Note that, for any u ∈WP , Xu

B = π−1(Xu
P ) and π maps bijectively X̊B

u onto X̊P
u .

Then, for any h in Uv, π mapsXu1

B ∩h(X̊B
v ∩X

u2

B ) bijectively ontoXu1

P ∩h(X̊P
v ∩X

u2

P ).
But, if h is as in Lemma 6, Xu1

P ∩ h(X̊P
v ∩X

u2

P ) = Xu1

P ∩ h(XP
v ∩X

u2

P ). We just
checked that the two sides of the equality to be proved do not change when one
replaces P by B. Assume now that P = B.

Let G̃ be the Kac-Moody group completed along the negative roots (as opposed
to completed along the positive roots). Let B̃− be the Borel subgroup of G̃. Let
X̃ = G̃/B be the ‘thick’ flag variety which contains the standard KM-flag variety
X = G/B. If G is not of finite type, X̃ is an infinite-dimensional non-quasi-compact
scheme (cf. [Ka, §4]). For w ∈W , denote by X̃w

B the closure of B̃−wo in X̃. Observe
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that X̃w
B ∩X = Xw

B . Let K0(X̃) denote the Grothendieck group of coherent OX̃ -
modules (see [BK14, §3.5] for details). Similarly, define K0(X) := limn→∞K0(Xn),
where {Xn}n≥1 is the filtration of X and K0(Xn) is the Grothendieck group of
coherent sheaves on the projective variety Xn. Then,

{
[OXBw ]

}
w∈W is a basis of

K0(X) as a Z-module. Define a pairing

〈 , 〉 : K0(X̃)⊗K0(X)→ Z, 〈[S], [F ]〉 =
∑
i

(−1)iχ
(
Xn, T or

OX̃
i (S,F)

)
,

if S is a coherent sheaf on X̃ and F is a coherent sheaf on X supported in
Xn (for some n), where χ denotes the Euler-Poincaré characteristic. Recall that
$α0

, . . . , $αl are characters of T dual of the coroots α∨0 , . . . , α∨l . Set ρ =
∑l
i=0$αi .

Define the sheaf ξu on X̃ (see [Kum17, Theorem 10.4]) by

ξu = L(−ρ)Ext`(u)
OX̃

(OXuB ,OX̃) = OX̃uB (−∂X̃u
B),

where ∂X̃u
B = X̃u

B − B̃−uB/B. Then, as proved in [Kum17, Proposition 3.5], for
any u,w ∈W ,

〈[ξu], [OXBw ]〉 = δwu .

Let ∆ : X → X ×X be the diagonal map. Then, by [Kum17, Proposition 4.1]
and [BK14, §3.5], for any g1, g2 ∈ G

(6) nvu1 u2
=
∑
i

(−1)iχ(X̃ × X̃, T orOX̃×X̃i

(
ξu1 � ξu2 , (g−1

1 , g−1
2 ) ·∆∗(OXBv )

)
).

Let h̃ in U such that h̃|XPv = h.

The support of T orOX̃×X̃i

(
ξu1 � ξu2 , (1, h̃−1) ·∆∗(OXBv )

)
is contained in (X̃u1

B ×
X̃u2

B )∩(1, h̃−1)∆(XB
v ). The assumptions on h̃ implies that this support is contained

in (X̊u1

B ∩ X̊B
v )× (X̊u2

B ∩ X̊B
v ). In particular, this T or-sheaf is equal to

(7) T orOX̃×X̃i

(
OXu1B �OXu2B , (1, h−1) ·∆∗(OXBv )

)
.

The support of the T or-sheave in formula (7) is contained in u1B̃
−o×u2B̃

−o. By
[KS09, Section 8], there exists an isomorphism ι : u1B̃

−o × u2B̃
−o −→ A∞ = CN

such that B̃−u1o × B̃−u2o maps onto CN≥l(u1)+l(u2) . Here CN denote the set of
C-valued sequences viewed as Spec(C[T0, . . . , Tn, . . . ]) and CN≥l(u1)+l(u2) is the set
of sequences starting with l(u1) + l(u2) zeros. We also set CN≤m := {(uk) ∈ CN :

uk = 0 ∀k > m}. Then, there existsm ≥ l(u1)+l(u2) such that (u1B̃
−o×u2B̃

−o)∩
(XB

v ×XB
v ) is contained in CN≤m . Now, for any i ≥ 0,

T orOX̃×X̃i

(
O ˜̊
XBu1
�O ˜̊

XBu2
, (1, h−1) ·∆∗(OXBv )

)
is the pullback of

T or
O

C
N≤m

i

(
O

CN≤m∩C
N≥l(u1)+l(u2) , ((1, h

−1) · (∆∗(OXBv ))|CN≤m

)
.

The intersection ι((1, h−1)∆(XB
v ) ∩ (u1B̃

−o × u2B̃
−o)) ∩ (CN≤m ∩ CN≥l(u1)+l(u2))

being transverse in CN≤m , these T or-sheaves vanish for i ≥ 1 and nvu1 u2
is the

cardinality of this intersection. The lemma is proved. �
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4.3. The case nvu1 u2
= 1.

Lemma 8. We keep notation and assumptions of Lemma 6. Moreover we assume
that nvu1, u2

= 1.
Then there exist a nonempty open subset Ω of Uv and a regular map

ψ : Ω −→ X̊P
v

such that
∀h ∈ Ω Xu1

v ∩ hXu2
v = {ψ(h)},

and
ψ(h) ∈ X̊u1

P ∩ h(X̊u2

P ∩ X̊
P
v ).

Proof. Consider

ℵ = {(x, h) ∈ X̊P
v × Uv : x ∈ Xu1

P ∩ hX
u2
v },

endowed with the two projections pX : ℵ −→ Xu1

P ∩ X̊P
v and pU : ℵ −→ Uv.

We first prove that ℵ is irreducible. Set Yi = Xui
P ∩ X̊P

v , for i = 1, 2 and consider

ℵ̃ = {(x, h1, h2) ∈ X̊P
v × (Uv)

2 : x ∈ h1X
u1

P ∩ h2X
u2
v }.

Let κ : Uv −→ X̊P
v , g 7−→ gvo denote the orbit map. Set Ỹi = κ−1(Yi). As a

unipotent group, the isotropy of vo in Uv is connected. Hence Ỹi is irreducible.
Consider the regular map

θ : Uv × Ỹ1 × Ỹ2 −→ ℵ̃
(g, h̃1, h̃2) 7−→ (gvo, gh̃−1

1 , gh̃−1
2 ).

One can easily check that θ is well defined and surjective. Thus ℵ̃ is irreducible,
since Uv × Ỹ1 × Ỹ2 is.

Observe now that ℵ̃ is stable by the diagonal action of Uv and that ℵ identifies
with ℵ̃ ∩ (Uv × {e} × Uv). It follows that ℵ̃ is isomorphic to Uv × ℵ. In particular
ℵ is irreducible.

By Lemmas 6 and 7, the general fiber of pU is a singleton. Over the complex
numbers, this implies that pU is birational. Then, a partial converse map ψ of pU
satisfies the lemma (at least, its restriction to an open subset of h ∈ Uv satisfying
Lemma 6). �

5. Inequalities for Γ(g)

In this section, we reprove [BK14, Theorem 1.1] by similar methods in the goal to
introduce some useful notation. Fix once for all, a family of fundamental coweights
$α∨0

, . . . , $α∨l
in hQ such that

〈$α∨i
, αj〉 = δji ,

for any i, j ∈ {0, . . . , l}. Similarly fix fundamental weights $α0 , . . . , $αl in h∗.
Let τ : C∗ −→ G be a morphism of group-ind-varieties. Let L be a G-linearized

line bundle on X and x ∈ X. Since X is ind-projective and the action of C∗ on
X is given by a morphism of ind-varieties, limt→0 τ(t)x exists (i.e. the morphism
C∗ −→ X, t 7−→ τ(t)x extends to C). Set z = limt→0 τ(t)x. The point z is fixed by
τ(C∗) and τ(C∗) acts linearly on the fiber Lz. There exists m ∈ Z such that

∀t ∈ C∗ ∀z̃ ∈ Lz τ(t)z̃ = tmz̃.
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Set µL(x, τ) = −m.

Proposition 1. (see [BK14, Theorem 1.1]) Let P be a standard parabolic subgroup
of G. Let αi be a simple root that does not belong to ∆(P ). Let u1, u2, and v in
WP such that nvu1,u2

6= 0 in H∗(G/P,Z).
If (λ1, λ2, µ) ∈ Γ(g) then

〈µ, v$α∨i
〉 ≤ 〈λ1, u1$α∨i

〉+ 〈λ2, u2$α∨i
〉.(8)

Proof. Consider C+ = Pu−1
1 o− × Pu−1

2 o− × Pv−1o. As a locally closed subset of
X, it is an ind-variety. Set

G×P C+ := {(gP/P, x) ∈ G/P × X : g−1x ∈ C+}.
As a locally closed subset of G/P × X, it is an ind-variety. Consider the maps

η : G×P C+ −→ X
(gP/P, x) 7−→ x

and
p : G×P C+ −→ G/P

(gP/P, x) 7−→ gP/P.

Lemma 9. Let g1, g2, and g3 in G. Then

p(η−1(g1o
−, g2o

−, g3o)) = g1X̊
u1

P ∩ g2X̊
u2

P ∩ g3X̊
P
v .

Proof. The point (gP/P, (g1o
−, g2o

−, g3o)) belongs to the fiber of η if and only if

(g−1g1o
−, g−1g2o

−, g−1g3o) belongs to
Pu−1

1 o− × Pu−1
2 o− × Pv−1o

⇐⇒ (g−1g1, g
−1g2, g

−1g3) ∈ Pu−1
1 B− × Pu−1

2 B− × Pv−1B

⇐⇒ g−1
1 g ∈ B−u1P, g

−1
2 g ∈ B−u2P and g−1

3 g ∈ BvP
⇐⇒ gP/P ∈ g1B

−u1P/P ∩ g2B
−u2P/P ∩ g3BvP/P.

�

Consider the morphism of ind-varieties r : U −→ Uv ⊂ Aut◦(XP
v ) given by the

action. Set ˚G/B− = Uo−. The map U −→ G/B, u 7−→ uo− being an open immer-
sion, the converse map p+ : ˚G/B− −→ U is a morphism satisfying p+(x)o− = x.
Similarly, define ˚G/B = U−o and p− : ˚G/B −→ U−.

Let Ω ⊂ Uv be a nonempty open subset of h’s satisfying Lemma 6. Set

Ω1 =

{
(x1, x2, g3o) ∈ X : g−1

3 x1 ∈ ˚G/B−, g−1
3 x2 ∈ ˚G/B− and

r(p+(g−1
3 x1)−1p+(g−1

3 x2)) ∈ Ω

}
.

It is open and nonempty in X. Moreover, for (x1, x2, g3o) ∈ Ω1, Lemma 9 implies
that

(9) p(η−1(x1, x2, g3o)) = g3p
+(g−1

3 x1)[X̊u1

P ∩ h(X̊u2

P ∩ X̊
P
v )],

where h = r(p+(g−1
3 x1)−1p+(g−1

3 x2)). By Lemma 7 this fiber is nonempty.

Let L be the line bundle on X considered in Lemma 4. Since (λ1, λ2, µ) belongs
to Γ(g), there exists N > 1 such that H0(X,L⊗N )G is positive-dimensional. Fix a
nonzero σ ∈ H0(X,L⊗N )G. The ind-variety X being irreducible, Ω1 has to intersect
the nonzero locus of σ: there exists x ∈ Ω1 such that σ(x) 6= 0. The fiber (9) being
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not empty, Lemma 9 shows that there exists g ∈ G such that (gP/P, x) belongs to
G×P C+. Set y = g−1x. Since σ is G-invariant, σ(y) 6= 0.

Let τ be a one parameter subgroup of T belonging to ⊕αj 6∈∆(P )Z>0$α∨j
. Con-

sider
θ : A1 −→ X, t ∈ C∗ 7−→ τ(t)y, 0 7−→ lim

t→0
τ(t)y.

Then θ∗(σ) is a nonzero C∗-invariant section of θ∗(L) on A1. It follows that
µL(y, τ) ≤ 0.

Let L denote the standard Levi subgroup of P . Set C = Lu−1
1 o− × Lu−1

2 o− ×
Lv−1o. Since y ∈ C+, θ(0) belongs to C. Then, a direct computation (using that
τ(C∗) is central in L) shows that

µL(y, τ) = −〈λ1, u1τ〉 − 〈λ2, u2τ〉+ 〈µ, vτ〉 ≤ 0.(10)

Inequality (10) being fulfilled for any sufficiently large τ ∈ ⊕αj 6∈∆(P )Z>0$α∨j
,

the inequality of the theorem follows by continuity. �

Remark 5. We use notation of the proposition. Since nvu1 u2
(G/P ) = nvu1 u2

(G/B),
Proposition 1 implies that inequality 8 is fulfilled for any simple root αi, even in
∆(P ).

6. Multiplicities on the boundary

We are now interested in triples (λ1, λ2, µ) for which inequality (8) is an equality
and in the corresponding multiplicities cµλ1 λ2

. If moreover nvu1 u2
= 1, we prove that

cµλ1 λ2
is a multiplicity for the tensor product decomposition for some strict Levi

subgroup of G.

Theorem 6. We use notation of Proposition 1 and assume, in addition, that
nvu1,u2

= 1. Let L be the standard Levi subgroup of P . Let τ ∈ ⊕αj 6∈∆(P )Z>0$α∨j
.

Let (λ1, λ2, µ) ∈ (P+)3 such that

(11) 〈λ1, u1τ〉+ 〈λ2, u2τ〉 = 〈µ, vτ〉.

Consider the line bundle

L = L−(λ1)⊗ L−(λ2)⊗ L(µ)

on X, and
C = Lu−1

1 o− × Lu−1
2 o− × Lv−1o

be the closed subset of X.
Then, the restriction map induces an isomorphism

H0(X,L)G −→ H0(C,L|C)L.(12)

Before proving the theorem, we state a consequence. Set P+(L) = {λ̄ ∈ X(T ) :
〈λ̄, α∨i 〉 ≥ 0 ∀αi ∈ ∆(L)}. For any λ̄ ∈ P+(L), we have an irreducible L-
representation V (λ̄) of highest weight λ̄. Let c̄µ̄

λ̄1 λ̄2
denote the multiplicities of

the tensor product decomposition for the group L.

Corollary 1. With the notation and assumptions of the theorem, set λ̄1 = u−1
1 λ1,

λ̄2 = u−1
2 λ2 and µ̄ = v−1µ. Then λ̄1, λ̄2 and µ̄ belong to P+(L) and

cµλ1 λ2
= c̄µ̄

λ̄1 λ̄2
.
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Proof. Since ui ∈WP , u−1
i B−ui∩L = B−∩L. Similarly, v−1Bv∩L = B∩L. Then,

the action of L3 on C allows to identify C with XL := (L/(B− ∩L))2×L/(B ∩L).
But T acts with weight u−1

1 λ1 on the fiber in L−(λ1) over u−1
1 o−. We deduce that

L|C identifies with L−(λ̄1) ⊗ L−(λ̄2) ⊗ L(µ̄) on XL. Since H0(C,L|C) is nonzero,
λ̄1, λ̄2 and µ̄ have to be dominant for L. Moreover, the equality of the corollary is
obtained by taking dimension in the isomorphism of Theorem 6 using Lemma 4. �

Note that Theorem 2 in the introduction is a particular case of Corollary 1.

Proof of Theorem 6 up to the 5 lemmas below. We use notation of Proposition 1.
Let C̄+ be the closure of C+ in X. Set

G×P C̄+ := {(gP/P, x) ∈ G/P × X : g−1x ∈ C̄+}.

As a closed subset of G/P × X, it is an ind-variety. Consider the maps

η̄ : G×P C̄+ −→ X
(gP/P, x) 7−→ x

and
p̄ : G×P C̄+ −→ G/P

(gP/P, x) 7−→ gP/P.

Consider the following commutative diagram

H0(X,L)G H0(C,L|C)L

H0(G×P C̄+, η̄∗(L))G H0(C̄+,L|C̄+)P H0(C+,L|C+)P

η̄∗11

rest.
12

rest.
13

rest. 14

It remains to prove that the top horizontal map is an isomorphism. But, Lem-
mas 11 to 14 below show that the four other morphisms are isomorphisms. �

Before proving the four mentioned lemmas, we construct a partial converse map
to η̄.

Lemma 10. There exists a nonempty open subset Ω1 of X such that the restriction
of η̄ to η̄−1(Ω1) is a bijection onto Ω1 and the converse map ζ is a morphism of
ind-varieties, mapping Ω1 on G×P C+.

Proof. Recall that r : U −→ Uv ⊂ Aut◦(XP
v ) denotes the action. By Lemma 8,

there exist a nonempty open subset Ω ⊂ Uv and a morphism ψ : Ω −→ X̊P
v such

that
∀h ∈ Uv {ψ(h)} = Xu1

P ∩ h(Xu2

P ∩X
P
v ).

Consider

Ω2 =

{
(x1, x2, g3o) ∈ X : g−1

3 x1 ∈ ˚G/B−, g−1
3 x2 ∈ ˚G/B−, and

g3o ∈ ˚G/B

}
.

Let (x1, x2, x3) ∈ Ω2. Write x1 = g1o
−, x2 = g2o

− and x3 = g3o, with gi ∈ G.
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Observe that
g1X

u1

P ∩ g2X
u2

P ∩ g3X
P
v

= g1X
u1

P ∩ g2X
u2

P ∩ p−(x3)XP
v

= p−(x3)

(
(p−(x3)−1g1)Xu1

P ∩ (p−(x3)−1g2)Xu2

P ∩XP
v

)
= p−(x3)

(
h1X

u1

P ∩ h2X
u2

P ∩XP
v

)
= (p−(x3)h1).

[
Xu1

P ∩ hX
u2

P ∩XP
v

]
,

where
h1 = p+(p−(x3)−1x1)
h2 = p+(p−(x3)−1x2)
h = h−1

1 h2.

But h belongs to U and

g1X
u1

P ∩ g2X
u2

P ∩ g3X
P
v = (p−(x3)h1).

[
Xu1

P ∩ r(h)(Xu2

P ∩X
P
v )
]
.

Let Ω1 be the set of (x1, x2, x3) ∈ Ω2 such that r(h) ∈ Ω. It is a nonempty open
subset of X. Lemma 8 implies that, for (x1, x2, x3) ∈ Ω1,

(13) g1X
u1

P ∩ g2X
u2

P ∩ g3X
P
v = (p−(x3)h1).{ψ ◦ r(h)},

and
(p−(x3)h1).ψ ◦ r(h) ∈ g1X̊

u1

P ∩ g2X̊
u2

P ∩ g3X̊
P
v .

Then the formula

(x1, x2, x3) ∈ Ω1 7−→ ((p−(x3)h1).ψ ◦ r(h), (x1, x2, x3))

defines a morphism ζ from Ω1 to G×P C+ such that η ◦ ζ is the identity map of
Ω1.

Finally, Lemma 9 with η̄ in place of η and formula (13) show that the fiber of η̄
over any point of Ω1 is a singleton. �

We now go from X to G×P C̄+.

Lemma 11. The linear map

η̄∗ : H0(X,L) −→ H0(G×P C̄+, η̄∗(L))

is a G-equivariant isomorphism.

Proof. The image of η̄ containing the dense subset Ω1 of X, η̄∗ is injective. Fix a
filtration X = ∪n∈Z≥0

Xn such that each Xn is a product of three finite-dimensional
Schubert varieties (i.e. (B− ×B− ×B)-orbit closures), Xn intersects Ω1 and Xn ⊂
Xn+1. Set Y = G×P C̄+ and

Y̊n := η̄−1(Xn ∩ Ω1) = ζ(Xn ∩ Ω1).

Let Yn be the closure of Y̊n in Y. Then Yn is closed, irreducible, finite-dimensional
and projective.

A key point is that the Yn’s form a filtration of Y. Indeed, as the image of
G × C̄+ −→ G×P C̄+, (g, x) 7−→ (gP/P, gx), Y is ind-irreducible (see examples
of Section 2.2). Moreover, ∪n∈Z≥0

Y̊n and hence ∪n∈Z≥0
Yn contains the nonempty

open subset η̄−1(Ω1). Then, Lemma 3 implies that Y = ∪n∈Z≥0
Yn is a filtration of

Y.
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We now prove the surjectivity of η̄∗. Let σ ∈ H0(G×P C̄+, η̄∗(L)). Consider the
restriction η̄n : Yn −→ Xn of η̄. Then η̄n is proper, birational and Xn is normal.
Zariski’s main theorem implies that the fibers of η̄n are connected. Moreover

η̄∗n : H0(Xn,L|Xn) −→ H0(Yn, η̄
∗(L)|Yn)

is an isomorphism (see e.g. [Pet04, Chap IV, Corollary 5]).
Let σ̃n ∈ H0(Xn,L|Xn) such that η̄∗n(σ̃n) = σ|Yn . Since Ω1 ∩ Xn is dense in Xn,

the restriction of σ̃n+1 to Xn is equal to σ̃n. Hence (σ̃n)n∈N is a global section σ̃ of
L on X. Moreover, η̄∗(σ̃) = σ. �

We now go from G×P C̄+ to C̄+.

Lemma 12. The linear map

H0(G×P C̄+, η̄∗(L))G −→ H0(C̄+,L|C̄+)P

is an isomorphism.

Proof. Embed C̄+ in G×P C̄+ by mapping x ∈ C̄+ to (P/P, x). Since η̄∗(L)|C̄+ =
L|C̄+ , the map of the lemma is well defined.

Since C̄+ intersects any G-orbit in G×P C̄+, this map is injective. Let σ ∈
H0(C̄+,L|C̄+)P . Set

σ̃ : G×P C̄+ −→ η̄∗(L)
(gP/P, x) 7−→ gσ(g−1x).

Note that σ̃ is well defined as a map and G-invariant, since η̄∗(L) is G-linearized and
σ is P -invariant. It is regular, since the morphism G −→ G/P is locally trivial in
Zariski topology, because of Birkhoff’s decomposition. Hence σ̃ ∈ H0(G×P C̄+, η̄∗(L))G

and σ̃|C̄+ = σ. �

We now go from C̄+ to C+. Let τ̃ : C∗ −→ T such that τ̃ ∈ Z>0τ .

Lemma 13. Recall that µL(C, τ) = 0. Then the restriction map

H0(C̄+,L|C̄+)τ̃(C∗) −→ H0(C+,L|C+)τ̃(C∗)

is an isomorphism.

Proof. Since C+ is dense in C̄+, the restriction is injective. For w ∈ W , we recall
that

XB
w = Bwo Xw

B = B−wo,

and set
XB−

w = B−wo− Xw
B− = Bwo−

in such a way dim(XB
w ) = dim(XB−

w ) = l(w) and codim(Xw
B ) = codim(Xw

B−) =

l(w). Note also that Pu−1
1 o− = X

u−1
1

B− and Pu−1
2 o− = X

u−1
2

B− , whereas XB
v−1 is

finite-dimensional and closed in Pv−1o.
For i = 1, 2, fix an increasing (for Bruhat order) sequence (wni )n∈N of elements

of WP such that u−1
i 4w

n
i for any n and

(
XB−

wni
∩Xu−1

i

B−

)
n∈N

is a filtration of the

ind-variety Xu−1
i

B− . Similarly, fix (wn3 )n∈N such that v−14wn34w
n+1
3 and

(
XB
wn3

)
n∈N



TENSOR SEMIGROUP OF AFFINE KM LIE ALGEBRA 21

is a filtration of the ind-variety Pv−1o. Note that if P has finite type, the sequence
(wn3 )n∈N can be chosen to be constant. Setting

C̄+
n := (XB−

wn1
∩Xu−1

1

B− )× (XB−

wn2
∩Xu−1

2

B− )×XB
wn3
,

we get a filtration of C̄+. Moreover, C+ ∩ C̄+
n is open in C̄+

n and nonempty for
any n. Let σ ∈ H0(C+,L|C+)τ̃ and let σn denote its restriction to C+ ∩ C̄+

n . We
have to prove that σ extends to a section σ̄ on C̄+. It remains to prove that each
σn extends to a section σ̄n on C̄+

n . Indeed, then σ̄ = (σ̄n)n∈N ∈ H0(C̄+,L|C̄+)τ̃

extends σ.

Fix n ∈ N. By Lemma 5, C̄+
n is normal. Then, to prove that σn extends to C̄+

n ,
it is sufficient to prove that it has no pole along the divisors of C̄+

n − C+. Let Dn

be such a divisor. Then, either

(a) Dn = (XB−

wn1
∩X ũ−1

1

B− )× (XB−

wn2
∩Xu−1

2

B− )×XB
wn3

, for some ũ1 ∈WP such that
u−1

1 4ũ
−1
1 4w

n
1 and l(ũ1) = l(u1) + 1; or

(a’) Dn = (XB−

wn1
∩Xu−1

1

B− )× (XB−

wn2
∩X ũ−1

2

B− )×XB
wn3

, for some ũ2 ∈WP such that
u−1

2 4ũ
−1
2 4w

n
2 and l(ũ2) = l(u2) + 1; or

(b) Dn = (XB−

wn1
∩Xu−1

1

B− )× (XB−

wn2
∩Xu−1

2

B− )×XB
w̃3

for some w̃3 ∈W such that
w̃34wn3 , l(w̃3) = l(wn3 )− 1 and Xw̃3

⊂ XB−

wn3
− Pv−1o.

In each case, we will apply Lemma 11.5 below in an affine neighborhood of
Dn in C̄+

n . We first construct such neighborhoods and check the assumptions of
Lemma 11.5. We do not consider Case (a’) that is similar to the first one. We also
skip the power n from wni . Note that the action of C∗ in Lemma 11.5 is given by τ̃ .

Case (a). Set

X = (XB−

w1
∩Xu−1

1

B− ∩ ũ
−1
1 Bo−)× (XB−

w2
∩ X̊u−1

2

B− )× X̊B
w3
,

D = Dn ∩X and Ω = X −D.
The fact that X is T -stable is obvious. Since ũ−1

1 Bo−, X̊u−1
2

B− and X̊B
w3

are open

in G/B−, Xu−1
2

B− and XB
w3

respectively, X is open in C̄+
n . By [Kum02, Lemma 7.3.5],

XB−

w1
∩ ũ−1

1 Bo− is affine. Then the first factor of X is affine. But, [Kum02,
Lemma 7.3.5] also implies that the two other factors are affine, and X is affine.

Moreover, by Lemma 5, X is normal.

Check Assumption (i) of Lemma 11.5. It is sufficient to prove it for the first
factor. Let x ∈ (XB−

w1
∩Xu−1

1

B− ∩ ũ
−1
1 Bo−)−X ũ−1

1

B− . Set y = limt→0 τ̃(t)x. We have

to prove that y 6∈ (XB−

w1
∩Xu−1

1

B− ∩ ũ
−1
1 Bo−).

Let w ∈W such that x ∈ X̊w
B− . Since x ∈ X

u−1
1

B− , u−1
1 4w. The point x belonging

to ũ−1
1 Bo−, ũ−1

1 o− belongs to Xw
B− and w4ũ−1

1 . But l(ũ1) = l(u1) + 1, hence

w = ũ−1
1 or u−1

1 . Now, x 6∈ X ũ−1
1

B− and w = u−1
1 .

In particular, Lemma 11.1 implies that y does not belong to ũ−1
1 Bo−. The claim

is proved.

Check Assumption (ii). We work successively on each factor of X.
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Let x ∈ X̊B
w3

such that limt→∞ τ̃(t)x ∈ X̊B
w3

. For any b ∈ B, limt→∞ τ̃(t)bτ̃(t−1)

exists in B. Then limt→0 τ̃(t)x ∈ X̊B
w3

. If x is not fixed by τ̃(C∗), τ̃(C∗)x is
isomorphic to P1. Hence it cannot be contained in the affine variety X̊B

w3
. Hence

y 6∈ X̊B
w3

. Contradiction. It follows that x is fixed by τ̃(C∗).

Similarly for x ∈ XB−

w2
∩ X̊u−1

2

B− , if limt→∞ τ̃(t)x ∈ X̊u−1
2

B− then x is fixed by τ̃(C∗).
Now, prove Assumption (ii) for the first factor of X. Let x1, x2 ∈ (XB−

w1
∩

X
u−1
1

B− ∩ ũ
−1
1 Bo−) − X ũ−1

1

B− such that y := limt→∞ τ̃(t)x1 = limt→∞ τ̃(t)x2 belongs
to the first factor of D.

We already noticed that x1 and x2 belong to X̊
u−1
1

B− . By assumption, y ∈
ũ−1

1 Bo− ∩X ũ−1
1

B− = X̊
ũ−1
1

B− . Then Lemma 11.2 below shows that τ̃(C∗)x1 = τ̃(C∗)x2.

Check Assumption (iii). This can be proved factor by factor.
Let x ∈ X̊B

w3
(resp. XB−

w2
∩X̊u−1

2

B− ). We already observed that limt→0 τ̃(t)x belongs

to X̊B
w3

(resp. XB−

w2
∩ X̊u−1

2

B− ).

Let now x ∈ (XB−

w1
∩X ũ−1

1

B− ∩ ũ
−1
1 Bo−) = (XB−

w1
∩ X̊ ũ−1

1

B− ). Hence, we are in the
situation of the second factor.

Finally, for any x ∈ D, limt→0 τ̃(t)x belongs to D.

Check Assumption (iv). It is sufficient to consider the first factor. Let y ∈
(XB−

w1
∩X ũ−1

1

B− ∩ ũ
−1
1 Bo−)τ̃ = (XB−

w1
∩ X̊ ũ−1

1

B− )τ̃ . We have to find x ∈ (XB−

w1
∩Xu−1

1

B− ∩
ũ−1

1 Bo−)−X ũ−1
1

B− such that limt→∞ τ̃(t)x = y.

Assume first that y = y0 = ũ−1
1 o−. Here l(ũ1) = l(u1) + 1 and XB−

ũ−1
1

∩Xu−1
1

B− is a

Richardson variety of dimension one. By Lemma 5, X̊B−

ũ−1
1

∩ X̊u−1
1

B− is dense in Xu−1
1

ũ−1
1

.

Let x0 ∈ X̊B−

ũ−1
1

∩ X̊u−1
1

B− .
Let Pu,− denote the unipotent radical of P in such a way B− = Pu,−(B− ∩ L).

But ũ1 ∈WP and ũ−1
1 B−ũ1 ∩ L = B− ∩ L. Hence

X̊B−

ũ−1
1

= B−ũ−1
1 o− = Pu,−(B− ∩ L)ũ−1

1 o− = Pu,−ũ−1
1 o−.

In particular, limt→∞ τ̃(t)x0 = y0.
Since ũ−1

1 4w1, x0 ∈ XB−

w1
. Moreover, x0 ∈ X̊

u−1
1

B− ; thus x0 6∈ X
ũ−1
1

B− . And

x0 ∈ X̊B−

ũ−1
1

⊂ ũ−1Bo−. Finally, x0 ∈ (XB−

w1
∩Xu−1

1

B− ∩ ũ
−1
1 Bo−)−X ũ−1

1

B− .

Now y ∈ (X̊
ũ−1
1

B− )τ̃ = (B∩L)ũ−1
1 o−. Let l ∈ B∩L such that y = ly0. Set x = lx0.

The group τ(C∗) being central in L, limt→∞ τ̃(t)x = y. Since l ∈ L and Xu−1
1

B− and

Xu−1
1 are L-stable, x ∈ Xu−1

1

B− − X
ũ−1
1

B− . But ũ1 ∈ WP and ũ−1
1 Bũ1 ∩ L = B ∩ L.

Hence x ∈ ũ−1
1 Bo−. Recall that x0 ∈ Pu,−y0. Since l normalizes Pu,−, this emplies

that x ∈ Pu,−y. But XB−

w1
is B−-stable, and x ∈ XB−

w1
. Finally, x works.

Check Assumption (v). Observe that, for any u, v ∈ W , if Xv
B− ∩ uBo

− is not

empty then u4v. Thus Xu−1
1

B− ∩ ũ
−1
1 Bo− = (X̊

u−1
1

B− ∪ X̊
ũ−1
1

B− ) ∩ ũ−1
1 Bo− and the first
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factor of Ω is XB−

w1
∩ X̊u−1

1

B− ∩ ũ
−1
1 Bo−. But X̊u−1

1

B− = X
u−1
1

B− ∩ u
−1
1 Bo− and the first

factor of Ω is
XB−

w1
∩Xu−1

1

B− ∩ u
−1
1 Bo− ∩ ũ−1

1 Bo−.

The subset Xu−1
1

B− being closed, to show that that variety is affine, it is sufficient to
prove that XB−

w1
∩u−1

1 Bo− ∩ ũ−1
1 Bo− is. The proof of [Kum02, Lemma 7.3.5], with

minor modifications implies this.

Case (b). Set

X = (XB−

w1
∩ X̊u−1

1

B− )× (XB−

w2
∩ X̊u−1

2

B− )× (XB
w3
∩ w̃3B

−o),

D = Dn ∩X and Ω = X −D.
Lemma 5 and [Kum02, Lemma 7.3.5] imply that X is open in C̄+, T -stable,

affine and normal.

Check Assumption (i). It is sufficient to prove it for the third factor. Let x ∈
(XB

w3
∩ w̃3B

−o)−Xw̃3

B . Set y = limt→0 τ̃(t)x. We have to prove that y 6∈ w̃3B
−o.

Like in Case a-(i), one has x ∈ X̊B
w3

. Hence y ∈ (B ∩ L).w3o. But (w̃3B
−o)τ̃ =

((w̃3B
−w̃−1

3 ) ∩ L)w̃3o. In particular, if y ∈ w̃3B
−o then Pv−1o = Pw3o = Pw̃3o.

Contradiction.

Check Assumption (ii). Let x1, x2 ∈ Ω such that limt→∞ τ̃(t)x1 = limt→∞ τ̃(t)x2 ∈
D. In the proof of Case a - (ii), we proved that the two first factors of each xi are
fixed by C∗. We assume now that x1, x2 ∈ (XB

w3
∩ w̃3B

−o)−Xw̃3

B .
Since XB

w3
∩ w̃3B

−o is contained in X̊B
w3
∪X̊B

w̃3
, x1, x2 ∈ X̊B

w3
. Similarly y ∈ X̊B

w̃3
.

Then Lemma 11.2 below implies that τ̃(C∗)x1 = τ̃(C∗)x2.

Check Assumption (iii). We can work on each factor separately. The two first
one was treated in Case a-(iii). The last one works since XB

w̃3
∩ w̃3B

−o = X̊B
w̃3

.

Check Assumption (iv). We can work in the last factor. Let y ∈ (X̊B
w̃3

)τ̃ .
Assume first that y = y0 = w̃3o. Consider the Richardson variety ˜l = XB

w3
∩Xw̃3

B

of dimension one. Pick x0 ∈ X̊B
w3
∩ X̊w̃3

B . Then x0 ∈ XB
w3
∩ w̃3B

−o. Let γ be
the character of the action of T on Ty0 ˜l. It is a root of g. Since Py0 does not
contain w3o, γ is not a root of P . Then γ is a root of Pu,−. This implies that
limt→∞ τ̃(t)x0 = y0.

Now y ∈ X̊B
w̃3

and there exists l ∈ B ∩ L such that y = ly0. Consider the
curve l ˜l: it is τ̃(C∗)-stable, contained in XB

w3
and contains y. Since X is open

in XB
w3

, ˜l ∩ XB
w3
∩ w̃3B

−o is a nonempty open subset of ˜l. Then lx ∈ X. But
limt→∞ τ̃(t)x = y.

Check Assumption (v). It is sufficient to prove that the third factor Ω3 of Ω is
affine. But

Ω3 = (XB
w3
−XB

w̃3
) ∩ w̃3B

−o = XB
w3
∩ w̃3B

−o ∩ w3B
−o

Now, the proof of [Kum02, Lemma 7.3.5] implies that Ω3 (and hence Ω) is affine.
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The line bundle on the affine subvarieties. Since L−(λ1) is G-linearized
and the action of U on o− is free, L−(λ1) is trivial as a line bundle on Uo−. Similarly
L(µ) is trivial on U−o. As a consequence, L is trivial as a line bundle, on each
affine variety X we have considered.

To determine L|X as a C∗-linearized line bundle, it is sufficient to compute the
action of C∗ on the fiber over some C∗-fixed point. Consider

x0 = (u−1
1 o−, u−1

2 o−, w3o),
xa = (ũ−1

1 o−, u−1
2 o−, w3o), and

xb = (u−1
1 o−, u−1

2 o−, w̃3o).

By assumption, C∗ acts trivially on the fiber Lx0 . In Case (a), we have constructed
a copy of P1, containing x0 and xa such that for x ∈ P1−{x0}, limt→∞ τ̃(t)x = xa.
Moreover, L|P1 is nonnegative as a line bundle. Now, a computation in P1 shows
that the action of C∗ on Lxa is given by a nonpositive weight ka.

Similarly, the action of C∗ on Lxb is given by a nonpositive weight kb.
Since L is trivial on X as a line bundle, we deduce that, for any considered affine

variety X, we have

(14) H0(X,L)τ̃(C∗) ' C[X](k),

for some nonnegative integer k.

We are now in position to apply Lemma 11.5. By assumption the restriction
(σn)|Ω belongs to H0(Ω,L)τ̃(C∗) ' C[Ω](k). By Lemma 11.5, C[Ω](k) = C[X](k).
Hence (σn)|Ω extends to a regular section on X. In particular, it has no pole along
Dn. Then σn extends to a regular section on C̄+

n by normality. This ends the proof
of the lemma. �

The last step goes from C+ to C.

Lemma 14. Recall that µL(C, τ̃) = 0. Then the restriction map

H0(C+,L|C+)τ̃(C∗) −→ H0(C,LC)τ̃(C∗)

is an isomorphism.

Proof. We first prove the injectivity. Let σ ∈ H0(C+,L|C+)τ̃(C∗) such that σ|C = 0

and x ∈ C+. Consider the morphism

θx : C −→ C+

t 7−→ τ̃(t)x if t 6= 0,
0 7−→ limt→0 τ̃(t)x.

It is C∗-equivariant for the natural actions of C∗. Moreover, θ∗x(L) is trivial as
C∗-linearized line bundle, since µL(C, τ̃) = 0. But θ∗x(σ)(0) = 0 and θ∗x(σ) is C∗-
invariant. Thus θ∗x(σ) = 0. In particular σ(x) = 0.

Consider now the map Λ : C+ −→ C, x 7−→ limt→0 τ̃(t)x. We claim that
Λ∗(L|C) is isomorphic to L.

We can work on each factor of C+ separately. So assume for proving the claim
that X = G/B, C+ = Pv−1o and C = Lv−1o. Let ιµ : X −→ P(V (µ)) induced by
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the action of G on the highest weight line of P(V (µ)). Set k = 〈τ̃ , v−1µ〉. Recall
that V (µ) has a weight space decomposition V (µ) = ⊕χ∈X(T )V (µ)χ. Set

V (µ)k =
⊕
〈χ,τ̃〉=k

V (µ)χ V (µ)>k =
⊕
〈χ,τ̃〉>k

V (µ)χ.

Define
E = {[v0 + v+] : v0 ∈ V (µ)k − {0} and v+ ∈ V (µ)>k}

as a subset of P(V (µ)k ⊕ V (µ)>k) and so of P(V (µ)). Then ιµ(C) is contained
in P(V (µ)k) and ιµ(C+) is contained in E . Moreover, Λ is the restriction of the
canonical projection E −→ P(V (µ)k). But, L(µ)∗ is the restriction to X of the
tautological bundle on P(V (µ)). The claim follows.

Let us prove the surjectivity. Let σ ∈ H0(C,L|C)τ̃(C∗). By the claim, we have to
prove that σ extends to a C∗-invariant section of Λ∗(L). The morphism

C+ −→ L|C
x 7−→ σ(Λ(x))

induces such an extension. �

7. The Belkale-Kumar product

In this section, we purpose a construction of the BK-product �0 (see [BK06] if G
is finite-dimensional and [Kum10] if G is Kac-Moody) and prove some properties.

7.1. Preliminaries of linear algebra. Let V be a complex vector space filtered
by linear subspaces

{0} = V 0 ⊂ V 1 ⊂ V 2 ⊂ · · · ⊂ V n ⊂ · · ·
such that V = ∪nV n. Let U and W be two linear subspaces of V such that U has
finite dimension, W has finite codimension and dim(U) = codim(W ). Consider the
linear map

Θ : V −→ V/U ⊕ V/W
v 7−→ (v + U, v +W ).

Define the induced filtrations from V to U and V/W :

Un = V n ∩ U and (V/W )n = V n/(W ∩ V n).

Set

δ =
∑
n>0

n

(
dim(Un/Un−1)− dim((V/W )n/(V/W )n−1)

)
.

Lemma 15. If Θ is an isomorphism then

dim(Un) ≤ dim(V/W )n ∀n ∈ Z≥0.

In particular δ ≥ 0.

Proof. Consider
Θ̄ : U −→ V/W

v 7−→ v +W.

The map Θ being an isomorphism, so is Θ̄. Moreover Θ̄(Un) ⊂ (V/W )n. Then the
first inequality of the lemma is a consequence of the injectivity of the restriction of
Θ̄ to Un.
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Since U and V/W are finite-dimensional, there exists N such that Un = U and
(V/W )n = V/W for any n ≥ N . Then

δ =
∑N
n=1 n

(
dim(Un/Un−1)− dim((V/W )n/(V/W )n−1)

)
=
∑N
n=1 n

(
dim(Un)− dim(Un−1)− dim((V/W )n) + dim((V/W )n−1)

)
=
∑N−1
n=0 dim((V/W )n)− dim(Un),

since dim(U) = dim(V/W ). In particular, δ ≥ 0. �

Consider the graded vector spaces

grU = ⊕n∈Z>0
Un/Un−1 and gr(V/W ) = ⊕n∈Z>0

(V/W )n/(V/W )n−1.

The map Θ̄ induces a graded linear map

grΘ̄ : grU −→ gr(V/W ).

Lemma 16. Assume that Θ is an isomorphism. The following assertions are
equivalent

(i) grΘ̄ is an isomorphism;
(ii) dim(Un) = dim(V/W )n ∀n ∈ Z≥0;
(iii) δ = 0.

Proof. The second assertion implies the last one by the proof of Lemma 15. If
grΘ̄ is an isomorphism then for any n, dim(Un) − dim(Un−1) = dim(V/W )n −
dim(V/W )n−1. The initial subspaces U0 and (V/W )0 being trivial, the equalities
of assertion (ii) follow, by immediate induction.

Assume now that δ = 0. Since δ =
∑
n≥0 dim(V/W )n − dim(Un), Lemma 15

shows that dim(V/W )n = dim(Un), for any n. Then, the injectivity of Θ implies
that Θ̄ induces isomorphisms from Un onto (V/W )n, for any n. Then grΘ̄ is an
isomorphism. �

7.2. Definition of the BK product. Let P be a standard parabolic subgroup of
G. Let u1, u2, and v in WP such that l(v) = l(u1) + l(u2) and nvu1u2

6= 0. Set

T = TP/PG/P
T u1 = TP/Pu1

−1Xu1

P T u2 = TP/Pu
−1
2 Xu2

P Tv = TP/P v
−1XP

v .

Fix a one parameter subgroup τ of T belonging to ⊕αj 6∈∆(P )Z>0$α∨j
. Observe

that P acts on T . Under the action of τ , T decomposes as T =
⊕

n∈Z Tn, where
Tk = {ξ ∈ T : τ(t)ξ = tkξ ∀t ∈ C∗}. Note that Tn = {0} for all n ≥ 0. Set

T n = ⊕k≤nT−k.

Then (T n)n∈Z≥0
forms a P -stable filtration of T . Moreover T 0 = {0}. Consider

also the induced filtrations (T /T u1)n, (T /T u2)n and T nv on T /T u1 , T /T u2 , and
Tv. Set

δvu1 u2
=
∑
n≥0 n

(
dim(T nv /T n−1

v )−dim(((T /T u1)n)/(T /T u1)n−1)

−dim(((T /T u2)n)/(T /T u2)n−1)

)
.

Lemma 17. If nvu1u2
6= 0 then δvu1 u2

≥ 0.
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Proof. Consider the map

η : G×P C+ −→ X,

as in the proof of Proposition 1.
By Lemma 6, there exists b ∈ B such that Xu1

v ∩ bXu2
v = X̊P

v ∩ X̊
u1

P ∩ bX̊
u2

P is
transverse and nonempty by Lemma 7. Let g ∈ G such that gP/P belongs to this
intersection. There exist p1, p2 and p3 in P such that

(gP/P, (gp1u
−1
1 o−, gp2u

−1
2 o−, gp3v

−1o))

belongs to the fiber η−1(o−, bo−, o). Observe that

g(p1u
−1
1 Xu1

P ∩ p2u
−1
2 Xu2

P ∩ p3v
−1XP

v ) = Xu1
v ∩ bXu2

v

is transverse. By Lemma 6, the canonical map

p3Tv −→
T

p1T u1
⊕ T
p2T u2

(15)

is an isomorphism.
The lemma follows by applying Lemma 15 with V = T ⊕ T , V n = T n ⊕ T n,

W = p1T u1 ⊕ p2T u2 and U ' Tv embedded in V by ξ 7→ (p3ξ, p3ξ). �

For w ∈ W , we denote by Φw = w−1Φ+ ∩ Φ− the inversion set of w. Then, Φw
consists in l(w) real roots. Recall that ρ =

∑l
i=0$αi .

Lemma 18. With above notation, we have

δvu1 u2
= 〈−v−1ρ+ u−1

1 ρ+ u−1
2 ρ− ρ, τ〉.

Proof. Since

T /T u1 ' ⊕α∈Φu1
gα T /T u2 ' ⊕α∈Φu2

gα and Tv ' ⊕α∈Φvgα,

we have
δvu1 u2

= −
∑
α∈Φv

〈α, τ〉+
∑
α∈Φu1

〈α, τ〉+
∑
α∈Φu2

〈α, τ〉.

But by [Kum02, Lemma 1.3.22], w−1ρ− ρ =
∑
α∈Φw

α and the lemma follows. �

Because of Lemma 18, Lemma 17 can be restated as: by assigning the degree
〈v−1ρ−ρ, τ〉 ∈ Z to εv, one obtains a filtration of the cohomology ring H∗(G/P,Z).
Then �0 is defined to be the product of the associated graded ring.

In particular, �0 satisfies (with obvious identifications):

∀u1, u2 ∈WP εu1�0εu2 =
∑
v∈WP

�0nvu1 u2
εv,

where
�0nvu1 u2

= 0 if δvu1 u2
6= 0,

= nvu1 u2
if δvu1 u2

= 0.

Let Z(L) denote the center of L and Z(L)◦ denote its neutral component. Given
an L-representation and a character χ ∈ X(Z(L)◦) we denote by Vχ = {v ∈
V : ∀t ∈ Z(L)◦ tv = χ(t)v} the associated weight space. A priori, the above
construction of �0 could depend on our choice of an element τ ∈ ⊕αj 6∈∆(P )Z>0$α∨j

.
Actually, it does not depend on:
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Lemma 19. Let u1, u2, and v in WP such that �0nvu1u2
6= 0. Then, for any

χ ∈ X(Z(L)◦)

dim((Tv)χ) = dim(

(
T
T u1

)
χ

) + dim(

(
T
T u2

)
χ

).

Proof. As in the proof of Lemma 17, choose p1, p2, and p3 in P such that the linear
map (15) is an isomorphism. Up to multiplying by p−1

3 we assume that p3 is trivial.
Then

Θ̄ : Tv −→
T

p1T u1
⊕ T
p2T u2

is an isomorphism. For i = 1, 2, write pi = gui li with gui ∈ Pu and li ∈ L.
Let k ∈ Z and ξ ∈ T−k. Then

gui ξ ∈ ξ + T k+1.(16)

Fix bases of Tv, T
p1T u1 and T

p2T u2 adapted to the filtrations. Using (16), one can
check that the matrices of grΘ̄ and of

Θ̃ : Tv −→
T

l1T u1
⊕ T
l2T u2

coincide. Now Lemma 16 shows that δvu1 u2
= 0 if and only if Θ̃ is an isomorphism.

But, Θ̃ being Z(L)◦-equivariant, we have

dim((Tv)χ) = dim(

(
T

l1T u1

)
χ

) + dim(

(
T

l2T u2

)
χ

),

for any χ. Now, Z(L)◦ being central in L, we have for i = 1, 2

dim(

(
T

liT ui

)
χ

) = dim(

(
T
T ui

)
χ

).

The lemma is proved. �

7.3. On Levi movability.

Proposition 2. We keep notation and assumptions of Section 7.2 and assume in
addition that P has finite type. Recall that nvu1 u2

6= 0. If there exist l1, l2, l ∈ L
such that

l1u
−1
1 X̊u1

P ∩ l2u
−1
2 X̊u2

P ∩ lv
−1X̊P

v

is finite, then
δvu1 u2

= 0.

Proof. Identify Pu,− with an L-stable open subset of G/P . For any n ≥ 2, con-
sider the normal group Pu,−≥n of Pu,− such that Pu,−/Pu,−≥n is a finite-dimensional
unipotent algebraic group with Lie algebra⊕

α∈Φ, 1≤〈α,τ〉<n

gα

(see [Kum02, Lemma 6.1.11]). Let πn : Pu,− −→ Pu,−/Pu,−≥n be the quotient map.
Observe that the actions of τ and L commute and that Pu,−≥n is L-stable.

The sets Φui and Φv being finite, there exists N such that for any i = 1, 2,

u−1
i B−ui ∩ P ⊃ Pu,−≥N
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and
v−1Bv ∩ Pu,−≥N = {e}.

Then πN (u−1
i X̊ui) has codimension l(ui), for i = 1, 2; and πN (v−1X̊P

v ) has dimen-
sion l(v). Moreover, πN maps bijectively l1u−1

1 X̊u1

P ∩ l2u
−1
2 X̊u2

P ∩ lv−1X̊P
v onto

πN (l1u
−1
1 X̊u1

P ) ∩ πN (l2u
−1
2 X̊u2

P ) ∩ πN (lv−1X̊P
v ).(17)

Consider now the exponential map

Exp :
⊕

α∈Φ, 1≤〈α,τ〉<n

gα −→ Pu,−/Pu,−≥N .

Since Pu,−/Pu,−≥N is unipotent, Exp is an isomorphism of varieties. Let u1, u2 and u3

denote the Lie algebras of πN (l1u
−1
1 X̊u1

P = l1u
−1
1 U−u1l

−1
1 ∩ Pu,−), πN (l1u

−1
2 X̊u2

P )

and πN (lv−1X̊P
v ) respectively. These subspaces are stable by the action of τ and

decompose as ui = ⊕n<0u
n
i . The intersection (17) being finite, u1 ∩ u2 ∩ u3 = {0}.

Since dim(u3) = codim(u1) + codim(u2), it follows that the natural map

u3 −→
⊕α∈Φ, 1≤〈α,τ〉<ngα

u2
⊕
⊕α∈Φ, 1≤〈α,τ〉<ngα

u3

is a τ -equivariant isomorphism. Then for any integer n the τ -eigenspace un3 has
dimension codim(un1 )+codim(un2 ). The actions of L and τ commuting, one deduces
that δvu1 u2

= 0. �

8. Multiplicativity in cohomology

8.1. The multiplicativity. Let B ⊂ P ⊂ Q be two standard parabolic subgroups
of G. Let LP and LQ denote the Levi subgroups of P and Q containing T . Then
LQ ∩ P is a parabolic subgroup of LQ and Q/P = LQ/(LQ ∩ P ).

In this section, we study relations between structure constants of H∗(G/P,Z),
H∗(G/Q,Z) and H∗(Q/P,Z). To be more precise, we extend results of [Ric12,
Res11] from the classical case to the Kac-Moody case.

LetWP
Q be the set of minimal length representative inWQ of the classesWQ/WP .

Lemma 20. The map
WQ ×WP

Q −→ WP

(w̄, w̃) 7−→ w̄w̃

is bijective.

Proof. Recall that (see [Kum02, Exercice 1.3.E]) WP = {w ∈ W : w−1Φ− ∩
Φ+(LP ) = ∅}. We first check that w = w̄w̃ belongs to WP ; this shows that the
map of the lemma is well defined. Write

w−1Φ− ∩ Φ+(LP ) = w−1w̄(w̄−1Φ− ∩ w̃Φ+(LP )).

Note that Φ+(LP ) ⊂ Φ(LQ) = w̃Φ(LQ) and that w̄−1Φ−∩Φ(LQ) = Φ−(LQ) (since
w̄ ∈WQ). Hence

w−1Φ− ∩ Φ+(LP ) = w̃−1

(
w̄−1Φ− ∩ Φ(LQ) ∩ w̃Φ+(LP )

)
= w̃−1

(
Φ−(LQ) ∩ w̃Φ+(LP )

)
= w̃−1Φ−(LQ) ∩ Φ+(LP ).

This last intersection is empty since w̃ ∈WP
Q . Then w ∈WP .
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Fix now w ∈ WP . If w = w̄w̃ (with w̄ ∈ WQ and w̃ ∈ WP
Q ) then wWQ = w̄WQ

and w̄ is necessarily the unique representative of wWQ in WQ. Since w̃ = w̄−1w,
this proves that the map is injective.

Consider now the representative w̄ of wWQ in WQ and set w̃ = w̄−1w. To prove
the surjectivity, it remains to prove that w̃ ∈ WP

Q . The equality w̄WQ = wWQ

implies that w̃ ∈WQ. Moreover

w̃−1Φ−(LQ) ∩ Φ+(LP ) =w−1w̄Φ−(LQ) ∩ Φ+(LP )
⊂w−1Φ− ∩ Φ+(LP ),

since w̄Φ−(LQ) ⊂ Φ− (w̄ ∈ WQ). This last intersection is empty since w ∈ WP .
The lemma is proved. �

Recall that, for w ∈W
XP
w = BwP/P X̊P

w = BwP/P

Xw
P = B−wP/P X̊w

P = B−wP/P

Lemma 21. (See [BK06, Lemma 1]) Let w ∈WP and g ∈ G.
(i) If gX̊P

w contains P/P then there exists p ∈ P such that gX̊P
w = pw−1X̊P

w .
(ii) If gX̊w

P contains P/P then there exists p ∈ P such that gX̊w
P = pw−1X̊w

P .

Proof. Fix a representative ẇ of w in N(T ). Let b ∈ B and p ∈ P such that
gbẇ = p. Then gX̊P

w = pẇ−1b−1X̊P
w = pw−1X̊P

w . The second assertion works
similarly. �

Lemma 22. Let w̃ ∈ WP
Q and w̄ ∈ WQ. Set w = w̄w̃. Consider Q/P as a closed

subset in G/P . Then

(i) w̄−1X̊P
w ∩Q/P = (LQ ∩B)w̃P/P =: X̊

Q/P
w̃ ;

(ii) w̄−1X̊w
P ∩Q/P = (LQ ∩B−)w̃P/P =: X̊w̃

Q/P .

Proof. Note that w̄−1X̊P
w ∩ Q/P is stable by the action of w̄−1Bw̄ ∩ Q. Since

w̄ ∈ WQ, w̄−1Bw̄ ∩ Q contains LQ ∩ B. Moreover each (LQ ∩ B)-orbit in Q/P
contains a T -fixed point. Hence

w̄−1X̊P
w ∩Q/P =

⋃
x∈(w̄−1X̊Pw∩Q/P )T

(LQ ∩B).x.

But (w̄−1X̊P
w ∩Q/P )T ⊂ w̄−1(X̊P

w )T = {w̃P/P}. The first assertion of the lemma
follows. The second one works similarly. �

We can now prove the main result of this section.

Proposition 3. Let u1, u2, and v inWP . Write u1 = ū1ũ1, u2 = ū2ũ2, and v = v̄ṽ
as in Lemma 20. We assume that l(v) = l(u1) + l(u2) and l(v̄) = l(ū1) + l(ū2).

Consider the structure constants nvu1 u2
, nv̄ū1ū2

, and nṽũ1 ũ2
in H∗(G/P,Z), H∗(G/Q,Z),

and H∗(Q/P,Z) respectively.
Then

nvu1 u2
= nv̄ū1ū2

nṽũ1 ũ2
.

Proof. Since B is irreducible, Lemma 6 implies that there exists b ∈ B such that
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(i) Xu1

P ∩ bXu2
v = X̊u1

P ∩ X̊P
v ∩ bX̊

u2

P is transverse, and
(ii) X ū1

Q ∩ bX
ū2
v̄ = X̊ ū1

Q ∩ X̊
Q
v̄ ∩ bX̊ ū2

Q is transverse.

By Lemma 7, it remains to determine the cardinality of the intersection (i). We do
this by counting in each fiber of the G-equivariant projection π : G/P −→ G/Q.

Fix g ∈ G such that gQ/Q ∈ X ū1

Q ∩ bX
ū2
v̄ . Then Q/Q ∈ g−1X̊ ū1

Q ∩ g−1X̊Q
v̄ ∩

g−1bX̊ ū2

Q . As in Lemma 21, there exist q1, q2, and q in Q such that g−1 ∈ q ˙̄v−1B,
g−1 ∈ q1 ˙̄u−1

1 B−, and g−1b ∈ q2 ˙̄u−1
2 B−. Let l1, l2, and l in Q such that q1l

−1
1 , q2l

−1
2 ,

and ql−1 belong to Qu. Then

I := g−1(X̊u1

P ∩ bX̊
u2

P ∩ X̊P
v ∩ π−1(gQ/Q))

= q1ū
−1
1 X̊u1

P ∩ q2ū
−1
2 X̊u2

P ∩ qv̄−1X̊P
v ∩Q/P

= qX̊
Q/P
ṽ ∩ q1X̊

ũ1

Q/P ∩ q2X̊
ũ2

Q/P by Lemma 22

= lX̊
Q/P
ṽ ∩ l1X̊ ũ1

Q/P ∩ l2X̊
ũ2

Q/P

The last equality holds since Qu acts trivially on Q/P . Moreover, since Xu1

P ∩
bXu2

v = X̊u1

P ∩ X̊P
v ∩ bX̊

u2

P , we also have

I = lX
Q/P
ṽ ∩ l1X ũ1

Q/P ∩ l2X
ũ2

Q/P .

Claim. The intersection lX̊Q/P
ṽ ∩ l1X̊ ũ1

Q/P ∩ l2X̊
ũ2

Q/P is transverse.

Let x be a point in this intersection. By Lemma 6, the map

Txg
−1X̊P

v −→
TxG/P

Txg−1X̊u1

P

⊕ TxG/P

Txg−1bX̊u2

P

is an isomorphism. Hence, the natural map

Txg
−1X̊P

v ∩ TxQ/P −→
TxQ/P

Txg−1X̊u1

P ∩ TxQ/P
⊕ TxQ/P

Txg−1bX̊u2

P ∩ TxQ/P

is injective. Since TxlX̊
Q/P
ṽ ⊂ Txg

−1X̊P
v ∩ TxQ/P (and similar inclusions hold for

u1 and u2), we deduce that the natural map

TxlX̊
Q/P
ṽ −→ TxQ/P

Txl1X̊
ũ1

Q/P

⊕ TxQ/P

Txl2X̊
ũ2

Q/P

is injective. The assumption on the length of elements of WP
Q implies that it is in

fact an isomorphism. The claim is proved.

The claim and Lemma 7 imply that the cardinality of I is nṽũ1 ũ2
. This holding for

any one of the nv̄ū1 ū2
points in X ū1

Q ∩ bX
ū2
v̄ , we get that Xu1

P ∩ bXu2
v has cardinality

nṽũ1 ũ2
nv̄ū1 ū2

. We conclude by applying Lemma 7 in G/P . �
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8.2. Application to the BK-product. The following lemma allows to apply
Proposition 3 to any nonzero structure constants of the BK-product.

Lemma 23. Let P ⊂ Q be two standard parabolic subgroups of G. Let u1, u2, and
v in WP such that �0nvu1u2

6= 0.
Then l(v̄) = l(ū1) + l(ū2).

Proof. Let Q− be the opposite subgroup of Q and Qu,− its “unipotent” subgroup.
Let qu,− be the Lie algebra of Qu,−. Note that

l(v̄) = dim(Tv ∩ qu,−) and l(ūi) = dim(
qu,−

T ui ∩ qu,−
) ∀i = 1, 2.

There exists a one parameter subgroup τQ of Z(LQ) such that qu,− is the sum of
the negative weight spaces for τQ. Since Z(LQ)◦ is contained in Z(LP )◦:

Tw ∩ qu,− =
⊕

χ∈X(Z(LP )◦) 〈χ,τQ〉<0

(Tw)χ

for any w ∈W . Now the equality of the lemma is a direct consequence of Lemma 19.
�

9. The untwisted affine case

9.1. Notation. Let ġ be a complex finite-dimensional simple Lie algebra with Car-
tan subalgebra ḣ and Borel subalgebra ḃ ⊃ ḣ. Let α̇1, . . . , α̇l denote the simple roots,
α̇∨1 , . . . , α̇

∨
l the simple coroots, θ̇ the highest root and θ̇∨ the highest coroot. For

any simple root α̇, we denote by $α̇ the corresponding fundamental weight and by
$α̇∨ the corresponding fundamental coweight. Let Ṗ+ denote the set of dominant
integral weights for ġ. Set ρ̇ =

∑l
i=1$α̇i .

Endow g = ġ⊗C[z, z−1]⊕Cc⊕Cd with the usual Lie bracket (see e.g. [Kum02,
Chap XIII]). Set h = ḣ⊕ Cc⊕ Cd. Define Λ and δ in h∗ by

δ : ḣ 7−→ 0, c 7−→ 0, d 7−→ 1;

Λ : ḣ 7−→ 0, c 7−→ 1, d 7−→ 0.

We identify ḣ∗ with the orthogonal of Cc ⊕ Cd in h∗ in such a way that h∗ =
ḣ∗ ⊕ CΛ⊕ Cδ. The simple roots of g are

α0 = δ − θ̇, α̇1, . . . , α̇l.

The simple coroots of g are

α∨0 = c− θ̇∨, α̇∨1 , . . . , α̇∨l .

For any simple root α̇i of ġ, set $αi = $α̇i + $α̇i(θ̇
∨)Λ ∈ h∗. Set $α0

= Λ. A
choice of fundamental weights for g is $α0 , . . . , $αl . In particular

(18) ρ = ρ̇+ ˛hffl∨Λ,

where ˛hffl∨ = 1 + 〈ρ̇, θ̇∨〉 is the dual Coxeter number. Set

h∗Z = Z$α0 ⊕ · · · ⊕ Z$αl ⊕ Zδ,

and
P+ = Z≥0$α0

⊕ · · · ⊕ Z≥0$αl ⊕ Zδ,

= {λ̇+ ˜lΛ + bδ : λ̇ ∈ Ṗ+ and 〈λ̇, θ̇∨〉 ≤ ˜l}.
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Denote by P++ = Z>0$α0
⊕· · ·⊕Z>0$αl⊕Zδ, the set of regular dominant weights.

The chosen fundamental coweights are

$α∨0
= d $α∨i

= $α̇∨i
+ 〈$α̇∨i

, θ̇〉d.

Set Q̇∨ = ⊕li=1Zα̇∨i . An element h ∈ Q̇∨ acts on h by

(19) h · (x+ kd+ ˜lc) = x+ kh+ kd+

(
˜l− (x, h)− k (h, h)

2

)
c.

Then W = Q̇∨.Ẇ .

9.2. Essential inequalities and BK-product. We are now interested in the
inequalities (8) of Proposition 1 that are equalities for some regular elements of
Γ(g). We prove that such inequalities necessarily appear in Theorem 1.

Theorem 7. We use notation of Proposition 1 and assume that nvu1,u2
= 1. Let

τ ∈ ⊕αj 6∈∆(P )Z>0$α∨j
. Let (λ1, λ2, µ) ∈ (P+)3 such that

(20) 〈λ1, u1τ〉+ 〈λ2, u2τ〉 = 〈µ, vτ〉.
Assume that µ is regular and that

∃N > 0 V (Nµ) ⊂ V (Nλ1)⊗ V (Nλ2).(21)

Then, εv appears with multiplicity 1 in εu1
�0εu2

.

Proof. To prove Theorem 7 we use Proposition 2 and hence have to find l1, l2 and
l in L such that

(22) l1u
−1
1 X̊u1

P ∩ l2u
−1
2 X̊u2

P ∩ lv
−1X̊P

v is finite.

Consider C = Lu−1
1 o− × Lu−1

2 o− × Lv−1o, C+ = Pu−1
1 o− × Pu−1

2 o− × Pv−1o
and the map

η : G×P C+ −→ X
(gP/P, x) 7−→ x.

By Lemma 9, it remains to prove that there exists a point x̂0 in C such that the
fiber

(23) η−1(x̂0) is finite.

For i = 1, 2, consider the maximal parabolic subgroup Qi containing B− such
that λi extends to Qi. Set X = G/Q1 × G/Q2 × G/B and π : X −→ X the
G3-equivariant projection. Set C = π(C), C+ = π(C+) and η : G ×P C+ −→
X. Rather than demonstrating claim (23), we will show the following stronger
statement: there exists x0 in C such that the fiber

(24) η−1(x0) is finite.

Indeed, writing x0 = (l1u
−1
1 Q1/Q1, l2u

−1
2 Q2/Q2, lv

−1B/B) with l1, l2, l ∈ L , the
proof of Lemma 9 shows that assertion (24) implies that the intersection

l1u
−1
1 Q1u1P/P ∩ l2u−1

2 Q2u2P/P ∩ lv−1BvP/P

is finite. In particular, claims (22) and (23) hold.

Consider the line bundle L = L−(λ1)⊗ L−(λ2)⊗ L(µ) on X. Recall that, since
g is affine, L is a finite dimensional reductive group and C is a finite dimensional
projective variety. Let Lss be the maximal semi-simple subgroup of L. Now, the
proof proceeds in two steps:
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Step 1. Up to perturbing the weights (λ1, λ2, µ), there exists stable points for the
action of Lss on C relatively to L.

Step 2. A general point x0 in C satisfies property (24).

We denote by Css(L|C , L) the set of points x ∈ C such that there exists a L-
invariant section σ of some positive power L⊗N|C of L|C such that σ(x) 6= 0. Note
that this definition is the standard one (see [MFK94]) only if L|C is ample. Similarly
define Css(L|C , L).

The following lemma is a consequence of Theorem 6. We include here a more
direct proof. It allows to take a quotient by Z(L)◦.

Lemma 24. With the assumptions of Theorem 7, the set Css(L|C , L) is nonempty.
In particular, Z(L)◦ acts trivially on L|C .

Proof. By Lemma 4, there exist a positive integer N and a nonzero G-invariant
section σ ∈ H0(X,L⊗N )G. By Lemma 10, the image of η : G×P C+ −→ X
contains a nonempty open subset of X. We deduce that there exists x ∈ C+ such
that σ(x) 6= 0, X being irreducible and G-invariant,

Set y = limt→0 τ(t)x. Consider the map θx defined in the proof of Lemma 14.
The vanishing of µL(C, τ) means that θ∗x(L) is trivial as a C∗-linearized line bundle
on C. We deduce that ỹ := limt→0 τ(t)σ(x) exists and belongs to Ly −{y}. But, σ
being G-invariant, ỹ = σ(y). In particular y belongs to Css(L|C , L).

Since Z(L) acts trivially on C and σ is G-invariant, it fixes ỹ. Then Z(L) acts
trivially on L⊗N|C and Z(L)◦ acts trivially on L|C . �

We can now prove Step 1. Consider the group X(T )Z(L)◦ of characters χ of T
such that χ|Z(L)◦ is trivial. By Lemma 24, L−(λ1) ⊗ L−(λ2) ⊗ L(µ) belongs to
PicL/Z(L)◦(C). Set

γ :X(T )Z(L)◦ ⊗ Q −→ PicL/Z(L)◦(C)⊗ Q
µ′ 7−→ (L−(λ1)⊗ L−(λ2)⊗ L(µ+ µ′))|C .

The set of µ′ such that some positive power of γ(µ′) is ample and Css(γ(µ′), L/Z(L)◦)
is nonempty is a convex set denoted by CL(C). But, the image of γ is abundant in
the sense of [DH98, Section 4.1]. As a consequence, for µ′ general in CL(C), there ex-
ist stable points in C for γ(µ′) and the action of L/Z(L)◦. Fix such a µ′ and N ′ such
that N ′µ′ ∈ X(T ). Then, (N ′λ1, N

′λ2, N
′(µ+µ′)) still satisfies equality (20). But,

for any line bundleM in C, H0(C, π∗(M)) is canonically isomorphic to H0(C,M).
We deduce that some posive power of L−(λ1)⊗ L−(λ2)⊗ L(µ+ µ′)) on C admits
nonzeroG-invariant sections. Now, Theorem 6 implies that (N ′λ1, N

′λ2, N
′(µ+µ′))

satisfies condition (21) for some N .
Replacing (λ1, λ2, µ) by (N ′λ1, N

′λ2, N
′(µ + µ′)) if necessary, we may assume

that Cs(L, L/Z(L)◦) is nonempty.

Before proving Step 2, we construct a G-invariant map from an open subset
Xss(L) onto the GIT-quotient Css(L|C , L)//L.

Since L and C are finite-dimensional, the graded algebra ⊕kH0(C,L⊗k|C )L is
finitely generated. Fix d > 0 such that H0(C,L⊗d|C )L generates ⊕kH0(C,L⊗dk|C )L.
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Let σ0, . . . , σD be a C-basis of H0(C,L⊗d|C )L. By Theorem 6, for any i, σi extends
to a G-invariant section σ̃i on X. Set

Xss(L) := {x ∈ X : ∃i σ̃i(x) 6= 0},
and

ψ : Xss(L) −→ CPD

x 7−→ [σ̃0(x) : · · · : σ̃D(x)].

We want to describe the image of ψ.
Consider η : G ×P C+ −→ X. Let C+, ss(L, L) denote the set of points y ∈

C+ such that limt→0 τ(t)y ∈ Css(L, L). Since the σ̃i’s are G-invariant, η(G ×P
C+, ss(L, L)) is contained in Xss(L). By the proof of Proposition 1, this set is dense
in Xss(L), and hence in X by irreducibility. But ψ(η((gP/P, x))) = ψ(g−1x) for any
g ∈ G, x ∈ Xss(L) such that (gP/P, x) ∈ G×P C. Then ψ ◦ η(G×P C+,ss(L, L)) is
contained in ψ(Css(L, L)) = Css(L, L)//L. The quotient variety Css(L, L)//L being
projective, this implies that

ψ(Xss(L)) = Css(L, L)//L = Proj(⊕kH0(C,L⊗k|C )L).

Fix a general point x0 in C. Let g ∈ G and y ∈ C+ such that (gP/P, y) ∈
η−1(x0). Set z = limt→0 τ(t)y ∈ C. We prove the three following:
Claim a. z belongs to L.x0.
Claim b. y belongs to P.x0.
Claim c. Gx0

P/P is finite.
These claims allow to conclude. Indeed, Claim b implies that g ∈ Gx0P . Now

Claim c shows that gP/P has finitely many possibilities. Since the restriction of
the projection G ×P C+ −→ G/P to any fiber of η is injective, we can conclude
that η−1(x0) is finite and that asserion (24) holds.

Proof of Claim a. Since Cs(L, L/Z(L)◦) is open and nonempty it constains x0.
In particular, x0 is semistable and there exists i such that σi(x0) 6= 0.

Consider ỹ := σ̃i(y) = g−1σ̃i(x0) ∈ (L⊗d)y − {y}. Since µL(C, τ) = 0, z̃ :=
limt→0 τ(t)ỹ ∈ (L⊗d)z − {z}. But σ̃i being G-invariant, σ̃i(z) = z̃. Hence z ∈
Xss(L) ∩ C = Css(L). Moreover, ψ being G-invariant, we have ψ(z) = ψ(x0). The
point x0 being stable for the (L/Z(L)◦)-action, z belongs to the L-orbit of x0.

Now, Claim b is a direct consequence of Lemma 11.3, since y and z belongs to
the G-orbit of x0.

Proof of Claim c. Since u2 and w belong to WP , u−1
2 Q2u2 and w−1Bw con-

tain B− ∩ L and B ∩ L respectively. Then L/(B− ∩ L) × L/(B ∩ L) maps onto
Lu−1

2 Q2/Q2×Lv−1o. One deduces that the L-orbit of the base point (u−1
2 Q2/Q2, v

−1o)
is dense in Lu−1

2 Q2/Q2 × Lv−1o. Then, x0 being general, there exists l ∈ L such
that lx0 = (l1u

−1
1 Q1/Q1, u

−1
2 Q2/Q2, v

−1o) =: x1, for some l1 ∈ L.
It is sufficient to prove Claim c, for x1 in place of x0. Note that Gx1

⊂ u−1
2 Q2u2∩

v−1Bv is finite-dimensional. Moreover, it contains τ(C∗). Then, the Lie algebra of
Gx1 decomposes as Lie(Gx0) = (Lie(Gx0)∩Lie(Pu,−))⊕ (Lie(Gx0)∩Lie(P )). Thus
Lemma 25 below show that the neutral component G◦x1

of Gx1
is contained in P .

Claim c follows. �
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Lemma 25. Let x ∈ Css(L|C , L). Then Gx ∩ Pu,− is trivial.

Proof. Fix x̂ ∈ C such that π(x̂) = x. By Theorem 6, one can find a G-invariant
section σ on X of some positive power L⊗N of L such that σ(x̂) 6= 0. But H0(π(X),L)
is isomorphic to H0(X,L) and σ descends to a G-invariant section σ of L on X. The
set Xσ = {y ∈ X : σ(y) 6= 0} is a G-stable affine ind-variety containing x.

Write x = (l1u
−1
1 Q1/Q1, l2u

−1
2 Q2/Q2, lv

−1o), with l1, l2 and l in L. Then Gx ∩
Pu,− is contained in l(v−1Bv ∩ Pu,−)l−1. By [Kum02, Example 6.1.5.b], v−1Bv ∩
Pu,− is a finite-dimensional unipotent group. In particular, Gx∩Pu,− is connected
and it is sufficient to prove that its Lie algebra is trivial.

Assume that there exists a nonzero vector ξ ∈ Lie(Gx ∩ Pu,−). Consider a
morphism

φ : SL2(C) −→ G,

such that T1φ(E) = ξ, given by Proposition 11.1 below. Look the induced SL2(C)-

action on X. The unipotent subgroup U2 =

(
1 ∗
0 1

)
of SL2(C) fixes the point x.

Since SL2(C)/U2 ' C2 − {(0, 0)}, one gets a regular map

φ̄ : C2 − {(0, 0)} −→ X.

Since Xσ is G-stable, the image of φ̄ is contained in Xσ. But Xσ is an affine ind-
variety and Arthog’s lemma implies that φ̄ extends to a regular map

φ̃ : C2 −→ X.

By density, φ̃ is SL2(C)-equivariant. In particular the point φ̃(0, 0) is fixed by
SL2(C). This is a contradiction, since v−1bv contains no copy of sl2(C). �

9.3. About Γ(g). For any n ∈ Z, V (nδ) is one-dimensional acted on by the char-
acter nδ of g. It follows that

Γ(g) = Γred(g) + Q(δ, 0, δ) + Q(0, δ, δ),

where
Γred(g) = {(λ1, λ2, µ) ∈ Γ(g) : λ1(d) = λ2(d) = 0}.

For any λ ∈ P+, the center Cc of g acts on V (λ) with weight λ(c) ∈ Z. Then

Γred(g) ⊂ Γ(g) ⊂ {(λ1, λ2, µ) ∈ (h∗Q)3 : µ(c) = λ1(c) + λ2(c)}.

As an application of the GKO construction [GKO85] of representations of Vi-
rasoro algebras, Kac-Wakimoto obtained in [KW88] the following properties of the
decomposition of V (λ1)⊗ V (λ2).

Lemma 26. Let λ1, λ2 in P+ such that λ1(d) = λ2(d) = 0, λ1(c) > 0 and
λ2(c) > 0. Let µ̇ ∈ Ṗ and set µ̄ := µ̇+ (λ1(c) + λ2(c))Λ ∈ P+.

Then, µ̄− λ1 − λ2 ∈ Q if and only if there exists b ∈ Z such that V (µ̄+ bδ) is a
sub-representation of V (λ1)⊗ V (λ2).

Moreover, if µ̄− λ1 − λ2 ∈ Q then one of the following two assertions holds:
(i) there exists b0 ∈ Z such that V (µ̄ + bδ) ⊂ V (λ1) ⊗ V (λ2) if and only if

b ≤ b0;
(ii) there exists b0 ∈ Z such that V (µ̄ + bδ) ⊂ V (λ1) ⊗ V (λ2) if and only if

b = b0 or b ≤ b0 − 2.
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Proof. The first assertion is proved in [KW88, p. 194]. The fact that {b ∈ Z :
V (µ̄ + bδ) ⊂ V (λ1) ⊗ V (λ2)} has an upper bound is proved in [KW88, p. 171].
Let b0 be the maximum of such b ∈ Z. It remains to prove that, for all n ≥ 2,
V (µ̄ + (b0 − n)δ) is contained in V (λ1) ⊗ V (λ2). This is a direct consequence of
[KW88, Proof of Proposition 3.2]. See also [BK14, Proposition 4.2]. �

Lemma 26 allows to define

b0(λ1, λ2, µ̄) = max{b ∈ Z : V (µ̄+ bδ) ⊂ V (λ1)⊗ V (λ2)}.

Remark 8. (i) [KW88, Inequality 2.4.1] implies that

b0(λ1, λ2, µ̄) ≤ (λ̇1 + 2ρ̇, λ̇1)

2(˜l1 + ˛hffl∨)
+

(λ̇2 + 2ρ̇, λ̇2)

2(˜l2 + ˛hffl∨)
− (µ̇+ 2ρ̇, µ̇)

2(˜l1 + ˜l2 + ˛hffl∨)
.

This inequality is quadratic in (λ1, λ2, µ̄). In this paper, we show stronger
linear inequalities.

(ii) If one takes ˜l1 = 0 in Lemma 26, one get λ̇1 = 0. Set λ1 = λ̇1 + ˜l1Λ = 0,
λ2 = λ̇2 + ˜l2Λ and µ = µ̇ + ˜l2Λ. We have V (N0) ⊗ V (Nλ2) = V (Nλ2),
for any positive integer N . Hence (0, λ2, µ) belongs to Γ(g) if and only
if µ = λ2. In particular, the assumption “ ˜l1 positive” is necessary in
Lemma 26. Observe that this implies that Γ(g) is not closed.

Set

Γ◦red(g) = {(λ1, λ2, µ) ∈ Γred(g) : λ1(c) > 0 and λ2(c) > 0},

and

A = {(λ1, λ2, µ̄) ∈ (X(Ṫ )Q ⊕ QΛ)3 : λ1, λ2 and µ̄ are dominant
λ1(c) > 0, λ2(c) > 0
µ̄(c) = λ1(c) + λ2(c) }.

Define a function Ψ : A −→ R by

Ψ(λ1, λ2, µ̄) = sup
N ∈ Z>0 s.t.

Nλ1, Nλ2, Nµ̄ ∈ h∗Z
Nµ̄−Nλ1 −Nλ2 ∈ Q

b0(Nλ1, Nλ2, Nµ̄)

N
,

where b0 is defined just after Lemma 26. This lemma implies that, for any (λ1, λ2, µ̄) ∈
A, (λ1, λ2, µ̄+ bδ) belongs to the closure of Γ◦red(g) in A× R if and only if

b ≤ Ψ(λ1, λ2, µ̄).

9.4. A cone defined by inequalities. Consider the cone C of points (λ1, λ2, µ) ∈
(h∗Q)3 such that

(i) λ1(c) > 0 and λ2(c) > 0;
(ii) λ1, λ2, and µ are dominant;
(iii) λ1(d) = λ2(d) = 0;
(iv) λ1(c) + λ2(c) = µ(c);
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(v) the inequality

〈µ, v$α∨i
〉 ≤ 〈λ1, u1$α∨i

〉+ 〈λ2, u2$α∨i
〉(25)

holds for any i ∈ {0, . . . , l} and any (u1, u2, v) ∈WPi such that
�0nvu1u2

= 1 in H∗(G/Pi,Z).(26)

The aim of this section is to prove Theorem 1 or equivalently that Γ◦red(g) = C
(see Theorem 10 below). We first study the cone C.

9.5. Realisation of C as an hypograph. We just proved that Γ◦red(g) is the
gypograph of Ψ. We are now proving a similar statement for the cone C.

We endow ḣ∗R with a Ẇ -invariant Euclidean norm ‖ · ‖ such that ‖θ̇‖2 = 2. For
µ ∈ X(Ṫ )Q ⊕ QΛ ⊕ Qδ, we denote by µ̇ (resp. µ̄) its projection on X(Ṫ )Q (resp.
X(Ṫ )Q ⊕ QΛ).

Let I be the set of (u1, u2, v, i) ∈ (WPi)3 × {0, . . . , l} satisfying condition (26).
Fix (u1, u2, v, i) ∈ I. Assume first that i = 0. Let h1, h2 and h in Q̇∨ such that
u1WP0

= h1WP0
, u2WP0

= h2WP0
and vWP0

= hWP0
. Define the restricted linear

function ϕ(u1,u2,v,0) : A −→ Q that maps (λ1, λ2, µ̄) to

(27) 〈h1, λ̇1〉 + 〈h2, λ̇2〉 − 〈h, µ̇〉 +
˜l1
2

(‖h‖2 − ‖h1‖2) +
˜l2
2

(‖h‖2 − ‖h2‖2),

where ˜l1 = λ1(c) and ˜l2 = λ2(c). Note that $α∨0
= d and for h ∈ Q̇∨, by equa-

tion (19), we have h · d = h + d − (h,h)
2 c. For any (λ1, λ2, µ̄) ∈ A, inequality (25)

with i = 0, is fulfilled by (λ1, λ2, µ̄+ bδ) if and only if

b ≤ ϕ(u1,u2,v,0)(λ1, λ2, µ̄).

Assume now that i ∈ {1, . . . , l}. Write u1 = u̇1h1, u2 = u̇2h2 and v = v̇h with
u̇1, u̇2, v̇ ∈ Ẇ and h1, h2, h ∈ Q̇∨. Define the linear function ϕ(u1,u2,v,i) : A −→ Q
that maps (λ1, λ2, µ̄) to

(28)

〈u̇1(h1 +
$α∨

i

〈$̇α∨
i
,θ̇〉 ), λ̇1〉+ 〈u̇2(h2 +

$α∨
i

〈$̇α∨
i
,θ̇〉 ), λ̇2〉 − 〈v̇(h+

$α∨
i

〈$̇α∨
i
,θ̇〉 ), µ̇〉

+ ˜l1
2 (‖h‖2 − ‖h1‖2 + 2

($α∨
i
,h−h1)

〈$̇α∨
i
,θ̇〉 )

+ ˜l2
2 (‖h‖2 − ‖h2‖2 + 2

($α∨
i
,h−h2)

〈$̇α∨
i
,θ̇〉 ).

Recall that $α∨i
= $̇α∨i

+ 〈$̇α∨i
, θ̇〉d. Moreover, for w = ẇh ∈W , by equation (19),

we have

(ẇh) ·$α∨i
= ẇ$̇α∨i

+ 〈$̇α∨i
, θ̇〉ẇh+ 〈$̇α∨i

, θ̇〉d−
(
〈$̇α∨i

, θ̇〉 (h, h)

2
+ ($̇α∨i

, h)

)
c.

Then inequality (25), is fulfilled by (λ1, λ2, µ̄+ bδ) if and only if

b ≤ ϕ(u1,u2,v,i)(λ1, λ2, µ̄).

Define
ϕ : A −→ R ∪ {−∞}

(λ1, λ2, µ̄) 7−→ inf(u1,u2,v,i)∈I ϕ(u1,u2,v,i)(λ1, λ2, µ̄).

Then ϕ is a concave function and C is the hypograph of ϕ:

C = {(λ1, λ2, µ̄+ bδ) : (λ1, λ2, µ̄) ∈ A and b ≤ ϕ(λ1, λ2, µ̄)}.
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9.6. The convex set C is locally polyhedral.

Proposition 4. Let ~λ0 ∈ A. Then

∀M ∈ R ∃ an open set U 3 ~λ0 ∃J ⊂ I finite

such that
∀a ∈ I − J ∀~λ ∈ U ϕa(~λ) ≥M.

Proof. Let ~λ = (λ1, λ2, µ̄) ∈ A. FixM ∈ R. Let (u1, u2, v, 0) ∈ I. By Proposition 1,
the inequality (25) is satisfied by (˜lΛ, 0, ˜lΛ) for any ˜l > 0. Hence

‖h‖2 − ‖h1‖2 ≥ 0.

Similarly, ‖h‖2 − ‖h2‖2 ≥ 0. Hence, ϕ(u1,u2,v,0)(~λ) is greater or equal to

(29) 〈h1, λ̇1〉+ 〈h2, λ̇2〉 − 〈h, µ̇〉+
˜l
2

(2‖h‖2 − ‖h1‖2 − ‖h2‖2),

where ˜l = min(λ1(c), λ2(c)). Using Lemma 18, one gets δvu1 u2
= 〈ρ,−d−h ·d+h1 ·

d+ h2 · d〉. Hence

δvu1 u2
= 〈ρ̇, h1 + h2 − h〉+

˛hffl∨
2

(‖h‖2 − ‖h1‖2 − ‖h2‖2).

Lemma 17 implies that δvu1 u2
≥ 0 and

‖h‖2 − ‖h1‖2 − ‖h2‖2 ≥
2

˛hffl∨
〈h− h1 − h2, ρ̇〉.

Then ϕ(u1,u2,v,0)(~λ) is greater or equal to

(30)
˜l
2
‖h‖2 − ‖h1‖.‖λ̇1‖ − ‖h2‖.‖λ̇2‖ − ‖h‖.‖µ̇‖ −

2‖ρ̇‖

˛hffl∨
(‖h1‖+ ‖h2‖+ ‖h‖).

By construction there exist u̇1, u̇2 and v̇ in Ẇ such that u1 = h1u̇1, u2 = h2u̇2 and
v = hv̇. But l(v) = l(u1) + l(u2). Then Lemma 11.4 implies that

N +
√

2N‖h‖ ≥ l(v) ≥ l(u1) ≥ K‖h1‖ −N,

where K ∈ R+,∗ and N = ]Φ̇+.
We deduce that

(31) max(‖h1‖, ‖h2‖) ≤
N

K
(2 +

√
2‖h‖).

The point is that this implies that ϕ(u1,u2,v,0)(~λ) is greater or equal to ˜l
2‖h‖

2 minus
terms that are linear in ‖h‖. We deduce that there exist an open neighborhood U0

of ~λ0 and A0 ∈ R such that

∀~λ ∈ U0 ∀a = (u1, u2, v, 0) ∈ I l(v) ≥ A0 ⇒ ϕa(~λ) ≥M.

Fix (u1, u2, v, i) ∈ I with i > 0 and consider the associated linear function
ϕ(u1,u2,v,i). Since (˜lΛ, 0, ˜lΛ) ∈ Γ(g) for any ˜l > 0, Proposition 1 implies that

‖h‖2 − ‖h1‖2 + 2
($α∨i

, h− h1)

〈$̇α∨i
, θ̇〉

≥ 0.



40 NICOLAS RESSAYRE

Set E :=
‖$̇α∨

i
‖

〈$̇α∨
i
,θ̇〉 and F := 〈$̇α∨i

, θ̇〉. Then, ϕ(u1,u2,v,i)(
~λ) is greater or equal to

(32)
− (‖h1‖.‖λ̇1‖+ ‖h2‖.‖λ̇2‖+ ‖h‖.‖µ̇‖)− E(‖λ̇1‖+ ‖λ̇2‖+ ‖µ̇‖)

+ ˜l
2 (2‖h‖2 − ‖h1‖2 − ‖h2‖2 − 2E(‖h− h1‖+ ‖h− h2‖)).

where ˜l = min(λ1(c), λ2(c)). But δvu1 u2
≥ 0 implies that

‖h‖2 − ‖h1‖2 − ‖h2‖2 ≥ 2

F ˛hffl∨ (1− 〈ρ̇,−v̇$̇α∨i
+ u̇1$̇α∨i

+ u̇2$̇α∨i
〉)

− 2

˛hffl∨ (〈ρ̇,−v̇h+ u̇1h1 + u̇2h2〉)

− 2
F ($̇α∨i

, h− h1 − h2).

Combining these inequalities with inequality (31) one can get a lower bound for
ϕ(u1,u2,v,i)(

~λ) equals to ˜l
2‖h‖

2 minus terms that are linear in ‖h‖. One can easily
deduce that there exist an open neighborhood U of ~λ0 and A ∈ R such that

∀~λ ∈ U ∀a = (u1, u2, v, i) ∈ I l(v) ≥ A ⇒ ϕa(~λ) ≥M.

But there exist only finitely many triples (u1, u2, v) with l(v) < A and l(v) =
l(u1) + l(u2). The proposition follows. �

Remark 9. Proposition 4 is still true with the family of equations corresponding to
any parabolic subgroup P , any αi ∈ ∆−∆(P ) and any coefficient nvu1 u2

6= 0. The
same proof works.

We now use Proposition 4 to prove that C is locally polyhedral. Let ~λ0 =

(λ1, λ2, µ̄) in A. By Proposition 4, there exists a neighborhood U of ~λ0 and J ⊂ I
finite such that

(33) ∀a ∈ I − J ∀~λ ∈ U ϕa(~λ) ≥ ϕ(~λ0) + 1.

In particular, there exists a0 in J and hence in I such that

ϕ(~λ0) = inf
a∈I

ϕa(~λ0) = min
a∈J

ϕa(~λ0) = ϕa0(~λ0).

By continuity of the function ϕa0 , up to changing U by a smaller neighborhood if
necessary, one may assume that

∀~λ ∈ U ϕa0(~λ) ≤ ϕa0(~λ0) + 1.

Then, assertion (33) implies that for any ~λ ∈ U

(34) ϕ(~λ) = min
a∈J

ϕa(~λ).

Choose a simplex S containing ~λ0 in its interior such that S∩A ⊂ U . Up to replacing
U by S ∩A, one may assume that U is a convex polytope. Then formula (34) shows
that C ∩ (U + Q(0, 0, δ)) is a polyhedron.

For any a ∈ I, we set

Aa = {~λ ∈ A : ϕ(~λ) = ϕa(~λ)}.
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The properties of these sets are summarized in the following lemma. The dimen-
sion of a convex set is defined to be the dimension of the spanned affine space.

Lemma 27. With above notation,
(i) For any a ∈ A, the set Aa is convex.
(ii) Set I1 = {(a ∈ I | dim(Aa) = dim(A)}. Then

(35) A = ∪a∈I1Aa.

(iii) The sets associated with two different elements of I1 only intersect along
their boundaries.

Proof. The first assertion follows from the linearity of functions ϕ(u1,u2,v,i). Since
C is locally polyhedral, it is the union of its codimension one faces. The two last
assertions follow. �

The cone C being locally polyhedral, we have

C = {(λ1, λ2, µ̄+ bδ) : (λ1, λ2, µ̄) ∈ A
b ≤ ϕa(λ1, λ2, µ̄) ∀a ∈ I1}.

Two convex sets Aa and Aa′ are said to be adjacent if their intersection has codi-
mension 1 in A.

9.7. An example of a codimension one face. Consider the element (e, e, e, 0) ∈
I. The associated inequality (25) is b ≤ 0. Moreover, G/P0 is the affine Grassman-
nian GrĠ and the semi-simple component of the Levi subgroup L0 is Ġ.

Lemma 28. Let (λ̇1 + ˜l1Λ, λ̇2 + ˜l2Λ, µ̇+(˜l1 + ˜l2)Λ) ∈ (P+)3. Then V (µ̇+(˜l1 + ˜l2)Λ)

is contained in V (λ̇1 + ˜l1Λ) ⊗ V (λ̇2 + ˜l2Λ) if and only if VĠ(µ̇) is contained in
VĠ(λ̇1)⊗ VĠ(λ̇2).

In particular, A(e,e,e,0) has nonempty interior in A. That is (e, e, e, 0) belongs
to I1.

Proof. The first assertion is certainly well known. It can also be obtained as a
consequence of Theorem 6. Indeed, in H∗(GrĠ,Z), we have nee,e = 1. For τ = $α∨0

,
(λ̇1 + ˜l1Λ, λ̇2 + ˜l2Λ, µ̇ + (˜l1 + ˜l2)Λ) satisfies equality (11). Corollary 1 shows that
the multiplicity of V (µ̇+ (˜l1 + ˜l2)Λ) in V (λ̇1 + ˜l1Λ)⊗V (λ̇2 + ˜l2Λ) is equal to those
of VĠ(µ̇) in VĠ(λ̇1)⊗ VĠ(λ̇2).

It is well known (see e.g. [PR13, Theorem 1.4]) that Γ(ġ) has nonempty interior
in (X(Ṫ )Q)3. But for any given (λ̇1, λ̇2, µ̇) ∈ Γ(ġ), (λ̇1+˜l1Λ, λ̇2+˜l2Λ, µ̇+(˜l1+˜l2)Λ) ∈
Γ(g) for any ˜l1 ≥ 〈λ̇1, θ̇

∨〉, ˜l2 ≥ 〈λ̇2, θ̇
∨〉 and ˜l1 + ˜l2 ≥ 〈µ̇, θ̇∨〉. The second assertion

follows. �

9.8. The main result.

Theorem 10. With the above notation, we have

Γ◦red(g) = C.

Proof. The inclusion Γ◦red(g) ⊂ C is a direct consequence of Proposition 1. We have
to prove that C is contained in Γ◦red(g) or in Γ(g); that is, that

(36) ∀~λ ∈ A ϕ(~λ) ≤ Ψ(~λ).
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Still equivalently, we have to prove that

(37) ∀~λ ∈ A ~λ+ (0, 0, ϕ(~λ)δ) ∈ Γ(g)

Let ~λ = (λ1, λ2, µ̄) ∈ A. Since C is locally polyhedral (see (34)), there exists a ∈ I1

such that ϕ(~λ) = ϕa(~λ). To sum up, it is sufficient to prove that, for any a ∈ I1,
we have

(38) ∀~λ ∈ Aa ~λ+ (0, 0, ϕ(~λ)δ) ∈ Γ(g).

Let I0
1 denote the set of elements in I1 satisfying condition (38). In order to

prove that I0
1 = I1, for a ∈ I, consider the following assumption

(H) ∃~λ ∈ Aa regular such that ~λ+ (0, 0, ϕ(~λ)δ) ∈ Γ(g).

We prove that I0
1 = I1 in three steps:

Claim 1. Any a ∈ I1 satisfying assumption (H) belongs to I0
1 .

Claim 2. The element (e, e, e, 0) belongs to I1 and satisfies assumption (H).
Claim 3. If one of two adjacent elements of I1 satisfies assumption (H) then both

satisfy assumption (H).
These claims are sufficient. Indeed, for any a ∈ I1, there exists a sequence

a = a0, . . . , an = (e, e, e, 0) such that Aai and Aai+1 are adjacent for any i. By
Claim 2, an satisfies assumption (H). Thus by an immediate induction and Claim 3,
a satisfies (H). Now Claim 1 shows that a ∈ I0

1 .

Proof of Claim 2. It is a direct consequence of Lemma 28.

Proof of Claim 1 ⇒ Claim 3. Let a and a′ in I1 be such that Aa and Aa′ are
adjacent along their face A′. Assume that a satisfies assumption (H). Then the
interior of A′ is contained in the interior of Aa ∪ Aa′ . In particular, A′ contains
regular weights and a′ satisfies assumption (H). Since ϕa and ϕa′ coincide on A′,
if one of a and a′ satisfies (H) both satisfy it by Claim 1.

Proof of Claim 1. Let a = (ū1, ū2, v̄, i) ∈ I1 satisfying assumption (H). Set C =
Liū
−1
1 o−×Liū−1

2 o−×Liv̄−1o. For (λ1, λ2, µ) ∈ (P+,Q)3, denote by Css(λ1, λ2, µ, Li)
the set of points in C that are semi-stable for the action of Li and the restriction
of the line bundle L on X associated to (λ1, λ2, µ). Consider

CLi(C) = {(~λ, b) ∈ A× Q : Css(~λ+ (0, 0, bδ), Li) 6= ∅}.

Let ~λ = (λ1, λ2, µ̄) in A, b in Q. Set µ = µ̄ + bδ. By [BK06], CLi(C) is a convex
polyhedral cone determined by an explicit finite list of linear inequalities. Namely,
(~λ, b) belongs to CLi(C) if and only if

(i) ū−1
1 λ1, ū

−1
2 λ2 and v̄−1µ are dominant for Li;

(ii) Z(Li)
◦ acts trivially on L|C ;

(iii) for any j ∈ {0, . . . , l} − {i}

(39) 〈ṽ$α∨j
, v̄−1µ〉 ≤ 〈ũ1$α∨j

, ū−1
1 λ1〉+ 〈ũ2$α∨j

, ū−1
2 λ2〉,

for any (ũ1, ũ2, ṽ) ∈WP ij
Li

such that εṽ(Li/P ij ) appears with coefficient one
in εũ1

(Li/P
i
j )�0εũ2

(Li/P
i
j ).
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Here P ij is the maximal standard parabolic subgroup of Li associated with j. Note
that condition (ii) can be rewritten as

(40) 〈v̄$α∨i
, µ〉 = 〈ū1$α∨i

, λ1〉+ 〈ū2$α∨i
, λ2〉.

In particular it implies that b = ϕa(~λ).
On the other hand, Theorem 6 shows that ~λ + (0, 0, bδ) belongs to Γ(g). Thus

b ≤ Ψ(~λ). Finally, the points (~λ, b) of CLi(C) satisfy

(41) b = ϕa(~λ) = ϕ(~λ) = Ψ(~λ) and ~λ ∈ Aa.

Conversely, we claim that for any ~λ in Aa, (~λ, ϕa(~λ)) belongs to CLi(C). By (41),
this claim implies Claim 1 and ends the proof of the theorem.

Consider the set CLi(C) of ~λ ∈ A such that (~λ, ϕa(~λ)) belongs to CLi(C). It
is the linear projection of CLi(C). By assumption (H) and Theorem 6, CLi(C)
intersects the interior of A. Let lssi be the semisimple part of the Lie algebra li
of Li. Since Γ(lssi ) is full dimensional and CLi(C) intersects the interior of A, one
deduces that CLi(C) is full dimensional in A.

Recall that we want to show that the two full dimensional sub-polyhedron of
A, CLi(C) and Aa coincide, knowing that CLi(C) is contained in Aa. The general
theory of convex polyhedrons implies that it is sufficient to check the conditions (39)
such that the associated face of CLi(C) has codimension one and intersects the
interior of A. Consider such an inequality associated with (ũ1, ũ2, ṽ, j) and the four
flag varieties

Li/(P
i
j ) G/(Pi,j)

G/Pi G/Pj

Here Pi,j = Pi ∩ Pj and we used that P ij = Li ∩ Pj .
By Lemma 20, (u1 = ū1ũ1, u2 = ū2ũ2, v = v̄ṽ) ∈ (WPi,j )3. By Proposition 3,

εv appears with multiplicity one in εu1
.εu2

, in H∗(G/Pi,j ,Z). Set τ = $α∨i
+$α∨j

.
Then, by Proposition 1

〈vτ, µ′〉 ≤ 〈u1τ, λ
′
1〉+ 〈u2τ, λ

′
2〉,(42)

for any (λ′1, λ
′
2, µ
′) ∈ Γ(g). Let ~λ

′′
be an integral point in the interior of A, in CLi(C)

and such that inequality (39) is an equality. Then inequality (42) is an equality for
~λ
′′

+(0, 0, ϕ(ū1,ū2,v̄,i)(
~λ
′′
)δ). The last weight of ~λ

′′
being regular, Theorem 7 implies

that εv appears with multiplicity one in εu1
�0εu2

.
Consider now the three elements ū′1, ū′2 and v̄′ in WPj such that ū′1WPj =

u1WPj ,ū′2WPj = u2WPj and v̄′WPj = vWPj . Lemma 23 and Proposition 3 imply
that, in H∗(G/Pj ,Z), εv̄′ appears with multiplicity one in εū′1�0εū′2 . By definition
of C, any point (λ1, λ2, µ) in it satisfies

(43) 〈µ, v̄′$α∨j
〉 ≤ 〈λ1, ū

′
1$α∨j

〉+ 〈λ2, ū
′
2$α∨j

〉.

But, modulo equality (40), inequality (39) is equivalent to inequality (43). Since
for any point ~λ of Aa, the point ~λ + (0, 0, ϕa(~λ)δ) satisfies both (40) and (43), it
satisfies (39). We conclude that Aa is contained in CLi(C). �
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10. Saturation factors

In this section, we prove Theorems 3 and 4 of the introduction. Let us first check
the computation of the constants ks.

In the finite-dimensional case, known saturation factors are collected in the fol-
lowing tabular. These results was obtained in [KT99] for the type A˜l, in [KM06]
for B2 and G2, in [HS15] for type B˜l, [BK10] for the type C˜l, in [KKM09] for D4

and in [KM08] for the remaining cases.

Type A˜l B˜l(˜l ≥ 3) C˜l(˜l ≥ 2) D4 D˜l(˜l ≥ 5)

Saturation factor 1 2 2 1 4

Type E6 E7 E8 F4 G2

Saturation factor 36 144 3 600 144 2, 3

Using these datas, one can easily check the computations of ks given in the
introduction by reading the Dynkin diagrams. Indeed, ks was defined to be the
least common multiple of saturation factors of maximal Levi subalgebras of g. But
these Levi subalgebras are finite dimensional.

Ã1

Ã˜l (˜l ≥ 2)
B̃˜l (˜l ≥ 3)

G̃2 C̃˜l (˜l ≥ 2)
D̃˜l (˜l ≥ 4)

Ẽ6
Ẽ7 F̃4

Ẽ8

Proof of Theorems 3 and 4. Let (λ1, λ2, µ) ∈ (P+)3 such that µ− λ1 − λ2 ∈ Q and
there exists N > 0 such that (Nλ1, Nλ2, Nµ) ∈ ΓN(g). Up to tensoring with V (δ)
one may assume that λ1(d) = λ2(d) = 0. Write µ as µ̄ + nδ, with n ∈ Z and
µ̄ ∈ X(Ṫ ).

Set b = ϕ(λ1, λ2, µ̄). By formula (34), there exists (u1, u2, v, i) ∈ I such that
b = ϕ(u1,u2,v,i)(λ1, λ2, µ̄).

We claim that bkġ is an integer. The norm on Q̇∨ is normalized by ‖α̇∨‖2 = 2

for a short coroot α̇∨ ∈ Φ̇∨. Then, case-by-case consideration allows to prove that,
for any h ∈ Q̇∨, ‖h‖

2

2 ∈ Z. Now, formula (27) shows that b ∈ Z if i = 0. If i > 0,
formula (28) shows that kġb ∈ Z.

Consider (kġλ1, kġλ2, kġµ̄+(kġb)δ). Recall that Q = Q̇+Zδ and µ−λ1−λ2 ∈ Q.
In particular kġµ̄ + (kġb)δ − kġλ1 − kġλ2 ∈ Q. For any λ ∈ h∗Z and w ∈ W ,
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λ−wλ ∈ Q. Hence, v−1kġµ̄+(kġb)δ−u−1
1 kġλ1−u−1

2 kġλ2 also belongs to Q. Since
(Nλ1, Nλ2, N(µ̄+bδ)) ∈ ΓN(g), Corollary 1 implies that (Nu−1

1 λ1, Nu
−1
2 λ2, Nv

−1(µ̄+
bδ)) belongs to ΓN(li). But ks is a saturation factor for the group Li. Then
(u−1

1 kskġλ1, u
−1
2 kskġλ2, v

−1kskġ(µ̄ + bδ)) belongs to ΓN(li). Corollary 1 implies
that (kskġλ1, kskġλ2, kskġ(µ̄+ bδ)) belongs to ΓN(g).

Proposition 1 implies that n ≤ b. Then kġ(b− n) ∈ Z≥0.
If b = n, we already proved that (kskġλ1, kskġλ2, kskġµ) belongs to ΓN(g). The-

orem 3 is proved in this case.
Moreover, Proposition 1 implies that

b0(kskġλ1, kskġλ2, kskġµ̄) = kskġb.

Then, Lemma 26 implies that (kskġλ1, kskġλ2, kskġµ̄ + mδ) belongs to ΓN(g), for
any

(44) m ≤ kskġb− 2.

Assume that kġ(b − n) ∈ Z>0. If ks > 1, m = kskġn satisfies condition (44).
Similarly, for any d > 1, kskġn− d satisfies condition (44). The theorems follow in
these cases.

Assume now that ks = 1 and fix d > 1. We may assume that n 6= b. Then, the
integer

b0(dkġλ1, dkġλ2, dkġµ̄) = dkġb.

Since m = dkġn = d(kġn−kġb)+dkġn satisfies m ≤ dkġb−2, Theorem 3 also holds
in this case. �

11. Some technical lemmas

In this section we collect some technical results on Birkhoff and Bruhat decom-
positions, on Geometric Invariant Theory, on affine Kac-Moody groups. . .

11.1. Bruhat and Birkhoff decompositions. In this subsection, G is the mini-
mal Kac-Moody group associated with any symmetrizable GCM. Fix T , W , B and
B− as usually. Let P ⊃ B be a standard parabolic subgroup with standard Levi
subgroup L. Fix a one parameter subgroup τ of T such that for all β ∈ Φ, β ∈ Φ(P )
if and only if 〈β, τ〉 ≥ 0.

Lemma 11.1. Let u ∈W and v ∈WP such that u 6= v. Let x ∈ X̊u−1

B− .
Then limt→0 τ(t)x does not belong to v−1Bo−.

Proof. Recall that (G/B−)τ can be decomposed in the two following ways:

(G/B−)τ = tw∈WPLw−1o− = tw∈W (B ∩ L)wo−.

Moreover {wo− : w ∈ W} is the set of T -fixed points in G/B−. Hence, if Y ⊂
G/B− is (B ∩L)−stable then Y τ = tx∈Y T (B ∩L)x. For Y = X̊u−1

B− = Bu−1o− we
get

(Bu−1o−)τ = (B ∩ L)u−1o−.

If v ∈WP then (v−1Bv) ∩ L = B ∩ L. Hence, for Y = v−1Bo−, we get

(v−1Bo−)τ = (B ∩ L)v−1o−.

Since limt→0 τ(t)x belongs to (Bu−1o−)τ , we deduce that it does not belong to
v−1Bo−. �

Lemma 11.2. Let u, v ∈W such that l(v) = l(u) + 1.
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(i) Let x1, x2 ∈ X̊u
B− such that limt→∞ τ(t)x1 = limt→∞ τ(t)x2 belongs to

X̊v
B− .
Then τ(C∗)x1 = τ(C∗)x2.

(ii) Let x1, x2 ∈ X̊B
v such that limt→∞ τ(t)x1 = limt→∞ τ(t)x2 belongs to X̊B

u .
Then τ(C∗)x1 = τ(C∗)x2.

Proof. Let us prove the first assertion. Set y = limt→∞ τ(t)x1. Then y ∈ (X̊v
B−)τ =

(B ∩L)vo−. Fix l ∈ B ∩L such that y = lvo−. Note that for any gu ∈ Pu,−, l′ ∈ L
and w ∈W , we have

lim
t→∞

τ(t)gul′wo− = l′wo−.

The equalities Py = Px1 = Px2 allow to find gui ∈ Pu,− such that xi = gui y,
for i = 1, 2. Then l−1xi = (l−1gui l)vo

− belongs to X̊B−

v . Since l ∈ B, l−1xi also
belongs to X̊u

B− . Finally, l
−1xi belongs to X̊u

B− ∩ X̊
B−

v .
But l(v) = l(u) + 1 and X̊u

B− ∩ X̊
B−

v is isomorphic to C∗. Since l−1x1 and l−1x2

are not fixed by τ(C∗) they belong to the same τ -orbit. The actions of τ and L
commuting, one deduces that τ(C∗)x1 = τ(C∗)x2.

The second assertion works similarly. Up to translating by an element of B ∩L,
one may assume that limt→∞ τ(t)x1 = limt→∞ τ(t)x2 = uo. Then x1 and x2 belong
to X̊u

B ∩ X̊B
v that is isomorphic to C∗. �

We are now interested in the Białynicki-Birula cells of G-orbits in X. We prove
an anologue of [Res10, Lemma 12] in your infinite dimensional setting.

Lemma 11.3. Assume that P has finite type ie that L is finite-dimensional. Let
Q1, Q2 be two parabolic subgroups of G containing B−. Consider X = G/Q1 ×
G/Q2 × G/P with base point (o1, o2, o). Fix l ∈ L. Let u1, u2, and v in WP . Set
x0 = (lu−1

1 o1, u
−1
2 o2, v

−1o) ∈ X and O = G.x0.
Then

{x ∈ O : lim
t→0

τ(t)x ∈ L.x0} = P.x0.

Proof. Consider first the analogous situation in G/Q2 × G/B, with its two pro-
jections p1 and p2 on G/Q2 and G/B. Set x1 = (u−1

2 o2, v
−1o), O1 = G.x1 and

O0
1 = L.x1. Set also O+

1 = {x ∈ O1 : limt→0 τ(t)x ∈ L.x1}. We claim that
O+

1 = Px1.
We have p1(O1) = G/B− and p1(O0

1) = Lu−1
2 o2. Moreover,

{x ∈ G/Q2 : lim
t→0

τ(t)x ∈ L.u−1
2 o} = P.u−1

2 o.

Since O+
1 is stable by P , it follows that

O+
1 = P.I where I = ({u−1

2 o2} ×G/B) ∩ O+
1 .

Set x2 = v−1o. Then, p2(I) is the set of points x ∈ (u−1
2 Q2u2).x2 such that

limt→0 τ(t)x ∈ (L ∩ u−1
2 Q2u2)x2. In particular p2(I) is contained in Px2. The

weights of τ acting on Tx2
p2(I) are nonnegative. On the other hand they are

contained in Tx2
(u−1

2 Q2u2)x2. It follows that Tx2
p2(I) is contained in Tx2

(P ∩
u−1

2 Q2u2)x2. Note that, since P has finite type, P ∩u−1
2 Q2u2 is finite-dimensional.

Moreover, the dimension of I (at x2) is at most equal to dim((P ∩ u−1
2 Q2u2)x2).
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It follows that (P ∩ u−1
2 Q2u2)x2 is open in p2(I). Since (P ∩ u−1

2 Q2u2)x2 contains
(L ∩ u−1

2 Q2u2)x2, we deduce that

p2(I) = (P ∩ u−1
2 Q2u2)x2,

and

(45) O+
1 = P.x1.

Consider now

π1 : X −→ G/Q2 ×G/B, (x1, x2, x3) 7−→ (x2, x3).

Set O+ = {x ∈ O : limt→0 τ(t)x ∈ L.x0} and O0 = L.x1. Equality (45) and the
fact that O+ is P -stable imply that

(46) O+ = P

(
(G/Q1 × {x1}) ∩ O+

)
.

Note that

(G/Q1 × {x1}) ∩ O = (u−1
2 Q2u2 ∩ v−1Bv).x0 and

(G/Q1 × {x1}) ∩ O0 = (u−1
2 Q2u2 ∩ v−1Bv ∩ L).x0

Then, since u−1
2 Q2u2 ∩ v−1Bv is finite-dimensional, [Res10, Lemma 12] shows that

(G/Q1 × {x1}) ∩ O+ = (P ∩ u−1
2 Q2u2 ∩ v−1Bv).x0.

With equality (46) this ends the proof of the lemma. �

11.2. Affine root systems. In this subsection, we consider an untwisted affine
root system and use the notation of Section 9. Recall in particular, that ḣ∗R is
endowed with a Ẇ -invariant Euclidean norm ‖ · ‖ such that ‖θ̇‖2 = 2.

Lemma 11.4. Consider the affine Weyl group W = Q̇∨.Ẇ and set N = ]Φ̇+.
There exists a positive real constant K such that for any h ∈ Q̇∨ and ẇ ∈ Ẇ ,

we have
K‖h‖ −N ≤ l(hẇ) ≤ N +

√
2N‖h‖.

Proof. Set w = hẇ. The length of w is the cardinality of w−1Φ+ ∩ Φ−. One can
deduce (see e.g. [IM65]) that:

(47) l(hẇ) =
∑

α̇∈Φ̇+, ẇ−1α̇∈Φ̇+

|〈h, α̇〉|+
∑

α̇∈Φ̇+, ẇ−1α̇∈Φ̇−

|〈h, α̇〉 − 1|.

The inequality on the right just follows from

|〈h, α̇〉 − 1| ≤ |〈h, α̇〉|+ 1

|〈h, α̇〉| ≤ ‖h‖‖α̇‖ ≤
√

2‖h‖.

Moreover,
l(hẇ) ≥ l(h)− l(ẇ)

≥
∑
α̇∈Φ̇+ |〈h, α̇〉| −N.

The set Φ̇+ spaning ḣ∗R, the map h 7→
∑
α̇∈Φ̇+ |〈h, α̇〉| is a norm on the real vector

space ḣ∗R. This norm is equivalent to ‖ · ‖, and there exists K such that K‖h‖ ≤∑
α̇∈Φ̇+ |〈h, α̇〉|. The lemma follows. �
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11.3. The Jacobson-Morozov theorem. Let g be an untwisted affine Kac-Moody
Lie algebra and p be a standard parabolic subalgebra. Let G be the minimal Kac-
Moody group associated with g and P be the parabolic subgroup corresponding to
p. Fix a one parameter subgroup τ of T in ⊕αj 6∈∆(P )Z>0$α∨j

. Consider the action
of τ on g and the corresponding weight space decompositions

g = ⊕n∈Zgn p = ⊕n∈Z≥0
gn.

In sl2(C), we denote by (E,H,F ) the standard triple

E =

(
0 1
0 0

)
H =

(
1 0
0 −1

)
F =

(
0 0
1 0

)
satisfying

[E,F ] = H [H,E] = 2E [H,F ] = −2F.

Proposition 11.1. Let ξ be a nonzero vector in gn ∩ wu−w−1 for some positive
integer n and w ∈W .

Then there exists a morphism φ : SL2(C) −→ G of group-ind-varieties such that
Teφ(E) = ξ.

Proof. Set K = C((t)) = C[[t]][t−1] and R = C[t, t−1] ⊂ K. Consider the Lie
algebras ġ⊗R and ġ⊗K. Recall that Cd⊕ ġ⊗R is a semi-direct product and that

0 Cc g Cd⊕ ġ⊗R 0

is a central extension. We first construct an sl2-triple in ġ ⊗ K. Then, we modify
it to get one in ġ⊗R. Using R-group schemes we get a morphism from SL2(C) to
Ġ⊗R that we finaly raises to G. Here, Ġ⊗R denotes the set of R-points of Ġ.

Consider the canonical C-linear embedding ι : ġ ⊗ R −→ g. Be careful that it
is not an homomorphism of Lie algebras.

Note that the one parameter subgroup τ is equal to τ̇ + md for some one pa-
rameter subgroup τ̇ of Ṫ and some positive integer m. Then, τ acts on ġ ⊗ R by
C-linear automorphisms and we have the decomposition

ġ⊗R = ⊕k∈Z(ġ⊗R)k

in τ -eigenspaces. Since each (ġ ⊗ R)k is finite-dimensional and m is positive, we
have

(48) ġ⊗K = ⊕k∈Z<0(ġ⊗R)k ⊕
∏

k∈Z≥0

(ġ⊗R)k.

Observe that, for any nonzero integer k, gk = (ġ⊗R)k. In particular, ξ belongs
to ġ⊗R. We denote by ξ̄ (resp. ξ̃) the element ξ viewed as an element of the Lie
algebra ġ⊗R (resp. ġ⊗K).

The space gn being contained in u, ξ belongs to u∩wu−w−1 and by [Kum02, The-
orem 10.2.5], adξ ∈ End(g) is locally nilpotent. Being K-linear, adξ̃ is also nilpotent.
Applying Jacobson-Morozov’s theorem (see e.g. [Bou05, VIII–§11 Proposition 2])
in the Lie algebra ġ⊗K over the field K of characteristic zero, we get an sl2-triple
(X,H, Y ) in ġ⊗K such that X = ξ̃.

Write Y =
∑
k∈Z Yk according to the decomposition (48). The Lie bracket being

graded, we have in ġ⊗K
[X, [X,Y−n]] = −2X.
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Set H0 = [X,Y−n] and n = Ker(adξ̃). Since X is homogeneous, n decomposes as
⊕k∈Z<0nk⊕

∏
k∈Z≥0

nk, where nk = n∩(ġ⊗K)k. Note that [X,Y−n]+2Y−n belongs
to n−n. By [Kos59, Corollary 3.4], adH0 + 2Idġ⊗K is injective and stabilizes each
nn. Moreover, n−n is (adH0 − 2Idġ⊗K)-stable and finite-dimensional as a complex
vector space. Then there exists Y ′ ∈ n−n such that

[X,Y−n] + 2Y−n = [X,Y ′−n] + 2Y ′−n.

Then, (X,H0, Y−n−Y ′−n) is an sl2-triple contained in (ġ⊗K)n×(ġ⊗K)0×(ġ⊗K)−n.
In particular, this sl2-triple is contained in ġ ⊗ R. Hence, we get an R-linear Lie
algebra homomorphism

φ : sl2(R) −→ ġ⊗R
such that φ(E) = ξ. Since SL2 is simply connected and R contains Q, [ABD+66,
Exposé XXIV, Proposition 7.3.1] implies that there exists a morphism

Φ : SL2 −→ Ġ

of R-group schemes with φ as differential map at the identity. In particular, we get
a morphism of group-ind-varieties

Φ̄ : SL2(C) −→ Ġ⊗R

such that TeΦ̄(E) = ξ.
Consider now the semidirect product C∗n Ġ⊗R associated with the derivation

d, and the central extension

{1} C∗ G C∗ n Ġ(R) {1}.
π

Then π−1(Φ̄(SL2(C))) is a central extension of (P )SL2(C). Hence, it is isomorphic
to either C∗ × (P )SL2(C) or GL2(C). In each case, Φ̄ can be lift to a morphism to
π−1(Φ̄(SL2(C))). This concludes the proof of the proposition. �

11.4. Geometric Invariant Theory. For a given C∗-variety X and a given in-
teger k, we denote by C[X](k) the set of regular functions f on X such that
(t.f)(x) = f(t−1x) = tkf(x), for any t ∈ C∗ and x ∈ X.

Lemma 11.5. Let X be a normal affine C∗-variety and D be a C∗-stable irreducible
divisor. Set Ω = X −D. We assume that

(i) ∀x ∈ Ω limt→0 tx does not exist in X.
(ii) For all x1, x2 ∈ Ω, if the two limits limt→∞ tx1 and limt→∞ tx2 exist, are

equal and belong to D, then the C∗-orbits of x1 and x2 are equal.
(iii) ∀x ∈ D limt→0 tx does exist in D.
(iv) ∀y ∈ DC∗ ∃x ∈ Ω limt→∞ tx = y.
(v) Ω is affine.

Then, for any nonnegative integer k, the restriction map induces an isomorphism
C[X](k) ' C[Ω](k).

Proof. Set X̃ = X × C, Ω̃ = Ω × C and D̃ = D × C. We endow X̃ with an action
of C∗ by setting t.(x, z) = (t.x, tz) for any t ∈ C∗, x ∈ X and z ∈ C. Observe that
C[X̃]C

∗
= ⊕k∈NC[X](k)zk and C[Ω̃]C

∗
= ⊕k∈NC[Ω](k)zk. Then, it is sufficient to

prove that C[X̃]C
∗

= C[Ω̃]C
∗
.
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But, one can easily check that X̃ satisfies all the assumptions of the lemma. As
a consequence, it is sufficient to prove it for k = 0.

Consider the commutative diagram

Ω X

Ω//C∗ X//C∗,

πΩ

θ

πX

where //C∗ denotes the GIT-quotient. It remains to prove that θ is an isomorphism.
We first prove the surjectivity of θ. Let ξ ∈ X//C∗ and O ⊂ X be the unique

closed C∗-orbit in π−1
X (ξ). It O ⊂ Ω, it is clear that θ(πΩ(O)) = ξ. Otherwise

O ⊂ D. The orbit O being closed, assumption (iii) implies that O is a fixed point.
By assumption (iv), there exists O′ ⊂ Ω such that O′ ⊃ O. Then θ(πΩ(O′)) = ξ.
We conclude that θ is surjective.

Let us now prove that θ is injective. Assume that ξ1 6= ξ2 ∈ Ω//C∗ satisfy θ(ξ1) =
θ(ξ2) =: ξ. Let O1,O2 ⊂ Ω and O ⊂ X be the closed C∗-orbit in π−1

Ω (ξ1), π−1
Ω (ξ2)

and π−1
X (ξ) respectively. Since πX(O1) = πX(O2) = ξ, we have O ⊂ O1 ∩ O2. In

particular, O is a C∗-fixed point and O1 and O2 are one-dimensional. Pick x1 ∈ O1,
x2 ∈ O2 and y ∈ O. By assumption (i), the limit limt→0 t.x1 does not exist. But
y ∈ O1−O1, so limt→∞ t.x1 = y. Similarly limt→∞ t.x2 = y. Now, assumption (ii),
implies that O1 = O2. Hence θ is injective.

Over the complex numbers, the fact that θ is bijective implies that it is birational.
By assumption X and hence X//C∗ are normal. Then Zariski’s main theorem (see
e.g. [Kum02, Theorem A.11]) implies that θ is an isomorphism. �
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Abstract. The support of the tensor product decomposition of integrable
irreducible highest weight representations of a symmetrizable Kac-Moody Lie
algebra g defines a semigroup of triples of weights. Namely, given λ in the set
P+ of dominant integral weights, V (λ) denotes the irreducible representation
of g with highest weight λ. We are interested in the tensor semigroup

ΓN(g) := {(λ1, λ2, µ) ∈ P 3
+ |V (µ) ⊂ V (λ1)⊗ V (λ2)},

and in the tensor cone Γ(g) it generates:

Γ(g) := {(λ1, λ2, µ) ∈ P 3
+,Q | ∃N ≥ 1 V (Nµ) ⊂ V (Nλ1)⊗ V (Nλ2)}.

Here, P+,Q denotes the rational convex cone generated by P+.
In the special case when g is a finite-dimensional semisimple Lie algebra,

the tensor semigroup is known to be finitely generated and hence the tensor
cone to be convex polyhedral. Moreover, the cone Γ(g) is described in [BK06]
by an explicit finite list of inequalities.

In general, Γ(g) is nor polyhedral, nor closed. In this article we describe
the closure of Γ(g) by an explicit countable family of linear inequalities for
any untwisted affine Lie algebra, which is the most important class of infinite-
dimensional Kac-Moody algebra. This solves a Brown-Kumar’s conjecture
[BK14] in this case.

The difference between the tensor cone and the tensor semigroup is mea-
sured by the saturation factors. Namely, a positive integer d is called a satu-
ration factor, if V (Nλ1)⊗ V (Nλ2) contains V (Nµ) for some positive integer
N then V (dλ1)⊗ V (dλ2) contains V (dµ), assuming that µ− λ1 − λ2 belongs
to the root lattice. For g = sln, the famous Knutson-Tao theorem [KT99]
asserts that d = 1 is a saturation factor. More generally, for any simple Lie
algebra, explicit saturation factors are known. In the Kac-Moody case, ΓN(g)
is not necessarily finitely generated and hence the existence of such a factor
is unclear a priori. Here, we obtain explicit saturation factors for any affine
Kac-Moody Lie algebra. For example, in type Ãn, we prove that any integer
d ≥ 2 is a saturation factor, generalizing the case Ã1 shown in [BK14].
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