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1. Introduction

Aim. The aim of this note is to produce infinitely many vanishing symmetric
Kronecker coefficient, using geometric methods. It is well known that the set of
nonzero symmetric Kronecker coefficients (for partitions of bounded length) forms
a finitely generated semigroup S (see Proposition 2 below). Then one can think
about two strategies to find vanishing: produce explicit linear inequalities satisfied
by the cone generated by S, or find holes in the semigroup. The first strategy is
well developed (see e.g. [É92, BS00, Res10, Man15, Fra02, Kly04, Res12, BIH17]).
Here we use the second one.

Definitions. Let us first introduce the symmetric Kronecker coefficients. If λ =
(λ1 ≥ λ2 ≥ · · · ≥ λe ≥ 0) is a partition, we set |λ| =

∑
i λi in such a way λ is a

partition of |λ|. Consider the symmetric group SN on N letters. The irreducible
representations of SN are parametrized by the partitions of N , see e.g. [Mac95,
I. 7]: [λ] denotes the representation of S|λ| corresponding to λ. The Kronecker
coefficients kλµ ν , depending on three partitions λ, µ, and ν of the same integer N ,
are defined by

[λ]⊗ [µ] =
∑
ν

kλµ ν [ν],(1)

and hence encodes the tensor product decomposition for the representations of the
symmetric group.

If λ = µ, [λ]⊗ [λ] decomposes as the sum of its symmetric and alternate parts:

[λ]⊗ [λ] = S2[λ]⊕Λ2[λ].

In particular, we can define the symmetric and alternate Kronecker coefficients
skλ ν and akλ ν by

S2[λ] =
∑
ν

skλ ν [ν], Λ2[λ] =
∑
ν

akλ ν [ν].(2)

Then

kλλ ν = skλ ν + akλ ν .(3)
1
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Results. Fix two positive integers n and δ. The rectangular partition (δ, . . . , δ) of
nδ is denoted by δn. We can now list our infinite families of vanishing coefficients
skδn ν .

Theorem 1. Let n be a positive integer and ν = abn
2−2c be a partition with

a ≥ b ≥ c ≥ 0 in N. If  n ≡ 2 or 3 [4];
n divides a+ c− 2b;
b is odd;

then skδn ν = 0 where δ = |ν|
n .

Let ν = abn
2−1 be like in Theorem 1 with b = c. Then, the corresponding

Kronecker coefficient kδn δn ν = k(δ−nb)n (δ−nb)n a−b = 1. Here we have used an
invariance property of Kronecker coefficients (see e.g. [BOR09, Lemma 2.1]). In
particular, Theorem 1 does not hold for Kronnecker coefficients kδnδnν .

For n = 3, we get more vanishing.

Theorem 2. Assume that ν is a partition of one of the following form

(i) ν = a2b7 where a ≥ b and{
3 divides a− b;
a is odd.

(ii) ν = a3b6 where a ≥ b and

a is odd.

(iii) ν = a7b2 where a ≥ b and{
3 divides a− b;
b is odd.

(iv) ν = a6b3 where a ≥ b and

b is odd.

Then skδ3 ν = 0, where δ = |ν|
3 .

Comparaison with Kronnecker coefficients. We denote by l(λ) the length
of the partition λ ie the number of nonzero parts. The set of pairs (λ, ν) such
that skλ ν 6= 0 and, l(λ) ≤ n and l(ν) ≤ n2 (for some fixed integer n) is a finitely
generated semigroup Sn (see Proposition 2 below). To describe this semigroup, it
is natural to describe separately the convex cone generated by it (by inequalities)
and the holes. Theorems 1 and 2 determine infinitely many holes, since conditions
like “b is odd” are not invariant by scaling.

Since
skλ ν 6= 0 ⇒ kλλ ν 6= 0, and
kλλ ν 6= 0 ⇒ sk2λ 2ν 6= 0,

the cones generated by the semigroups of the symmetric and ordinary Kronecker
coefficients are equal. Nevertheless, the paragraph following Theorem 1 show that
the semigroups are different. Here, we exploit this difference to get holes in the
semigroup Sn.

Motivations. Our original motivation for proving vanishing of rectangular sym-
metric Kronecker coefficients comes from Valiant’s famous determinant versus per-
manent problem [Val79a] and more precisely from Geometric Complexity Theory
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(GCT) [MS01]. Indeed, in [Val79a, Val79b, Val82], Valiant purposed an algebraic
analogue of Cook’s complexity theory. A polynomial function P ∈ C[X1, . . . , Xq]
is called an affine projection of the determinant detn of size n if there exists an
affine linear function F : Cq −→ Mn(C) such that: P = detn ◦F . The minimal
n such that P can be written as detn ◦F is called the determinantal complexity of
P , and denoted by dc(P ). Valiant defined classes VP and VNP analogous to the
famous P and NP classes in complexity theory. The permanent Permm of a matrix
M = (mi,j) of size m×m is

Permm(M) =
∑
σ∈Sm

m∏
i=1

mi,σ(i),

where Sm is the permutation group of the set {1, · · · ,m}. As a polynomial function
of q = m2 variables, Permm is “VNP-complete” (see [Val79a]). In particular, the
main conjecture in Valiant’s complexity theory is

Conjecture 1. The determinantal complexity of Permm is greater than any poly-
nomial in m, for m big enough.

Geometric Complexity Theory (GCT) is a program due to Mulmuley and So-
honi (see [MS01, BLMW11]) to attack this conjecture. Set W = Mn(C) and
G = GL(W ) = GLn2(C). The group G acts on the space SnW ∗ of homoge-
neous polynomial functions of degree n on W by variable changing. Consider
detn ∈ SnW ∗ and its orbit On = G.detn. Consider P = detn ◦F for some affine
linear function F : Cq −→ Mn(C). Then one constructs P̃ ∈ SnW ∗ (depending

on q+ 1 variables, see [MS01] for details) such that P̃ belongs to the closure On of
On. A central question is

Problem 1. Find methods to decide that a given polynnomial P̃ does not belong
to On.

A related question is

Problem 2. Find explicit equations for the affine variety On.

Let In ⊂ C[SnW ∗] be the ideal of functions vanishing on the affine variety On.
It is graded by the degree: In = ⊕δ≥0Iδn. Each Iδn is a finite dimensional G-module.
Let ν be a partition with at most n2 parts appearing in Theorem 1 or 2. Then
the multiplicity of SνW in C[On] (and hence in C[On]) is zero (see Section 2.5).
Hence the isotypical component of S•SnW of type SνW is contained in In. Using
a software (see [Wil19] and [Res18]) to compute plethysm coefficients, we obtained
for n = 3 a lot of partitions ν such that itsisotypical component is nonzero.

For example, there exists a module of dimension 2 842 131 820 027 500 of degree
13 equations in 165 variables vanishing on O3. This module is contained in S13S3W
that has dimension 17 112 638 902 445 186 100. This module was obtained before by
C. Ikenmeyer (see [Ike12]) by explicit computer calculation. In Section 6 we give
other explicit submodules of I3. For example we get 16 partitions giving equations
of degree at most 20. An interesting question is to understand some of these
equations geometrically.

In GCT, a partition ν such that skδnν = 0 and SνW embeds in S•SnW is
called an obstruction. Note that by [BIP19], there is a strong limitation in the
power of obstructions in GCT: the obstructions cannot be used to prove lower
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bounds on dc(Permm) better than m25. Note than even m3 would be a highly

nontrivial lower bound: the best known lower bound for dc(Permm) in m2

2 by
Mignon-Ressayre [MR04]. Despite the recent negative results of [BIP19], it is still
natural to conjecture the following geometric reinforcement of Valiant’s conjecture:

if P̃ermm belong to On(m) then n(m) growths faster than any polynomial in m.

Then, to use representation theory to understand the equations of On is still an
interesting approach.

As already mentioned, usually an efficient way to prove vanishing of multiplicities
in invariant theory is to prove linear inequalities necessary for non-vanishing. For
the orbit closure of the determinant, Kumar essentially proved in [Kum13, Kum15]
that these methods are not relevant for Geometric Complexity Theory. This is
an important motivation for this paper where we give lattice conditions implying
vanishing.

Acknowledgements. I am very grateful to Christian Ikenmeyer for useful
discussions, for mentioning mistakes in a preliminary version and his help with
explicit computation. I also would like to thank Pr Mark Wildon that helped me
in the using of his Haskell programs to compute plethysm coefficients.

The author is partially supported by the French National Agency (Projects Ge-
oLie ANR-15-CE40-0012 and CompA ANR-13-BS02-0001) and the Institut Uni-
versitaire de France (IUF).

2. Geometric realization of the symmetric Kronecker coefficients

The aim of this section is to obtain the coefficients skδn ν as the dimension of a
space of invariant sections of some line bundle.

2.1. Borel-Weil Theorem. In this subsection, W is any N -dimensional complex
vector space. Let P+

N denote the set of non-increasing sequences ν = (ν1 ≥ · · · ≥
νN ) of N integers. Let us recall, how Borel-Weil’s theorem allows to obtain SνW

∗ as
a space of sections. Write ν = am1

1 . . . ams
s with a1 > · · · > as and m1 + · · ·+ms =

n2.
Denote by Xν = F l(m1, · · · ,ms;W ) the flag variety

Xν = {(W1 ⊂ · · · ⊂Ws = W ) : dim(Wi) = m1 + · · ·+mi ∀i}.

Then Xν can be embedded, using Plücker coordinates, in

P(Λm1W )× · · · × P(Λm1+···+ms−1W ).

On this product of projective spaces, consider the line bundle

(4) Lν = O(a1 − a2)⊗ · · · ⊗ O(as−1 − as)⊗ (det)as .

The term ⊗(det)as means that the action of Ĝ = GL(W ) on Lν is twisted by
(det)as . The Borel-Weil theorem asserts that

(5) H0(Xν ,Lν) = SνW
∗,

as Ĝ-modules. For short, F l(1, 2, . . . , N − 1;W ) is denoted by F l(W ).
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2.2. Schur-Weyl duality. Fix a partition ν of length at most N and weight |ν| =
d. Consider W⊗d endowed with the natural Sd × GL(W )-action. By Schur-Weyl
duality (see [Pro07, Theorem 3.1.4]), it decomposes as

(6) W⊗d = ⊕|λ|=d,l(λ)≤N [λ]⊗ SλW.

Since [ν] is self dual as a Sd-module, we deduce from (6) that

(7) SνW = HomSd([ν],W⊗d),

where HomSd means the space of Sd-invariant linear maps. Now, fix two finite
dimensional complex vector spaces E and F of dimensions m and n and set W =
E⊗F . Let λ, µ and ν be three partitions of the same integer d such that l(λ) ≤ m,
l(µ) ≤ n and l(ν) ≤ mn. Consider SνW as a (G = GL(E) × GL(F ))-module and
the multiplicity space

(8) Kν
λµ := HomG(SλE ⊗ SµF, SνW ).

With (7), we get that Kν
λµ is also isomorphic to

(9) Kν
λµ ' HomG

(
HomSd×Sd([λ]⊗ [µ], E⊗d ⊗ F⊗d),HomSd([ν],W⊗d),

)
.

Using isomorphism (9) and identifying E⊗d ⊗ F⊗d with W⊗d, one can define a
linear map

SW : HomSd([ν], [λ]⊗ [µ]) −→ Kν
λµ

f 7−→ g 7→ g ◦ f

that is an isomorphism by Schur-Weyl duality. In particular

(10) kλµν = dim(Kν
λµ)

is the multiplicity of SλE ⊗ SµF in the (G = GL(E)×GL(F ))-module SνW .

2.3. Schur-Weyl duality and symmetric Kronecker coefficients. Assume
now that dim(E) = dim(F ) and fix an isomorphism θ : E −→ F . Consider the
following involutive automorphism of GL(E)×GL(F )

(11) (g, h) 7−→ (θ−1 ◦ h ◦ θ, θ ◦ g ◦ θ−1),

and the associated semidirect product

G̃ = Z/2Z n (GL(E)×GL(F )).

Denote by τ the nontrivial element of Z/2Z view as an element of G̃. Define actions

of G̃ on E ⊕ F and E ⊗ F by

(g, h).(e, f) = (g(e), h(e)) τ.(e, f) = (θ−1(f), θ(e))
(g, h).e⊗ f = g(e)⊗ h(e) τ.(e⊗ f) = θ−1(f)⊗ θ(e),

for any g ∈ GL(E), h ∈ GL(F ), e ∈ E and f ∈ F .
Note that θ induces an isomorphism SλE ' SλF , still denoted by θ. In particu-

lar, we get an involution τ on SλE ⊗ SλF . This allows to define a linear action of
G̃ on SλE ⊗ SλF .

Proposition 1. The multiplicity of SλE ⊗ SλF in SνW as a G̃-module is skλν .
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Proof. The action of τ ∈ G̃ on Hom(SλE ⊗ SλF, SνW ) induces an involution (still
denoted by τ) on Kν

λλ. By definition, the multiplicity of SλE ⊗ SλF in SνW as a

G̃-module is the dimension of the space of fixed points of this involution.
Let f ∈ HomSd([ν], [λ]⊗ [λ]). Write f = s + ∧ according to the decomposition

[λ]⊗ [λ] = S2[λ]⊕
∧2

[λ]. We claim that

(12) τ(SW (f)) = SW (s− ∧).

The claim and the Schur-Weyl isomorphism SW imply the proposition.
Let g ∈ HomSd×Sd([λ] ⊗ [λ],W⊗d). For v1, v2 ∈ [λ], one has (τg)(v1 ⊗ v2) =

τ(g(v2 ⊗ v1)). Hence (τg) ◦ f = (τg) ◦ (s+ ∧) = τ(g ◦ s− g ◦ ∧). We deduce that(
τ SW (f)

)
(g) = τ

(
SW (f)(τ g)

)
= g ◦ s− g ◦ ∧.

The claim (12) follows. �

Note that Proposition 1 is also proved in [BLMW11, Section 5] with less details.

2.4. Semigroup property. Fix a positive integer n. Denote by Sn the set of pairs
of partitions (λ, ν) such that skλν 6= 0, l(λ) ≤ n and l(ν) ≤ n2.

Proposition 2. As a subset of Zn+n2

, Sn is a finitely generated semigroup.

Proof. Consider the flag variety F l(E)×F l(F ) endowed with its natural G-action.
For (ξ•, ζ•) ∈ F l(E)×F l(F ), we set

(13) τ.(ξ•, ζ•) = (θ−1(ζ•), θ(ξ•))

and get a G̃-action on F l(E)×F l(F ). Given a partition λ of length at most dim(E),
consider the line bundle Lλ ⊗ Lλ on F l(E) × F l(F ). The G-action on Lλ ⊗ Lλ
extends to G̃ in such a way

H0(F l(E)×F l(F ),Lλ ⊗ Lλ) ' SλE ⊗ SλF

is G̃-equivariant. Write λ = (λ1, . . . , λn) and set λ∗ = (−λn, . . . ,−λ1). Then

H0(F l(E)×F l(F ),Lλ∗ ⊗ Lλ∗) ' SλE∗ ⊗ SλF ∗.

Now, set X = F l(E) × F l(F ) × F l(E ⊗ F ). Given two partitions (λ, ν) such
that l(λ) ≤ n and l(ν) ≤ n2. We have

H0(X,Lλ∗ ⊗ Lλ∗ ⊗ Lν) ' SλE∗ ⊗ SλF ∗ ⊗ Sν(E ⊗ F ).

Then, by Proposition 1, we have

skλ,ν = dim(H0(X,Lλ∗ ⊗ Lλ∗ ⊗ Lν)G̃).

Consider now the Cox ring

R =
⊕

(λ,µ,ν)∈(P+
n )2×P+

n2

H0(X,Lλ∗ ⊗ Lµ∗ ⊗ Lν).

By [ADHL15, Proposition 3.2.3.5], R is a finitely generated graded ring. Set now

R∆ =
⊕

(λ,ν)∈P+
n ×P+

n2

H0(X,Lλ∗ ⊗ Lλ∗ ⊗ Lν).
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By [ADHL15, Proposition 1.1.2.4], R∆ is also finitely generated. Since G̃ is reduc-

tive, the invariant ring RG̃∆ is also a finitely generated graded ring. In particular,
its support Σn is a finitely generated semigroup. We deduce that

Sn = {(λ, ν) ∈ Σn |λ0 ≥ 0 and νn2 ≥ 0}

is a finitely generated semigroup. �

The above proof is an adaptation to a Brion-Knop’s argument (see [É92]) that
considered connected reductive groups.

2.5. Isotropy of the determinant. Fix a positive integer n and a n-dimensional
vector space V . We consider the situation as in the last subsection when E = V
and F = V ∗. We also assume that the isomorphism θ : V −→ V ∗ is symmetric.
Then W = E ⊗ F identifies with End(V ). For (g, h) ∈ G = GL(V )×GL(V ∗) and
u ∈ End(V ) the action is given by the formula

(g, h).u = g ◦ u ◦ th.

Consider the following subgroup of G:

SG := {(g, h) ∈ GL(V )×GL(V ∗) : det(g) det(h) = 1}.

Since τ normalizes it (see (11)), one can form the semidirect product Z/2Z n
S(GL(V )×GL(V )) as a subgroup SG̃ of G̃. By a Frobenius’ theorem (see [Fro97]),
the stabilizer H of detn in GL(W ) is the image of this group in GL(W ). Denote
by H◦ the neutral component of H.

Recall that Ĝ = GL(W ) and N = n2. By Frobenius’ reciprocity theorem,

C[Ĝ] = ⊕ν∈P+
N
SνW ⊗ SνW ∗,

as a (Ĝ× Ĝ)-module. But On ' Ĝ/H and

(14) C[On] = C[Ĝ/H] = ⊕ν∈P+
N

dim

(
(SνW

∗)H
)
.SνW.

If ζ is a nth root of unity, (ζIdV , IdV ∗) belongs to SG. We deduce that if
(SνW

∗)H is nonzero then n divides |ν|. We now assume that n divides |ν| and set

δ = |ν|
n .

Since G̃ normalizes H it acts on (SνW
∗)H . This action is the multiplication by

(det g.deth)−δ. Hence

(SνW
∗)H ' (SνW )H ' HomG̃(SδnV ⊗ SδnV ∗, SνW ).

In particular

skδnν = dim

(
(SνW

∗)H
)
,

and

(15) C[On] = ⊕skδnνSνW.

Using (5), one gets

(16) skδnν = dim

(
H0(Xν ,Lν)H

)
.
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Fix a basis B of V such that θ(B) is the dual bases B∗ of B. Use B and B∗
to identify GL(V ) and GL(V ∗) with GLn(C) and End(V ) with Mn(C). Then the

action of G̃ is given by the formulas

(A,B).M = AM tB
τ.M = tM

3. The key lemma

In this section, H is any affine algebraic group that is the semidirect product of
its neutral component H◦ and a finite subgroup K. Let X be a projective variety
acted on by H. Let L be a H-linearized line bundle on X. We are interested in
vanishing criteria for the space H0(X,L)H of H-invariant regular sections.

Regarding Formula (16), we plan to apply such criteria to X = Xν , L = Lν , H
the isotropy group of detn and K = Z/2Z. Nevertheless, it is clearer to state and
prove this criterion in its natural context.

Let Y ⊂ XK be any irreducible closed subvariety of the set XK of K-fixed
points. Consider the restriction L|Y of L to Y . Since K acts trivially on Y , the
action of K on L|Y is given by a character χ of K:

k.l = χ(k)l ∀k ∈ K ∀l ∈ L|Y .(17)

Lemma 1. Assume that

(i) the morphism

η : H × Y −→ X, (h, y) 7−→ hy

is dominant;
(ii) the character χ is non trivial.

Then

H0(X,L)H = {0}.

Proof. Let σ ∈ H0(X,L)H . Show that σ = 0. The invariance of σ is

∀h ∈ H, x ∈ X σ(hx) = hσ(x).

In particular,

∀k ∈ K, y ∈ Y σ(y) = χ(k)σ(y).

Since χ is nontrivial, this implies that the restriction σ|Y of σ to Y is zero. Using
H-invariance, this implies that σ vanishes on the image of η. Since η is assumed to
be dominant, this implies that σ = 0. �

4. Applications of Lemma 1

We come back to the situation of the orbit of the determinant On: V is n-
dimensional, W = End(V ), N = n2, Ĝ = GL(W ) and H is the stabilizer of detn.
Let ν ∈ P+

N . Consider the flag variety Xν and the line bundle Lν defined in
Section 2.1.

By formula (16), to obtain Theorems 1 and 2, it is sufficient in each case to

find Yν ⊂ X
Z/2Z
ν satisfying Lemma 1. Consider the decomposition W = S ⊕ A in

symmetric and skew-symmetric matrices. A list of working Yν ’s is as follows.
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Th 1 For n ≡ 2 or 3 [4], ν = abn
2−2c where a ≥ b ≥ c, n divides a+ c− 2b and

b odd:

Xν = F l(1, n2 − 1;W ) and Yν = F l(1, n(n+ 1)

2
− 1;S).

The embedding of Yν in Xν is given by

(ls ⊂ Hs) 7−→ (ls ⊂ Hs ⊕A).

Th 2 (i) For n = 3 and ν = a2b7 with a ≥ b, 3 divides a− b and a odd:

Xν = F l(2;W ) is a Grassmannian and Yν = P(A)× P(S).

The embedding of Yν in Xν is given by

(la, ls) 7−→ la ⊕ ls.

Th 2 (ii) For n = 3 and ν = a3b6 with a ≥ b and a odd:

Xν = F l(3;W ) is a Grassmannian and Yν = P(A)×F l(2;S).

The embedding of Yν in Xν is given by

(la, Fs) 7−→ la ⊕ Fs.

The remaining cases are obtained by the following lemma of duality.

Lemma 2. Let ν = (ν1 ≥ · · · ≥ νN ) ∈ P+
N . Then the multiplicities of SνW and

SνW
∗ in C[On] are equal. Moreover, SνW

∗ = Sν∗W , where ν∗ = (−νN ≥ · · · ≥
−ν1).

Proof. For the first assertion, by formula (14), it is sufficient to prove that dim((SνW )H) =
dim((SνW

∗)H). This equality is satisfied since H is reductive. The last assertion
is well known (see e.g. [FH91]). �

Remark 1. If n is even, X = P(W ) and Y = P(A) then the map η is dominant.
Applying Lemma 1 to this pair, one can get vanishing symmetric Kronnecker co-
efficiients. But these cases can alternatively by obtained applying Theorem 1 with
b = c.

It is natural to look for other examples of pairs (X,Y ) of flag varieties satisfying
Lemma 1. Observe that, unfortunately, there is an obvious strong obstruction for
an irreducible component of Xτ to work. Namely

dim(X)− dim(Y ) ≤ n2 − 1

has to be satisfied. Indeed, the subgroup {(P, P ) : P ∈ GLn(C)} is a subgroup of
H stabilizing Xτ .
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5. Checking assumptions of Lemma 1

In this section, we make a case by case verification of the assumptions of Lemma 1.
The numbering refers to that used inn Section 4.

Th 1. Computation of the character χ. Fix a line l in S and consider the point
(l, sln(C)) ∈ F l(1, n2 − 1;W ), where sln(C) is the space of traceless matrices. The
transposition map acts trivially on the fiber in O(−1) over l in P(W ). The fiber in

O(−1) over sln(C) in P(∧n2−1W ) identifies with

∧n
2−1sln = ∧

n(n+1)
2 −1S ⊗ ∧

n(n−1)
2 A.

The transposition acts on this fiber by (−1)
n(n−1)

2 . The determinant of the trans-

position as an element of Ĝ = GL(W ) is (−1)
n(n−1)

2 . We deduce from equation (4)
that the transposition map acts on the fiber over (l, sln(C)) in Lν with weight

(−1)((b−c)+c) n(n−1)
2 .

The assumption on n implies that n(n−1)
2 is odd. Then the character χ of Lemma 1

is (−1)b = −1, since b is odd.

Dominancy of η. Let l ⊂ H be a general flag in Xν . One equation of H can
be written as tr(M�) = 0 for some matrix M . By genericity, M has full rank and
using the action of H, one may assume that M = In and so that H = sln(C). Let
N be a nonzero matrix on l. Then, there exists P ∈ GLn(C) such that PNP−1 ∈ S
(see [HJ13, Theorem 4.4.24]). Since sln(C) is stable by conjugacy, the H-orbit of
(l,H) contains (CPNP−1, sln) that belongs to Yν . Thus η is dominant.

Th 2 (i). The character χ. The contribution of la ⊕ ls is (−1)a−b, that of det is

(−1)b. Finally, since a is odd this character is −1.

Notation. Given a point x on a variety X, we denote by TxX the Zariski tangent
space. If x belongs to a subvariety Y , the normal space is defined to be the quotient
TxX/TxY .

Let y ∈ Yν . Let N denote the normal space of Yν in Xν at y. Consider the
H-orbit H.y of y and its tangent space Ty(H.y) at y.

Claim: if the projection of Ty(H.y) on N is surjective then η is dominant.

Indeed, the image of the tangent map T(e,y)η of η contains Ty(H.y) and TyY .
The assumption implies that T(e,y)η is surjective. Since H × Y is smooth this im-
plies that η is dominant.

We are now looking for an explicit y satisfying the claim. Let (A1, A2, A3) be a
base of A and (S1, . . . , S6) be a base of S.

Let y = Span(A1, S1) ∈ Xν . Observe that y belongs to Yν . The vector space N
identifies with the 7-dimensional vector space

Hom(CA1,CS2 ⊕ CS3 ⊕ CS4 ⊕ CS5 ⊕ CS6)×
Hom(CS1,CA2 ⊕ CA3)



VANISHING SYMMETRIC KRONECKER COEFFICIENTS 11

Let (Eij)1≤i,j≤4 denote the canonical basis of W . We claim that if

A1 = E12 + E13 − E23 − E21 − E31 + E32 S1 = I3 S2 = E12 + E21

S3 = E23 + E32 S5 = E11 S4 = E13 + E31

A2 = E23 − E32 S6 = E33 A3 = E13 − E31

then y satisfies the assumption of the claim. The details of the computation can
be seen in the SageMath program dimHorb-X2-Y1A1S.sage on author’s webpage
[Res18].

Th 2 (ii) The character χ is (−1)a = −1.
To prove that η is dominant, we use the claim of the previous item. A point y

that works is

y = ([

 0 1 1
−1 0 −1
−1 1 0

],Span(I3, E12 + E21)).

See the SageMath program dimHorb-X3-Y1A2S.sage on author’s webpage for de-
tails.

6. Equations of On
Let ν ∈ P+

N and δ ∈ N such that |ν| = nδ. On the one hand, the degree δ

component C[On]δ of C[On] is a quotient of C[SnW ∗]δ = SδSnW . On the other
hand, C[On] is embedded in C[On]. Hence, any partition ν such that

mult(SνW,C[On]) = 0, and
mult(SνW,S

δSnW ) 6= 0

produces equations for On. In other words, the isotypical component of SdSnW of
type ν is contained in the ideal In of On.

The first multiplicity mult(SνW,C[On]) is skδn ν . The multiplicity mult(SνW,S
δSnW )

is a plethysm coefficient that we denote by pn ν . Evseev-Paget-Wildon obtained
[EPW14, Proposition 5.1] a formula that allows to compute pn ν inductively. More-
over, Mark Wildon implemented this algorithm (see [Wil19]). We used this program
to check the vanishing or not of several pnν with n = 3, 6 or 7 like in Theorems 1
and 2.

6.1. The case n = 3. In “small degrees”, we get the following submodules of I3.
The column type refers to the shape of the partition and hence to one case of
Theorem 2.
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δ ν pn ν type
12 (11)227 1 27
13 (7)336 1 36
15 (11)326 1 36
15 9336 1 36
17 (16)227 2 27
17 (13)326 1 36
17 (11)336 5 36
17 7633 1 63
18 (13)247 2 27
19 (11)257 2 27
19 (15)326 3 36
19 (13)336 9 36
19 (11)346 12 36
19 9356 3 36
19 8633 1 63
20 23227 2 27

Remark 2. For the degree 12 partition (11)227, the corresponding Kronecker coef-
ficient is already zero (so the symmetric one is not really useful). For the degree
13 partition 7336, the Kronecker coefficient is k133 133 7336 = k43 43 43 = 2 (see e.g.
[BOR09, Lemma 2.1] for the first equality and thanks to [BKT] for the second
one). So we have a degree 13 equation which cannot be obtained by considering
Kronecker coefficients. This equation (among others) was discovered first by C.
Ikenmeyer [Ike12].

Theorem 1 applied with n = 3 gives no equation of degree at most 20 because
the corresponding plethysm coefficients also vanish. The smallest degrees that one
can obtain with Theorem 1 are:

δ ν pn ν type
21 (13)771 3 171
21 (12)772 2 171
21 (11)773 2 171
22 (17)77 1 17

Note that the last example has length 8.
Here, we just listed very few examples of submodules of I3, but one can get a

lot of them. One can obtain other examples from [Res18]. Here comes some big
examples:

δ ν pn ν type
62 (65)287 1 614 147 27
51 (29)3(11)6 1 907 404 762 420 36
53 (20)6(13)3 617 624 065 676 63
55 (21)792 199 463 016 669 72
41 (40)(11)76 5 400 515 171

6.2. The cases of n = 6 and 7. We already observed that in the case of the
first assertion of Theorem 1 the Kronecker coefficient kδn δn ν is equal to 1. By
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[CRY92, LR04], the only hook-shape partition ν such that SνW is contained in
SδSnW is the obvious one ν = nδ. In particular, we obtain no equation by applying
Theorem 1 with b = 1.

Unfortunately, there is no partition ν = abn
2−2c as in Theorem 1 with pnν 6= 0

and

(i) n = 6, b = 3 and a ≤ 225;
(ii) n = 6, b = 5 and a ≤ 148;
(iii) n = 6, b = 7 and a ≤ 26;
(iv) n = 7, b = 3 and a ≤ 68;
(v) n = 7, b = 5 and a ≤ 38.
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