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1 Introduction

These notes are meant to be used as a complement for the tutorial "Diophantine Geometry
over Free Groups" in the workshop "Models and Groups, İstanbul II" . They are written in a
relaxed fashion, mostly aiming to build some intuition around the first steps of Sela’s work on
Tarski’s problem. We include in the introduction some historical remarks.

The subject has been given much attention after Sela proved that the first-order theory of
non-Abelian free groups (i.e. the axioms that live in the intersection of the above mentioned
first-order theories) is complete. This answers in the affirmative a long standing question that
was posed around 1946 by Tarski:

Question 1 (Tarski, 1946): Do non-Abelian free groups share the same common first-order
theory?

The main purpose of these notes is to analyze the notions and techniques that appear in the
first steps of Sela’s solution to Tarski’s problem. Let us mention that the proof culminates in a
series of papers [Sel01],[Sel03],[Sel05a],[Sel04],[Sel05b],[Sel06a] and [Sel06b], that have not been
totally absorbed by the mathematical community, despite the fact that they were available
since 2001. In brief the proof splits in two parts: first Sela proves that the ∀∃ first-order
theories of any two non-Abelian free groups coincide, and then he proves that each first order
theory eliminates quantifiers down to boolean combinations of ∀∃ first-order formulas. His
methods are purely geometric and a heavy use of the theory of group actions on real trees is
made throughout his papers.

Our goal for these notes will be to give the ideas around the proof of the following inter-
mediate result to Tarski’s problem:

Theorem 1: Let m,n > 1. Then Th∀∃(Fn) = Th∀∃(Fm)

Note that although this theorem has been first claimed in [Sac73], a complete proof ap-
peared much later (in Sela’s work).

The tutorial will be structured as follows: We will first define limit groups using the
Bestvina-Paulin method (see [Bes88],[Pau88])and record how one can describe the solution set
(in a free group) of a system of equations using them. Limit groups play an important role in
all steps of Sela’s solution and we will see that one naturally sees them as objects of geometry
rather than algebra.

We will then move to the technique of "formal solutions". This technique lies behind the
main idea of the proof of Sela. Before stating the prototypical theorem, let us recall that a
retraction from a group G to a subgroup H is an epimorphism that is the identity on H.
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Theorem 2 (Merzlyakov [Mer66]): Let Σ(x̄, ȳ) be a finite set of words in 〈x̄, ȳ〉. Let F be
a non-Abelian free group. Suppose F |= ∀x̄∃ȳ(Σ(x̄, ȳ) = 1). Then there exists a retraction
r : GΣ � 〈x̄〉, where GΣ := 〈x̄, ȳ | Σ(x̄, ȳ)〉.

We note that Merzlyakov used this theorem in order to prove that the positive first-order
theories of non-Abelian free groups coincide. Let us briefly justify the term "formal solutions":
the image of ȳ under r of the previous theorem is a tuple of words in x̄, say w̄(x̄), and it can
be easily checked that F |= ∀x̄(Σ(x̄, w̄(x̄)) = 1). Thus, the retraction can be thought of as a
formal (uniform) way of assigning to each ā in F, a b̄ in F (i.e. substituting x̄ in w̄(x̄) by ā),
that witnesses the truthfulness of Σ.

Geometry suggests some natural generalizations of the above theorem and this will lead us
to the definitions of "towers" and "test sequences" on them. Our feeling is that these notions
will be central to the understanding of the class of definable sets in non-Abelian free groups
and thus we will try to build some intuition around them.

As noted above, Merzlyakov’s theorem lies behind the main idea of all existing proofs to
the Tarski’s problem. Generalizing it to the case where the universal variables are bounded
by a system of equations is a hard task and depends on the geometric structure of the sys-
tem of equations. Unfortunately, the generalization of Merzlyakov’s theorem to an arbitrary
variety, that bounds the universal variables, is not possible. We have to restrict ourselves
to varieties that their corresponding group has a certain structure. In particular, if a group
GR := 〈x̄ | R(x̄)〉 has the structure of a "tower", then the following statement (up to some
tuning) is true:

Statement 1: Let Σ(x̄, ȳ) be a finite set of words in 〈x̄, ȳ〉. Let F be a non-Abelian free group.
Suppose F |= ∀x̄(R(x̄) = 1 → ∃ȳ(Σ(x̄, ȳ) = 1)). Then there exists a retract r : GΣ � GR,
where GΣ := 〈x̄, ȳ | Σ(x̄, ȳ)〉.

Finally, the addition of inequalities to the sentences above, i.e. sentences of the form
∀x̄∃ȳ(Σ(x̄, ȳ) = 1 ∧ Ψ(x̄, ȳ) 6= 1) require new machinery and ideas in order to be shown that
their truthfulness does not depend on a particular non-Abelian free group. This machinery
includes the generalization of Merzlyakov’s theorem as stated above, but also requires the
development of more delicate tools. We will finish this tutorial by giving the extra ideas
needed for completing the proof of Theorem 1 .

Our exposition will be based on the following papers [Bes01],[Gui08],[Sel01],[Sel03],[Sel04]
that can be found in the references, and also includes some work in progress with Chloé Perin.

We thank Javier de la nuez González and Isabel Müller for reading our notes, and for
comments that improved the overall exposition.

2 Group actions on trees

2.1 Bass-Serre Theory

Bass-Serre theory gives a structure theorem for groups acting on (simplicial) trees, i.e. con-
tractible 1 or 0 dimensional CW-complexes. It describes a group (that acts on a tree) as a
series of amalgamated free products and HNN extensions. The mathematical notion that con-
tains these instructions is called a graph of groups. For a complete treatment we refer the
reader to [Ser83].

We start with the definition of a graph.
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Definition 2.1: A graph Λ(V,E) is a collection of data that consists of two sets V (the set of
vertices) and E (the set of edges) together with three maps:

• an involution ¯ : E → E, where ē is called the inverse of e;

• α : E → V , where α(e) is called the initial vertex of e; and

• τ : E → V , where τ(e) is called the terminal vertex of e.

so that ē 6= e, and α(e) = τ(ē) for every e ∈ E.
An orientation of a graph Λ(V,E) is a choice of one edge in the couple (e, ē) for every

e ∈ E. We denote an oriented graph by Λ+(V,E).
For our purposes simplicial trees can also be viewed as combinatorial objects: a tree is a

connected graph without a circuit.

Definition 2.2 (Graph of Groups): A graph of groups G := (Λ(V,E), {Gu}u∈V , {Ge}e∈E ,
{fe}e∈E) consists of the following data:

• a connected graph Λ(V,E);

• a family of groups {Gu}u∈V , i.e. a group is attached to each vertex of the graph;

• a family of groups {Ge}e∈E, i.e. a group is attached to each edge of the graph. Moreover,
Ge = Gē;

• a collection of injective morphisms {fe : Ge → Gτ(e) | e ∈ E}, i.e. each edge group comes
equipped with two embeddings to the incident vertex groups.

The fundamental group of a graph of groups is defined as follows.

Definition 2.3: Let G := (Λ(V,E), {Gu}u∈V , {Ge}e∈E , {fe}e∈E) be a graph of groups. Let T
be a maximal subtree of Λ(V,E). Then the fundamental group, π1(G, T ), of G with respect to
T is the group given by the following presentation:

〈{Gu}u∈V , {te}e∈E | t−1
e = tē for e ∈ E, te = 1 for e ∈ T, fe(a) = tefē(a)tē for e ∈ E a ∈ Ge〉

Remark 2.4: It is not hard to see that the fundamental group of a graph of groups does not
depend on the choice of the maximal subtree up to isomorphism (see [Ser83, Proposition 20,
p.44]).

In order to give the main theorem of Bass-Serre theory we need the following definition.

Definition 2.5: Let G be a group acting on a simplicial tree T without inversions, denote by Λ
the corresponding quotient graph and by p the quotient map T → Λ. A Bass-Serre presentation
for the action of G on T is a triple (T 1, T 0, {γe}e∈E(T 1)\E(T 0)) consisting of

• a subtree T 1 of T which contains exactly one edge of p−1(e) for each edge e of Λ;

• a subtree T 0 of T 1 which is mapped injectively by p onto a maximal subtree of Λ;

• a collection of elements of G, {γe}e∈E(T 1)\E(T 0), such that if e = (u, v) with v ∈ T 1 \T 0,
then γe · v belongs to T 0.
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Theorem 2.6: Suppose G acts on a simplicial tree T without inversions (i.e. g · e 6= ē for
all g ∈ G and e ∈ E). Let (T 1, T 0, {γe}) be a Bass-Serre presentation for the action. Let
G := (Λ(V,E), {Gu}u∈V , {Ge}e∈E , {fe}e∈E) be the following graph of groups:

• Λ(V,E) is the quotient graph given by p : T → Λ;

• if u is a vertex in T 0, then Gp(u) = StabG(u);

• if e is an edge in T 1, then Gp(e) = StabG(e);

• if e is an edge in T 1, then fp(e) : Gp(e) → Gτ(p(e)) is given by the identity if e ∈ T 0 and
by conjugation by γe if not.

Then G is isomorphic to π1(G).

Part of the motivation for proving Theorem 2.6 was the following result.

Proposition 2.7: A group is free if and only if it acts freely on a tree.

The above proposition has a significant corollary that was hard to prove using combinatorial
methods.

Theorem 2.8 (Nielsen-Schreier): A subgroup of a free group is free.

Among splittings of groups we will distinguish those with some special type vertex groups
called surface type vertex groups.

We first recall that the fundamental group of a compact surface, Σ, with boundary is a
free group. Each boundary component of Σ has cyclic fundamental group, and gives rise in
π1(Σ) to a conjugacy class of cyclic subgroups: we call these maximal boundary subgroups.

Definition 2.9: Let G be a group acting on a tree T without inversions and (T1, T0, {γe}) be
a Bass-Serre presentation for this action. Then a vertex v ∈ T 0 is called a surface type vertex
if the following conditions hold:

• StabG(v) = π1(Σ) for a connected compact surface Σ with non-empty boundary;

• For every edge e ∈ T1 adjacent to v, StabG(e) embeds onto a maximal boundary subgroup
of π1(Σ), and this induces a one-to-one correspondence between the set of edges (in T 1)
adjacent to v and the set of boundary components of Σ.

2.2 Real trees

Real trees (or R-trees) generalize simplicial trees and occur naturally in mathematics (see
[Bes01]).

Definition 2.10: A real tree is a geodesic metric space in which for any two points there is a
unique arc that connects them.

Note that the assumption that there is a unique arc (and not just a unique geodesic) is
essential since R2 with the usual metric has unique geodesics but of course would not fit our
intuition for a real tree. Also the assumption that the metric space is geodesic is not made
redundant by the uniqueness of arcs assumption since a "curved" line in R2 that inherits its
metric from R2 has the unique arc property but is not a geodesic space since we cannot realize
the distance between at least two points in it.
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When we say that a group G acts on an real tree T we will always mean an action by
isometries. An element g in G either fixes a point (in which case it is called elliptic) or there is
a unique g-invariant line in which g acts by translations (in which case it is called hyperbolic).
Actually in the latter case the translation length is the infimum of dT (x, g · x) which is always
reached.

Moreover, an action G y T of a group G on a real tree T is called non-trivial if there is
no globally fixed point and minimal if there is no proper G-invariant subtree. The minimality
assumption is quite natural since we can (equivariantly) glue complicated real trees to any
given action, which will blur the properties we want to deduce for G. As a matter of fact
whenever we have a non trivial action of a finitely generated group G on a real tree, there
exists a minimal non-degenerate subtree for this action and we left for the reader to check that
it is the union of axes of all hyperbolic elements of G. Lastly, an action is called free if for any
x ∈ T and any non trivial g ∈ G we have that g · x 6= x.

One could ask if there is an analogue of Bass-Serre theory for group actions on real trees.
If we restrict ourselves to group actions satisfying some tameness conditions the answer is
positive.

Before we give some examples of (non-simplicial) actions on real trees we record a result of
more general nature (see [Gui08, Lemma 1.14]). Note that a subtree Y of T spans T if every
finite segment of T is covered by finitely many translates of Y .

Lemma 2.11: Let G := 〈g1, . . . , gk〉 be a (f.g.) group that acts minimally on a real tree T .
Then the action has finite support, i.e. the convex hull of finitely many points of T spans T .

Proof. Choose an arbitrary point ∗ ∈ T and let Y0 be the convex hull of {∗, g1 · ∗, . . . , gk · ∗}.
Then gi · Y0 ∩ Y0 is non empty for any i ≤ k and G.Y0 is obviously G-invariant. Thus, the
result follows by the minimality of the action.

Let us continue by recalling some families of group actions on real trees that will turn out
to be the building blocks for the general analysis.

Example 2.12 (Action of axial type): Let Z2 := 〈z1, z2〉 act on the real line by translations
where tr(z1), tr(z2) are linearly independent.

We say that a (f.g.) group G acts on real tree T by an action of axial type if T is isometric
to the real line and G acts with dense orbits, i.e. G.x = T for every x ∈ T .

The next type of action is more interesting. It was discovered, by Morgan and Shalen (see
[MS91]), that for any (closed) surface Σ, apart from finitely many exceptions (i.e. P, 2P, 3P),
π1(Σ) admits a free action on a real tree. These actions come naturally from measured foliations
on the surface, that in turn were defined by Thurston who used them to compactify the
Teichmüller space of a surface and led to the classification of surface homeomorphisms.

Before giving an example of a surface type action let us quickly explain the above mentioned
notions. A foliation of (co-dimension 1) of a 2-manifold is a decomposition of the manifold
by a family of subsets L := {lα}α called the leaves of the foliation. Furthermore, for each
point in the manifold we can find a chart (U, φ), so that the connected components of U ∩ lα
are mapped by φ to horizontal lines. Naturally, we also ask that the transition maps respect
horizontal lines. Note that, by definition, each leaf is a 1-manifold.

A measured foliation is a foliation for which the transition maps respect the distance on
the y co-ordinate, i.e. φij(x, y) = (fij(x, y), y+ cij). In this case one can "measure" embedded
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arcs in the surface, by defining µ(γ) for γ an embedded arc to be the total variation of γ in
the y co-ordinate.

Remark 2.13:

• Note that not all surfaces admit foliations, as a matter of fact a surface admits a (co-
dimension 1) foliation if and only if its Euler characteristic is 0. On the other hand if
we allow finitely many "singular" points, i.e. points for which the chart maps do not
map the leaves to horizontal lines, but rather to a k-prong saddles, for k ≥ 3, then we
can indeed find such foliations which we call singular.

• A (singular) foliation for which each leaf that does not contain singular points is dense
in the surface is called arational.

Example 2.14 (Action of surface type): Let (L, µ) be an arational measured (singular) fo-
liation of a surface Σ with (possibly empty) boundary. We consider the "lift" (L̃, µ̃) of this
foliation to the universal covering Σ̃ of Σ. Then the leaf space after identifying leaves of dis-
tance 0 with respect to the pseudometric d(̃l1, l̃2) := inf{µ̃(γ) | γ an arc from l̃1 to l̃2} is a
real tree endowed with a natural action by π1(Σ).

We say that a group G acts on a real tree T by a surface type action, if G is isomorphic to
the fundamental group π1(Σ) of a surface Σ and T is the dual tree to an arational measured
foliation of Σ as described in Example 2.14.

We note in passing that axial and surface type actions have the mixing property of J.
Morgan [].

Definition 2.15: Suppose G acts on a real tree T . Let Y be a non-degenerate subtree of T .
Then Y has the mixing property if for any two segments I, J ⊂ Y there exists a finite cover,
J1, . . . , Jk, of J and g1, . . . , gk ∈ G such that giJi ⊆ I for i ≤ k.

It is also not hard to generalize the already mentioned result of Morgan and Shalen to
surfaces with boundary as follows.

Fact 2.16: Suppose G acts on a real tree T by a surface type action. Then the action is “almost
free”, i.e. only elements that belong to subgroups that correspond to the boundary components
fix points in T and segment stabilizers are trivial.

In particular when Σ has empty boundary the action is free (see [MS91]).

In analogy of the characterization of free actions on simplicial trees Lyndon had first
posed the problem of understanding free actions on R-trees (in different terminology but the
equivalence was shown in []). After the discovery of free actions of surface groups it was
naturally conjectured that if G acts freely on a real tree, then it is a free product of surface
groups and free abelian groups. Rips confirmed the conjecture (unpublished) and made the
first steps towards the understanding of group actions on real trees. We will see that in many
cases one can understand such actions by "decomposing" them in simpler components and
"glue" these components equivariantly in order to obtain the original action.

We will use the notion of a graph of actions in order to glue real trees equivariantly. As
noted before, this notion will be useful in neatly stating the output of Rips’ machine in the
next subsection. We follow the exposition in [Gui08, Section 1.3].

Definition 2.17 (Graph of actions): A graph of actions (G y T, {Yu}u∈V (T ), {pe}e∈E(T ))
consists of the following data:
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• A simplicial type action Gy T ;

• for each vertex u in T a real tree Yu;

• for each edge e in T , an attaching point pe in Yτ(e).

Moreover:

1. G acts on R := {
∐
Yu : u ∈ V (T )} so that q : R → V (T ) with q(Yu) = u is G-

equivariant;

2. for every g ∈ G and e ∈ E(T ), pg·e = g · pe.

To a graph of actions A := (G y T, {Yu}u∈V (T ), {pe}e∈E(T )) we can assign an R-tree
YA endowed with a G-action. Roughly speaking this tree will be

∐
u∈V (T ) Yu/ ∼, where the

equivalence relation ∼ identifies pe with pē for every e ∈ E(T+). We say that a real G-tree Y
decomposes as a graph of actions A, if there is an equivariant isometry between Y and YA.

Assume a real G-tree Y decomposes as a graph of actions. Then a useful property is that
Y is covered by (Yu)u∈V (T ) and moreover these trees intersect “transversally”.

Definition 2.18: Let Y be an R-tree and (Yi)i∈I be a family of subtrees that cover Y . Then
we call this covering a transverse covering if the following conditions hold:

• for every i ∈ I, Yi is a closed subtree;

• for every i, j ∈ I with i 6= j, Yi ∩ Yj is either empty or a point;

• every segment in Y is covered by finitely many Yi’s.

The next lemma is by no means hard to prove (see [Gui04, Lemma 4.7]).

Lemma 2.19: Let A := (G y T, {Yu}u∈V (T ), {pe}e∈E(T )) be a graph of actions. Suppose
Gy Y decomposes as the graph of actions A. Then (Yu)u∈V (T ) is a transverse covering of Y .

2.3 Rips’ machine

Group actions on real trees played a significant role in Sela’s approach to the Tarski problem.
The first important result in analyzing these actions came from Rips (unpublished) when he
proved that if a group acts freely on a real tree then it is a free product of surface groups and
free abelian groups (see [GLP94]).

Requiring an action to be free is a rather extreme condition. One could still get a structure
theorem, known as Rips’ machine, by imposing some milder conditions. Recall that an action
of a group on a real tree is called super-stable if for any arc I with non-trivial (pointwise)
stabilizer and J a subarc of I we have that StabG(I) = StabG(J).

Theorem 2.20 (Rips’ Machine): Let G be a finitely presented torsion-free group. Suppose G
acts non-trivially on an R-tree Y . Moreover, assume that the action is minimal, super-stable
and tripod stabilizers are trivial.

Then G y Y decomposes as a graph of actions A := (G y T, {Yu}u∈V (T ), {pe}e∈E(T ))
where each of the vertex actions, StabG(u) y Yu, is of either simplicial or surface or axial or
exotic type.
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Remark 2.21: Actions of exotic type have been discovered by Levitt (see []). Since the exis-
tence of an exotic type component implies that our group splits as a non trivial free product we
will almost always be able to exclude them.

Also note that exotic type components in Rips’ machine decomposition have the mixing
property.

3 Limit Groups

3.1 The space of projectivised equivariant pseudometrics

In this subsection we show how to construct geometrically a group equipped with a natural
action on a real tree satisfying Rips’ machine assumptions. The construction is credited to
M.Bestvina and F.Paulin independently.

We fix a finitely generated group G and we consider the set of non-trivial equivariant
pseudometrics d : G×G→ R≥0, denoted by ED(G). We equip ED(G) with the compact-open
topology (where G is given the discrete topology). Note that convergence in this topology is
given by:

(di)i<ω → d if and only if di(1, g)→ d(1, g) (in R) for any g ∈ G

Is not hard to see that R+ acts cocompactly on ED(G) by rescaling, thus the space of
projectivised equivariant pseudometrics on G is compact.

We also note that any based G-space (X, ∗) (i.e. a metric space with a distinguished point
equipped with an action of G by isometries) gives rise to an equivariant pseudometric on G
as follows: d(g, h) = dX(g · ∗, h · ∗). We say that a sequence of G-spaces (Xi, ∗i)i<ω converges
to a G-space (X, ∗), if the corresponding pseudometrics induced by (Xi, ∗i) converge to the
pseudometric induced by (X, ∗) in PED(G).

A morphism h : G → H where H is a finitely generated group induces an action of G on
XH (the Cayley graph of H) in the obvious way, thus making XH a G-space. We have:

Lemma 3.1 (Bestvina-Paulin Method): Let (hn)n<ω : G → F be a sequence of non-trivial
morphisms. Then for each n < ω there exists a base point ∗n in XF such that the sequence of
G-spaces (XF, ∗n)n<ω has a convergent subsequence to a real G-tree (T, ∗), where the action of
G on T is non trivial.

Proof. We only give the idea and leave the proof for the reader. Choose the base points ∗n
so that they minimize the following function Dn(x) = Σs∈SdF(x, hn(s) · x) where S is a fixed
finite generating set for G. Then choose the rescaling factors to be Dn(∗n).

Moreover the following proposition is true.

Proposition 3.2: Assume G yλ T is obtained as in Lemma 3.1 and L := G/Kerλ, where
Kerλ := {g ∈ G|λ(g, x) = x for all x ∈ T}, then L acts on T as follows:

(i) tripod stabilizers are trivial;

(ii) arc stabilizers are Abelian;

(iii) the action is super-stable.
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Moreover, given the situation of Lemma 3.1 one can approximate every point in the limiting
tree T by a sequence of points of the converging subsequence.

Lemma 3.3: Assume (XF, ∗n)n<ω converges to (T, ∗) as in Lemma 3.1. Then for any x, y ∈
T , the following hold:

• there exists a sequence (xn)n<ω such that d̂n(xn, g · ∗n) → dT (x, g · ∗) for any g ∈ G,
where d̂n denotes the rescaled metric of XF, we call such a sequence an approximating
sequence;

• if (xn)n<ω, (x
′
n)n<ω are two approximating sequences for x ∈ T , then d̂n(xn, x

′
n)→ 0;

• if (xn)n<ω is an approximating sequence for x, then (g · xn)n<ω is an approximating
sequence for g · x;

• if (xn)n<ω, (yn)n<ω are approximating sequences for x, y respectively, then d̂n(xn, yn)→
dT (x, y).

Remark 3.4:

• Is not hard to see that if hn(g) = 1 for all but finitely many n’s in the above sequence
of morphisms, then g ∈ Kerλ. Actually, when the limit tree is not a line, then Kerλ is
exactly the set of g’s that are eventually killed by (hn)n<ω.

• the minimal subtree obtained by the Bestvina-Paulin method is isometric to a line if and
only if for all but finitely many n, hn(G) is cyclic.

Definition 3.5: A group L is called a limit group if it is obtained as the quotient of a finitely
generated group by the kernel of the action on a real tree obtained as in Lemma 3.1.

Fact 3.6: Let L be a limit group. Then:

• L is torsion-free;

• L is CSA;

• L is either abelian or acts non-trivially on a simplicial tree with cyclic edge stabilizers;

• L is finitely presented.

4 Makanin-Razborov Diagrams for non-Abelian free groups

In this section we will develop the tools in order to describe "varieties" in non-Abelian free
groups, i.e. solution sets of sytems of equations Σ(x̄) = 1 in a non-Abelian free group F. Our
point of view will be group theoretic, so equivalently we are aiming to describe Hom(GΣ,F)
where GΣ is the the group presented as 〈x̄ | Σ(x̄)〉.

We will see that a special class of groups, the class of limit groups play a significant role
in this description.

For the rest of this section we fix a non-Abelian free group F.
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4.1 Equational Noetherianity

We start this subsection by describing Hom(G,F) in some particular cases.

• (Free Groups) Let G be a free group of rank n. Then Hom(G,F) ∼= F × F × . . . × F
n-times.

• (Free Abelian Groups) LetG be a free abelian group of rank n and consider the projection
to the first factor p : Zn � Z. Then any morphism from G to F factors through p after
precomposing by an automorphism of Zn, i.e. for any h : G→ F there exists α ∈ GLn(Z)
such that h ◦α = h′ ◦ p for some h′ : Z→ F. In this case Hom(G,F) is described by the
one step "resolution" Zn � Z and the parametrization GLn(Z)× F.

• (Closed Surface Groups) Let Σ be an orientable closed surface of genus g. Then there
exists an epimorphism p : π1(Σ) � Fg such that any morphism from π1(Σ) to F factors
through p after precomposing by an automorphism of π1(Σ) (see [] and []).

In the case of a non-orientable (closed) surface there exist finitely many epimorphisms
pi : π1(Σ) � Fg for i ≤ k such that any morphism from π1(Σ) to F factors through one
of the pi after precomposing by an automorphism of π1(Σ).

In both cases Hom(G,F) is described by a one step "resolution" (of finite width) and
the parametrization Aut(π1(Σ))× Fg.

We seek such a description for any (f.g.) group G. We will see that for the first step as well
as for proving the finite length of our "diagram" the equational Noetherianity of non-Abelian
free groups is important.

Lemma 4.1 (Guba): A non-Abelian free group is equationally Noetherian, i.e. any system of
equations is equivalent to a finite subsystem.

Proof. F2 embedds in SL2(Z).

A more algebraic definition of limit groups can be given as follows. We recall that a
sequence of morphisms between two groups (hn)n<ω : G→ H is convergent if for any element
g ∈ G, there exists a natural number ng such that either hn(g) = 1 for all n > ng or
hn(g) 6= 1 for all n > ng. To a convergent sequence one can naturally assign its stable kernel
Ker←−−hn := {g ∈ G| hn(g) is eventually trivial}.
Lemma 4.2: A (f.g) group L is a limit group if and only if there exists a convergent sequence
of morphisms (hn)n<ω : L→ F with Ker←−−hn = {1}

Now the following theorem is immediate. Recall that a group G is called ω-residually free
if for any finite subset X ⊆ G there exists a morphism to a free group h : G → F such that
h � X is injective. Similarly a group G is called residually free if for any non-trivial element
g ∈ G there is a morphism to a free group h : G→ F with h(g) 6= 1.

Theorem 4.3 (Sela): A finitely generated group is a limit group if and only if it is ω-residually
free.

Note that the strong result of the finite presentability of limit groups could have been used
in order to prove Theorem 4.3. In fact, this is how Sela originaly proves it.
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Remark 4.4: Any group G has a residually free quotient q : G → RF (G) such that any
morphism from G to F factors through q. Thus when considering Hom(G,F) we may always
assume that G is residually free.

Lemma 4.5 (Finite Length): Any sequence of proper epimorphisms of residually free groups
is finite.

Proof. Use the fact that if q : R1 � R2 is proper then there exists a morphism h : R2 → F that
does not kill a non-trivial element that is necessarily killed by q together with the equational
Noetherianity of non-Abelian free groups.

Now we are ready to make the first step of the Makanin-Razborov diagram that will
eventually give a description of Hom(G,F) for an arbitrary group G.

Theorem 4.6: Let G be a (f.g.) group which is not a limit group. Then there exist finitely
many (proper) epimorphisms {qi : G → Li}i≤k such that each Li is a limit group and each
morphism from G to F factors through one the qi’s.

Proof. Since G is not a limit group, there exists a finite subset X ⊂ G such that any morphism
from G to F kills some element of X. Thus we get the following "factor set" {qi : G �
G/〈〈x〉〉 | x ∈ X}. By Remark 4.4 and Lemma 4.5 we may assume that G/〈〈x〉〉 are limit
groups.

Theorem 4.6 reduces the understanding of Hom(G,F) for a general (f.g.) group G to the
case where G is a limit group.

The next theorem (which completes the construction of the Makanin-Razborov diagram)
is hard to prove. The main dificulty lies on the “shortening argument” a strong tool whose
explanation is postponed until the next subsection.

Theorem 4.7: Let G be a (limit) group which is not free. Then there exist finitely many
proper quotients {qi : G � Li}i≤k such that each Li is a limit group and any morphism from
G to F factors through some qi after precomposing by an automorphism of G, i.e. for any
h : G→ F there exists i ≤ k and α ∈ Aut(G) such that h ◦ α = h′ ◦ qi for some h′ : Li → F.

Now we are ready to describe Hom(G,F) for G a (f.g.) group. Following Theorem 4.7 and
Lemma 4.5 we can assign to Hom(G,F) a set of finite sequences of (proper) epimorphisms,
called resolutions, that all start with G and end in a free group such that any morphism
h : G→ F "factors through some resolution".

Consider the following resolution:

G� L1 � L2 � . . .� Lk � Fn

Then we say that h : G→ F factors through the resolution if there exists an automorphism α
of G, a sequence of automorphisms (αi ∈ Aut(Li))i≤k and a morphism from Fn to F such that
h = h′ ◦ ... ◦ ...

In particular Hom(G,F) is described by finitely many resolution each parametrized by a
group of the form Aut(G)×Aut(L1)× . . .×Aut(Lk)× Fn.
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4.2 The Shortening Argument

The shortening argument is a deep geometric tool first used by Rips and Sela where they proved
that the group of modular automorphisms (they call it the group of internal automorphisms) of
a torsion-free freely indecomposable hyperbolic group has finite index in the full automorphism
group. There are many variations of the shortening argument which is part of its power. In
these notes we will present two of the variations and quickly sketch their proof.

We start with a few definitions.

Definition 4.8: Let G be a finitely generated group, with a fixed finite generating set S, and
h : G→ F. Then:

• the length of h is defined as l(h) := Σs∈S{dX(1, h(s) · 1)}, where dX denotes the usual
metric in the Cayley graph X of F;

• h is called short if l(h) ≤ l(Conj(γ) ◦ h ◦ σ) for any γ ∈ F and any σ ∈ Aut(G).

Theorem 4.9: Let G be a f.p. group and (hn)n<ω : G→ F be a sequence of non-trivial short
morphisms. Then either G acts on a (simplicial) tree with trivial edge stabilizers or the limit
action induced as in Lemma 3.1 is not faithful.

Sketch. Assume, for the sake of contradiction, that the induced action on the limiting real
tree is faithful. Thus, we can analyze it using Rips’ machine (see figure 1). Moreover we may
assume that no exotic components exist, since otherwise the group splits as a non trivial free
product and this induces an action on a (simplicial) tree with trivial edge stabilizers.

Note that the choice of short morphisms implies that the base point in the limit is approx-
imated by the sequence of trivial elements in XF. The hard part of the shortening argument
is to show that we can "shorten" simultaneously all segments of the form [∗, s · ∗] (for s an
element in the generating set of G) using automorphisms of the stabilizers of the components
that these segments intersect. We will supress somehow that in the case of simplicial com-
ponents the "shortening" happens in the approximating sequence and not in the limiting real
tree.

Figure 1: Rips’ Decomposition
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This would imply that in the approximating sequence dX(1, hn(σ((s)))·1) < dX(1, hn(s)·1)
for almost every n < ω contradicting the shortness of hn.

We will also consider morphisms that are short but only relative to some (f.g.) subgroup
of a f.g. group.

Definition 4.10: Let G be a (f.g.) group and H a (f.g.) subgroup. Then h : G → F is
called short with respect to H if l(h) ≤ l(Conj(γ) ◦ h ◦ σ) for any γ ∈ CF(h(H)) and any
σ ∈ AutH(G).

Similarly to Theorem 4.9 we have:

Theorem 4.11: Let G be a finitely presented group freely indecomposable with respect to a
finitely generated subgroup H. Suppose (hn)n<ω : G → F is a sequence of non-trivial short
morphisms with respect to H, converging to an action of G on a real tree as in Lemma 3.1
where H fixes a point. Then the action is not faithful.

5 Towers

Towers or more precisely groups that have the structure of an ω-residually free tower (in Sela’s
terminology), were introduced in [Sel01, Definition 6.1]. We will see in the next section that
they provide examples of groups for which Merzlyakov’s theorem (see [Mer66]) naturally gen-
eralizes (up to some fine tuning). In practice, towers appear as completions of well-structured
MR resolutions of limit groups (see Definitions 1.11 and 1.12 in [Sel03]).

We start by defining the main building blocks of a tower, namely free abelian flats and
surface flats.

Definition 5.1 (Free abelian flat): Let G be a group and H be a subgroup of G. Then G has
the structure of a free abelian flat over H, if G is the amalgamated free product H ∗A (A⊕ Z)
where A is a maximal abelian subgroup of H.

Before moving to the definition of a hyperbolic floor we recall that if H is a subgroup of a
group G then a morphism r : G→ H is called a retraction if r is the identity on H.

Definition 5.2 (Hyperbolic floor): Let G be a group and H be a subgroup of G. Then G
has the structure of a hyperbolic floor over H, if G acts minimally on a tree T and the action
admits a Bass-Serre presentation (T 1, T 0, {γe}) such that:

• the set of vertices of T 0 is partitioned in two sets, V1 and V2, where all the vertices in
V1 are surface type vertices;

• T 1 is bipartite between V1 and V (T 1) \ V1;

• H is the free product of the stabilizers of vertices in V2;

• either there exists a retraction r : G → H that, for every v ∈ V1, sends StabG(v) to a
non-Abelian image or H is cyclic and there exists a retraction r′ : G ∗Z→ H ∗Z which,
for every v ∈ V1, sends StabG(v) to a non-Abelian image.

If a group has the structure of a hyperbolic floor (over some subgroup), and the correspond-
ing Bass-Serre presentation contains just one surface type vertex then we call the hyperbolic
floor a surface flat.

We use surface and free abelian flats in order to define towers.
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Figure 2: A graph of groups corresponding to a hyperbolic floor

Definition 5.3: A group G has the structure of a tower (of height m) over a subgroup H if
there exists a sequence G = Gm > Gm−1 > . . . > G0 = H, where for each i, 0 ≤ i < m, one
of the following holds:

(i) Gi+1 is the free product of Gi with either a free group or with the fundamental group of
a closed surface of Euler characteristic at most −2;

(ii) Gi+1 has the structure of a surface flat over Gi;

(iii) Gi+1 has the structure of a free abelian flat over Gi.

Figure 3: A tower over H.
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One can see that a group that has the structure of a tower over the trivial subgroup (or
even over a limit group) is a limit group, but not every limit group admits the structure of a
tower.

Following the (non-trivial) observation above, it would have been very convenient, as we
shall see in the sequel, if every “irreducible variety” in a non-Abelian free group, could be
assigned a “co-ordinate” group which admits the structure of a tower. The next theorem of
Sela says that every “irreducible variety” can be split in finitely many subsets where each one
of them is the projection of an “irreducible variety” whose co-ordinate group has the structure
of a tower.

Theorem 5.4: Let L := 〈x̄ | Σ(x̄)〉 be a limit group. Then there exists finitely many groups
T1(x̄, ȳ), . . . , Tk(x̄, ȳ) (generated by x̄, ȳ) that have the structure of a tower, such that:

• for any i ≤ k either L or a quotient of L embedds in Ti;

• for any morphism h : L→ F, there exists i ≤ k such that h extends to a morpshism from
Ti to F.

Note that a group G is said to have the structure of a hyperbolic tower if no abelian flat
occurs in its "construction".

The following remarkable theorems hold for hyperbolic towers.

Theorem 5.5 (Sela): A (f.g.) group G is a model of the theory of the free group if and only
if it has the structure of a (non-Abelian) hypebolic tower over {1}.
Theorem 5.6 (Perin): Let H be a torsion free hyperbolic group and Γ be an elementary
subgroup. Then H admits the structure of a hyperbolic tower over Γ.

6 Merzlyakov’ s Theorem and Generalizations

Merzlyakov proved the following theorem in order to prove that the positive theories of non-
Abelian free groups are equal.

Theorem 6.1: Let Σ(x̄, ȳ) = 1 be a system of equations over F := 〈ā〉. Suppose F |=
∀x̄∃ȳ(Σ(x̄, ȳ, ā) = 1). Then there exists a retraction r : GΣ � 〈x̄〉 ∗ F, where GΣ :=
〈x̄, ȳ, ā | Σ(x̄, ȳ, ā)〉.

For a slightly extended version of Merzlyakov’s theorem we first need to define the notion
of a test sequence.

Definition 6.2: A sequence of tuples, (b1(n), . . . , bk(n))n<ω, in F is called a test sequence if
the tuple (b1(n), . . . , bk(n)) satisfies the small cancellation property C ′(1/n) in F, for n < ω.

Certainly one can follow Merzlyakov’s proof for the following extended version of his the-
orem. We have chosen to give a geometric proof, on the expense of simplicity, merely because
the geometric methods suggest some natural generalizations.

Theorem 6.3: Let Σ(x̄, ȳ) = 1 be a system of equations over F := 〈ā〉. Let (b̄n)n<ω be a test
sequence of tuples in F such that for each n there exists a tuple c̄n with F |= Σ(b̄n, c̄n, ā) = 1.
Then there exists a retract r : GΣ � 〈x̄〉 ∗ F, where GΣ := 〈x̄, ȳ, ā | Σ(x̄, ȳ, ā)〉.

Proof. We fix a basis for F and let x̄, ȳ, ā be the fixed generating set for GΣ. Since for each n
there exists a morphism gn : GΣ → F given by x̄ 7→ b̄n, ȳ 7→ c̄n, ā 7→ ā, we choose gn to be
short with respect to 〈x̄, ā〉.
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By Lemma 3.1 a subsequence of (XF, 1) converges to an R-tree (T, ∗) endowed with an
action GΣ yλ T . Note that since gn(GΣ) is non-Abelian for every n < ω, we have that T is
not a line.

We consider the limit group L := GΣ/Kerλ, and let η : GΣ � L be the canonical quotient
map. We note that, by the properties of the test sequence, η is injective on 〈x̄, ā〉. Moreover,
since T is not a line we have that there is a sequence of morphisms (hn)n<ω : L→ F such that
gn = hn ◦ η for all but finitely many n < ω. We argue that we may assume that L is freely
indecomposable with respect to η(〈x̄, ā〉) (still denoted 〈x̄, ā〉). If not, then we continue with
the smallest free factor of L containing 〈x̄, ā〉 and the restriction of (hn)n<ω on this free factor
(after been made short with respect to 〈x̄, ā〉). Lemma 4.5 ensures us that after finitely many
steps we get what we wanted.

It is immediate that the sequence of morphisms, (hn)n<ω, is short with respect to 〈x̄, ā〉,
and induces a faithful action of L on the real tree T (which is not a line). This action can
be analyzed using Rips’ machine and by Theorem 4.11 〈x̄, ā〉 does not fix any point. Thus,
let x̄ = x1, . . . , xm, xm+1, . . . , xl where xi moves ∗ if and only if i ≤ m (note that at least x1

moves ∗, since the tuple ā fixes it). We first prove that the minimal subtree Tmin that 〈x̄, ā〉
acts on lies in the discrete part of T . The following claim will prove very useful.

Claim: Let 1 ≤ i ≤ k and I ⊆ [∗, xi · ∗] be an arc. Then for any g ∈ L \ {1} and any
j ≤ k we have that gI intersects [∗, xj · ∗] trivially.
Proof of Claim: Suppose, for the sake of contradiction, that gI ∩ [∗, xj · ∗] is non-trivial for
some j ≤ m. Without loss of generality we may assume that gI ⊆ [∗, xj · ∗]. Let I = [a, b] and
suppose (an)n<ω, (bn)n<ω be sequences approximating a, b respectively and γ be an element of
GΣ such that η(γ) = g. The segment [an, bn] in XF∗Fkn

contains a word, w, which is a subword
of hn(xi) and similarly the segment [hn(γ)an, hn(γ)bn] contains the same word, w, and is a
subword of hn(xj). Since g is non-trivial, hn(γ) acts freely for arbitrarily large n, thus w is a
piece. But this contradicts the small cancellation hypothesis C ′(1/n) of the test sequence.

Figure 4: Part of the Cayley graph of F
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Now, since Tmin is covered by translates of the convex hull of {∗, x1 · ∗, . . . , xm · ∗} we have
that Tmin intersects the components of the real tree T having the mixing property only in
finitely many points, thus Tmin is on the discrete part of T .

We continue by proving that T is discrete by showing that no component with the mixing
property may exist. Suppose, for the sake of contradiction, that an exotic type component
exists this induces a non-trivial free splitting of L = L1 ∗ L2 where 〈x̄〉 ≤ L1, contradicting
the fact that L is freely indecomposable with respect to 〈x̄〉. If an axial or a surface type
component exists, then [∗, yi · ∗] for some yi ∈ ȳ would intersect it non-trivially (since L.∗
spans T ). But then, by standard arguments we could shorten the length of hn(yi) keeping x̄
fixed, contradicting the assumption that hn is short with respect to x̄.

So we are left with a discrete action of L on T . Note that by our previous Claim all edges
in Tmin are trivially stabilized. Using the shortening argument once again we can prove that
all edges in T are trivially stabilized. If not, then as before some segment of the form [∗, yi · ∗]
would contain a non-trivially stabilized edge and by standard arguments we can shorten the
length of hn(yi) fixing x̄, contradicting the assumption that hn is short with respect to x̄.

Finally, we claim that for each yi we have that yi · ∗ = wi(x1, . . . , xm) · ∗ for some word
wi(x1, . . . , xm) ∈ 〈x1, . . . , xm〉. If not, then we have that there is some g ∈ L such that [∗, g · ∗]
is a proper subarc of [∗, xi · ∗] for some i ≤ m. This can be easily shown that contradicts the
small cancellation hypothesis of the test sequence (hn(x̄))n<ω. Thus, L inherits a splitting of
the form 〈x1, . . . , xm〉 ∗ Stab(∗).

We continue in the same manner with Stab(∗), after finitely many steps, we obtain a free
decomposition of L as 〈x1, . . . , xl〉 ∗ L0, with 〈ā〉 ≤ L0, and morphisms from L0 to 〈ā〉 fixing
ā. So we have a retract from L to 〈x̄〉 ∗ 〈ā〉. This gives us a retract from GΣ to 〈x̄〉 ∗ F, as we
wanted.

Theorem 6.4: Let Σ(x̄, ȳ) = 1 be a system of equations over ∅. Let (b̄n)n<ω be a test sequence
of tuples in F such that for each n there exists a tuple c̄n with F |= Σ(b̄n, c̄n) = 1. Then there
exists a retract r : GΣ � 〈x̄〉.

Proof. As in the proof above we choose a sequence of morphisms, (gn)n<ω, which is short
with respect to 〈x̄〉. And we consider the induced action of GΣ on a real tree T . In this case
the only obstacle to directly applying the proof of Theorem 6.3 is that we may have that the
real tree T is isometric to a line. Note that x̄ should be a singleton, say x (if not the image
gn(GΣ) is non-Abelian thus T cannot be isometric to a line). We consider the quotient group,
L, of GΣ by the stable kernel Ker←−−gn. We note that there exists a sequence of morphisms
(hn)n<ω : L → Fkn such that gn = hn ◦ η for all but finitely many n < ω, where η is the
canonical quotient map from GΣ to L.

It is easy to see that L is abelian and (hn)n<ω is short with respect to η(〈x〉) = 〈x〉 (since
η is injective on 〈x〉).

We consider the limit action λ of L, induced by the sequence (hn)n<ω, on a real tree T ′

(which is again isometric to a line). We may assume that x does not fix a point. If not, then x
fixes the whole line, and L is the direct product Kerλ⊕ Zl for some l < ω with 〈x〉 ≤ Kerλ.
We can continue with Kerλ, by Lemma 4.5, in finitely many steps we have that x cannot fix
a point.

Finally, we claim that the translation length of η(yi) for any yi ∈ ȳ is a multiple of the
translation length of x. If not, then we have g ∈ L such that 0 < tr(g) < tr(x). Thus, we can
find a proper non-trivial subarc, I, of [∗, x · ∗] such that gI ⊂ [∗, x · ∗], contradicting the small
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cancellation hypothesis of the test sequence (hn(x))n<ω. This, shows that L acts discretely on
the line and L = 〈x〉 as we wanted.

The rest of the proof follows the proof of Theorem 6.3.

Merzlyakov’s theorem extends to the case where the universal variables are "bounded" by
a variety that corresponds to group that has the structure of a hyperbolic tower.

Theorem 6.5: Let Σ(x̄, ȳ) = 1 be a system of equations over F := 〈ā〉 and GT := 〈x̄, ā | T (x̄, ā)〉
be a group that has the structure of a hyperbolic tower over F. Suppose F |= ∀x̄(T (x̄, ā) = 1→
∃ȳ(Σ(x̄, ȳ, ā) = 1)). Then there exists a retraction r : GΣ � GT .

Finally the following generalization allow us to consider inequalities as well.

Theorem 6.6: Let Σ(x̄, ȳ) = 1 be a system of equations over F := 〈ā〉 and Ψ(x̄, ȳ, ā) a set of
words in 〈x̄, ȳ, ā〉. Let GT := 〈x̄, ā | T (x̄, ā)〉 be a group that has the structure of a hyperbolic
tower over F. Suppose F |= ∀x̄(T (x̄, ā) = 1→ ∃ȳ(Σ(x̄, ȳ, ā) = 1) ∧Ψ(x̄, ȳ, ā) 6= 1). Then there
exists a retraction r : GΣ � GT such that for each ψ(x̄, ȳ, ā) ∈ Ψ(x̄, ȳ, ā), r(ψ) is not trivial
in GT .

7 The equivalence of the ∀∃ theories

In this section we will give the strategy for proving that the truthfulness of a ∀∃ sentence (over
parameters) does not depend on the rank of a non-Abelian free group. Since the technicalities
of the above mentioned result are considerably hard we will restrict ourselves to the special
case where every tower that appears in the procedure is hyperbolic and of "minimal rank", i.e.
it is a tower over some “parameter” free group F and as a group it admits no epimorphism to
F ∗ F′ where F′ is a non trivial free group.

We first define a notion of complexity for towers.

Definition 7.1: Let T be a group that has the structure of a hyperbolic tower over F. Let
Σ1, . . . ,Σm be the surfaces that appear in the surface flats of the tower and let k be the number
of the abelian flats of the tower. Then:

Complx(T ) := ((genus(Σ1), χ(Σ1)), . . . , (genus(Σm), χ(Σm)), k)

where the couples are arranged in decreasing lexicographical order (assuming (genus(Σ1), χ(Σ1))
≥ . . . ≥ (genus(Σm), χ(Σm))).

Step 1 We start with a sentence which is true in a non-Abelian free group: F |= ∀x̄∃ȳ(Σ(x̄, ȳ,
ā) = 1∧Ψ(x̄, ȳ, ā) 6= 1). Using Theorem 6.6, we obtain a “formal solution” w̄(x̄, ā) that validates
(independently of F) the sentence everywhere but at the varieties defined by ψi(x̄, w̄(x̄, ā), ā) =
1, where ψi belongs to Ψ (see figure 5).

Step 2 We continue with each variety ψi(x̄, w̄(x̄, ā), ā) = 1 separately. Our goal is to find
a “formal solution” that will validate our true sentence in these sets. We use Theorem 5.4 to
cover ψi(x̄, w̄(x̄, ā), ā) = 1 with finitely many towers T1(x̄, z̄, ā), . . . , Tk(x̄, z̄, ā). We obviously
have:

F |= ∀x̄z̄(Ti(x̄, z̄, ā) = 1→ ∃ȳ(Σ(x̄, ȳ, ā) = 1 ∧Ψ(x̄, ȳ, ā) 6= 1))
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Figure 5: The decomposition of F|x|

We use Theorem 6.6 once again to obtain a “formal solution” w̄i(x̄, z̄, ā) that validates
the sentence in the variety defined by the tower Ti, apart from a union of proper subvarieties
defined by the intersection of Ti = 1 with ψj(x̄, w̄i(x̄, z̄, ā), ā) = 1.

Step 3 Iterate Step 2, until it stops?
The following theorem of Sela proves the termination of the above procedure.

Theorem 7.2: Let T (x̄, ā) be a minimal rank limit group that has the structure of a tower
over F := 〈ā〉. Let Q(x̄, ā) be a proper quotient of T , which is a restricted limit group over
F. Then Q admits a covering set of finitely many towers T1, . . . , Tk (each over F), so that for
each i ≤ k, Complx(Ti) < Complx(T ).
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