Merzlyakov-type theorems after Sela

Part 11l



Recall

Theorem (Merzlyakov)

Let F = Vx3y(X(x,y) = 1). Then there exists a retract
r: Gz — <)_<>

Theorem (Extended Merzlyakov)

Let (by)n<w be a test sequence in IF. Suppose for each n there is
Cn such that F |= X(bn, ¢y) = 1. Then there exists a retract
r: Gy — (X).



> In the first part we saw how to obtain from an infinite
sequence of pairwise non-conjugate morphisms from a finitely
generated group G to a torsion-free hyperbolic group I

(hn)n<w G =T

a non-trivial action of G on a real tree T;
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sequence of pairwise non-conjugate morphisms from a finitely
generated group G to a torsion-free hyperbolic group I
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a non-trivial action of G on a real tree T;

> after moving to the quotient of G by the kernel of the above
action, the induced action satisfies some “tameness”
hypotheses;



> In the first part we saw how to obtain from an infinite
sequence of pairwise non-conjugate morphisms from a finitely
generated group G to a torsion-free hyperbolic group I

(hn)n<w G =T

a non-trivial action of G on a real tree T;

> after moving to the quotient of G by the kernel of the above
action, the induced action satisfies some “tameness”
hypotheses;

> thus it can be analyzed by Rips' machine in “simpler”
components, which are of discrete, axial, surface or exotic
type.



Theorem (Extended Merzlyakov)

Let (bn)n<w be a test sequence in F. Suppose for each n there is

¢, such that F |= ¥(b,,¢,) = 1. Then there exists a retract

r: Gz — (X).

Idea of the proof:

> We start with a sequence of morphisms that restrict to a test
sequence on the x's and are “very short” with respect to
(%,¥):
(gn)n<w : <)_<>)_/ | Z()_(a)_/» —F

i.e. morphisms that give the shortest length possible to the
sum of the y's;
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r: Gz — (X).
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action of Gy on the limit R-tree (obtained by the sequence of
morphisms (gn)n<w);



Theorem (Extended Merzlyakov)

Let (bn)n<w be a test sequence in F. Suppose for each n there is
¢, such that F |= ¥(b,,¢,) = 1. Then there exists a retract

r: Gz — (X).

Idea of the proof:

» We start with a sequence of morphisms that restrict to a test
sequence on the x's and are “very short” with respect to
(%,¥):

(gn)n<w : <)_<>)_/ | Z()_(a)_/» —F
i.e. morphisms that give the shortest length possible to the
sum of the y's;

> we pass to the limit group L := Gy /ker\, where X is the
action of Gy on the limit R-tree (obtained by the sequence of
morphisms (gn)n<w);

» we may assume that L has the following properties:

» (X) is a free subgroup of L;
» L is freely indecomposable with respect to (x);

» L admits an action on an R-tree that can be analyzed by Rips’
machine.



> we use properties of the test sequences together with the
shortening argument to eliminate non-discrete components
from the R-tree;

Discrete

» we end up with an action of L on a simplicial tree and
Bass-Serre theory tells us that L = (x) as we wanted.



Question

» Can we generalise Merzlyakov's theorem by restricting the
universal variables so that they belong to a variety?

» ifF = VX(R(X) =1— 3y(X(k,y) = 1)), is it true that there
exists a retract r : Gy — Ggr (Where Gr == (X|R(X)))?



Question

» Can we generalise Merzlyakov's theorem by restricting the
universal variables so that they belong to a variety?

» ifF = VX(R(X) =1— 3y(X(k,y) = 1)), is it true that there
exists a retract r : Gy — Ggr (Where Gr == (X|R(X)))?

Theorem

Let g > 2 and m(Xg) = (x1,...,%g | [X1,X2] ... [X2g—1,X0g]) be
the fundamental group of the orientable surface of genus g. Let
F ): V)_(([Xl,Xz] . [ngfl,ng] =1— 3)_/(2()_(,)_/) = 1)) Then
there exists a retract r : Gy — m1(Xg).



Counterexample (Three projective planes)

> Let 3PP := (x1, X2, X3 | X2x3x3);

» (Lyndon) For any a, b,c € F, if a°b?>c® = 1 then a, b, ¢ belong
to a cyclic subgroup of F;

> FEVX(ExG =1 = (Nicjzslxi, 5] = 1));

» But Gy does not admit a retract to 3PP.



Counterexample (Three projective planes)

> Let 3PP := (x1, X2, X3 | X2x3x3);

» (Lyndon) For any a, b,c € F, if a°b?>c® = 1 then a, b, ¢ belong
to a cyclic subgroup of F;

> FEVX(ExG =1 = (Nicjzslxi, 5] = 1));

» But Gy does not admit a retract to 3PP.

Counterexample (Free Abelian groups)

» FEVx, xa(x,x]=1—Jyxa=y>Vxx=y>Vx x=
%))

> but there is no retract from (x1,x2,y | [x1, x2], y2x; 1) to
(x1, % | [, %));

> neither from (x1,x2,y | [x1, %], y2% 1);

> nor from (x1,x2, y | [x1, %], y?(x1x2)71).



Theorem
Let n>2 and Z" := (x1,...,Xxn | [Xi,Xj] for 1 <i<j<n).
Suppose F |= VX(\1<;<j<plxi» xj] =1 = 3y(X(x,y) = 1)). Then
there exist finitely many free abelian groups A7, ..., A} that
contain Z" as a finite index subgroup such that:

» for each i < k, there exists a retract r; : Gy *zn AT — A7,

> for any h:Z" — F there exists some i < k such that h
extends to a morphism b’ : A" — F.



Towers



Towers

Definition (Free Abelian Flat)

Let G be a group and H be a subgroup of G. Then G is a free
abelian flat over H if G admits an amalgamated free product
splitting H xc (C & Z™) where C is maximal abelian in H.

cez™




Definition (Free Abelian Flat)

Let G be a group and H be a subgroup of G. Then G is a free
abelian flat over H if G admits an amalgamated free product
splitting H x¢c (C & Z™) where C is maximal abelian in H.

Example
F» *e2ed=z (z) ®Z™ is a free abelian flat over Fy.

Lemma
If G is a free abelian flat over a limit group, then G is a limit group.



Definition (Surface Flat)

Let G be a group and H be a subgroup of G. Then G is a surface
flat over H if G admits a splitting as follows:

B <~ <>~ <~ | Zgnm

> Y, nis either a punctured torus or x(Xgz,5) < —2;
> each edge corresponds to a boundary component and each
boundary component is “used”;

» there exists a retract r : G — H that sends the surface group
to a non abelian image.



Example

» the fundamental group of the orientable surface of genus 2 is
a surface flat over F»;

» more generally m1(X2g) is a surface flat over Fo,.

rim(Be) » Fy r(z2)=e r(z1) =e1

@ m1(B2) = (z1,22,€1,€2 | [71,72] = [e1,e€2])

5

Lemma
If G is a surface flat over a limit group, then G is a limit group.



Definition

A group G has the structure of a tower over a subgroup H if there
exists a sequence G = G™ > G™ ! > ... > G% = H % F such that
for each i, 0 < i < m, one of the following holds:

(i) G is a surface flat over G';

(i) G™*1is a free abelian flat over G'.

Definition (Tower)

Suppose G admits the structure of a tower over H. Then we
denote by T(G, H) the following collection of data:

{G,G(G™,G™1),...,G(G, G%), H}
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Definition
A tower T(G, H) is called:
> w-residually free, if H={1};

» hyperbolic, if no free abelian flat occured,;

Remark

» If G has the structure of an w-residually free tower then G is
a limit group;

» But not all limit groups admit the structure of an w-residually
free tower;

> (Sela) Let G be finitely generated. Then G |= Tg if and only
if G is non abelian and has the structure of a hyperbolic tower
over {1}.



Definition (Closures of Towers)

Let T be an w-residually free tower. Then a closure of T is a
“tower” that is obtained from T by “enlarging” the free abelian
flats that occured in T.

More formally, we replace each free abelian flat
G=Hxc(CDZm)of T with G =G x*c (CHZ™), where Z™ is
free abelian of rank m and Z™ is a finite index subgroup of Z™.
Exercise: Show that “enlarging” the free abelian flats is
compatible with the tower structure.

Example

Let Z™ be a finite index subgroup of 7™ The tower
F2 *e2e2—, (2) & L™ is a closure of Fa %202, (z) & Z™



Generalized Merzlyakov

Theorem (Sela)

Suppose G := (x | R(x)) has the structure of an w-residually free
tower. Let F =Vx(R(x) =1— 3y(X(x,y) =1)). Then there
exist finitely many groups Gi, ..., Gy corresponding to closures of
the w-residually free tower for G such that:
» for each i < k there exists a retract r; : Gy x¢ G; — G;;
» for every morphism h: G — T there exists some i < k such
that h extends to ' : G; — F.

Corollary

Suppose G := (x | R(X)) has the structure of a hyperbolic tower
over {1}. Let F = Vx(R(X) =1 — Jy(X(x,y) = 1)). Then there
exists a retract r : Gy — G.



Generalized test sequences

The proof is based on the existence of “generalized” test sequences
corresponding to w-residually free towers.

> A test sequence (with respect to F,) is a sequence
(b1(n), ..., bm(n))n<w that satisfies C'(1/n) as n — oo;
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Generalized test sequences

The proof is based on the existence of “generalized” test sequences
corresponding to w-residually free towers.

> A test sequence (with respect to F,) is a sequence
(b1(n), ..., bm(n))n<w that satisfies C'(1/n) as n — oo;

> A test sequence with respect to Z™ is a sequence
(b(n)ka(m . b(n)km(MY, . where (b(n))n<y is a test
k,' n
kiy1(n)
> A test sequence with respect to m1(Xz) is a sequence that
“forces” the limit action to be a free action (of m1(X;)) of

surface type.

sequence and — 0 as n — oo;
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> A test sequence with respect to an
w-residually free tower is a sequence
constructed from bottom to top giving to
each flat a strictly increasing growth rate
with respect to the order they appear in
the construction;

» Note that any (non-trivial) element of the
group Gt corresponding to an
w-residually free tower T has eventually
non-trivial image under a test sequence.



Diophantine Envelopes

Theorem (Sela)
Let ¢(x,a) be a first order formula over F. Then there exist finitely
many towers over F, T1{u, x,3}, To{u, x,3},..., Te{0,x,3}, and
for each tower T; there exist finitely many closures
THv,x,3},..., T™{v,x, 3}, such that:

(i) The union of the Diophantine sets corresponding to the

towers T1,..., Ty cover ¢;
(ii) Let i < k. If (Up,Xn,3)n<w Is a test sequence with respect to
T; that does not extend to any of the closures Tl-l, co, T

Then F |= ¢(Xn, @) for all but finitely many n. Moreover, for
each i < k such a test sequence exists.

Definition
A Diophantine envelope for ¢ is a collection of towers and their
closures {(T;, T}, ..., T/™);<k} satisfying the conclusion of the

above theorem.



Infinite fields



Infinite fields

Theorem (Perin-Pillay-S.-Tent)

Let ¢(X) be a first order formula over F?. Suppose
O(FRY) # ¢(FS'). Then ¢ cannot be given definably the structure
of an abelian group.

proof:
the proof in the real case:
> let = (e1,...,en);
» suppose for the sake of contradiction (¢(x),®) is an abelian
group;
> let 3(er,...,en ent1) € O(Fpy1) \Fp;
> 3(er,...,en ent1) ©3a(e1,...,en, ent2) =
w(el,...,en, ent1,nt2) € Fpyo \ Friq;
> by the abelianity of ®:
w(el,...,€en, €nt1,€nt2) = W(€1,- .., En, €nt2, Ent+1);

v

a contradiction to the normal form theorem for free groups.



Work in progress with Ayala Byron:

Proposition

Let ¢(x) be a first order formula over F. Suppose a Diophantine
envelope for ¢ contains a hyperbolic tower. Then ¢ cannot be
given definably the structure of an abelian group.

proof:

>

Suppose not, and let (¢, ®) be an abelian group, where
©® :=(x,y,z,3) is a first order formula over F.

We replace 1 by a “graded” Diophantine envelope. For the
sake of clarity we assume that ¢ := ¥(x,¥y,z,3) = 1.

By our assumptions we have that there exists a hyperbolic
tower T{@,Xx, 3} over F in a Diophantine envelope for ¢.

Recall that the “projection” of any test sequence with respect
to T “lives” eventually in ¢.

We consider the “twin tower”, T#T, constructed as follows:



Twin Towers




Twin Towers




Properties of twin towers

Remark
The group Gty T corresponding to the the twin tower T#T s
GT *XF GT-

Fact
Let T{a,3a} be a hyperbolic tower over F and T#T{u,tu', 3} the
corresponding twin tower.

» Every morphism h: Gt — I extends to
(h, h) : GT X GT — F.

» if (Tp, U, 3)n<w is a test sequence with respect to T#T,
then:

> both (T, 3)p<w, (U, 3)n<w are test sequences with respect to
T,
» (T}, Up, 3)n<w Is a test sequence with respect to T#T.



Proof(continue):

» (¢,®) is an abelian group with ® := X(x,y,z,3) = 1;

» T{u,x,3a} is a hyperbolic tower in a Diophantine Envelope for
¢, and T#T{0,x,0,y,3} its twin tower;

> fix a test sequence with respect to T#T,

(Tn, Xn, Uly, ¥n, @) n<w, then we have that for each n there exists
a (unique) ¢, such that F = ¥(X,, ¥n, Cn,3) = 1;

» The hypothesis of the generalized Merzlyakov theorem is true
for the hyperbolic tower T# T and the system of equations
Y(x,y,z,3) =1,

» Thus, we have a retract r : Gx — Gr4T.



Lemma

Let r: Gy (u,x,U,y,z,3) = Gru71(0,%,U,y,3) be the retract
obtained from the test sequence (Upn, Xp, U, Yn, @) n<w- Then
r(E) € GT#T \ IF.

Proof.

» Suppose not, and r(z) = w(a);

» then X, ® X, = w(3) = X, ® y, for all but finitely many n;
» thus x, = y, for all but finitely many n;

» this contadicts the difference in growth rate of (up, Xn)n<w,

(U;n)_/n)n<w-



» Let w(a, x, T, )75)'—
(_ X ) 1( ! )...am(D,)?,é)ﬁm(D',)_/,é)am
be the normal form of some element in r(z) = w(
with respect to the amalgamated free product
GT#T = GT *XF GT-
> W(L_lu)_<7 l-_l/7.)_/7 ‘5) = W(D/7)77 '-_]7)_(7 5) in GT#T;
» both (T, Xn, U)y, ¥y 3)n<ws (Tl Yy Uny Xny @) new are test
sequences with respect to T#T,
» thus the product X, @)7,, (resp. yn © Xp) is defined, and since
Z(Xnaynv (UH7XI77 naynv )? ): 1 (resp.
Y (¥, Xn, W(T', ¥, Un, Xn, 3),3) = 1), we have that the product
is w(Uy, Xn, Up, Vn, 3) (resp. (T, ¥n, Un, Xn, 3));
» but ® is an abelian group operation, thus
W(Un, Xn, Uy ¥ny @) = w(T,, ¥, Un, Xn, 3) for all but finitely
many n;
» now use the fact that a test sequence does not “kill” any
non-trivial element of Gru.



» Let w(i, x,0,y,3) =
a1(t,x,3)01(0,y,3) ... am(d,X,3)Bm(T,y,3)am
be the normal form of some element in r(z) = w(
with respect to the amalgamated free product
GT#T = GT XF GT.

» w(i,x,,y,a) =w(t,y,0,X,2)in GruT;

> the normal form theorem
for amalgamated free products gives the final contradiction, i.e.
a1(l,%,3)p1(0',7,3) . . am(u X,3)Bm(U',y,3)om11(1, %, 3) #
a1(d',y,3)51(0,%,3)...an(t,y,3)Bm(0,x,3)ams1(7,y, 3).



Questions & Problems
» Understand Def(Tg,), e.g. definable/interpretable groups,
fields;
> Identify regular types;
» Characterize the superstable part;
» Understand forking independence;
» Does Ty, has nfcp?
» What does a saturated model of Tg, look like?



