Merzlyakov-type theorems after Sela

Part III

Recall

Theorem (Merzlyakov)

Let $\mathbb{F}\models \forall \bar{x}\exists \bar{y}(\Sigma(\bar{x},\bar{y})=1)$. Then there exists a retract $r:G_{\Sigma}\to \langle \bar{x}\rangle$.

Theorem (Extended Merzlyakov)

Let $(\bar{b}_n)_{n<\omega}$ be a test sequence in \mathbb{F} . Suppose for each n there is \bar{c}_n such that $\mathbb{F}\models\Sigma(\bar{b}_n,\bar{c}_n)=1$. Then there exists a retract $r:G_\Sigma\to\langle\bar{x}\rangle$.

In the first part we saw how to obtain from an infinite sequence of pairwise non-conjugate morphisms from a finitely generated group G to a torsion-free hyperbolic group Γ

$$(h_n)_{n<\omega}:G\to\Gamma$$

a non-trivial action of G on a real tree T;

In the first part we saw how to obtain from an infinite sequence of pairwise non-conjugate morphisms from a finitely generated group G to a torsion-free hyperbolic group Γ

$$(h_n)_{n<\omega}:G\to\Gamma$$

a non-trivial action of G on a real tree T;

▶ after moving to the quotient of G by the kernel of the above action, the induced action satisfies some "tameness" hypotheses; In the first part we saw how to obtain from an infinite sequence of pairwise non-conjugate morphisms from a finitely generated group G to a torsion-free hyperbolic group Γ

$$(h_n)_{n<\omega}:G\to\Gamma$$

a non-trivial action of G on a real tree T;

- ▶ after moving to the quotient of *G* by the kernel of the above action, the induced action satisfies some "tameness" hypotheses;
- thus it can be analyzed by Rips' machine in "simpler" components, which are of discrete, axial, surface or exotic type.

Theorem (Extended Merzlyakov)

Let $(\bar{b}_n)_{n<\omega}$ be a test sequence in \mathbb{F} . Suppose for each n there is \bar{c}_n such that $\mathbb{F}\models\Sigma(\bar{b}_n,\bar{c}_n)=1$. Then there exists a retract $r:G_\Sigma\to\langle\bar{x}\rangle$.

Idea of the proof:

▶ We start with a sequence of morphisms that restrict to a test sequence on the x's and are "very short" with respect to (\bar{x}, \bar{y}) :

$$(g_n)_{n<\omega}:\langle \bar{x},\bar{y}\mid \Sigma(\bar{x},\bar{y})
angle
ightarrow \mathbb{F}$$

i.e. morphisms that give the shortest length possible to the sum of the y's;

Theorem (Extended Merzlyakov)

Let $(\bar{b}_n)_{n<\omega}$ be a test sequence in \mathbb{F} . Suppose for each n there is \bar{c}_n such that $\mathbb{F}\models\Sigma(\bar{b}_n,\bar{c}_n)=1$. Then there exists a retract $r:G_\Sigma\to\langle\bar{x}\rangle$.

Idea of the proof:

▶ We start with a sequence of morphisms that restrict to a test sequence on the x's and are "very short" with respect to (\bar{x}, \bar{y}) :

$$(g_n)_{n<\omega}:\langle \bar{x},\bar{y}\mid \Sigma(\bar{x},\bar{y})
angle
ightarrow \mathbb{F}$$

i.e. morphisms that give the shortest length possible to the sum of the *y*'s;

• we pass to the limit group $L:=G_{\Sigma}/ker\lambda$, where λ is the action of G_{Σ} on the limit \mathbb{R} -tree (obtained by the sequence of morphisms $(g_n)_{n<\omega}$);

Theorem (Extended Merzlyakov)

Let $(\bar{b}_n)_{n<\omega}$ be a test sequence in \mathbb{F} . Suppose for each n there is \bar{c}_n such that $\mathbb{F}\models\Sigma(\bar{b}_n,\bar{c}_n)=1$. Then there exists a retract $r:G_\Sigma\to\langle\bar{x}\rangle$.

Idea of the proof:

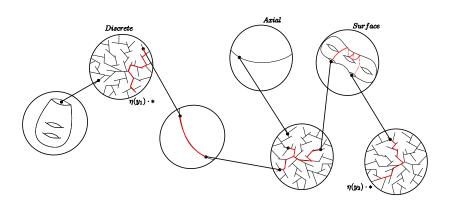
▶ We start with a sequence of morphisms that restrict to a test sequence on the x's and are "very short" with respect to (\bar{x}, \bar{y}) :

$$(g_n)_{n<\omega}:\langle ar{x},ar{y}\mid \Sigma(ar{x},ar{y})
angle
ightarrow \mathbb{F}$$

i.e. morphisms that give the shortest length possible to the sum of the y's;

- we pass to the limit group $L := G_{\Sigma}/ker\lambda$, where λ is the action of G_{Σ} on the limit \mathbb{R} -tree (obtained by the sequence of morphisms $(g_n)_{n<\omega}$);
- ▶ we may assume that *L* has the following properties:
 - $\triangleright \langle \bar{x} \rangle$ is a free subgroup of L;
 - L is freely indecomposable with respect to $\langle \bar{x} \rangle$;
 - ► L admits an action on an ℝ-tree that can be analyzed by Rips' machine.

▶ we use properties of the test sequences together with the shortening argument to eliminate non-discrete components from the ℝ-tree;



• we end up with an action of L on a simplicial tree and Bass-Serre theory tells us that $L = \langle \bar{x} \rangle$ as we wanted.

Question

- ► Can we generalise Merzlyakov's theorem by restricting the universal variables so that they belong to a variety?
- ▶ if $\mathbb{F} \models \forall \bar{x} (R(\bar{x}) = 1 \rightarrow \exists \bar{y} (\Sigma(\bar{x}, \bar{y}) = 1))$, is it true that there exists a retract $r : G_{\Sigma} \twoheadrightarrow G_R$ (where $G_R := \langle \bar{x} | R(\bar{x}) \rangle$)?

Question

- Can we generalise Merzlyakov's theorem by restricting the universal variables so that they belong to a variety?
- if $\mathbb{F} \models \forall \bar{x}(R(\bar{x}) = 1 \rightarrow \exists \bar{y}(\Sigma(\bar{x}, \bar{y}) = 1))$, is it true that there exists a retract $r: G_{\Sigma} \rightarrow G_R$ (where $G_R := \langle \bar{x} | R(\bar{x}) \rangle$)?

Theorem

Let $g \geq 2$ and $\pi_1(\Sigma_g) = \langle x_1, \ldots, x_{2g} \mid [x_1, x_2] \ldots [x_{2g-1}, x_{2g}] \rangle$ be the fundamental group of the orientable surface of genus g. Let $\mathbb{F} \models \forall \bar{x}([x_1, x_2] \ldots [x_{2g-1}, x_{2g}] = 1 \rightarrow \exists \bar{y}(\Sigma(\bar{x}, \bar{y}) = 1))$. Then there exists a retract $r : G_{\Sigma} \rightarrow \pi_1(\Sigma_g)$.

Counterexample (Three projective planes)

- ► Let $3PP := \langle x_1, x_2, x_3 \mid x_1^2 x_2^2 x_3^2 \rangle$;
- ▶ (Lyndon) For any $a, b, c \in \mathbb{F}$, if $a^2b^2c^2 = 1$ then a, b, c belong to a cyclic subgroup of \mathbb{F} ;
- $\mathbb{F} \models \forall \bar{x}(x_1^2 x_2^2 x_3^2 = 1 \to (\land_{i < j \leq 3} [x_i, x_j] = 1));$
- ▶ But G_{Σ} does not admit a retract to 3*PP*.

Counterexample (Three projective planes)

- ▶ Let $3PP := \langle x_1, x_2, x_3 \mid x_1^2 x_2^2 x_3^2 \rangle$;
- ▶ (Lyndon) For any $a, b, c \in \mathbb{F}$, if $a^2b^2c^2 = 1$ then a, b, c belong to a cyclic subgroup of \mathbb{F} ;
- $\mathbb{F} \models \forall \bar{x}(x_1^2 x_2^2 x_3^2 = 1 \to (\land_{i < j \leq 3} [x_i, x_j] = 1));$
- ▶ But G_{Σ} does not admit a retract to 3*PP*.

Counterexample (Free Abelian groups)

- ▶ $\mathbb{F} \models \forall x_1, x_2([x_1, x_2] = 1 \rightarrow \exists y(x_1 = y^2 \lor x_2 = y^2 \lor x_1 \cdot x_2 = y^2));$
- ▶ but there is no retract from $\langle x_1, x_2, y \mid [x_1, x_2], y^2 x_1^{-1} \rangle$ to $\langle x_1, x_2 \mid [x_1, x_2] \rangle$;
- neither from $(x_1, x_2, y \mid [x_1, x_2], y^2 x_2^{-1})$;
- nor from $\langle x_1, x_2, y \mid [x_1, x_2], y^2(x_1x_2)^{-1} \rangle$.

Theorem

Let $n \geq 2$ and $\mathbb{Z}^n := \langle x_1, \dots, x_n \mid [x_i, x_j] \text{ for } 1 \leq i < j \leq n \rangle$. Suppose $\mathbb{F} \models \forall \bar{x} (\bigwedge_{1 \leq i < j \leq n} [x_i, x_j] = 1 \rightarrow \exists \bar{y} (\Sigma(\bar{x}, \bar{y}) = 1))$. Then there exist finitely many free abelian groups A_1^n, \dots, A_k^n that contain \mathbb{Z}^n as a finite index subgroup such that:

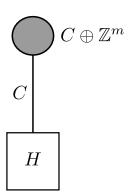
- ▶ for each $i \leq k$, there exists a retract $r_i : G_{\Sigma} *_{\mathbb{Z}^n} A_i^n \to A_i^n$;
- ▶ for any $h: \mathbb{Z}^n \to \mathbb{F}$ there exists some $i \leq k$ such that h extends to a morphism $h': A_i^n \to \mathbb{F}$.

Towers

Towers

Definition (Free Abelian Flat)

Let G be a group and H be a subgroup of G. Then G is a free abelian flat over H if G admits an amalgamated free product splitting $H *_C (C \oplus \mathbb{Z}^m)$ where C is maximal abelian in H.



Definition (Free Abelian Flat)

Let G be a group and H be a subgroup of G. Then G is a free abelian flat over H if G admits an amalgamated free product splitting $H *_C (C \oplus \mathbb{Z}^m)$ where C is maximal abelian in H.

Example

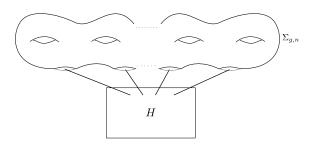
 $\mathbb{F}_2 *_{e_1^2 e_2^2 = z} \langle z \rangle \oplus \mathbb{Z}^m$ is a free abelian flat over \mathbb{F}_2 .

Lemma

If G is a free abelian flat over a limit group, then G is a limit group.

Definition (Surface Flat)

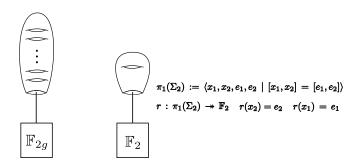
Let G be a group and H be a subgroup of G. Then G is a surface flat over H if G admits a splitting as follows:



- ▶ $\Sigma_{g,n}$ is either a punctured torus or $\chi(\Sigma_{g,n}) \leq -2$;
- each edge corresponds to a boundary component and each boundary component is "used";
- ▶ there exists a retract $r: G \rightarrow H$ that sends the surface group to a non abelian image.

Example

- ▶ the fundamental group of the orientable surface of genus 2 is a surface flat over F₂;
- ▶ more generally $\pi_1(\Sigma_{2g})$ is a surface flat over \mathbb{F}_{2g} .



Lemma

If G is a surface flat over a limit group, then G is a limit group.

Definition

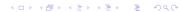
A group G has the structure of a tower over a subgroup H if there exists a sequence $G = G^m > G^{m-1} > \ldots > G^0 = H * \mathbb{F}$ such that for each i, $0 \le i < m$, one of the following holds:

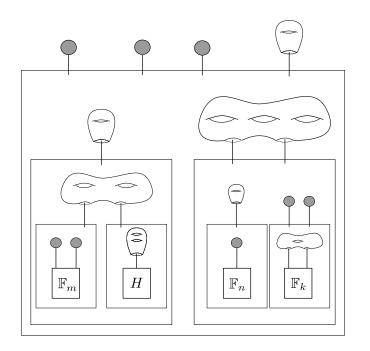
- (i) G^{i+1} is a surface flat over G^i ;
- (ii) G^{i+1} is a free abelian flat over G^i .

Definition (Tower)

Suppose G admits the structure of a tower over H. Then we denote by T(G, H) the following collection of data:

$$\{G, \mathcal{G}(G^m, G^{m-1}), \dots, \mathcal{G}(G^1, G^0), H\}$$





Definition

A tower T(G, H) is called:

- ω -residually free, if $H = \{1\}$;
- hyperbolic, if no free abelian flat occured;

Remark

- ▶ If G has the structure of an ω -residually free tower then G is a limit group;
- ▶ But not all limit groups admit the structure of an ω -residually free tower;
- ▶ (Sela) Let G be finitely generated. Then $G \models T_{fg}$ if and only if G is non abelian and has the structure of a hyperbolic tower over $\{1\}$.

Definition (Closures of Towers)

Let T be an ω -residually free tower. Then a closure of T is a "tower" that is obtained from T by "enlarging" the free abelian flats that occured in T.

More formally, we replace each free abelian flat $G = H *_C (C \oplus \mathbb{Z}^m)$ of T with $\hat{G} = G *_C (C \oplus \hat{\mathbb{Z}}^m)$, where $\hat{\mathbb{Z}}^m$ is free abelian of rank m and \mathbb{Z}^m is a finite index subgroup of $\hat{\mathbb{Z}}^m$.

Exercise: Show that "enlarging" the free abelian flats is compatible with the tower structure.

Example

Let \mathbb{Z}^m be a finite index subgroup of $\hat{\mathbb{Z}}^m$. The tower $\mathbb{F}_2 *_{e_1^2 e_2^2 = z} \langle z \rangle \oplus \hat{\mathbb{Z}}^m$ is a closure of $\mathbb{F}_2 *_{e_1^2 e_2^2 = z} \langle z \rangle \oplus \mathbb{Z}^m$

Generalized Merzlyakov

Theorem (Sela)

Suppose $G := \langle \bar{x} \mid R(\bar{x}) \rangle$ has the structure of an ω -residually free tower. Let $\mathbb{F} \models \forall \bar{x}(R(\bar{x}) = 1 \to \exists \bar{y}(\Sigma(\bar{x},\bar{y}) = 1))$. Then there exist finitely many groups G_1, \ldots, G_k corresponding to closures of the ω -residually free tower for G such that:

- ▶ for each $i \le k$ there exists a retract $r_i : G_{\Sigma} *_G G_i \to G_i$;
- ▶ for every morphism $h: G \to \mathbb{F}$ there exists some $i \le k$ such that h extends to $h': G_i \to \mathbb{F}$.

Corollary

Suppose $G:=\langle \bar{x}\mid R(\bar{x})\rangle$ has the structure of a hyperbolic tower over $\{1\}$. Let $\mathbb{F}\models \forall \bar{x}(R(\bar{x})=1\rightarrow \exists \bar{y}(\Sigma(\bar{x},\bar{y})=1))$. Then there exists a retract $r:G_{\Sigma}\rightarrow G$.

Generalized test sequences

The proof is based on the existence of "generalized" test sequences corresponding to ω -residually free towers.

A test sequence (with respect to \mathbb{F}_m) is a sequence $(b_1(n), \ldots, b_m(n))_{n < \omega}$ that satisfies C'(1/n) as $n \to \infty$;

Generalized test sequences

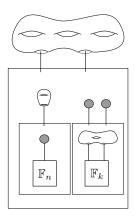
The proof is based on the existence of "generalized" test sequences corresponding to ω -residually free towers.

- ▶ A test sequence (with respect to \mathbb{F}_m) is a sequence $(b_1(n), \ldots, b_m(n))_{n < \omega}$ that satisfies C'(1/n) as $n \to \infty$;
- A test sequence with respect to \mathbb{Z}^m is a sequence $(b(n)^{k_1(n)},\ldots,b(n)^{k_m(n)})_{n<\omega}$, where $(b(n))_{n<\omega}$ is a test sequence and $\frac{k_i(n)}{k_{i+1}(n)} \to 0$ as $n \to \infty$;

Generalized test sequences

The proof is based on the existence of "generalized" test sequences corresponding to ω -residually free towers.

- ▶ A test sequence (with respect to \mathbb{F}_m) is a sequence $(b_1(n), \ldots, b_m(n))_{n < \omega}$ that satisfies C'(1/n) as $n \to \infty$;
- A test sequence with respect to \mathbb{Z}^m is a sequence $(b(n)^{k_1(n)},\ldots,b(n)^{k_m(n)})_{n<\omega}$, where $(b(n))_{n<\omega}$ is a test sequence and $\frac{k_i(n)}{k_{i+1}(n)} \to 0$ as $n \to \infty$;
- ▶ A test sequence with respect to $\pi_1(\Sigma_g)$ is a sequence that "forces" the limit action to be a free action (of $\pi_1(\Sigma_g)$) of surface type.



- A test sequence with respect to an ω -residually free tower is a sequence constructed from bottom to top giving to each flat a strictly increasing growth rate with respect to the order they appear in the construction;
- Note that any (non-trivial) element of the group G_T corresponding to an ω -residually free tower T has eventually non-trivial image under a test sequence.

Diophantine Envelopes

Theorem (Sela)

Let $\phi(\bar{x}, \bar{a})$ be a first order formula over \mathbb{F} . Then there exist finitely many towers over \mathbb{F} , $T_1\{\bar{u}, \bar{x}, \bar{a}\}, T_2\{\bar{u}, \bar{x}, \bar{a}\}, \dots, T_k\{\bar{u}, \bar{x}, \bar{a}\},$ and for each tower T_i there exist finitely many closures $T_i^1\{\bar{v}, \bar{x}, \bar{a}\}, \dots, T_i^{m_i}\{\bar{v}, \bar{x}, \bar{a}\},$ such that:

- (i) The union of the Diophantine sets corresponding to the towers T_1, \ldots, T_k cover ϕ ;
- (ii) Let $i \leq k$. If $(\bar{u}_n, \bar{x}_n, \bar{a})_{n < \omega}$ is a test sequence with respect to T_i that does not extend to any of the closures $T_i^1, \ldots, T_i^{m_i}$. Then $\mathbb{F} \models \phi(\bar{x}_n, \bar{a})$ for all but finitely many n. Moreover, for each $i \leq k$ such a test sequence exists.

Definition

A Diophantine envelope for ϕ is a collection of towers and their closures $\{(T_i, T_i^1, \ldots, T_i^{m_i})_{i \leq k}\}$ satisfying the conclusion of the above theorem.

Infinite fields

Infinite fields

Theorem (Perin-Pillay-S.-Tent)

Let $\phi(\bar{x})$ be a first order formula over \mathbb{F}_n^{eq} . Suppose $\phi(\mathbb{F}_n^{eq}) \neq \phi(\mathbb{F}_\omega^{eq})$. Then ϕ cannot be given definably the structure of an abelian group.

proof:

the proof in the real case:

- $\blacktriangleright \text{ let } \mathbb{F}_n := \langle e_1, \dots, e_n \rangle;$
- ▶ suppose for the sake of contradiction $(\phi(\bar{x}), \odot)$ is an abelian group;
- ▶ let $\bar{a}(e_1, \ldots, e_n, e_{n+1}) \in \phi(\mathbb{F}_{n+1}) \setminus \mathbb{F}_n$;
- $\bar{a}(e_1, \ldots, e_n, e_{n+1}) \odot \bar{a}(e_1, \ldots, e_n, e_{n+2}) = \bar{w}(e_1, \ldots, e_n, e_{n+1}, e_{n+2}) \in \mathbb{F}_{n+2} \setminus \mathbb{F}_{n+1};$
- ▶ by the abelianity of \odot : $\bar{w}(e_1, ..., e_n, e_{n+1}, e_{n+2}) = \bar{w}(e_1, ..., e_n, e_{n+2}, e_{n+1});$
- ▶ a contradiction to the normal form theorem for free groups.

Work in progress with Ayala Byron:

Proposition

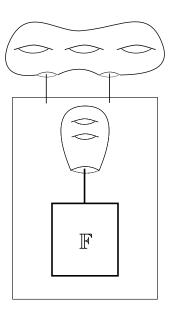
Let $\phi(\bar{x})$ be a first order formula over \mathbb{F} . Suppose a Diophantine envelope for ϕ contains a hyperbolic tower. Then ϕ cannot be given definably the structure of an abelian group.

proof:

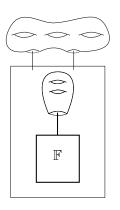
- ▶ Suppose not, and let (ϕ, \odot) be an abelian group, where $\odot := \psi(\bar{x}, \bar{y}, \bar{z}, \bar{a})$ is a first order formula over \mathbb{F} .
- ▶ We replace ψ by a "graded" Diophantine envelope. For the sake of clarity we assume that $\psi := \Sigma(\bar{x}, \bar{y}, \bar{z}, \bar{a}) = 1$.
- ▶ By our assumptions we have that there exists a hyperbolic tower $T\{\bar{u}, \bar{x}, \bar{a}\}$ over \mathbb{F} in a Diophantine envelope for ϕ .
- Recall that the "projection" of any test sequence with respect to T "lives" eventually in φ.
- ▶ We consider the "twin tower", T # T, constructed as follows:

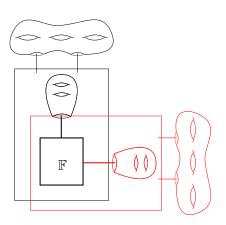


Twin Towers



Twin Towers





Properties of twin towers

Remark

The group $G_{T\#T}$ corresponding to the the twin tower T#T is $G_{T}*_{\mathbb{F}}G_{T}$.

Fact

Let $T\{\bar{u},\bar{a}\}$ be a hyperbolic tower over \mathbb{F} and $T\#T\{\bar{u},\bar{u}',\bar{a}\}$ the corresponding twin tower.

- ▶ Every morphism $h: G_T \to \mathbb{F}$ extends to $(h,h): G_T *_{\mathbb{F}} G_T \to \mathbb{F}$.
- if $(\bar{u}_n, \bar{u}'_n, \bar{a})_{n<\omega}$ is a test sequence with respect to T#T, then:
 - ▶ both $(\bar{u}_n, \bar{a})_{n < \omega}$, $(\bar{u}'_n, \bar{a})_{n < \omega}$ are test sequences with respect to T;
 - $(\bar{u}'_n, \bar{u}_n, \bar{a})_{n<\omega}$ is a test sequence with respect to T#T.

Proof(continue):

- (ϕ, \odot) is an abelian group with $\odot := \Sigma(\bar{x}, \bar{y}, \bar{z}, \bar{a}) = 1$;
- ▶ $T\{\bar{u}, \bar{x}, \bar{a}\}$ is a hyperbolic tower in a Diophantine Envelope for ϕ , and $T\#T\{\bar{u}, \bar{x}, \bar{u}', \bar{y}, \bar{a}\}$ its twin tower;
- fix a test sequence with respect to T # T, $(\bar{u}_n, \bar{x}_n, \bar{u}'_n, \bar{y}_n, \bar{a})_{n < \omega}$, then we have that for each n there exists a (unique) \bar{c}_n such that $\mathbb{F} \models \Sigma(\bar{x}_n, \bar{y}_n, \bar{c}_n, \bar{a}) = 1$;
- ► The hypothesis of the generalized Merzlyakov theorem is true for the hyperbolic tower T # T and the system of equations $\Sigma(\bar{x}, \bar{y}, \bar{z}, \bar{a}) = 1$;
- ▶ Thus, we have a retract $r: G_{\Sigma} \to G_{T\#T}$.

Lemma

Let $r: G_{\Sigma}(\bar{u}, \bar{x}, \bar{u}', \bar{y}, \bar{z}, \bar{a}) \to G_{T\#T}(\bar{u}, \bar{x}, \bar{u}', \bar{y}, \bar{a})$ be the retract obtained from the test sequence $(\bar{u}_n, \bar{x}_n, \bar{u}'_n, \bar{y}_n, \bar{a})_{n<\omega}$. Then $r(\bar{z}) \in G_{T\#T} \setminus \mathbb{F}$.

Proof.

- ▶ Suppose not, and $r(\bar{z}) = \bar{w}(\bar{a})$;
- ▶ then $\bar{x}_n \odot \bar{x}_n = \bar{w}(\bar{a}) = \bar{x}_n \odot \bar{y}_n$ for all but finitely many n;
- ▶ thus $\bar{x}_n = \bar{y}_n$ for all but finitely many n;
- ▶ this contadicts the difference in growth rate of $(\bar{u}_n, \bar{x}_n)_{n<\omega}$, $(\bar{u}'_n, \bar{y}_n)_{n<\omega}$.

- Let $w(\bar{u}, \bar{x}, \bar{u}', \bar{y}, \bar{a}) := \alpha_1(\bar{u}, \bar{x}, \bar{a})\beta_1(\bar{u}', \bar{y}, \bar{a}) \dots \alpha_m(\bar{u}, \bar{x}, \bar{a})\beta_m(\bar{u}', \bar{y}, \bar{a})\alpha_{m+1}(\bar{u}, \bar{x}, \bar{a})$ be the normal form of some element in $r(\bar{z}) = \bar{w}(\bar{u}, \bar{x}, \bar{u}', \bar{y}, \bar{a})$ with respect to the amalgamated free product $G_{T\#T} := G_T *_{\mathbb{F}} G_T$.
- $w(\bar{u}, \bar{x}, \bar{u}', \bar{y}, \bar{a}) = w(\bar{u}', \bar{y}, \bar{u}, \bar{x}, \bar{a})$ in $G_{T\#T}$;
 - ▶ both $(\bar{u}_n, \bar{x}_n, \bar{u}'_n, \bar{y}_n, \bar{a})_{n < \omega}$, $(\bar{u}'_n, \bar{y}_n, \bar{u}_n, \bar{x}_n, \bar{a})_{n < \omega}$ are test sequences with respect to T # T;
 - thus the product $\bar{x}_n \odot \bar{y}_n$ (resp. $\bar{y}_n \odot \bar{x}_n$) is defined, and since $\Sigma(\bar{x}_n, \bar{y}_n, \bar{w}(\bar{u}_n, \bar{x}_n, \bar{u}'_n, \bar{y}_n, \bar{a}), \bar{a}) = 1$ (resp. $\Sigma(\bar{y}_n, \bar{x}_n, \bar{w}(\bar{u}'_n, \bar{y}_n, \bar{u}_n, \bar{x}_n, \bar{a}), \bar{a}) = 1$), we have that the product is $\bar{w}(\bar{u}_n, \bar{x}_n, \bar{u}'_n, \bar{y}_n, \bar{a})$ (resp. $\bar{w}(\bar{u}'_n, \bar{y}_n, \bar{u}_n, \bar{x}_n, \bar{a})$);
 - ▶ but \odot is an abelian group operation, thus $\bar{w}(\bar{u}_n, \bar{x}_n, \bar{u}'_n, \bar{y}_n, \bar{a}) = \bar{w}(\bar{u}'_n, \bar{y}_n, \bar{u}_n, \bar{x}_n, \bar{a})$ for all but finitely many n;
 - ▶ now use the fact that a test sequence does not "kill" any non-trivial element of $G_{T\#T}$.

- Let $w(\bar{u}, \bar{x}, \bar{u}', \bar{y}, \bar{a}) := \alpha_1(\bar{u}, \bar{x}, \bar{a})\beta_1(\bar{u}', \bar{y}, \bar{a}) \dots \alpha_m(\bar{u}, \bar{x}, \bar{a})\beta_m(\bar{u}', \bar{y}, \bar{a})\alpha_{m+1}(\bar{u}, \bar{x}, \bar{a})$ be the normal form of some element in $r(\bar{z}) = \bar{w}(\bar{u}, \bar{x}, \bar{u}', \bar{y}, \bar{a})$ with respect to the amalgamated free product $G_{T\#T} := G_T *_{\mathbb{F}} G_T$.
- $w(\bar{u}, \bar{x}, \bar{u}', \bar{y}, \bar{a}) = w(\bar{u}', \bar{y}, \bar{u}, \bar{x}, \bar{a})$ in $G_{T\#T}$;
- ▶ the normal form theorem for amalgamated free products gives the final contradiction, i.e. $\alpha_1(\bar{u}, \bar{x}, \bar{a})\beta_1(\bar{u}', \bar{y}, \bar{a}) \dots \alpha_m(\bar{u}, \bar{x}, \bar{a})\beta_m(\bar{u}', \bar{y}, \bar{a})\alpha_{m+1}(\bar{u}, \bar{x}, \bar{a}) \neq \alpha_1(\bar{u}', \bar{y}, \bar{a})\beta_1(\bar{u}, \bar{x}, \bar{a}) \dots \alpha_m(\bar{u}', \bar{y}, \bar{a})\beta_m(\bar{u}, \bar{x}, \bar{a})\alpha_{m+1}(\bar{u}', \bar{y}, \bar{a}).$

Questions & Problems

- Understand Def (T_{fg}), e.g. definable/interpretable groups, fields;
- Identify regular types;
- Characterize the superstable part;
- Understand forking independence;
- Does T_{fg} has nfcp?
- ▶ What does a saturated model of T_{fg} look like?