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Introduction

Skew braces are one of the main algebraic tools controlling the
structure of a non-degenerate bijective set-theoretic solution of
the Yang–Baxter equation from statistical mechanics. The aim
of this talk is to present the basic model theory of skew braces
under the additionnal hypothesis of stability.
In particular, we shall characterise ω-categorical stable and
ω-stable skew braces, prove analogues of the Berline-Lascar
and Hrushovski decompositions, and show that an arbitrary
nilpotent skew sub-brace is contained in a definable one of the
same nilpotency class.
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The Yang-Baxter equation

Given a vector space V and a linear map R : V ⊗ V → V ⊗ V ,
the Yang–Baxter equation states that

(R ⊗ id)(id⊗R)(R ⊗ id) = (id⊗R)(R ⊗ id)(id⊗R).

Named after Chen-Ning Yang and Rodney Baxter, it plays an
important role in many areas of mathematics such as knot
theory, braid theory, operator theory, Hopf algebras, quantum
groups, 3-manifolds and the monodromy of differential equations.
In 1990, Drinfel’d posed the question of finding all set-theoretic
solutions of this equation, where V is a set and R :V×V→V×V .
Let R(a,b) = (λa(b), ρb(a)), with λa, ρb :V→V , for all a,b ∈ V .
We say that R is left/right non-degenerate if λa /ρa is bijective
for every a ∈ V , non-degenerate if it is both left and right
non-degenerate, and degenerate otherwise.
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Skew braces
Definition
A set B with two binary operations + and ◦ and a constant 0 is
a skew brace if
• (B,0,+) and (B,0, ◦) are groups (not necessarily abelian),
• a left quasi-distributive law holds:

a ◦ (b + c) = a ◦ b − a + a ◦ c.

If P is a group-theoretic property, a skew brace is of type P if its
additive group satisfies P. Skew braces of abelian type are braces.

When we use group-theoretic notation, we shall indicate by
sub- or superscripts whether we consider them additively or
multiplicatively, e.g. [a,b]+, Z ◦(B), C+

B (X ).
A skew brace is trivial if a + b = a ◦ b for all a,b ∈ B; it is almost
trivial if a + b = b ◦ a for all a,b ∈ B.
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Examples

• Every group can be considered as a trivial brace, or as an
almost trivial brace.
• Skew braces form a variety, and hence are closed under

direct products, ultraproducts, substructures and quotients.
• There is an algorithm to calculate all finite skew braces of a

given size.
• Let (B,+, ·) be a radical ring, i.e. for all b ∈ B there is c ∈ B

with c + b − c · b = 0. Put a ◦ b = a · b + a + b. Then
(B,+, ◦) is a brace.
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Skew braces and the Yang-Baxter equation

Theorem (Guarnieri, Vendramin)
Let B be a skew brace. The map rB : B × B → B × B given by

rB(a,b) = (−a + a ◦ b, (−a + a ◦ b)−1 ◦ a ◦ b)

is a non-degenerate set-theoretic solution of the Yang-Baxter
equation.

The structure group of a set-theoretic solution (X , r) is the group
G(X , r) = 〈X | xy(uv)−1 : r(x , y) = (u, v)〉.

Theorem (Smoktunowicz, Vendramin)
Let (X , r) be a non-degenerate solution. There is a unique
skew brace structure on G(X , r) such that

(ι× ι)r = rG(X ,r)(ι× ι),
where ι : X → G(X , r) is the canonical map. It is universal.
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Algebraic properties of skew braces
It follows from quasi-distributivity that for all a ∈ B the map

λa : x 7→ −a + a ◦ x

is an additive automorphism, and the map

λ : a 7→ λa

is a homomorphism from (B, ◦) to Aut(B,+). We put

G(B) = (B,+) o (B, ◦).

In analogy with ring theory, a third binary operation
(non-necessarily associative) is defined as follows:

a ∗ b = λa(b)− b = −a + a ◦ b − b.

In particular, B is trivial iff B ∗ B = 0.
An easy computation shows that in G(B) we have[

(0,a), (b,0)
]

= (a ∗ b,0).
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Definition
An additive subgroup I of a skew brace B is a left ideal if
λa(I) ⊆ I for all a ∈ B.
A left ideal is an ideal if it is additively and multiplicatively
normal in B.

It is easy to see that an additive subgroup I is a left ideal iff
B ∗ I ⊆ I. Thus a left ideal is also a multiplicative subgroup, and
a + I = a ◦ I for all a ∈ B. (This need not hold for right cosets.)
An additively normal left ideal I is an ideal iff I ∗ B ⊆ I.
Ideals are precisely the kernels of skew brace homomorphisms,
and analogues of the homomorphism theorems hold.
We shall call an ideal trivial if it is trivial as a skew brace.
The socle of B is defined as Soc(B) = Ker(λ) ∩ Z +(B).
The annihilator of B is defined as Ann(B) = Soc(B) ∩ Z ◦(B).
Both the socle and the annihilator are ideals.
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Generic types

Let B be a stable skew brace, and p an additive generic type
over B, realized by some element a. Then for any b ∈ B the
map λb is an additive automorphism, and maps p to another
additive generic type. Therefore

b ◦ p = tp(b ◦ a/G) = tp(b + λb(a)) = b + λb(p)

is again an additive generic type, and p has only boundedly
many multiplicative translates. Hence an additive generic type
is also a multiplicative generic type.
Conversely, if p is a multiplicatively generic type, let b ∈ B be
such that b ◦ p is an additive generic type. So b−1 + λb−1(b ◦ p)
is an additive generic type. But if a realizes p, then
b−1+λb−1(b◦p) = tp(b−1−b−1+b−1◦(b◦a)/G) = tp(a/G) = p.

It follows that additive and multiplicative generic types coincide.
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Connected components
Recall that in a stable group G, there is a unique minimal
type-definable group of bounded index, the connected
component G0. It is the intersection of all definable subgroups
of finite index, and definably characteristic. Moreover, a stable
group is connected iff it has a unique generic type.

Theorem
Let I be a type-definable ideal in a stable skew brace B. Then
I0
+ is an ideal in B, and multiplicatively connected.

Proof.
I0
+ is definably characteristic, whence additively normal and

invariant under λb for all b ∈ B. So it is a left ideal in B, whence
a skew subbrace. It has a unique additive generic type, which is
also its unique multiplicative generic type. So I0

+ is multiplicatively
connected, and I0

+ = I0
◦ =: I0. Since I0

◦ is multiplicatively
definably characteristic, it is normal in B, and an ideal.
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Definable hulls
As customary, given a subgroup H of a stable group G, the
definable hull H̄ of H is the intersection of all definable
supergroups of H. Obviously, it is a type-definable group. In the
skew brace context, if H is a subgroup (additive or multi-
plicative) of B, we indicate this by a superscript: H̄+ and H̄◦.
If C is a skew sub-brace of B, it seems very difficult to obtain a
definable hull which is a brace, since the lack of a right (quasi-)
distributive law means that there is only little connection
between the additive and the multiplicative hull. The same
holds for ideals instead of skew subbraces.
On the other hand, if I is a left ideal, Ī+ is again a left ideal,
since for any b ∈ B we have λb(I) = I, so λb (̄I+) = Ī+.
However, there are two cases where we actually do get
definable skew sub-braces / ideals, namely when C is a
component, or when C is trivial (or more generally nilpotent).
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Components
Let Φ be an invariant collection of partial types.

Fact
Let G be a stable group, g realize its principal generic type, and

gΦ = (g0 ∈ dcl(g) : tp(g0) is Φ-internal).

Then there is a unique normal type-definable subgroup N of G
such that dcl(gΦ) = dcl(gN). It does not depend on the choice
of g, and is definably characteristic.

N is the intersection of all definable subgroups H such that
G/H is Φ-internal.
Note that a priori N need not be connected.

Definition
We call N the Φ-component of G, denoted GΦ.
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Theorem
Let B be a connected stable skew brace, and Φ an invariant
collection of partial types. Then the additive Φ-component BΦ

+ is
an ideal in B.

Proof.
Since BΦ

+ is definably characteristic, it is additively normal and
invariant under λb for all b ∈ B, whence a left ideal.
Thus BΦ

+ is a multiplicative subgroup, and the multiplicative
quotient B/BΦ

+ is Φ-internal (since additive and multiplicative
cosets are the same). But then BΦ

◦ ≤ BΦ
+, and for a generic g

we have
dcl(gBΦ

+) = dcl(gΦ) = dcl(gBΦ
◦ ).

As B is connected, this can only happen if BΦ
+ = BΦ

◦ =: BΦ. It
follows that BΦ is multiplicatively normal, whence an ideal.
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Note that if I is a connected type-definable ideal of B, then Iφ is
additively and multiplicatively definably characteristic, whence
an ideal in B.

Corollary (Berline-Lascar analysis)
If U(B) =

∑
i≤k ω

αi · ni and Φ = {p : U(p) < ωαj}, then (B0)Φ is
the unique type-definable connected ideal of Lascar-rank∑

i≤j ω
αi · ni .

Corollary (Hrushovski analysis)
Let π be a partial type such that a generic type of B is not
foreign to π. Then there is a unique minimal type-definable
ideal I of infinite index such that B/I is π-internal.

Again, I need not be connected.
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Nilpotency

While nilpotency in a group is about how far the group law is
from being commutative, and nilpotency in a ring is about how
far multiplication is from being null, nilpotency in a skew brace
is about how far multiplication is from addition, i.e. how far the
brace is from being trivial.
Due to the lack of associativity of the ∗-product, and depending
on whether we also require additive or multiplicative centrality,
there are various kinds of nilpotency in skew braces:

1. Annihilator-nilpotency,
2. Socle-nilpotency,
3. Right nilpotency, and
4. Left nilpotency.

We have 1.⇒ 2.⇒ 3. and 1.⇒ 4.
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Annihilator-nilpotency

We define the upper annihilator series as follows:

Ann0(B) = (0),

Annn+1(B) = {b ∈ B : b ∗ B, [b,B]+, [b,B]◦ ⊆ Annn(B)},

and the lower annihilator series as:

Γ0(B) = B,
Γn+1(B) = 〈Γn(B) ∗ B,B ∗ Γn(B), [B, Γn(B]+, [B, Γn(B]◦〉+.

All of the above are ideals in B, and B is annihilator-nilpotent of
class n if Annn(B) = B iff Γn(B) = (0).
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Socle-nilpotency

We define the (upper) socle series as follows:

Soc0(B) = (0),

Socn+1(B) = {b ∈ B : b ∗ B, [b,B]+ ⊆ Socn(B)},

and the lower socle series as:

∆0(B) = B,
∆n+1(B) = 〈∆n(B) ∗ B,B ∗∆n(B), [B,∆n(B]+〉+.

All of the above are ideals in B, and B is socle-nilpotent of class
n if Socn(B) = B iff ∆n(B) = (0).
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Right and left nilpotency

We define two descending series B(n) and Bn as follows:

B(1) = B B1 = B,

B(n+1) = 〈B(n) ∗ B〉+ Bn+1 = 〈B ∗ Bn〉+.

While the B(n) are ideals, in general the Bn are only left ideals
in B, and Bn+1 is an ideal in Bn.
B is right nilpotent of class n if B(n+1) = (0), and left nilpotent of
class n if Bn+1 = (0).

Theorem (Cedo, Smoktunowicz, Vendramin)
B is socle-nilpotent iff B is right nilpotent of nilpotent type.
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ω-categorical stable skew braces

Theorem
Let B be an ω-categorical stable skew brace. Then B has an
ideal I of finite index which is left nilpotent of nilpotent type; if B
is ω-stable, then I is trivial.

Proof.
Put I = B0, a connected ideal of finite index in B. We consider
G(I), a connected stable ω-categorical group. It must be
nilpotent; if B (and I) are ω-stable, it is abelian.
In the latter case it follows immediately that I is trivial.
In the stable case, it suffices to note that in G(I) for all n

In × (0) = [(0)× γn(I, ◦), (I,+)× (0)] ≤ γnG(I).

Since γnG(I) = (1) for n sufficiently large, In = (0).
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Definable hulls of nilpotent skew sub-braces

Theorem
Let B be a stable skew brace, and C a skew sub-brace. Then C
is contained in a definable skew sub-brace D such that:

1. If C is annihilator-nilpotent of class n, so is D.
2. If C is socle-nilpotent of class n, so is D.
3. If C is right nilpotent of class n, so is D.
4. If C is left nilpotent of class n, so is D.
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Sketch of proof
Recall that if G is a group, A a subgroup and X a set, then
CG(X/A) = {g ∈ NG(A) : [g,X ] ⊆ A}, and Z (G/A) = CG(G/A).
We define a similar notion with respect to triviality rather than
commutativity. (If A is trivial, it is omitted.)
Let B be a brace, A and H additive subgroups, G a multiplicative
subgroup, and X ⊆ B and Y ⊆ StabB(A) subsets.

StabG(A) = {h ∈ G : λh(A) = A},
Fixl

G(X/A) = {y ∈ StabG(A) : λy (x) ∈ x + A for all x ∈ X},
Fixr

H(Y/A) = {x ∈ N+
H (A) : λy (x) ∈ x + A for all y ∈ Y}.

• g ∈ StabG(A) iff g ∈ G and g ◦ A = g + A.
• StabG(A) and Fixl

G(X/A) are multiplicative subgroups of G.
• Fixr

H(Y/A) is an additive subgroup of H.
• y ∈ Fixl

B(x/A) iff x ∈ Fixr
B(y/A), for y ∈ StabB(A), x ∈ N+

B (A).
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Recall that

Annn+1(C) = Z +(C/Annn(C))∩Z ◦(C/Annn(C))∩Fixl
C(C/Annn(C)).

We define inductively G0 = H0 = B and A∗0 = A0 = {0}, and put

Gn+1 = C◦Gn
(Annn+1(C)/An) ∩ StabGn (An),

Hn+1 = Fixr
Hn

(Annn+1(C)/An) ∩ C+
Hn

(Annn+1(C)/An),

A∗n+1 = Fixl
Gn+1

(Hn+1/An) ∩ Z ◦(Gn+1/An) ∩ Z +(Hn+1/An), and

An+1 =
⋂
c∈C

λc(A′n+1).

1. Gn is a multiplicative and Hn an additive subgroup.
2. An ⊆ Gn ∩ Hn and C ⊆ Gn ∩ Hn.
3. A∗n and An are skew sub-braces, annihilator-nilpotent of

class n.
4. An ∩ C = Annn(C).

In particular, if C is annihilator-nilpotent of class c, then C ≤ Ac .
The proofs of the other cases are similar.
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Concluding remarks
We define inductively the derived series as

B(1) = B, B(n+1) = B2
(n) = 〈B(n) ∗ B(n)〉+.

The skew brace B is soluble of derived length ` if B(`+1) = (0).

Questions

• Is every soluble skew sub-brace of a stable brace
contained in a definable on of the same derived length?
• Is a type-definable skew sub-brace intersection of

definable skew sub-braces?
• Is a type-definable skew brace contained in a definable

skew brace?
• Can the results be generalized to other neostability

hypotheses (simplicity, dependence, o-minimality, NSOP,
pseudofiniteness,. . . )?
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Thank you
and

Happy Birthday, Katrin !
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