## Appendix to "Production of faces of the Kronecker cone containing only stable triples" <br> All possible order matrices of size $3 x 3$

There are 36 possible order matrices (i.e. 36 types of additive matrices) of size $3 \times 3$ :
(1) $\left(\begin{array}{lll}\left.\begin{array}{ll}1 & (2) \\ (4) & (3) \\ (7) \\ 7 & 8 \\ (9)\end{array}\right)\end{array}\right.$
(2) $\left(\begin{array}{lll}(1) & (2) & (3) \\ 4 & (5) & (7) \\ (6) & (8) & (9)\end{array}\right)$
(3) $\left(\begin{array}{lll}(1) & (2) & (3) \\ (4) & (5) & (8) \\ (6) & 7 & (9)\end{array}\right)$
(4) $\left(\begin{array}{lll}\begin{array}{ll}1 & (2) \\ (4) & (3) \\ (5) \\ (5) & 8\end{array} & (9)\end{array}\right)$
(5) $\left(\begin{array}{lll}\begin{array}{ll}11 & (2) \\ (4) & (3) \\ (8) \\ (5) & 7\end{array} & (9)\end{array}\right)$
(6) $\left(\begin{array}{lll}\left.\begin{array}{ll}1 & (2) \\ (4) \\ (3) & 5 \\ (7) \\ (8) & (9)\end{array}\right)\end{array}\right.$
(7) $\left(\begin{array}{lll}\left.\begin{array}{ll}(1) & (2) \\ (3) \\ (5) & 7 \\ (6) & 8 \\ \hline 9\end{array}\right)\end{array}\right.$
(8) $\left(\begin{array}{lll}\begin{array}{ll}1 & (2) \\ (3) \\ (3) & (8) \\ (6) & 7\end{array} & (9)\end{array}\right)$
(9) $\left(\begin{array}{lll}(1) & (2) & (4) \\ (3) & 6 & 7 \\ (5) & 8 & 9\end{array}\right)$
(10) $\left(\begin{array}{lll}1 & (2) & (4 \\ 3 & (6) & 8 \\ (5) & 7 & 9\end{array}\right)$
(11) $\left(\begin{array}{lll}1 & (2) & (5) \\ 3 & 4 & 6 \\ (7) & 8 & (9)\end{array}\right)$
(12) $\left(\begin{array}{lll}11 & (2) & (5) \\ (3) & 4 & 7 \\ (6) & 8 & 9\end{array}\right)$
(13) $\left(\begin{array}{lll}1 & (2) & (5) \\ 3 & 4 & 8 \\ (6) & 7 & (9)\end{array}\right)$
(14) $\left(\begin{array}{lll}1 & (2) & (5) \\ (3) & (6) & 8 \\ 4 & (7) & 9\end{array}\right)$
(15) $\left(\begin{array}{lll}1 & (2) & (6) \\ 3 & 4 & 8 \\ (5) & 7 & 9\end{array}\right)$
(16) $\left(\begin{array}{lll}1 & (2) & (6) \\ 3 & (5) & 8 \\ 4 & (7) & (9)\end{array}\right)$
(17) $\left(\begin{array}{lll}1 & (2) & (7) \\ 3 & 4 & 8 \\ (5) & (6) & (9)\end{array}\right)$
(18) $\left(\begin{array}{lll}1 & (2) & (7) \\ 3 & (5) & 8 \\ 4 & (6) & 9\end{array}\right)$
and exactly all the transposed matrices of these ones (that we number in the same way: the transposed matrix of Matrix (k) has number $18+\mathrm{k}$ ). Respectively associated dominant, regular, $\hat{G}$-regular one-parameter subgroups are for instance:
$\tau_{1}=[6,3,0 \mid 2,1,0]$

$$
\begin{array}{cccc}
\tau_{1}=[6,3,0 \mid 2,1,0] & \tau_{2}=[10,4,0 \mid 5,2,0] & \tau_{3}=[8,2,0 \mid 4,3,0] & \tau_{4}=[10,3,0 \mid 6,2,0] \\
\tau_{5}=[7,1,0 \mid 4,2,0] & \tau_{6}=[8,5,0 \mid 4,2,0] & \tau_{7}=[6,3,0 \mid 4,2,0] & \tau_{8}=[12,5,0 \mid 10,6,0] \\
\tau_{9}=[12,5,0 \mid 10,4,0] & \tau_{10}=[9,2,0 \mid 8,4,0] & \tau_{11}=[7,5,0 \mid 4,3,0] & \tau_{12}=[12,8,0 \mid 9,6,0] \\
\tau_{13}=[10,6,0 \mid 8,7,0] & \tau_{14}=[8,2,0 \mid 9,4,0] & \tau_{15}=[8,4,0 \mid 9,6,0] & \tau_{16}=[8,2,0 \mid 10,7,0] \\
& \tau_{17}=[4,2,0 \mid 6,5,0] & \tau_{18}=[4,1,0 \mid 7,5,0] &
\end{array}
$$

$$
\tau_{5}=[7,1,0 \mid 4,2,0]
$$

(for the transposed matrices, one simply has to exchange the roles of $V_{1}$ and $V_{2}$ ).
Then each one of these matrices gives exactly one "additive face" of $\mathrm{PKron}_{n_{1}, n_{2}}$ by the result of Manivel and Vallejo, i.e. one well-covering pair. Moreover, by Theorem
3.17, they also give other such pairs. Here are the numbers of "new" well-covering pairs that each one gives by this theorem:
(1) 6
(2) 4
(3) 5
(4) 5
(5) 5
(6) 4
(7) 2
(8) 3
(9) 3
(10) 3
(11) 5
(12) 3
(13) 4
(14) 4
(15) 3
(16) 3
(17) 5
(18) 5

Each transposed matrix gives furthermore by Theorem 3.17 the same number of wellcovering pairs as the original one. As a consequence that makes a total of 144 "new" well-covering pairs.

In addition Theorem 3.18 provides from these 36 order matrices a certain number of dominant pairs. Among them, some of them are probably well-covering while others do not in fact define a new face of PKron ${ }_{3,3}$. Here are the numbers of "new" dominant pairs that each order matrix gives (for the transposed matrix, it will be the same):
(1) 6
(2) 4
(3) 9
(4) 9
(5) 12
(6) 4
(7) 2
(8) 5
(9) 3
(10) 6
(11) 9
(12) 3
(13) 6
(14) 6
(15) 6
(16) 5
(17) 12
(18) 9
(232 dominant pairs in total.)

[^0]
[^0]:    ${ }^{1}$ one would have to check that they are pairwise distinct

