Mémo sur les structures

I. Groupes, sous groupes

<u>Définition</u>: G un ensemble et * un loi interne. (G,*) est un groupe si et seulement si

1) G n'est pas vide

2) chaque élément de G est inversible

On appelle groupe commutatif ou abélien les groupes munis d'une loi commutative.

<u>Définition</u>: Soit (G,*) un groupe et H une partie de G.

H est un sous groupe de $G \Leftrightarrow (H, *)$ est un groupe

H est un sous groupe de $(G,^*) \Leftrightarrow H \subset G, H \neq \emptyset$ et $\forall (x,y) \in H^2 x^*y^{-1} \in H$

<u>Définitions</u>: (G,*) et (H,#) deux groupes d'éléments neutre e_G et e_H, f une application de G dans H.

On dit que f est un morphisme de groupe $\Leftrightarrow \forall (x,y) \in G^2 f(x*y) = f(x) \# f(y)$

Propriétés : Ker $f = \{x \in G, f(x) = e_H\}$ est un sous groupe de G

Im $f = \{y \in H, \exists x \in G \ y = f(x)\}\$ est un sous groupe de H

 $f(e_G) = e_H$

f est injective \Leftrightarrow ker $f = \{e_G\}$

II. Anneaux, idéaux

<u>Définition</u>: Soit A un ensemble muni de deux lois internes notées en général + et .

On dit que (A,+, .)est un anneau si et seulement si :

1) (A,+) est un groupe commutatif d'élément neutre 0_A

2) . est distributive à droite et à gauche sur +

3) La loi . admet un neutre différent de 0_A noté 1_A

Si de plus la loi . est commutative on dit que l'anneau est commutatif ou abélien.

<u>Définition</u>: Soit I une partie de A.

On dit que I est un idéal à gauche (à droite) de $A \Leftrightarrow (I,+)$ est un sous groupe de A

 $\forall a \in A \ \forall x \in I \ ax \in I \ (xa \in I)$

Un idéal à gauche et à droite de A est appelé idéal bilatère de A ou idéal de A

<u>Définition</u>: Soit (A,+,.) un anneau et I un idéal de A

I est principal à gauche $\Leftrightarrow \exists a \in A$ tel que I = A.a ($\forall x \in I \exists y \in A, x = y.a$)

I est principal à droite $\Leftrightarrow \exists a \in A \text{ tel que } I = a.A \ (\forall x \in I \ \exists y \in A, \ x = a.y)$

Un idéal principal à droite et à gauche est dit principal (si A est commutatif par

exemple)

Autrement dit un idéal principal est un idéal engendré par un élément a de A

<u>Définition:</u> Un anneau intègre dont tous les anneaux sont principaux est dit principal.

<u>Définition</u>: Soient (A,+,.) et (B,+,.) deux anneaux (pas forcément munis des même lois) et f une

application de A dans B

f est un morphisme d'anneau \Leftrightarrow $f(1_A) = 1_B$ et \forall $(x,y) \in A^2$ f(x+y) = f(x) + f(y) f(x,y) = f(x).f(y)

Remarque: Le noyau de f est une partie de A qui n'est pas un sous anneau de A.

Propriété: f un morphisme d'anneau de A dans B

Ker $f = f^{-1}\{0_B\}$ est un idéal de A

III. Corps, Espace Vectoriel, Algèbre

Définition : Soit IK un ensemble munis de deux lois internes + et .

IK est un corps \Leftrightarrow (IK ,+,.) est un anneau

 $O_{IK} \ \neq 1_{IK}$

 $\forall x \in IK \setminus \{0\}$ x est inversible pour.

Autrement dit IK est un groupe pour les deux lois.

<u>Définition</u>: IK un corps, on appelle IK espace vectoriel (ou IK ev) tout ensemble E muni d'une loi interne notée + et d'une loi externe de K \times E \rightarrow E telles que

1) (E,+) est un groupe abélien

2) \forall $(k,l) \in K^2 \forall x \in E$ (k+l)x = kx + lx

3) $\forall k \in K \ \forall (x,y) \in E^2$ k(x+y) = kx + ky

4) \forall (k,l) \in K² \forall x \in E k(lx) = (kl)x

5) $\forall x \in E$ 1x = x

Les éléments de E sont appelés des vecteurs, ceux de K des scalaires

<u>Définition</u>: Soit K un corps commutatif. On dit que A est une K algèbre ⇔

1) A est un K ev

2) Il existe une troisième loi, interne sur A, notée ×, telle que

1. $(A,+,\times)$ est un anneau ie \times est distributive sur +

2. $\forall k \in K \ \forall (x,y) \in A^2 \ k(x \times y) = (kx) \times y$

Exemple: K[X] muni de l'addition et du produit de convolution est une K algèbre

L(E) muni de l'addition et de la composition est une K algèbre $M_n(K)$ muni de l'addition et du produit matriciel est une K algèbre

1

<u>Définition</u>: On appelle morphisme d'algèbre une application linéaire pour les deux lois internes.

Exemples: $\pi_f: P \to p(f)$ où $f \in L(E)$ est un morphisme d'algèbre

 $\pi_M: P \to p(M)$ où $M \in M_n(K)$ est un morphisme d'algèbre