Groupe « mathématiques dynamiques » – IREM DE LYON Tangentes et courbes exponentielles.

1 Fiche prof

Niveau. Classes de terminales.

Connaissances mathématiques. Tangentes à une courbe, fonction exponentielle.

- **Techniques geogebra.** Définition des objets usuels (courbe, point sur courbe, tangente à une courbe, point d'intersection, distance).
 - Enregistrer les valeurs prises par un objet des fenêtres graphique/algèbre dans une colonne du tableur (en vue de conjecturer une formule).
 - Utilisation des commandes du calcul formel pour amorcer la partie démonstration (l'utilisation du calcul formel facilite ici la gestion par les élèves de la présence de paramètres).

2 Le sujet

Le plan est muni d'un repère orthonormé.

Pour tout entier naturel non nul k, on définit sur \mathbb{R} la fonction $f_k : x \mapsto \exp(kx)$.

On nomme C_k la courbe représentative de f_k .

Soit a un réel (fixé).

On note A_k le point d'abcisse a de la courbe \mathcal{C}_k .

On nomme \mathcal{T}_k la tangente à la courbe \mathcal{C}_k en A_k .

On nomme C le point de l'axe des abscisses ayant même abscisse que A_k .

Et on nomme B_k le point d'intersection de l'axe des abscisses avec \mathcal{T}_k .

- 1. Définir un curseur k prenant des valeurs entières, la courbe C_k puis construire un point A sur la courbe.
- 2. Définir ensuite la tangente en A à la courbe et le point B, point d'intersection de la courbe de f avec l'axe des abscisses.
- 3. Définir en ligne de saisie le point C puis la variable CB=distance[C, B].
- 4. Enregistrer en colonne A du tableur les valeurs du curseur k et en colonne B les valeurs de CB.
- 5. Recommencer avec une autre valeur de a.
- 6. Qu'observe-t-on? Émettre une conjecture sur l'expression de la distance CB_k en fonction de k.
- 7. Mener les calculs nécessaires à la démonstration de la conjecture précédente avec l'outil de calcul formel.
- 8. Rédiger intégralement la démonstration.

3 Éléments de techniques geogebra

1. On peut définir un curseur en ligne de saisie en tapant par exemple k=1 dans cette ligne de saisie.

Saisie: k=1

On règle ensuite les paramètres par un clic droit sur l'objet (propriétés).

Basique Curseur Couleur Style Position Avancé Script
Intervalle
min: 1 max: 150 Incrément: 1
Curseur
🗌 fixé 🗌 Aléatoire horizontal 💌 Largeur: 300 px
Animation
Vitesse: 1 Répéter: ⇔ Alterné <

On définit de même la fonction $f: x \mapsto \exp(kx)$ en ligne de saisie.

```
Saisie: f(x)=exp(k*x)
```

On peut ensuite définir un point A sur la courbe de f par la commande suivante (ou par les menus graphiques) :

Saisie: A=Point[f]

2. On peut obtenir la tangente (et son tracé) par la commande suivante (ou par les menus graphiques) :

Saisie: T=Tangente[A,f]

Puis le point d'intersection de la courbe avec l'axe des abscisses par la commande suivante (ou par les menus graphiques) :

Saisie: B=Intersection[axeX, T]

3. On définit d'abord le point $C(x_A, 0)$.

Saisie: C=(x(A), 0)

puis la distance CB :

Saisie: CB=Distance[C,B]

4. Enregistrer en colonne A du tableur les valeurs du curseur k et en colonne B les valeurs de CB. Ouvrons tout d'abord le tableur (menu Affichage/Tableur).

Ensuite clic droit sur k, sélectionner « en registrer dans tableur », règler de façon à pouvoir en registrer toutes les valeurs de ${\bf k}$:

🛛 😣 Enregistrer dans Tat	oleur
Nombre k	Localisation Ligne de départ: 1
	Nombre de lignes: 150
	Trace :
	Valeur de k
	O Copie de k
	Options
	Afficher l'étiquette
	Trace vers Liste
1	🔲 Réinitialiser Colonne
🖉 Retirer 📎 Effa	acer toutes les traces Fermer

puis clic droit sur CB et sélectionner de même enregistrer dans tableur et régler de même.

8 Enregistrer dans Tab	leur
Nombre k Nombre CB : Distance de C	Localisation Ligne de départ: 1 Nombre de lignes: 150
	Trace : Valeur de CB Copie de CB
	Options ✔ Afficher l'étiquette ☐ Trace vers Liste ☐ Réinitialiser Colonne
🖉 Retirer 🛛 🏷 Effa	acer toutes les traces Fermer

On tire ensuite le curseur k vers la droite (lentement, sinon beaucoup de valeurs de k sont sautées) : les valeurs successives de k et CB s'enregistrent dans les deux premières colonnes de la feuille tableur.

5. On obtient les mêmes résultats avec une autre valeur de $a = x_A$. La distance CB_k semble donc ne pas dépendre de a.

- 6. On conjecture $CB_k = \frac{1}{k}$, conjecture « renforcée » en entrant la formule =1/A2 en cellule C2 puis en tirant cette formule vers le bas : on obtient une colonne C identique à la colonne B.
- 7. Dans la fenêtre de calcul formel, on peut entrer les commandes suivantes :

▶ C	alcul formel 🛛 🛛 🛛
1	$g(x):=\exp(r^*x)$ $\rightarrow g(x) := e^{rx}$
2	Tangente[a,g] \rightarrow y = e^{ra} r (x - a) + e^{ra}
3 O	Résoudre[{y=0, y = e^(r a) r (x - a) + e^(r a)}, {x,y}] → $\left\{ \left\{ x = \frac{a r - 1}{r}, y = 0 \right\} \right\}$
4	dg(x):=Dérivée[g(x),x] $\rightarrow dg(x) := r e^{rx}$
5	h(x):=dg(a)*(x-a)+g(a) $\rightarrow h(x) := -a r e^{ar} + r x e^{ar} + e^{ar}$

- **Remarque 1.** Pour écrire l'expression $y = e^{(r a)} r (x a) + e^{(r a)} dans le système en ligne 3, il suffit de cliquer sur cette même expression en ligne 2.$
- **Remarque 2.** Dériver et résoudre un système peut également être obtenus en passant par les menus de la fenêtre de calcul formel.