Reconstruction de formes en grandes dimensions

Dominique Attali

Co-authors: André Lieutier, David Salinas

Conférence Mathématiques et Grandes Dimensions de la théorie aux développements industriels

> 10 décembre 2012 Lyon

in 3D

Shape

in dD

How to reconstruct without building the whole Delaunay complex?

Rips complexes

our approach with André Lieutier and David Salinas

Rips complexes

 $\operatorname{Rips}(P, \alpha) = \{ \sigma \subset P \mid \operatorname{Diameter}(\sigma) \le 2\alpha \}$

 $\operatorname{Rips}(P,\alpha) \supset \operatorname{Cech}(P,\alpha)$

Overview

Can be high-dimensional!

Simplification by iteratively applying elementary operations

- Identifies vertices a and b to vertex c
- Preserves homotopy type if $Lk(ab) = Lk(a) \cap Lk(b)$

The result may not be a flag complex anymore ...

 \implies data structure = (1-skeleton, blocker set)

 σ blocker of K iff dim $\sigma \geq 2$, $\forall \tau \subsetneq \sigma, \tau \in K$ and $\sigma \notin K$

***** Collapse of a simplex σ

Removes σ and its cofaces

- Preserves homotopy type if $Lk(\sigma)$ is a cone
- The result is a flag complex if σ a vertex or an edge

Physical system

Is high-dimensional!

Reconstruction theorems

Reconstruction theorems

Cech complex

Cech complex

 $MedialAxis(A) = \{ m \in \mathbb{R}^d \mid m \text{ has at least two closest points in } A \}$

 $\operatorname{Reach} A = d(A, \operatorname{MedialAxis}(A))$

Cech complex

Rips complexes

 $\operatorname{Rips}(P, \alpha) = \{ \sigma \subset P \mid \operatorname{Diameter}(\sigma) \le 2\alpha \}$

 $\operatorname{Rips}(P,\alpha) \supset \operatorname{Cech}(P,\alpha)$

When distances are measured using L_{∞}

 $\operatorname{Rips}(P,\alpha) = \{ \sigma \subset P \mid \operatorname{Diameter}(\sigma) \leq 2\alpha \}$

 $\operatorname{Rips}(P, \alpha) = \operatorname{Cech}(P, \alpha)$

 $P + \alpha B^{\infty}(0,1)$

 $P+\alpha C$

 $P+\alpha C$

 $P+\alpha C$

where C compact convex set that satisfies:

- (i) $B(0,1) \subset C \subset \delta B(0,1)$ for some $\delta \ge 1$; ("distortion" to unit ball)
- (ii) C is (θ, \varkappa) -round for $\theta = \arccos(-\frac{1}{d})$ and $\varkappa > 0$; ("curvature")
- (iii) C is ξ -eccentric for $\xi < 1$. ("distance" between $\bigcap_{q \in Q} (q + C)$ and $\operatorname{Hull}(Q)$)

Admissible values of ε and α are solutions of a system of equations that depends upon (δ, \varkappa, ξ) .

C	d	λ	η
<i>d</i> -ball with [NSW04]	$\forall d$	$3 - \sqrt{8} \approx 0.17$	$2 + \sqrt{2} \approx 3.41$
<i>d</i> -ball with this proof	$\forall d$	0.077	3.96
	2	0.04	4.04
	3	0.01	6.14
<i>d</i> -cube	4	0.004	8.18
	5	0.002	10.2
[Rips (P, α) with ℓ_{∞}]	10	0.0002	20.23
	100	0.000002	200.23

What now?

- ***** The largest ratio $\frac{\varepsilon}{\operatorname{Reach} A}$ that we get for $\operatorname{Rips}(P, \alpha)$ with ℓ_{∞} :
 - # Decreases quickly with d
 - ℁ Is it tight?

Input

easy to compute

Rips and Cech complexes generally don't share the same topology, but ...

Deduce a condition under which the topology of $\{\operatorname{Cech}(P,t) \cap \operatorname{Rips}(P,\alpha)\}_{\alpha < t < \vartheta_d \alpha}$ is "stable"

0

Sublevel sets of $d(\cdot, P)$ are offsets of P.

Sublevel sets of $d(\cdot, P)$ are offsets of P. Topology of sublevel sets changes at critical values t_0 .

Sublevel sets of $d(\cdot, P)$ are offsets of P. Topology of sublevel sets changes at critical values t_0 .

Sublevel sets of $d(\cdot, P)$ are offsets of P. Topology of sublevel sets changes at critical values t_0 .

Sublevel sets of $d(\cdot, P)$ are offsets of P.

• Topology of sublevel sets changes at critical values t_0 .

 \bigstar t_0 critical value $\iff c_P(t_0) = t_0$

 $c_P(t) = d_H(\operatorname{Centers}(P, t) \mid P)$

 $\{\operatorname{Cech}(P,t)\cap\operatorname{Rips}(P,\alpha)\}_{\alpha\leq t\leq\vartheta_d\alpha}$

Shapes with a positive reach

Reconstruction	d	λ	η
P^{α} with [NSW04]	$\forall d$	$3 - \sqrt{8} pprox 0.17$	$2 + \sqrt{2} \approx 3.41$
$\operatorname{Rips}\left(P,\alpha\right)$	2	0.063	5.00
	3	0.055	5.46
	4	0.050	5.76
	5	0.047	5.97
	10	0.041	6.50
	100	0.035	7.22
	$+\infty$	$\frac{2\sqrt{2-\sqrt{2}}-\sqrt{2}}{2+\sqrt{2}}\approx 0.0340$	7.22

Overview

Can be high-dimensional!

Does simplification exist?

How to get an object with the right dimension?

- **Different strategies:**
 - * Edge contractions;
 - * Vertex and edge collapses ...
 - * Seems to work well in practice

- And yet, not all obvious that the Rips complex whose vertices sample a shape contains a subcomplex homeomorphic to that shape.
 - * A triangulated Bing's house is contractible but not collapsible

* Geometry has to play a key role.

 $\operatorname{Rips}(P, \alpha)$

Future work

Shapes with α -nice triangulations?

How to turn all this into a practical algorithm?

- In general
 - * Collapsibility of 3-complexes is NP-hard [Martin Tancer 2012]
 - * Geometry has to play a key role.
- For Rips complexes
 - * whose vertices sample a convex set, a 0-manifold or a 1-manifold
 - * How to go beyond?

Wrap-up

- Fonction de distance, théorie de Morse, points critiques, gradient, axe médian, reach, ...
- Homéomorphisme, type d'homotopie, se rétracte par déformation, ...
- Complexes simpliciaux abstraits, Nerves, Flag complexes, collapse, ...
- Triangulation de Delaunay, Cech complex, Rips complex, ...
- Structure de données, complexité, preuves de NP-complétude, ...

References

- [AL10] D. Attali and A. Lieutier. Reconstructing shapes with guarantees by unions of convex sets. In Proc. 26th Ann. Sympos. Comput. Geom., pages 344–353, Snowbird, Utah, June 13-16 2010.
- [ALS12a] D. Attali, A. Lieutier, and D. Salinas. Efficient data structure for representing and simplifying simplicial complexes in high dimensions. International Journal of Computational Geometry and Applications (IJCGA), 22(4):279–303, 2012.
- [ALS12b] D. Attali, A. Lieutier, and D. Salinas. Vietoris-Rips complexes also provide topologically correct reconstructions of sampled shapes. Computational Geometry: Theory and Applications (CGTA), 2012.
- [AL13] D. Attali and A. Lieutier. Geometry driven collapses for converting a Cech complex into a triangulation of a shape. In 29th Ann. Sympos. Comput. Geom., Rio de Janeiro, Brazil, June 17–20 2013. Submitted.
- [ALS13] D. Attali, A. Lieutier, and D. Salinas. Collapsing Rips Complexes. In 29th Ann. Sympos. Comput. Geom., Rio de Janeiro, Brazil, June 17–20 2013. Submitted.

