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Reconstruction

Shape

Simplicial complexn points

Processing

Medial axis
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Volume

. . .

Signatures
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Input Output
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in R2

ProcessingReconstruction

Simplicial complex Medial axisn points

in 2D

Input Output
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in R2

ProcessingReconstruction

Simplicial complex Medial axisn points

in 2D

Delaunay complex

Building Heuristics(1995 – 2005)

(Crust, Power crust, Co-cone, Wrap, . . . )

Delaunay of 10M points in 2D ≈ 10 sEmpty circle property ✴ In R2, has size O(n)



Delaunay of 10M points in 3D ≈ 80 sEmpty sphere property
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in R3

ProcessingReconstruction

Simplicial complex Medial axis

Delaunay complex

n points

in 3D

Building (1995 – 2005)

(Crust, Power crust, Co-cone, Wrap, . . . )

✴
In practice, has size O(n)✴

In R3, has size O(n2)
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ProcessingReconstruction

Simplicial complex

Delaunay complex

in Rd
n points

curse of dimensionality

Shape

Medial axis

Betti numbers

Volume

. . .

Signatures

Rd

in dD

✴

In Rd, has size O(n!d/2")✴

The bound is tight (and achieved for points that sample curves).

Building
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/////////////Building

ProcessingReconstruction

Simplicial complex

Delaunay complex

How to reconstruct without Delaunay?

in Rd
n points

Shape

Medial axis

Betti numbers

Volume

. . .

Signatures

Rd

in dD



8

/////////////Building

ProcessingReconstruction

Simplicial complex

Delaunay complex

How to reconstruct without Delaunay?

in Rd
n points

Shape

Medial axis

Betti numbers

Volume

. . .

Signatures

Guaranties on the result?

Rd

in dD
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How to reconstruct without building 
the whole Delaunay complex?

 

 

 

weak Delaunay triangulation
[V. de Silva 2008]

tangential Delaunay complexes

[J. D. Boissonnat & A. Ghosh 2010]

tangent plane

Rips complexes

our approach with André Lieutier and David Salinas

Landmarks

witnesses
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Rips(P, α) = {σ ⊂ P | Diameter(σ) ≤ 2α}

easy to compute

compressed form of  storage through the 1-skeleton

a

✹
✹

✹

Rips(P, α) ⊃ Cech(P, α)

✹ proximity graph          connects every pair of  points within        Gα

Rips(P, α) = FlagGα
[FlagG = largest complex whose 1-skeleton is G]

Rips complexes

α

2α

b

c
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Shape

Point cloud in Rips complex Triangulation

Reconstruction Simplification

➊

➋ ≈

!

Overview

Can be high-dimensional!

Is it possible to find sampling conditions which guarantee?

R
d
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Simplification by iteratively 
applying elementary operations

 Contraction

Collapse ab

Edge contraction ab !→ c

 Collapse of a simplex σ

 
 
 

 
 
 

Identifies vertices a and b to vertex c

Preserves homotopy type if Lk(ab) = Lk(a) ∩ Lk(b)

The result may not be a flag complex anymore . . .

(1-skeleton, blocker set)

σ blocker of K iff dimσ ≥ 2, ∀τ ! σ, τ ∈ K and σ $∈ K

Removes σ and its cofaces

Preserves homotopy type if Lk(σ) is a cone

The result is a flag complex if σ a vertex or an edge

a b
c

a b

x

y

x

y

=⇒ data structure =



Physical system
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Correct homotopy type

Point cloud in R
128

2

Rips complex

Correct intrinsic dimension

Example

Is high-dimensional!

Polygonal curve
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P

A

dH(A,P ) < λ feature size(A)

Reconstruction(P, α)

Sampling conditions:

Input Output

=⇒ "

Reconstruction theorems
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P

A

dH(A,P ) < λ feature size(A)

Reconstruction(P, α)

Sampling conditions:

Input Output

=⇒ "

Reconstruction theorems
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Nerve Lemma.!

Nerve C = {η ⊂ C |
⋂

η "= ∅}

⋃
C, where C finite collection of sets

If sets in C are convex

Nerve
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Cech complex

Nerve Lemma.!

Pα =
⋃

p∈P

B(p, α)

Cech(P, α) = Nerve{B(p, α) | p ∈ P}

Can be
high-dimensional!

&
expensive to compute

α

p

α-offset of P



Cech(P, α)

17

P
α

!

?

!

Nerve Lemma.

P

A

Reconstruction

Input Output

Cech complex
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Shapes and Reach
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Shapes and Reach
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Shapes and Reach
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ReachA = d(A,MedialAxis(A))

A

m

MedialAxis(A) = {m ∈ R
d | m has at least two closest points in A }

Medial Axis of A

Shapes and Reach
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Cech complex

P

A P
α

!

Reconstruction

Input Output

Nerve Lemma.

Cech(P, α)

[Niyogi Smale Weinberger 2004]

dH(A,P ) ≤ ε < (3−
√
8)ReachA

if

α = (2 +
√

2)ε

deformation retracts to
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Short proof

P
α

A
β

A

β

p
p
′

a

x

y

α

α < R− ε

β < α− ε } =⇒ Pα deformation retracts to Aβ

prove that ‖a− p′‖ ≤ β =⇒ y lies between x and p′

β =
√

R− (R− ε)2 − α2

R = ReachA

ε < (3−
√

8)R

α = (2 +
√

2)ε } =⇒
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Short proof

R = ReachA

p
p
′

a

x

y

z
P

α

A
β

A
ε

A

α

β

ε

‖p− p
′‖ ≤ α

‖z − p‖ ≥ R− ε ‖a− p′‖ = R−
√

‖z − p‖2 − ‖p− p′‖2 ≤ β}

β =
√

R− (R− ε)2 − α2

R = ReachA
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Rips(P, α) = {σ ⊂ P | Diameter(σ) ≤ 2α}

easy to compute

compressed form of  storage through the 1-skeleton

a

✹
✹

✹

Rips(P, α) ⊃ Cech(P, α)

✹ proximity graph          connects every pair of  points within        Gα

Rips(P, α) = FlagGα
[FlagG = largest complex whose 1-skeleton is G]

Rips complexes

α

2α

b

c
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Rips complexes with L∞

Rips(P, α) = {σ ⊂ P | Diameter(σ) ≤ 2α}

α

When distances are measured using L∞

Rips(P, α) Cech(P, α)=

a
b

c

easy to compute

compressed form of  storage through the 1-skeleton✹
✹

✹
✹ proximity graph          connects every pair of  points within        Gα 2α

Rips(P, α) = FlagGα
[FlagG = largest complex whose 1-skeleton is G]



26

Rips complexes with L∞

P

A

Nerve Lemma.!

!

Reconstruction

?

easy to compute

P + αB∞(0, 1)

Input Output

Rips(P, α) Cech(P, α)=
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Minkowski sum

A

P + αC

where C =
convex set

compact

!

?
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Minkowski sum

A

P + αC

where C =
convex set

compact

!

?
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Minkowski sum

A

where C =
convex set

compact

P + αC

!

?
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Minkowski sum

if

inclusion homotopy equivalence

andP ⊂ Aε and A ⊂ P + εC and
ε

ReachA
small enough

P + αCA

(i) B(0, 1) ⊂ C ⊂ δB(0, 1) for some δ ≥ 1;

(iii) C is ξ-eccentric for ξ < 1.

(ii) C is (θ,κ)-round for θ = arccos(− 1

d
) and κ > 0;

α

ε
=

4

1− ξ

where C compact convex set that satisfies:

(“curvature”)

(“distance” between
⋂

q∈Q(q + C) and Hull(Q))

(“distortion” to unit ball)

excludes

c1 c2

n1

C

n2

excludes

a b

ma+ C b+ C
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Minkowski sum

if

inclusion homotopy equivalence

andP ⊂ Aε and A ⊂ P + εC and
ε

ReachA
small enough

P + αCA

d-balls satisfy (i) (ii) and (iii) for δ = 1, κ = 1 and ξ = 0.➊

κ =















1
2
√

2

(

cos π

4 + cos π

12

)

if d = 2,
1
√

6
if d = 3,

1
(d−2)

√

d
if d ≥ 4,

δ =

√

d

ξ = 1−
2

d

➋

α

ε
=

4

1− ξ

d-cubes satisfy (i) (ii) and (iii) for
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Minkowski sum

d-ball with [NSW04] ∀d 3 -
√
8 ≈ 0.17 2 +

√
2 ≈ 3.41

d-ball with this proof ∀d 0.077 3.96

d-cube

2 0.04 4.04
3 0.01 6.14
4 0.004 8.18
5 0.002 10.2
10 0.0002 20.23

100 0.0000002 200.23

P + αCA

inclusion homotopy equivalence

if

andP ⊂ Aε and A ⊂ P + εC and
ε

ReachA
< λ

α

ε
= η

λ η

[ Rips(P, α) with "∞ ]

dC

Admissible values of ε and α are solutions of a system of equations that
depends upon (δ,κ, ξ).
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What now?

✺
✺

The largest ratio ε

ReachA
that we get for Rips(P, α) with "∞:

Decreases quickly with d

Is it tight?✺

✺ ➟!∞ !2
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Rips complexes with L2

A

P Cech(P, α)

P
α

Rips(P, α)⊂

Input Output

easy to compute
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Rips complexes with L2

A

P Cech(P, α)

P
α

Rips(P, α)⊂

Input Output

easy to compute

! Nerve Lemma
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Rips complexes with L2

A

P Cech(P, α)

P
α

Rips(P, α)

deformation retracts to

[NSW 04]

⊂

Input Output

easy to compute

! Nerve Lemma
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Rips complexes with L2

A

P Cech(P, α)

P
α

Rips(P, α)

deformation retracts to

[NSW 04]

?

deformation retracts to

⊂

Input Output

easy to compute

! Nerve Lemma
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Rips complexes with L2

A

P Cech(P, α)

P
α

! Nerve Lemma

deformation retracts to

[NSW 04]

?

deformation retracts to

⊂ Rips(P, α)

Rips and Cech complexes generally 
don’t share the same topology, but ...

≈ sphere! circle
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Roadmap

Cech(P, α)

P
α

!

⊂ Rips(P, α)

≈ sphere! circle

!

Cech(P, ϑdα)⊂

≈ 5-ball

P
ϑdα

for ϑd =

√

2d
d+1
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Roadmap

Cech(P, α)

P
α

!

⊂ Rips(P, α)

!

Cech(P, ϑdα)⊂

P
ϑdα

Find a condition under which the topology of

{Cech(P, t) }α≤t≤ϑdα is “stable”
➊

for ϑd =

√

2d
d+1

sequence of collapses?
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Roadmap

Cech(P, α)

P
α

!

⊂ Rips(P, α)

!

Cech(P, ϑdα)⊂

P
ϑdα

Find a condition under which the topology of

{Cech(P, t) }α≤t≤ϑdα is “stable”
➊

for ϑd =

√

2d
d+1

sequence of collapses?

{Cech(P, t) ∩ Rips(()P, α) }α≤t≤ϑdα{Cech(P, t) ∩ Rips(P, α) }α≤t≤ϑdα

Deduce a condition under which the topology of

➋

sequence of collapses

is “stable”

?
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Roadmap

Cech(P, α)

P
α

!

! circle

!

Cech(P, ϑdα)

≈ 5-ball

P
ϑdα

is “stable”

for ϑd =

√

2d
d+1

sequence of collapses

Find a condition under which the topology of

{Cech(P, t) }α≤t≤ϑdα

deformation retracts to

is “stable”

?

?
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Distance function

P

x

d(x, P )
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P

x

d(x, P )

Sublevel sets of d(·, P ) are offsets of P .✹

Distance function
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Distance function

P

x

d(x, P )

✹
✹ Topology of sublevel sets changes at critical values t0.

Sublevel sets of d(·, P ) are offsets of P .
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Distance function

P

x

d(x, P )

✹
✹ Topology of sublevel sets changes at critical values t0.

Sublevel sets of d(·, P ) are offsets of P .
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Distance function

P

x

d(x, P )

✹
✹ Topology of sublevel sets changes at critical values t0.

Sublevel sets of d(·, P ) are offsets of P .
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P

✹
✹ Topology of sublevel sets changes at critical values t0.

Sublevel sets of d(·, P ) are offsets of P .

✹ t0 critical value ⇐⇒ cP (t0) = t0

Distance function
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Convexity defects

cP

P

Centers(P, t) =
⋃

∅"=σ⊂P

Rad(σ)≤t

{Center(σ)}. cP (t) = dH(Centers(P, t) |P )

✹
✹
✹
✹

For a compact set P : P convex ⇐⇒ cP = 0

cP non decreasing

cP (t) = t ⇐⇒ t critical value d(·, P )

cP (t) ≤ t
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Convexity defects

cP

P

Centers(P, t) =
⋃

∅"=σ⊂P

Rad(σ)≤t

{Center(σ)}. cP (t) = dH(Centers(P, t) |P )

✹
✹
✹
✹

For a compact set P : P convex ⇐⇒ cP = 0

cP non decreasing

σ

Rad(σ)
Center(σ)

cP (t) = t ⇐⇒ t critical value d(·, P )

cP (t) ≤ t
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Convexity defects

cP

P

Centers(P, t) =
⋃

∅"=σ⊂P

Rad(σ)≤t

{Center(σ)}. cP (t) = dH(Centers(P, t) |P )

✹
✹
✹
✹

For a compact set P : P convex ⇐⇒ cP = 0

cP non decreasing

σ

Rad(σ)
Center(σ)

cP (t) = t ⇐⇒ t critical value d(·, P )

t=0.3

cP (t) ≤ t
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Convexity defects

cP

P

Centers(P, t) =
⋃

∅"=σ⊂P

Rad(σ)≤t

{Center(σ)}. cP (t) = dH(Centers(P, t) |P )

✹
✹
✹
✹

For a compact set P : P convex ⇐⇒ cP = 0

cP non decreasing

σ

Rad(σ)
Center(σ)

cP (t) = t ⇐⇒ t critical value d(·, P )

t=0.3t=0.5

cP (t) ≤ t
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Convexity defects

cP

P

Centers(P, t) =
⋃

∅"=σ⊂P

Rad(σ)≤t

{Center(σ)}. cP (t) = dH(Centers(P, t) |P )

✹
✹
✹
✹

For a compact set P : P convex ⇐⇒ cP = 0

cP non decreasing

σ

Rad(σ)
Center(σ)

cP (t) = t ⇐⇒ t critical value d(·, P )

t=0.3t=0.5t=0.72

cP (t) ≤ t
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Roadmap

Cech(P, α)

P
α

! !

Cech(P, ϑdα)

P
ϑdα

for ϑd =

√

2d
d+1

sequence of collapses

cP (t) < t, ∀t ∈ [α, ϑdα]

deformation retracts to

{Cech(P, t) }α≤t≤ϑdα
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Roadmap

Cech(P, α)

P
α

! !

Cech(P, ϑdα)

P
ϑdα

for ϑd =

√

2d
d+1

sequence of collapses

cP (t) < t, ∀t ∈ [α, ϑdα]

deformation retracts to

{Cech(P, t) }α≤t≤ϑdα

⊂ Rips(P, α) ⊂

sequence of collapses

cP (ϑdα) < 2α− ϑdα

{Cech(P, t) ∩ Rips(P, α) }α≤t≤ϑdα
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Roadmap

Cech(P, α)

P
α

! !

Cech(P, ϑdα)

P
ϑdα

for ϑd =

√

2d
d+1

sequence of collapses

cP (t) < t, ∀t ∈ [α, ϑdα]

deformation retracts to

⊂ Rips(P, α) ⊂

sequence of collapses

cP (ϑdα) < 2α− ϑdα

{Cech(P, t) ∩ Rips(P, α) }α≤t≤ϑdα

{Cech(P, t) }α≤t≤ϑdα

o

σ2α− t

the link of σ ∈ Cech(P, t) ∩ Rips(P, α) is a cone.

∀t ∈ [α, ϑdα], ∀σ ∈ Cech(P, t) :

≤ t

B



Rips complexes with L2
A

P Cech(P, α)

P
α

Rips(P, α)

! Nerve Lemma

deformation retracts to

[NSW 04]

deformation retracts to

⊂

cP (ϑdα) < 2α− ϑdα

t

σ

A if dH(A,P ) ≤ ε, then

cP (t) ≤ Reach (A)−
√

Reach (A)2 − (t+ ε)2 + 2ε

for t < Reach (A)− ε

48
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Shapes with a positive reach

if

Pα with [NSW04] ∀d 3−
√
8 ≈ 0.17 2 +

√
2 ≈ 3.41

Rips (P, α)

2 0.063 5.00
3 0.055 5.46
4 0.050 5.76
5 0.047 5.97

10 0.041 6.50
100 0.035 7.22

+∞ 2
√

2−
√
2−

√
2

2+
√
2

≈ 0.0340 7.22

λ η

andand
ε

ReachA
< λ

α

ε
= ηdH(A,P ) ≤ ε

A Rips(P, α)
!

with !2

dReconstruction
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Shape

Point cloud in Rips complex Triangulation

Reconstruction Simplification

➊

➋ ≈

!

Overview

Can be high-dimensional!

Is it possible to find sampling conditions which guarantee?

R
d
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Does simplification exist?

Different strategies:

Edge contractions;

Vertex and edge collapses ...

Seems to work well in practice

And yet, not all obvious that the Rips complex whose vertices 
sample a shape contains a subcomplex homeomorphic to that shape.

A triangulated Bing’s house is contractible but not collapsible

Geometry has to play a key role.

How to get an object with the right dimension?
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Rips(P, α)

Ongoing work

≈

Shape A

Triangulation of A

[A & Lieutier SoCG 2013]
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Rips(P, α)

Ongoing work

≈

Shape A

Triangulation of A

sequence of collapses
Cech(P, α)

cP (ϑdα) < 2α− ϑdα

Nerve{B(p, α) | p ∈ P}

A

[A & Lieutier SoCG 2013]
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Rips(P, α)

Ongoing work

≈

Shape A

Triangulation of A

sequence of collapses
Cech(P, α)

cP (ϑdα) < 2α− ϑdα

Nerve{B(p, α) | p ∈ P}

A

sequence of collapses
CechA(P, α)

Nerve{A ∩B(p, α) | p ∈ P}

dH(A,P ) ≤ ε < (3−
√
8)ReachA

α = (2 +
√

2)ε

A

[A & Lieutier SoCG 2013]
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Rips(P, α)

Ongoing work

≈

Shape A

Triangulation of A

sequence of collapses
Cech(P, α)

cP (ϑdα) < 2α− ϑdα

Nerve{B(p, α) | p ∈ P}

A

sequence of collapses
CechA(P, α)

Nerve{A ∩B(p, α) | p ∈ P}

dH(A,P ) ≤ ε < (3−
√
8)ReachA

α = (2 +
√

2)ε

A

α-Nice

sequence of

collapses

∃ ?

α < ReachA

with and

Nerve{A ∩Hullα(Cell(v)) | v ∈ V }

A =
⋃

v∈V

Cell(v)

Cell(v) ⊂ B(p, α) for some p ∈ PA

[A & Lieutier SoCG 2013]
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Future work

How to turn all this into a practical algorithm?
In general

Collapsibility of 3-complexes is NP-hard [Martin Tancer 2012]

Geometry has to play a key role.

For Rips complexes

whose vertices sample a convex set, a 0-manifold or a 1-manifold

How to go beyond?

Shapes with α-nice triangulations?

Flat torus T2 in R4 Rm
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Wrap-up

Géométrie élémentaire

- Complexes simpliciaux abstraits, Nerves, Flag complexes, collapse, ...

Forme

Nuage de points Modèle

Reconstruction

Echantillonnage

Manipulation

Approximation

Topologie Algorithmique

- Fonction de distance, théorie de Morse, points critiques, gradient, axe médian, reach, ... 

- Homéomorphisme, type d’homotopie, se rétracte par déformation, ...

- Triangulation de Delaunay, Cech complex, Rips complex, ...

- Structure de données, complexité, preuves de NP-complétude, ...
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