Big Data & Greedy Trees

Gérard Biau & Luc Devroye

Lyon, December 2012

- 2 Greedy tree classifiers
- A mathematical model
- Are there consistent greedy tree classifiers?
- **(5)** A non-randomized solution

- 2 Greedy tree classifiers
- 3 A mathematical model
- 4 Are there consistent greedy tree classifiers?
- 5) A non-randomized solution

• Big Data is a collection of data sets so large and complex that it becomes impossible to process using classical tools.

- Big Data is a collection of data sets so large and complex that it becomes impossible to process using classical tools.
- It includes data sets with sizes beyond the ability of commonly-used software tools to process the data within a tolerable elapsed time.

- Big Data is a collection of data sets so large and complex that it becomes impossible to process using classical tools.
- It includes data sets with sizes beyond the ability of commonly-used software tools to process the data within a tolerable elapsed time.
- As of 2012, every day 2.5 quintillion (2.5×10^{18}) bytes of data were created.

- Big Data is a collection of data sets so large and complex that it becomes impossible to process using classical tools.
- It includes data sets with sizes beyond the ability of commonly-used software tools to process the data within a tolerable elapsed time.
- As of 2012, every day 2.5 quintillion (2.5×10^{18}) bytes of data were created.
- Megabytes and gigabytes are old-fashioned.

• The challenges involved in Big Data problems are interdisciplinary.

- The challenges involved in Big Data problems are interdisciplinary.
- Data analysis in the Big Data regime requires consideration of:

- The challenges involved in Big Data problems are interdisciplinary.
- Data analysis in the Big Data regime requires consideration of:
 - Systems issues: How to store, index and transport data at massive scales?

- The challenges involved in Big Data problems are interdisciplinary.
- Data analysis in the Big Data regime requires consideration of:
 - Systems issues: How to store, index and transport data at massive scales?
 - ▷ Statistical issues: How to cope with errors and biases of all kinds? How to develop models and procedures that work when both n and p are astronomical?

- The challenges involved in Big Data problems are interdisciplinary.
- Data analysis in the Big Data regime requires consideration of:
 - Systems issues: How to store, index and transport data at massive scales?
 - ▷ Statistical issues: How to cope with errors and biases of all kinds? How to develop models and procedures that work when both n and p are astronomical?
 - ▷ Algorithmic issues: How to perform computations?

- The challenges involved in Big Data problems are interdisciplinary.
- Data analysis in the Big Data regime requires consideration of:
 - Systems issues: How to store, index and transport data at massive scales?
 - ▷ Statistical issues: How to cope with errors and biases of all kinds? How to develop models and procedures that work when both n and p are astronomical?
 - ▷ Algorithmic issues: How to perform computations?
- Big Data requires massively parallel softwares running on tens, hundreds, or even thousands of servers.

• Greedy algorithms build solutions incrementally, usually with little effort.

- Greedy algorithms build solutions incrementally, usually with little effort.
- Such procedures form a result piece by piece, always choosing the next item that offers the most obvious and immediate benefit.

- Greedy algorithms build solutions incrementally, usually with little effort.
- Such procedures form a result piece by piece, always choosing the next item that offers the most obvious and immediate benefit.
- Greedy methods have an autonomy that makes them ideally suited for distributive or parallel computation.

- Greedy algorithms build solutions incrementally, usually with little effort.
- Such procedures form a result piece by piece, always choosing the next item that offers the most obvious and immediate benefit.
- Greedy methods have an autonomy that makes them ideally suited for distributive or parallel computation.
- In the short term, parallelism will take hold in massive datasets and complex systems.

• Our goal is to formalize the setting and to provide a foundational discussion of various properties of tree classifiers that are designed following these principles.

- Our goal is to formalize the setting and to provide a foundational discussion of various properties of tree classifiers that are designed following these principles.
- They may find use in a world with new computational models in which parallel or distributed computation is feasible and even the norm.

2 Greedy tree classifiers

- 3 A mathematical model
- 4 Are there consistent greedy tree classifiers?
- 5) A non-randomized solution

Classification

Classification

Classification

• We have a random pair $(\mathbf{X},Y) \in \mathbb{R}^d \times \{0,1\}$ with an unknown distribution.

- We have a random pair $(\mathbf{X},Y) \in \mathbb{R}^d \times \{0,1\}$ with an unknown distribution.
- Goal: Design a measurable classifier $g : \mathbb{R}^d \to \{0, 1\}$.

- We have a random pair $(\mathbf{X},Y) \in \mathbb{R}^d \times \{0,1\}$ with an unknown distribution.
- Goal: Design a measurable classifier $g : \mathbb{R}^d \to \{0, 1\}$.
- The probability of error is $L(g) = \mathbb{P}\{g(\mathbf{X}) \neq Y\}.$

- We have a random pair $(\mathbf{X}, Y) \in \mathbb{R}^d \times \{0, 1\}$ with an unknown distribution.
- Goal: Design a measurable classifier $g : \mathbb{R}^d \to \{0, 1\}$.
- The probability of error is $L(g) = \mathbb{P}\{g(\mathbf{X}) \neq Y\}.$
- The Bayes classifier

$$g^{\star}(\mathbf{x}) = \begin{cases} 1 & \text{if } \mathbb{P}\{Y = 1 | \mathbf{X} = \mathbf{x}\} > 1/2 \\ 0 & \text{otherwise} \end{cases}$$

has the smallest probability of error, that is

$$L^{\star} = L(g^{\star}) = \inf_{g:\mathbb{R}^d \to \{0,1\}} \mathbb{P}\{g(\mathbf{X}) \neq Y\}.$$

• The data: $\mathcal{D}_n = \{(\mathbf{X}_1, Y_1), \dots, (\mathbf{X}_n, Y_n)\}$, i.i.d. copies of (\mathbf{X}, Y) .

• The data: $\mathcal{D}_n = \{(\mathbf{X}_1, Y_1), \dots, (\mathbf{X}_n, Y_n)\}$, i.i.d. copies of (\mathbf{X}, Y) .

• A classifier $g_n(\mathbf{x})$ is a measurable function of \mathbf{x} and \mathcal{D}_n .

• The data: $\mathcal{D}_n = \{(\mathbf{X}_1, Y_1), \dots, (\mathbf{X}_n, Y_n)\}$, i.i.d. copies of (\mathbf{X}, Y) .

• A classifier $g_n(\mathbf{x})$ is a measurable function of \mathbf{x} and \mathcal{D}_n .

• The probability of error is

$$L(g_n) = \mathbb{P}\{g_n(\mathbf{X}) \neq Y | \mathcal{D}_n\}.$$

• The data: $\mathcal{D}_n = \{(\mathbf{X}_1, Y_1), \dots, (\mathbf{X}_n, Y_n)\}$, i.i.d. copies of (\mathbf{X}, Y) .

• A classifier $g_n(\mathbf{x})$ is a measurable function of \mathbf{x} and \mathcal{D}_n .

• The probability of error is

$$L(g_n) = \mathbb{P}\{g_n(\mathbf{X}) \neq Y | \mathcal{D}_n\}.$$

• It is consistent if

 $\lim_{n \to \infty} \mathbb{E}L(g_n) = L^\star.$

• The data: $\mathcal{D}_n = \{(\mathbf{X}_1, Y_1), \dots, (\mathbf{X}_n, Y_n)\}$, i.i.d. copies of (\mathbf{X}, Y) .

• A classifier $g_n(\mathbf{x})$ is a measurable function of \mathbf{x} and \mathcal{D}_n .

• The probability of error is

$$L(g_n) = \mathbb{P}\{g_n(\mathbf{X}) \neq Y | \mathcal{D}_n\}.$$

• It is consistent if

$$\lim_{n \to \infty} \mathbb{E}L(g_n) = L^\star.$$

• It is universally consistent if it is consistent for all possible distributions of (**X**, *Y*).

Tree classifiers

• Many popular classifiers are universally consistent.

Tree classifiers

- Many popular classifiers are universally consistent.
- These include several brands of histogram rules, *k*-nearest neighbor rules, kernel rules, neural networks, and tree classifiers.

Tree classifiers

- Many popular classifiers are universally consistent.
- These include several brands of histogram rules, *k*-nearest neighbor rules, kernel rules, neural networks, and tree classifiers.
- Tree methods loom large for several reasons:
- Many popular classifiers are universally consistent.
- These include several brands of histogram rules, *k*-nearest neighbor rules, kernel rules, neural networks, and tree classifiers.
- Tree methods loom large for several reasons:
 - All procedures that partition space can be viewed as special cases of partitions generated by trees.

- Many popular classifiers are universally consistent.
- These include several brands of histogram rules, *k*-nearest neighbor rules, kernel rules, neural networks, and tree classifiers.
- Tree methods loom large for several reasons:
 - All procedures that partition space can be viewed as special cases of partitions generated by trees.
 - Simple neural networks that use voting methods can also be regarded as trees.

- Many popular classifiers are universally consistent.
- These include several brands of histogram rules, *k*-nearest neighbor rules, kernel rules, neural networks, and tree classifiers.
- Tree methods loom large for several reasons:
 - ▷ All procedures that partition space can be viewed as special cases of partitions generated by trees.
 - Simple neural networks that use voting methods can also be regarded as trees.
 - ▷ Tree classifiers are conceptually simple, and explain the data very well.

Trees

• The design of trees can be cumbersome.

- The design of trees can be cumbersome.
- Optimizations could face a huge combinatorial and computational hurdle.

- The design of trees can be cumbersome.
- Optimizations could face a huge combinatorial and computational hurdle.
- The greedy paradigm addresses these concerns.

• Classification trees partition \mathbb{R}^d into regions, often hyperrectangles parallel to the axes.

Trees

• Classification trees partition \mathbb{R}^d into regions, often hyperrectangles parallel to the axes.

Trees

• Classification trees partition \mathbb{R}^d into regions, often hyperrectangles parallel to the axes.

• The tree classifier takes the simple form

$$g_n(\mathbf{x}) = \begin{cases} 1 & \text{if } \sum_{i=1}^n \mathbf{1}_{[\mathbf{X}_i \in A, Y_i = 1]} > \sum_{i=1}^n \mathbf{1}_{[\mathbf{X}_i \in A, Y_i = 0]}, & \mathbf{x} \in A \\ 0 & \text{otherwise.} \end{cases}$$

• The tree structure is usually data dependent, and it is in the construction itself that trees differ.

- The tree structure is usually data dependent, and it is in the construction itself that trees differ.
- Thus, there are virtually infinitely many possible strategies to build classification trees.

- The tree structure is usually data dependent, and it is in the construction itself that trees differ.
- Thus, there are virtually infinitely many possible strategies to build classification trees.
- Despite this great diversity, all tree species end up with two fundamental questions at each node:

① Should the node be split?

In the affirmative, what are its children?

The greedy spirit

• Greedy trees proceed from a different philosophy.

The greedy spirit

- Greedy trees proceed from a different philosophy.
- A greedy tree should be able to answer questions ① and ② using local information only.

2 Greedy tree classifiers

3 A mathematical model

4 Are there consistent greedy tree classifiers?

5) A non-randomized solution

• Let $\mathcal C$ be a class of possible subsets of $\mathbb R^d$ that can be used for splits.

A model

• Let \mathcal{C} be a class of possible subsets of \mathbb{R}^d that can be used for splits.

• Example:
$$\mathcal{C} = \left\{ C = \prod_{j=1}^d (a_j, b_j) : -\infty \le a_j < b_j \le +\infty \right\}.$$

A model

• Let C be a class of possible subsets of \mathbb{R}^d that can be used for splits.

• Example:
$$\mathcal{C} = \left\{ C = \prod_{j=1}^d (a_j, b_j) : -\infty \le a_j < b_j \le +\infty \right\}.$$

• Let $\{(\mathbf{X}_i, Y_i) : i \in I\}$ be the subset of observations falling in a given node.

A model

• Let C be a class of possible subsets of \mathbb{R}^d that can be used for splits.

• Example:
$$\mathcal{C} = \left\{ C = \prod_{j=1}^d (a_j, b_j) : -\infty \le a_j < b_j \le +\infty \right\}.$$

- Let $\{(\mathbf{X}_i, Y_i) : i \in I\}$ be the subset of observations falling in a given node.
- A split that uses a set $C \in C$ results in two sets of indices:

$$I' = \{i \in I : \mathbf{X}_i \in C\} \quad \text{and} \quad I'' = \{i \in I : \mathbf{X}_i \notin C\}.$$

$$\sigma: (\mathbb{R}^d \times \{0,1\})^{|I|} \to \mathbb{R}^p.$$

$$\sigma: (\mathbb{R}^d \times \{0,1\})^{|I|} \to \mathbb{R}^p.$$

• We see that σ is a model for the greedy decision @.

$$\sigma: (\mathbb{R}^d \times \{0,1\})^{|I|} \to \mathbb{R}^p.$$

• We see that σ is a model for the greedy decision @.

In addition, there is a second mapping θ, but this time with a boolean output.

$$\sigma: (\mathbb{R}^d \times \{0,1\})^{|I|} \to \mathbb{R}^p.$$

• We see that σ is a model for the greedy decision @.

- In addition, there is a second mapping θ , but this time with a boolean output.
- It is a stopping rule and models the greedy decision ①.

• A greedy machine partitions the data recursively.

• A greedy machine partitions the data recursively.

 \triangleright A node = a subset of \mathbb{R}^d , starting with \mathbb{R}^d for the root node.

• A greedy machine partitions the data recursively.

 \triangleright A node = a subset of \mathbb{R}^d , starting with \mathbb{R}^d for the root node.

 \triangleright For a node A,

$$I = \{i = 1, \dots, n : \mathbf{X}_i \in A\}.$$

- A greedy machine partitions the data recursively.
 - \triangleright A node = a subset of \mathbb{R}^d , starting with \mathbb{R}^d for the root node.
 - \triangleright For a node A,

$$I = \{i = 1, \dots, n : \mathbf{X}_i \in A\}.$$

▷ Compute the decision

$$\theta\left(\left(\mathbf{X}_{i}, Y_{i}\right) : i \in I\right) \in \{0, 1\}$$

and the parameter of the split

 $\sigma\left(\left(\mathbf{X}_{i},Y_{i}\right):i\in I\right)\in\mathcal{C}.$

- A greedy machine partitions the data recursively.
 - \triangleright A node = a subset of \mathbb{R}^d , starting with \mathbb{R}^d for the root node.
 - \triangleright For a node A,

$$I = \{i = 1, \dots, n : \mathbf{X}_i \in A\}.$$

▷ Compute the decision

$$\theta\left(\left(\mathbf{X}_{i}, Y_{i}\right) : i \in I\right) \in \{0, 1\}$$

and the parameter of the split

$$\sigma\left(\left(\mathbf{X}_{i}, Y_{i}\right) : i \in I\right) \in \mathcal{C}.$$

 \triangleright If $\theta = 0$: STOP. Otherwise, the node spawns two children.

- A greedy machine partitions the data recursively.
 - \triangleright A node = a subset of \mathbb{R}^d , starting with \mathbb{R}^d for the root node.
 - \triangleright For a node A,

$$I = \{i = 1, \dots, n : \mathbf{X}_i \in A\}.$$

Compute the decision

$$\theta\left(\left(\mathbf{X}_{i}, Y_{i}\right) : i \in I\right) \in \{0, 1\}$$

and the parameter of the split

$$\sigma\left(\left(\mathbf{X}_{i}, Y_{i}\right) : i \in I\right) \in \mathcal{C}.$$

▷ If $\theta = 0$: STOP. Otherwise, the node spawns two children.

• Final classification proceeds by a majority vote.

An important remark

Is any classifier a greedy tree?

- Set $\theta = 1$ if we care at the root, and $\theta = 0$ elsewhere.
- O The root node is split by the classifier into a set

$$C = \{ \mathbf{x} \in \mathbb{R}^d : g_n(\mathbf{x}) = 1 \}$$

and its complement, and both child nodes are leaves.

- Set $\theta = 1$ if we care at the root, and $\theta = 0$ elsewhere.
- O The root node is split by the classifier into a set

$$C = \{ \mathbf{x} \in \mathbb{R}^d : g_n(\mathbf{x}) = 1 \}$$

and its complement, and both child nodes are leaves.

This is **not** allowed.

- 2 Greedy tree classifiers
- A mathematical model
- Are there consistent greedy tree classifiers?
- 5) A non-randomized solution

• At first sight, there are no consistent greedy tree classifiers.

- At first sight, there are no consistent greedy tree classifiers.
- Example: The *k*-median tree.

- At first sight, there are no consistent greedy tree classifiers.
- Example: The *k*-median tree.
 - \triangleright When d = 1, split by finding the median element among the \mathbf{X}_i 's.

- At first sight, there are no consistent greedy tree classifiers.
- Example: The *k*-median tree.
 - \triangleright When d = 1, split by finding the median element among the \mathbf{X}_i 's.
 - \triangleright Keep doing this for k rounds.

- At first sight, there are no consistent greedy tree classifiers.
- Example: The *k*-median tree.
 - \triangleright When d = 1, split by finding the median element among the \mathbf{X}_i 's.
 - \triangleright Keep doing this for k rounds.
 - \triangleright In d dimensions, rotate through the coordinates.

- At first sight, there are no consistent greedy tree classifiers.
- Example: The *k*-median tree.
 - \triangleright When d = 1, split by finding the median element among the \mathbf{X}_i 's.
 - \triangleright Keep doing this for k rounds.
 - \triangleright In d dimensions, rotate through the coordinates.
- This rule is consistent, provided $k \to \infty$ and $k2^k/n \to 0$.

- At first sight, there are no consistent greedy tree classifiers.
- Example: The *k*-median tree.
 - \triangleright When d = 1, split by finding the median element among the \mathbf{X}_i 's.
 - \triangleright Keep doing this for k rounds.
 - \triangleright In d dimensions, rotate through the coordinates.
- This rule is consistent, provided $k \to \infty$ and $k2^k/n \to 0$.

This is **not** greedy.

 \bullet The greedy splitting method σ mimics the median tree classifier.

- The greedy splitting method σ mimics the median tree classifier.
- The dimension to cut is chosen uniformly at random.

- The greedy splitting method σ mimics the median tree classifier.
- The dimension to cut is chosen uniformly at random.
- The selected dimension is then split at the median.

- The greedy splitting method σ mimics the median tree classifier.
- The dimension to cut is chosen uniformly at random.
- The selected dimension is then split at the median.
- The novelty is in the choice of the decision function θ .

- The greedy splitting method σ mimics the median tree classifier.
- The dimension to cut is chosen uniformly at random.
- The selected dimension is then split at the median.
- The novelty is in the choice of the decision function θ .
- This function ignores the data altogether and uses a randomized decision that is based on the size of the input.

• Consider a nonincreasing function $p : \mathbb{N} \to (0, 1)$.

Consistency

- Consider a nonincreasing function $p : \mathbb{N} \to (0, 1)$.
- $\bullet\,$ Then, if U is the uniform [0,1] random variable associated with node A,

 $\theta = \mathbf{1}_{[U > p(N(A))]}.$

Consistency

• Consider a nonincreasing function $p : \mathbb{N} \to (0, 1)$.

 $\bullet\,$ Then, if U is the uniform [0,1] random variable associated with node A,

 $\theta = \mathbf{1}_{[U > p(N(A))]}.$

Theorem

Let β be a real number in (0,1). Define

$$p(n) = \left\{egin{array}{cc} 1 & ext{if } n < 3 \ 1/ ext{log}^eta \, n & ext{if } n \geq 3. \end{array}
ight.$$

Then

$$\lim_{n \to \infty} \mathbb{E}L(g_n) = L^* \quad \text{as } n \to \infty.$$

Can one do without randomization?

• The solution is in the hypothesis that the data elements are i.i.d.

Can one do without randomization?

- The solution is in the hypothesis that the data elements are i.i.d.
- The median classifier does not use the ordering in the data.
- The solution is in the hypothesis that the data elements are i.i.d.
- The median classifier does not use the ordering in the data.
- One can use the randomness present in the permutation of the data.

- The solution is in the hypothesis that the data elements are i.i.d.
- The median classifier does not use the ordering in the data.
- One can use the randomness present in the permutation of the data.
- This corresponds to $\approx n \log_2 n$ independent fair coin flips.

- The solution is in the hypothesis that the data elements are i.i.d.
- The median classifier does not use the ordering in the data.
- One can use the randomness present in the permutation of the data.
- This corresponds to $\approx n \log_2 n$ independent fair coin flips.
- The total number of bits required to carry out all computations is

$$\mathcal{O}\left((3+\log_2 d)2^{\log^{\beta+\varepsilon} n}\right)$$

- The solution is in the hypothesis that the data elements are i.i.d.
- The median classifier does not use the ordering in the data.
- One can use the randomness present in the permutation of the data.
- This corresponds to $\approx n \log_2 n$ independent fair coin flips.
- The total number of bits required to carry out all computations is

$$\mathcal{O}\left((3+\log_2 d)2^{\log^{\beta+\varepsilon} n}\right)$$

There is sufficient randomness at hand to do the job.

- 2 Greedy tree classifiers
- 3 A mathematical model
- 4 Are there consistent greedy tree classifiers?

 \triangleright At the root, we find the median in direction 1.

 \triangleright At the root, we find the median in direction 1.

 \triangleright Then on each of the two subsets, we find the median in direction 2.

- \triangleright At the root, we find the median in direction 1.
- \triangleright Then on each of the two subsets, we find the median in direction 2.
- ▶ Then on each of the four subsets, we find the median in direction 3, and so forth.

- \triangleright At the root, we find the median in direction 1.
- \triangleright Then on each of the two subsets, we find the median in direction 2.
- ▶ Then on each of the four subsets, we find the median in direction 3, and so forth.
- \triangleright Repeating this for k levels of nodes leads to 2^{dk} leaf regions.

• The quality of the classifier at node A is assessed by

$$\hat{L}_n(A) = \frac{1}{N(A)} \min\left(\sum_{i=1}^n \mathbf{1}_{[\mathbf{X}_i \in A, Y_i = 1]}, \sum_{i=1}^n \mathbf{1}_{[\mathbf{X}_i \in A, Y_i = 0]}\right).$$

• The quality of the classifier at node A is assessed by

$$\hat{L}_n(A) = \frac{1}{N(A)} \min\left(\sum_{i=1}^n \mathbf{1}_{[\mathbf{X}_i \in A, Y_i = 1]}, \sum_{i=1}^n \mathbf{1}_{[\mathbf{X}_i \in A, Y_i = 0]}\right).$$

• Define the nonnegative integer k^+ by

$$k^+ = \lfloor \alpha \log_2(N(A) + 1) \rfloor.$$

• The quality of the classifier at node A is assessed by

$$\hat{L}_n(A) = \frac{1}{N(A)} \min\left(\sum_{i=1}^n \mathbf{1}_{[\mathbf{X}_i \in A, Y_i = 1]}, \sum_{i=1}^n \mathbf{1}_{[\mathbf{X}_i \in A, Y_i = 0]}\right).$$

• Define the nonnegative integer k^+ by

$$k^+ = \left\lfloor \alpha \log_2(N(A) + 1) \right\rfloor.$$

Set

$$\hat{L}_n(A, k^+) = \sum_{A_j \in \mathcal{P}_{k^+}(A)} \hat{L}_n(A_j) \frac{N(A_j)}{N(A)}.$$

• The quality of the classifier at node A is assessed by

$$\hat{L}_n(A) = \frac{1}{N(A)} \min\left(\sum_{i=1}^n \mathbf{1}_{[\mathbf{X}_i \in A, Y_i = 1]}, \sum_{i=1}^n \mathbf{1}_{[\mathbf{X}_i \in A, Y_i = 0]}\right).$$

• Define the nonnegative integer k^+ by

$$k^+ = \lfloor \alpha \log_2(N(A) + 1) \rfloor.$$

Set

$$\hat{L}_n(A, k^+) = \sum_{A_j \in \mathcal{P}_{k^+}(A)} \hat{L}_n(A_j) \frac{N(A_j)}{N(A)}.$$

• Both $\hat{L}_n(A)$ and $\hat{L}_n(A, k^+)$ may be evaluated on the basis of the data points falling in A only.

• The quality of the classifier at node A is assessed by

$$\hat{L}_n(A) = \frac{1}{N(A)} \min\left(\sum_{i=1}^n \mathbf{1}_{[\mathbf{X}_i \in A, Y_i = 1]}, \sum_{i=1}^n \mathbf{1}_{[\mathbf{X}_i \in A, Y_i = 0]}\right).$$

• Define the nonnegative integer k^+ by

$$k^+ = \lfloor \alpha \log_2(N(A) + 1) \rfloor.$$

Set

$$\hat{L}_n(A, k^+) = \sum_{A_j \in \mathcal{P}_{k^+}(A)} \hat{L}_n(A_j) \frac{N(A_j)}{N(A)}.$$

• Both $\hat{L}_n(A)$ and $\hat{L}_n(A, k^+)$ may be evaluated on the basis of the data points falling in A only.

This is greedy.

Put
$$\theta = 0$$
 if
 $\left| \hat{L}_n(A) - \hat{L}_n(A, k^+) \right| \le \left(\frac{1}{N(A) + 1} \right)^{\beta}$.

Put
$$\theta = 0$$
 if
 $\left| \hat{L}_n(A) - \hat{L}_n(A, k^+) \right| \le \left(\frac{1}{N(A) + 1} \right)^{\beta}$.

Theorem

Take $1 - d\alpha - 2\beta > 0$. Then

$$\lim_{n \to \infty} \mathbb{E}L(g_n) = L^* \quad \text{as } n \to \infty.$$

Proof

Let
$$\psi(n,k) = L_k^* - L^*$$
. Set
 $k_n^* = \min\left\{\ell \ge 0: \psi(n,\ell) < \sqrt{\left(\frac{2^{d\ell}}{n}\right)^{1-d\alpha}}\right\}.$
Then
 $\frac{2^{dk_n^*}}{n} \to 0$ as $n \to \infty$.