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The Big Data era

Big Data is a collection of data sets so large and complex that it
becomes impossible to process using classical tools.

It includes data sets with sizes beyond the ability of commonly-used
software tools to process the data within a tolerable elapsed time.

As of 2012, every day 2.5 quintillion (2.5× 1018) bytes of data were
created.

Megabytes and gigabytes are old-fashioned.
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The Big Data era

The challenges involved in Big Data problems are interdisciplinary.

Data analysis in the Big Data regime requires consideration of:

⊲ Systems issues: How to store, index and transport data at massive

scales?

⊲ Statistical issues: How to cope with errors and biases of all kinds?

How to develop models and procedures that work when both n and p

are astronomical?

⊲ Algorithmic issues: How to perform computations?

Big Data requires massively parallel softwares running on tens,
hundreds, or even thousands of servers.
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Greedy algorithms

Greedy algorithms build solutions incrementally, usually with little
effort.

Such procedures form a result piece by piece, always choosing the
next item that offers the most obvious and immediate benefit.

Greedy methods have an autonomy that makes them ideally suited
for distributive or parallel computation.

In the short term, parallelism will take hold in massive datasets and
complex systems.



Greedy algorithms

Our goal is to formalize the setting and to provide a foundational
discussion of various properties of tree classifiers that are designed
following these principles.



Greedy algorithms

Our goal is to formalize the setting and to provide a foundational
discussion of various properties of tree classifiers that are designed
following these principles.

They may find use in a world with new computational models in
which parallel or distributed computation is feasible and even the
norm.
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Basics of classification

We have a random pair (X, Y ) ∈ R
d × {0, 1} with an unknown

distribution.

Goal: Design a measurable classifier g : Rd → {0, 1}.

The probability of error is L(g) = P{g(X) 6= Y }.

The Bayes classifier

g⋆(x) =

{

1 if P{Y = 1|X = x} > 1/2
0 otherwise

has the smallest probability of error, that is

L⋆ = L(g⋆) = inf
g:Rd→{0,1}

P{g(X) 6= Y }.
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Basics of classification

The data: Dn = {(X1, Y1), . . . , (Xn, Yn)}, i.i.d. copies of (X, Y ).

A classifier gn(x) is a measurable function of x and Dn.

The probability of error is

L(gn) = P{gn(X) 6= Y |Dn}.

It is consistent if
lim
n→∞

EL(gn) = L⋆.

It is universally consistent if it is consistent for all possible
distributions of (X, Y ).
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Tree classifiers

Many popular classifiers are universally consistent.

These include several brands of histogram rules, k-nearest neighbor
rules, kernel rules, neural networks, and tree classifiers.

Tree methods loom large for several reasons:

⊲ All procedures that partition space can be viewed as special cases of

partitions generated by trees.

⊲ Simple neural networks that use voting methods can also be regarded

as trees.

⊲ Tree classifiers are conceptually simple, and explain the data very

well.
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Tree classifiers

The design of trees can be cumbersome.

Optimizations could face a huge combinatorial and computational
hurdle.

The greedy paradigm addresses these concerns.
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Trees

Classification trees partition R
d into regions, often hyperrectangles

parallel to the axes.

leaf leaf

leaf

leaf leaf

leaf

The tree classifier takes the simple form

gn(x) =

{

1 if
∑n

i=1 1[Xi∈A,Yi=1] >
∑n

i=1 1[Xi∈A,Yi=0], x ∈ A
0 otherwise.
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Trees

The tree structure is usually data dependent, and it is in the
construction itself that trees differ.

Thus, there are virtually infinitely many possible strategies to build
classification trees.

Despite this great diversity, all tree species end up with two
fundamental questions at each node:

① Should the node be split?

② In the affirmative, what are its children?
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The greedy spirit

Greedy trees proceed from a different philosophy.

A greedy tree should be able to answer questions ① and ② using
local information only.

Majority vote

Greedy decision No split

Split
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A model

Let C be a class of possible subsets of Rd that can be used for splits.

Example: C =
{

C =
∏d

j=1(aj , bj) : −∞ ≤ aj < bj ≤ +∞
}

.

Let {(Xi, Yi) : i ∈ I} be the subset of observations falling in a given
node.

A split that uses a set C ∈ C results in two sets of indices:

I ′ = {i ∈ I : Xi ∈ C} and I ′′ = {i ∈ I : Xi /∈ C}.
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A model

A greedy split may be seen as a mapping

σ : (Rd × {0, 1})|I| → R
p.

We see that σ is a model for the greedy decision ②.

In addition, there is a second mapping θ, but this time with a
boolean output.

It is a stopping rule and models the greedy decision ①.
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Greedy procedure

A greedy machine partitions the data recursively.

⊲ A node = a subset of Rd, starting with R
d for the root node.

⊲ For a node A,

I = {i = 1, . . . , n : Xi ∈ A}.

⊲ Compute the decision

θ ((Xi, Yi) : i ∈ I) ∈ {0, 1}

and the parameter of the split

σ ((Xi, Yi) : i ∈ I) ∈ C.

⊲ If θ = 0: STOP. Otherwise, the node spawns two children.

Final classification proceeds by a majority vote.
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An important remark

Is any classifier a greedy tree?

1 Set θ = 1 if we care at the root, and θ = 0 elsewhere.

2 The root node is split by the classifier into a set

C = {x ∈ R
d : gn(x) = 1}

and its complement, and both child nodes are leaves.

This is not allowed.
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An example

At first sight, there are no consistent greedy tree classifiers.

Example: The k-median tree.

⊲ When d = 1, split by finding the median element among the Xi’s.

⊲ Keep doing this for k rounds.

⊲ In d dimensions, rotate through the coordinates.

This rule is consistent, provided k → ∞ and k2k/n→ 0.

This is not greedy.
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A randomized solution

The greedy splitting method σ mimics the median tree classifier.

The dimension to cut is chosen uniformly at random.

The selected dimension is then split at the median.

The novelty is in the choice of the decision function θ.

This function ignores the data altogether and uses a randomized
decision that is based on the size of the input.
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Consistency

Consider a nonincreasing function p : N → (0, 1).

Then, if U is the uniform [0, 1] random variable associated with
node A,

θ = 1[U>p(N(A))].

Theorem

Let β be a real number in (0, 1). Define

p(n) =

{

1 if n < 3

1/logβ n if n ≥ 3.

Then
lim
n→∞

EL(gn) = L⋆ as n→ ∞.
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Can one do without randomization?

The solution is in the hypothesis that the data elements are i.i.d.

The median classifier does not use the ordering in the data.

One can use the randomness present in the permutation of the data.

This corresponds to ≈ n log2 n independent fair coin flips.

The total number of bits required to carry out all computations is

O
(

(3 + log2 d)2
logβ+ε n

)

.

There is sufficient randomness at hand to do the job.
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A full 2
d-ary tree

⊲ At the root, we find the median in direction 1.

⊲ Then on each of the two subsets, we find the median in direction 2.

⊲ Then on each of the four subsets, we find the median in direction 3,
and so forth.

⊲ Repeating this for k levels of nodes leads to 2dk leaf regions.
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The stopping rule θ

The quality of the classifier at node A is assessed by

L̂n(A) =
1

N(A)
min

(

n
∑

i=1

1[Xi∈A,Yi=1],

n
∑

i=1

1[Xi∈A,Yi=0]

)

.

Define the nonnegative integer k+ by

k+ = ⌊α log2(N(A) + 1)⌋ .

Set

L̂n(A, k
+) =

∑

Aj∈P
k+(A)

L̂n(Aj)
N(Aj)

N(A)
.

Both L̂n(A) and L̂n(A, k
+) may be evaluated on the basis of the

data points falling in A only.

This is greedy.



The stopping rule θ

Put θ = 0 if
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.



The stopping rule θ

Put θ = 0 if

∣

∣

∣
L̂n(A)− L̂n(A, k

+)
∣

∣

∣
≤

(

1

N(A) + 1

)β

.

Theorem

Take 1− dα − 2β > 0. Then

lim
n→∞

EL(gn) = L⋆ as n→ ∞.



Proof

root

k

Pk

A

k+

Pk+(A)

Gn

G+
k

G−
k



Proof

Let ψ(n, k) = L⋆
k − L⋆. Set

k⋆n = min







ℓ ≥ 0 : ψ(n, ℓ) <

√

(

2dℓ

n

)1−dα







.

Then
2dk

⋆
n

n
→ 0 as n→ ∞.


