
Big Data & Greedy Trees

Gérard Biau & Luc Devroye

Lyon, December 2012

Outline

1 Context

2 Greedy tree classifiers

3 A mathematical model

4 Are there consistent greedy tree classifiers?

5 A non-randomized solution

Outline

1 Context

2 Greedy tree classifiers

3 A mathematical model

4 Are there consistent greedy tree classifiers?

5 A non-randomized solution

The Big Data era

Big Data is a collection of data sets so large and complex that it
becomes impossible to process using classical tools.

The Big Data era

Big Data is a collection of data sets so large and complex that it
becomes impossible to process using classical tools.

It includes data sets with sizes beyond the ability of commonly-used
software tools to process the data within a tolerable elapsed time.

The Big Data era

Big Data is a collection of data sets so large and complex that it
becomes impossible to process using classical tools.

It includes data sets with sizes beyond the ability of commonly-used
software tools to process the data within a tolerable elapsed time.

As of 2012, every day 2.5 quintillion (2.5× 1018) bytes of data were
created.

The Big Data era

Big Data is a collection of data sets so large and complex that it
becomes impossible to process using classical tools.

It includes data sets with sizes beyond the ability of commonly-used
software tools to process the data within a tolerable elapsed time.

As of 2012, every day 2.5 quintillion (2.5× 1018) bytes of data were
created.

Megabytes and gigabytes are old-fashioned.

The Big Data era

The challenges involved in Big Data problems are interdisciplinary.

The Big Data era

The challenges involved in Big Data problems are interdisciplinary.

Data analysis in the Big Data regime requires consideration of:

The Big Data era

The challenges involved in Big Data problems are interdisciplinary.

Data analysis in the Big Data regime requires consideration of:

⊲ Systems issues: How to store, index and transport data at massive

scales?

The Big Data era

The challenges involved in Big Data problems are interdisciplinary.

Data analysis in the Big Data regime requires consideration of:

⊲ Systems issues: How to store, index and transport data at massive

scales?

⊲ Statistical issues: How to cope with errors and biases of all kinds?

How to develop models and procedures that work when both n and p

are astronomical?

The Big Data era

The challenges involved in Big Data problems are interdisciplinary.

Data analysis in the Big Data regime requires consideration of:

⊲ Systems issues: How to store, index and transport data at massive

scales?

⊲ Statistical issues: How to cope with errors and biases of all kinds?

How to develop models and procedures that work when both n and p

are astronomical?

⊲ Algorithmic issues: How to perform computations?

The Big Data era

The challenges involved in Big Data problems are interdisciplinary.

Data analysis in the Big Data regime requires consideration of:

⊲ Systems issues: How to store, index and transport data at massive

scales?

⊲ Statistical issues: How to cope with errors and biases of all kinds?

How to develop models and procedures that work when both n and p

are astronomical?

⊲ Algorithmic issues: How to perform computations?

Big Data requires massively parallel softwares running on tens,
hundreds, or even thousands of servers.

Greedy algorithms

Greedy algorithms build solutions incrementally, usually with little
effort.

Greedy algorithms

Greedy algorithms build solutions incrementally, usually with little
effort.

Such procedures form a result piece by piece, always choosing the
next item that offers the most obvious and immediate benefit.

Greedy algorithms

Greedy algorithms build solutions incrementally, usually with little
effort.

Such procedures form a result piece by piece, always choosing the
next item that offers the most obvious and immediate benefit.

Greedy methods have an autonomy that makes them ideally suited
for distributive or parallel computation.

Greedy algorithms

Greedy algorithms build solutions incrementally, usually with little
effort.

Such procedures form a result piece by piece, always choosing the
next item that offers the most obvious and immediate benefit.

Greedy methods have an autonomy that makes them ideally suited
for distributive or parallel computation.

In the short term, parallelism will take hold in massive datasets and
complex systems.

Greedy algorithms

Our goal is to formalize the setting and to provide a foundational
discussion of various properties of tree classifiers that are designed
following these principles.

Greedy algorithms

Our goal is to formalize the setting and to provide a foundational
discussion of various properties of tree classifiers that are designed
following these principles.

They may find use in a world with new computational models in
which parallel or distributed computation is feasible and even the
norm.

Outline

1 Context

2 Greedy tree classifiers

3 A mathematical model

4 Are there consistent greedy tree classifiers?

5 A non-randomized solution

Classification

Classification

?

Classification

Basics of classification

We have a random pair (X, Y) ∈ R
d × {0, 1} with an unknown

distribution.

Basics of classification

We have a random pair (X, Y) ∈ R
d × {0, 1} with an unknown

distribution.

Goal: Design a measurable classifier g : Rd → {0, 1}.

Basics of classification

We have a random pair (X, Y) ∈ R
d × {0, 1} with an unknown

distribution.

Goal: Design a measurable classifier g : Rd → {0, 1}.

The probability of error is L(g) = P{g(X) 6= Y }.

Basics of classification

We have a random pair (X, Y) ∈ R
d × {0, 1} with an unknown

distribution.

Goal: Design a measurable classifier g : Rd → {0, 1}.

The probability of error is L(g) = P{g(X) 6= Y }.

The Bayes classifier

g⋆(x) =

{

1 if P{Y = 1|X = x} > 1/2
0 otherwise

has the smallest probability of error, that is

L⋆ = L(g⋆) = inf
g:Rd→{0,1}

P{g(X) 6= Y }.

Basics of classification

The data: Dn = {(X1, Y1), . . . , (Xn, Yn)}, i.i.d. copies of (X, Y).

Basics of classification

The data: Dn = {(X1, Y1), . . . , (Xn, Yn)}, i.i.d. copies of (X, Y).

A classifier gn(x) is a measurable function of x and Dn.

Basics of classification

The data: Dn = {(X1, Y1), . . . , (Xn, Yn)}, i.i.d. copies of (X, Y).

A classifier gn(x) is a measurable function of x and Dn.

The probability of error is

L(gn) = P{gn(X) 6= Y |Dn}.

Basics of classification

The data: Dn = {(X1, Y1), . . . , (Xn, Yn)}, i.i.d. copies of (X, Y).

A classifier gn(x) is a measurable function of x and Dn.

The probability of error is

L(gn) = P{gn(X) 6= Y |Dn}.

It is consistent if
lim
n→∞

EL(gn) = L⋆.

Basics of classification

The data: Dn = {(X1, Y1), . . . , (Xn, Yn)}, i.i.d. copies of (X, Y).

A classifier gn(x) is a measurable function of x and Dn.

The probability of error is

L(gn) = P{gn(X) 6= Y |Dn}.

It is consistent if
lim
n→∞

EL(gn) = L⋆.

It is universally consistent if it is consistent for all possible
distributions of (X, Y).

Tree classifiers

Many popular classifiers are universally consistent.

Tree classifiers

Many popular classifiers are universally consistent.

These include several brands of histogram rules, k-nearest neighbor
rules, kernel rules, neural networks, and tree classifiers.

Tree classifiers

Many popular classifiers are universally consistent.

These include several brands of histogram rules, k-nearest neighbor
rules, kernel rules, neural networks, and tree classifiers.

Tree methods loom large for several reasons:

Tree classifiers

Many popular classifiers are universally consistent.

These include several brands of histogram rules, k-nearest neighbor
rules, kernel rules, neural networks, and tree classifiers.

Tree methods loom large for several reasons:

⊲ All procedures that partition space can be viewed as special cases of

partitions generated by trees.

Tree classifiers

Many popular classifiers are universally consistent.

These include several brands of histogram rules, k-nearest neighbor
rules, kernel rules, neural networks, and tree classifiers.

Tree methods loom large for several reasons:

⊲ All procedures that partition space can be viewed as special cases of

partitions generated by trees.

⊲ Simple neural networks that use voting methods can also be regarded

as trees.

Tree classifiers

Many popular classifiers are universally consistent.

These include several brands of histogram rules, k-nearest neighbor
rules, kernel rules, neural networks, and tree classifiers.

Tree methods loom large for several reasons:

⊲ All procedures that partition space can be viewed as special cases of

partitions generated by trees.

⊲ Simple neural networks that use voting methods can also be regarded

as trees.

⊲ Tree classifiers are conceptually simple, and explain the data very

well.

Trees

?

Trees

?

Trees

?

Trees

?

Trees

?

Trees

?

Trees

?

Trees

Trees

Trees

Trees

Trees

Trees

Trees

Trees

Trees

?

Trees

?

Trees

?

Trees

?

Trees

?

Trees

?

Trees

?

Tree classifiers

The design of trees can be cumbersome.

Tree classifiers

The design of trees can be cumbersome.

Optimizations could face a huge combinatorial and computational
hurdle.

Tree classifiers

The design of trees can be cumbersome.

Optimizations could face a huge combinatorial and computational
hurdle.

The greedy paradigm addresses these concerns.

Trees

Classification trees partition R
d into regions, often hyperrectangles

parallel to the axes.

Trees

Classification trees partition R
d into regions, often hyperrectangles

parallel to the axes.

leaf leaf

leaf

leaf leaf

leaf

Trees

Classification trees partition R
d into regions, often hyperrectangles

parallel to the axes.

leaf leaf

leaf

leaf leaf

leaf

The tree classifier takes the simple form

gn(x) =

{

1 if
∑n

i=1 1[Xi∈A,Yi=1] >
∑n

i=1 1[Xi∈A,Yi=0], x ∈ A
0 otherwise.

Trees

The tree structure is usually data dependent, and it is in the
construction itself that trees differ.

Trees

The tree structure is usually data dependent, and it is in the
construction itself that trees differ.

Thus, there are virtually infinitely many possible strategies to build
classification trees.

Trees

The tree structure is usually data dependent, and it is in the
construction itself that trees differ.

Thus, there are virtually infinitely many possible strategies to build
classification trees.

Despite this great diversity, all tree species end up with two
fundamental questions at each node:

① Should the node be split?

② In the affirmative, what are its children?

The greedy spirit

Greedy trees proceed from a different philosophy.

The greedy spirit

Greedy trees proceed from a different philosophy.

A greedy tree should be able to answer questions ① and ② using
local information only.

Majority vote

Greedy decision No split

Split

Outline

1 Context

2 Greedy tree classifiers

3 A mathematical model

4 Are there consistent greedy tree classifiers?

5 A non-randomized solution

A model

Let C be a class of possible subsets of Rd that can be used for splits.

A model

Let C be a class of possible subsets of Rd that can be used for splits.

Example: C =
{

C =
∏d

j=1(aj , bj) : −∞ ≤ aj < bj ≤ +∞
}

.

A model

Let C be a class of possible subsets of Rd that can be used for splits.

Example: C =
{

C =
∏d

j=1(aj , bj) : −∞ ≤ aj < bj ≤ +∞
}

.

Let {(Xi, Yi) : i ∈ I} be the subset of observations falling in a given
node.

A model

Let C be a class of possible subsets of Rd that can be used for splits.

Example: C =
{

C =
∏d

j=1(aj , bj) : −∞ ≤ aj < bj ≤ +∞
}

.

Let {(Xi, Yi) : i ∈ I} be the subset of observations falling in a given
node.

A split that uses a set C ∈ C results in two sets of indices:

I ′ = {i ∈ I : Xi ∈ C} and I ′′ = {i ∈ I : Xi /∈ C}.

A model

A greedy split may be seen as a mapping

σ : (Rd × {0, 1})|I| → R
p.

A model

A greedy split may be seen as a mapping

σ : (Rd × {0, 1})|I| → R
p.

We see that σ is a model for the greedy decision ②.

A model

A greedy split may be seen as a mapping

σ : (Rd × {0, 1})|I| → R
p.

We see that σ is a model for the greedy decision ②.

In addition, there is a second mapping θ, but this time with a
boolean output.

A model

A greedy split may be seen as a mapping

σ : (Rd × {0, 1})|I| → R
p.

We see that σ is a model for the greedy decision ②.

In addition, there is a second mapping θ, but this time with a
boolean output.

It is a stopping rule and models the greedy decision ①.

Greedy procedure

A greedy machine partitions the data recursively.

Greedy procedure

A greedy machine partitions the data recursively.

⊲ A node = a subset of Rd, starting with R
d for the root node.

Greedy procedure

A greedy machine partitions the data recursively.

⊲ A node = a subset of Rd, starting with R
d for the root node.

⊲ For a node A,

I = {i = 1, . . . , n : Xi ∈ A}.

Greedy procedure

A greedy machine partitions the data recursively.

⊲ A node = a subset of Rd, starting with R
d for the root node.

⊲ For a node A,

I = {i = 1, . . . , n : Xi ∈ A}.

⊲ Compute the decision

θ ((Xi, Yi) : i ∈ I) ∈ {0, 1}

and the parameter of the split

σ ((Xi, Yi) : i ∈ I) ∈ C.

Greedy procedure

A greedy machine partitions the data recursively.

⊲ A node = a subset of Rd, starting with R
d for the root node.

⊲ For a node A,

I = {i = 1, . . . , n : Xi ∈ A}.

⊲ Compute the decision

θ ((Xi, Yi) : i ∈ I) ∈ {0, 1}

and the parameter of the split

σ ((Xi, Yi) : i ∈ I) ∈ C.

⊲ If θ = 0: STOP. Otherwise, the node spawns two children.

Greedy procedure

A greedy machine partitions the data recursively.

⊲ A node = a subset of Rd, starting with R
d for the root node.

⊲ For a node A,

I = {i = 1, . . . , n : Xi ∈ A}.

⊲ Compute the decision

θ ((Xi, Yi) : i ∈ I) ∈ {0, 1}

and the parameter of the split

σ ((Xi, Yi) : i ∈ I) ∈ C.

⊲ If θ = 0: STOP. Otherwise, the node spawns two children.

Final classification proceeds by a majority vote.

An important remark

Is any classifier a greedy tree?

An important remark

Is any classifier a greedy tree?

1 Set θ = 1 if we care at the root, and θ = 0 elsewhere.

2 The root node is split by the classifier into a set

C = {x ∈ R
d : gn(x) = 1}

and its complement, and both child nodes are leaves.

An important remark

Is any classifier a greedy tree?

1 Set θ = 1 if we care at the root, and θ = 0 elsewhere.

2 The root node is split by the classifier into a set

C = {x ∈ R
d : gn(x) = 1}

and its complement, and both child nodes are leaves.

This is not allowed.

Outline

1 Context

2 Greedy tree classifiers

3 A mathematical model

4 Are there consistent greedy tree classifiers?

5 A non-randomized solution

An example

At first sight, there are no consistent greedy tree classifiers.

An example

At first sight, there are no consistent greedy tree classifiers.

Example: The k-median tree.

An example

At first sight, there are no consistent greedy tree classifiers.

Example: The k-median tree.

⊲ When d = 1, split by finding the median element among the Xi’s.

An example

At first sight, there are no consistent greedy tree classifiers.

Example: The k-median tree.

⊲ When d = 1, split by finding the median element among the Xi’s.

⊲ Keep doing this for k rounds.

An example

At first sight, there are no consistent greedy tree classifiers.

Example: The k-median tree.

⊲ When d = 1, split by finding the median element among the Xi’s.

⊲ Keep doing this for k rounds.

⊲ In d dimensions, rotate through the coordinates.

An example

At first sight, there are no consistent greedy tree classifiers.

Example: The k-median tree.

⊲ When d = 1, split by finding the median element among the Xi’s.

⊲ Keep doing this for k rounds.

⊲ In d dimensions, rotate through the coordinates.

This rule is consistent, provided k → ∞ and k2k/n→ 0.

An example

At first sight, there are no consistent greedy tree classifiers.

Example: The k-median tree.

⊲ When d = 1, split by finding the median element among the Xi’s.

⊲ Keep doing this for k rounds.

⊲ In d dimensions, rotate through the coordinates.

This rule is consistent, provided k → ∞ and k2k/n→ 0.

This is not greedy.

A randomized solution

The greedy splitting method σ mimics the median tree classifier.

A randomized solution

The greedy splitting method σ mimics the median tree classifier.

The dimension to cut is chosen uniformly at random.

A randomized solution

The greedy splitting method σ mimics the median tree classifier.

The dimension to cut is chosen uniformly at random.

The selected dimension is then split at the median.

A randomized solution

The greedy splitting method σ mimics the median tree classifier.

The dimension to cut is chosen uniformly at random.

The selected dimension is then split at the median.

The novelty is in the choice of the decision function θ.

A randomized solution

The greedy splitting method σ mimics the median tree classifier.

The dimension to cut is chosen uniformly at random.

The selected dimension is then split at the median.

The novelty is in the choice of the decision function θ.

This function ignores the data altogether and uses a randomized
decision that is based on the size of the input.

Consistency

Consider a nonincreasing function p : N → (0, 1).

Consistency

Consider a nonincreasing function p : N → (0, 1).

Then, if U is the uniform [0, 1] random variable associated with
node A,

θ = 1[U>p(N(A))].

Consistency

Consider a nonincreasing function p : N → (0, 1).

Then, if U is the uniform [0, 1] random variable associated with
node A,

θ = 1[U>p(N(A))].

Theorem

Let β be a real number in (0, 1). Define

p(n) =

{

1 if n < 3

1/logβ n if n ≥ 3.

Then
lim
n→∞

EL(gn) = L⋆ as n→ ∞.

Can one do without randomization?

The solution is in the hypothesis that the data elements are i.i.d.

Can one do without randomization?

The solution is in the hypothesis that the data elements are i.i.d.

The median classifier does not use the ordering in the data.

Can one do without randomization?

The solution is in the hypothesis that the data elements are i.i.d.

The median classifier does not use the ordering in the data.

One can use the randomness present in the permutation of the data.

Can one do without randomization?

The solution is in the hypothesis that the data elements are i.i.d.

The median classifier does not use the ordering in the data.

One can use the randomness present in the permutation of the data.

This corresponds to ≈ n log2 n independent fair coin flips.

Can one do without randomization?

The solution is in the hypothesis that the data elements are i.i.d.

The median classifier does not use the ordering in the data.

One can use the randomness present in the permutation of the data.

This corresponds to ≈ n log2 n independent fair coin flips.

The total number of bits required to carry out all computations is

O
(

(3 + log2 d)2
logβ+ε n

)

.

Can one do without randomization?

The solution is in the hypothesis that the data elements are i.i.d.

The median classifier does not use the ordering in the data.

One can use the randomness present in the permutation of the data.

This corresponds to ≈ n log2 n independent fair coin flips.

The total number of bits required to carry out all computations is

O
(

(3 + log2 d)2
logβ+ε n

)

.

There is sufficient randomness at hand to do the job.

Outline

1 Context

2 Greedy tree classifiers

3 A mathematical model

4 Are there consistent greedy tree classifiers?

5 A non-randomized solution

A full 2
d-ary tree

⊲ At the root, we find the median in direction 1.

A full 2
d-ary tree

⊲ At the root, we find the median in direction 1.

⊲ Then on each of the two subsets, we find the median in direction 2.

A full 2
d-ary tree

⊲ At the root, we find the median in direction 1.

⊲ Then on each of the two subsets, we find the median in direction 2.

⊲ Then on each of the four subsets, we find the median in direction 3,
and so forth.

A full 2
d-ary tree

⊲ At the root, we find the median in direction 1.

⊲ Then on each of the two subsets, we find the median in direction 2.

⊲ Then on each of the four subsets, we find the median in direction 3,
and so forth.

⊲ Repeating this for k levels of nodes leads to 2dk leaf regions.

The stopping rule θ

The quality of the classifier at node A is assessed by

L̂n(A) =
1

N(A)
min

(

n
∑

i=1

1[Xi∈A,Yi=1],

n
∑

i=1

1[Xi∈A,Yi=0]

)

.

The stopping rule θ

The quality of the classifier at node A is assessed by

L̂n(A) =
1

N(A)
min

(

n
∑

i=1

1[Xi∈A,Yi=1],

n
∑

i=1

1[Xi∈A,Yi=0]

)

.

Define the nonnegative integer k+ by

k+ = ⌊α log2(N(A) + 1)⌋ .

The stopping rule θ

The quality of the classifier at node A is assessed by

L̂n(A) =
1

N(A)
min

(

n
∑

i=1

1[Xi∈A,Yi=1],

n
∑

i=1

1[Xi∈A,Yi=0]

)

.

Define the nonnegative integer k+ by

k+ = ⌊α log2(N(A) + 1)⌋ .

Set

L̂n(A, k
+) =

∑

Aj∈P
k+(A)

L̂n(Aj)
N(Aj)

N(A)
.

The stopping rule θ

The quality of the classifier at node A is assessed by

L̂n(A) =
1

N(A)
min

(

n
∑

i=1

1[Xi∈A,Yi=1],

n
∑

i=1

1[Xi∈A,Yi=0]

)

.

Define the nonnegative integer k+ by

k+ = ⌊α log2(N(A) + 1)⌋ .

Set

L̂n(A, k
+) =

∑

Aj∈P
k+(A)

L̂n(Aj)
N(Aj)

N(A)
.

Both L̂n(A) and L̂n(A, k
+) may be evaluated on the basis of the

data points falling in A only.

The stopping rule θ

The quality of the classifier at node A is assessed by

L̂n(A) =
1

N(A)
min

(

n
∑

i=1

1[Xi∈A,Yi=1],

n
∑

i=1

1[Xi∈A,Yi=0]

)

.

Define the nonnegative integer k+ by

k+ = ⌊α log2(N(A) + 1)⌋ .

Set

L̂n(A, k
+) =

∑

Aj∈P
k+(A)

L̂n(Aj)
N(Aj)

N(A)
.

Both L̂n(A) and L̂n(A, k
+) may be evaluated on the basis of the

data points falling in A only.

This is greedy.

The stopping rule θ

Put θ = 0 if

∣

∣

∣
L̂n(A)− L̂n(A, k

+)
∣

∣

∣
≤

(

1

N(A) + 1

)β

.

The stopping rule θ

Put θ = 0 if

∣

∣

∣
L̂n(A)− L̂n(A, k

+)
∣

∣

∣
≤

(

1

N(A) + 1

)β

.

Theorem

Take 1− dα − 2β > 0. Then

lim
n→∞

EL(gn) = L⋆ as n→ ∞.

Proof

root

k

Pk

A

k+

Pk+(A)

Gn

G+
k

G−
k

Proof

Let ψ(n, k) = L⋆
k − L⋆. Set

k⋆n = min

ℓ ≥ 0 : ψ(n, ℓ) <

√

(

2dℓ

n

)1−dα

.

Then
2dk

⋆
n

n
→ 0 as n→ ∞.

