Big Data & Greedy Trees

Gérard Biau & Luc Devroye

Lyon, December 2012

© Context

© Greedy tree classifiers

© A mathematical model

©Q Are there consistent greedy tree classifiers?

O A non-randomized solution

© Context

The Big Data era

@ Big Data is a collection of data sets so large and complex that it
becomes impossible to process using classical tools.

The Big Data era

@ Big Data is a collection of data sets so large and complex that it
becomes impossible to process using classical tools.

@ It includes data sets with sizes beyond the ability of commonly-used
software tools to process the data within a tolerable elapsed time.

The Big Data era

@ Big Data is a collection of data sets so large and complex that it
becomes impossible to process using classical tools.

@ It includes data sets with sizes beyond the ability of commonly-used
software tools to process the data within a tolerable elapsed time.

@ As of 2012, every day 2.5 quintillion (2.5 x 10'8) bytes of data were
created.

The Big Data era

@ Big Data is a collection of data sets so large and complex that it
becomes impossible to process using classical tools.

@ It includes data sets with sizes beyond the ability of commonly-used
software tools to process the data within a tolerable elapsed time.

@ As of 2012, every day 2.5 quintillion (2.5 x 10'8) bytes of data were
created.

9 Megabytes and gigabytes are old-fashioned.

The Big Data era

@ The challenges involved in Big Data problems are interdisciplinary.

The Big Data era

@ The challenges involved in Big Data problems are interdisciplinary.

@ Data analysis in the Big Data regime requires consideration of:

The Big Data era

@ The challenges involved in Big Data problems are interdisciplinary.

@ Data analysis in the Big Data regime requires consideration of:

> Systems issues: How to store, index and transport data at massive
scales?

The Big Data era

@ The challenges involved in Big Data problems are interdisciplinary.

@ Data analysis in the Big Data regime requires consideration of:

> Systems issues: How to store, index and transport data at massive
scales?

> Statistical issues: How to cope with errors and biases of all kinds?
How to develop models and procedures that work when both n and p
are astronomical?

The Big Data era

@ The challenges involved in Big Data problems are interdisciplinary.

@ Data analysis in the Big Data regime requires consideration of:

> Systems issues: How to store, index and transport data at massive
scales?

> Statistical issues: How to cope with errors and biases of all kinds?
How to develop models and procedures that work when both n and p

are astronomical?

> Algorithmic issues: How to perform computations?

The Big Data era

@ The challenges involved in Big Data problems are interdisciplinary.

@ Data analysis in the Big Data regime requires consideration of:

> Systems issues: How to store, index and transport data at massive
scales?

> Statistical issues: How to cope with errors and biases of all kinds?
How to develop models and procedures that work when both n and p

are astronomical?

> Algorithmic issues: How to perform computations?

9 Big Data requires massively parallel softwares running on tens,
hundreds, or even thousands of servers.

Greedy algorithms

@ Greedy algorithms build solutions incrementally, usually with little
effort.

Greedy algorithms

@ Greedy algorithms build solutions incrementally, usually with little
effort.

@ Such procedures form a result piece by piece, always choosing the
next item that offers the most obvious and immediate benefit.

Greedy algorithms

@ Greedy algorithms build solutions incrementally, usually with little
effort.

@ Such procedures form a result piece by piece, always choosing the
next item that offers the most obvious and immediate benefit.

@ Greedy methods have an autonomy that makes them ideally suited
for distributive or parallel computation.

Greedy algorithms

@ Greedy algorithms build solutions incrementally, usually with little
effort.

@ Such procedures form a result piece by piece, always choosing the
next item that offers the most obvious and immediate benefit.

@ Greedy methods have an autonomy that makes them ideally suited
for distributive or parallel computation.

9 In the short term, parallelism will take hold in massive datasets and
complex systems.

Greedy algorithms

@ Our goal is to formalize the setting and to provide a foundational
discussion of various properties of tree classifiers that are designed
following these principles.

Greedy algorithms

@ Our goal is to formalize the setting and to provide a foundational
discussion of various properties of tree classifiers that are designed
following these principles.

@ They may find use in a world with new computational models in
which parallel or distributed computation is feasible and even the
norm.

101071 0V

© Greedy tree classifiers

Classification

[]
O fe) °
(0]
° (@]
(@]
° O
[]
(@]
[]
[]
o o =
(0]
(0]
(]
([]
° []

Classification

[]

O fe) °

(0]
° (@]

(@]

° O
[]

o (@]

[]
[]
o o =
(0]
(0]
(]
([]
° []

Classification

[]
O fe) °
(0]
° (@]
(@]
° O
[]
> (@]
[]
[]
o o =
(0]
(0]
(]
([]
° []

Basics of classification

@ We have a random pair (X,Y) € R? x {0, 1} with an unknown
distribution.

Basics of classification

@ We have a random pair (X,Y) € R? x {0, 1} with an unknown
distribution.

@ Goal: Design a measurable classifier g : R? — {0,1}.

Basics of classification

@ We have a random pair (X,Y) € R? x {0, 1} with an unknown
distribution.

@ Goal: Design a measurable classifier g : R? — {0,1}.

@ The probability of error is L(g) = P{g(X) # Y}.

Basics of classification

@ We have a random pair (X,Y) € R? x {0, 1} with an unknown
distribution.

@ Goal: Design a measurable classifier g : R? — {0,1}.
@ The probability of error is L(g) = P{g(X) # Y}.

@ The Bayes classifier

wn 1 Py =1X=x}>1/2
g"(x) _{ 0 otherwise

has the smallest probability of error, that is

L=Lg) =l P{g(X) £V},

Basics of classification

@ The data: D, = {(X1,Y1),...,(X,,Y,)}, i.i.d. copies of (X,Y).

Basics of classification

@ The data: D, = {(X1,Y1),...,(X,,Y,)}, i.i.d. copies of (X,Y).

9 A classifier g, (x) is a measurable function of x and D,,.

Basics of classification

@ The data: D, = {(X1,Y1),...,(X,,Y,)}, i.i.d. copies of (X,Y).
9 A classifier g, (x) is a measurable function of x and D,,.

@ The probability of error is

L(gn) = P{gn(X) # Y|Dn}'

Basics of classification

@ The data: D, = {(X1,Y1),...,(X,,Y,)}, i.i.d. copies of (X,Y).
9 A classifier g, (x) is a measurable function of x and D,,.

@ The probability of error is
L(gn) = P{gn(X) # Y |Dn}.

9 It is consistent if
lim EL(g,) = L*.

n—oo

Basics of classification

The data: D, = {(X1,Y1),..., (X, Ys)}, i.i.d. copies of (X,Y).

(<]

9 A classifier g, (x) is a measurable function of x and D,,.

(<]

The probability of error is
L(gn) = P{gn(X) # Y |Dn}.

9 It is consistent if
lim EL(g,) = L*.

n—oo

9 It is universally consistent if it is consistent for all possible
distributions of (X,Y).

Y — -
rddd >
ENT —%
T P
~UVIDIN
T=F N
L« Wa RV
~ S-S N>
o~ 8w —
N~NO &~ o —

Tree classifiers

@ Many popular classifiers are universally consistent.

Tree classifiers

@ Many popular classifiers are universally consistent.

@ These include several brands of histogram rules, k-nearest neighbor
rules, kernel rules, neural networks, and tree classifiers.

Tree classifie

@ Many popular classifiers are universally consistent.

@ These include several brands of histogram rules, k-nearest neighbor
rules, kernel rules, neural networks, and tree classifiers.

@ Tree methods loom large for several reasons:

Tree classifiers

@ Many popular classifiers are universally consistent.

@ These include several brands of histogram rules, k-nearest neighbor
rules, kernel rules, neural networks, and tree classifiers.

@ Tree methods loom large for several reasons:

> All procedures that partition space can be viewed as special cases of
partitions generated by trees.

Tree classifiers

@ Many popular classifiers are universally consistent.

@ These include several brands of histogram rules, k-nearest neighbor
rules, kernel rules, neural networks, and tree classifiers.

@ Tree methods loom large for several reasons:

> All procedures that partition space can be viewed as special cases of
partitions generated by trees.

> Simple neural networks that use voting methods can also be regarded
as trees.

Tree classifiers

@ Many popular classifiers are universally consistent.

@ These include several brands of histogram rules, k-nearest neighbor
rules, kernel rules, neural networks, and tree classifiers.

@ Tree methods loom large for several reasons:

> All procedures that partition space can be viewed as special cases of
partitions generated by trees.

> Simple neural networks that use voting methods can also be regarded
as trees.

> Tree classifiers are conceptually simple, and explain the data very
well.

[]
O fe) °
? o
° (@]
(@]
° O
[]
(@]
[]
[]
o o =
(0]
(0]
(]
([]
° []

[]
O fe) °
? o
° (@]
(@]
° O
[]
(@]
[]
[]
o o =
(0]
(0]
(]
([]
° []

[]
O fe) °
? o
° (@]
(@]
° O
[]
(@]
[]
[]
o o =
(0]
(0]
(]
([]
° []

[]
O fe) °
? o
° (@]
(@]
° O
[]
(@]
[]
[]
o o =
(0]
(0]
(]
([]
° []

[]
O fe) °
? o
° (@]
(@]
° O
[]
(@]
[]
[]
o o =
(0]
(0]
(]
([]
° []

[]
O fe) °
? o
° (@]
(@]
° O
[]
(@]
[]
[]
o o =
(0]
(0]
(]
([]
° []

[]
O fe) °
? o
° (@]
(@]
° O
[]
(@]
[]
[]
o o =
(0]
(0]
(]
([]
° []

[]
O fe) °
(@] (0]
° (@]
(@]
° O
[]
(@]
[]
[]
o o =
(0]
(0]
(]
([]
° []

[]
o o °
(o)
. o
o
° o
[)
o
°
°
o o o
o
o
[]
[]
. °

°
o o =
o
O fe)
@)
° o
° ./‘\.
o
°
°
o o o
o
o
°
°
5 °

[]
o o °
(o)
. o
0
° o
[)
o
°
°
o o o
o
o
[]
[]
. °

[]
o o °
(o)
. o
0
° o
[)
o
°
°
o o o
o
o
[]
[]
. °

[]
o o °
(o)
. o
0
° o
[)
o
°
°
o o o
o
o
[]
[]
. °

[]
o o °
(o)
. o
0
° o
[)
o
°
°
o o o
o
o
[]
[]
. °

[]
o o °
(o)
. o
0
° o
[)
o
°
°
o o o
o
o
[]
[]
. °

[]
o o °
? o
. o
o
° o
[)
o
°
°
o o o
o
o
[]
[]
. °

[]
O o °
? o
° o
[e]
° O
[] ./‘\‘
(e}
[]
[]
o o =
[¢]
[¢]
[)
[)
° []

[]
o o °
? o
. o
0
° o
[)
o
°
°
o o o
o
o
[]
[]
. °

[]
o o °
? o
. o
0
° o
[)
o
°
°
o o o
o
o
[]
[]
. °

[]
o o °
? o
. o
0
° o
[)
o
°
°
o o o
o
o
[]
[]
. °

[]
o o °
? o
. o
0
° o
[)
o
°
°
o o o
o
o
[]
[]
. °

[]
o o °
? o
. o
0
° o
[)
o
°
°
o o o
o
o
[]
[]
. °

Tree classifiers

@ The design of trees can be cumbersome.

Tree classifiers

@ The design of trees can be cumbersome.

@ Optimizations could face a huge combinatorial and computational
hurdle.

Tree classifiers

@ The design of trees can be cumbersome.

@ Optimizations could face a huge combinatorial and computational
hurdle.

@ The greedy paradigm addresses these concerns.

Trees

@ Classification trees partition R? into regions, often hyperrectangles
parallel to the axes.

Trees

@ Classification trees partition R? into regions, often hyperrectangles
parallel to the axes.

N o
.o ° e °
°
O o
o
o * 5 o O ®
o °© oe °
o °
o ©
o
°
o o © o
o o
el O
o o [} oe (o)
o)
° o ° o

Trees

@ Classification trees partition R? into regions, often hyperrectangles

parallel to the axes.

@ The tree classifier takes the simple form

0 otherwise.

o { Loif 3ol Ixieavi=) > 2ici Lxieavizo) X €A

Trees

@ The tree structure is usually data dependent, and it is in the
construction itself that trees differ.

Trees

@ The tree structure is usually data dependent, and it is in the
construction itself that trees differ.

@ Thus, there are virtually infinitely many possible strategies to build
classification trees.

Trees

@ The tree structure is usually data dependent, and it is in the
construction itself that trees differ.

@ Thus, there are virtually infinitely many possible strategies to build
classification trees.

@ Despite this great diversity, all tree species end up with two
fundamental questions at each node:

[0 Should the node be split?

O In the affirmative, what are its children?

The greedy spirit

@ Greedy trees proceed from a different philosophy.

The greedy spirit

@ Greedy trees proceed from a different philosophy.

@ A greedy tree should be able to answer questions [0 and [0 using
local information only.

o Ce
590 (i]
© 0 Majority vote
l A
| Greedy decision H' No split |
(o) o e
[] e ©
[e] o e

© A mathematical model

@ Let C be a class of possible subsets of R¢ that can be used for splits.

@ Let C be a class of possible subsets of R¢ that can be used for splits.

9 Example: C = {C = H?Il(aj,bj) :—oo0<a; <b; < +oo} .

@ Let C be a class of possible subsets of R¢ that can be used for splits.
9 Example: C = {C = H?Il(aj,bj) :—oo0<a; <b; < +oo} .

o Let {(X;,Y;) :4 € I} be the subset of observations falling in a given
node.

@ Let C be a class of possible subsets of R¢ that can be used for splits.
9 Example: C = {C = H?Il(aj,bj) :—oo0<a; <b; < +oo} .

o Let {(X;,Y;) :4 € I} be the subset of observations falling in a given
node.

@ A split that uses a set C € C results in two sets of indices:

I'={iel:X;€C} and I"={iel:X,;¢C}

@ A greedy split may be seen as a mapping

o: (R? x {0,1)! = RP,

@ A greedy split may be seen as a mapping

o: (R? x {0,1)! = RP,

@ We see that o is a model for the greedy decision [.

@ A greedy split may be seen as a mapping

o: (RYx {0,1HH - RP.
@ We see that o is a model for the greedy decision [.

@ In addition, there is a second mapping 6, but this time with a
boolean output.

@ A greedy split may be seen as a mapping

o: (RYx {0,1HH - RP.
@ We see that o is a model for the greedy decision [.

@ In addition, there is a second mapping 6, but this time with a
boolean output.

9 It is a stopping rule and models the greedy decision O.

Greedy procedure

@ A greedy machine partitions the data recursively.

Greedy procedure

@ A greedy machine partitions the data recursively.

> A node = a subset of R?, starting with R¢ for the root node.

Greedy procedure

@ A greedy machine partitions the data recursively.

> A node = a subset of R?, starting with R¢ for the root node.

> For a node A,
I={i=1,....,n:X; € A}

Greedy procedure

@ A greedy machine partitions the data recursively.

> A node = a subset of R?, starting with R¢ for the root node.

> For a node A,
I={i=1,....,n:X; € A}

> Compute the decision
0((Xs,Y:):iel)ef0,1}
and the parameter of the split

o ((X:,Y;):iel)eC.

Greedy procedure

@ A greedy machine partitions the data recursively.

> A node = a subset of R?, starting with R¢ for the root node.

> For a node A,
I={i=1,....,n:X; € A}

> Compute the decision
0((Xs,Y:):iel)ef0,1}
and the parameter of the split
o((Xs,Y:):5€l)eC.

> If § = 0: STOP. Otherwise, the node spawns two children.

Greedy procedure

@ A greedy machine partitions the data recursively.

> A node = a subset of R?, starting with R¢ for the root node.

> For a node A,
I={i=1,....,n:X; € A}

> Compute the decision
0((Xs,Y:):iel)ef0,1}
and the parameter of the split
o((Xs,Y:):5€l)eC.

> If § = 0: STOP. Otherwise, the node spawns two children.

o Final classification proceeds by a majority vote.

An important remark

Is any classifier a greedy tree?

An important remark

Is any classifier a greedy tree?

Q Set 6 = 1 if we care at the root, and 6 = 0 elsewhere.

Q The root node is split by the classifier into a set
C={xeR?:g,(x) =1}

and its complement, and both child nodes are leaves.

An important remark

Is any classifier a greedy tree?

Q Set 6 = 1 if we care at the root, and 6 = 0 elsewhere.

Q The root node is split by the classifier into a set
C={xeR?:g,(x) =1}

and its complement, and both child nodes are leaves.

| This is not allowed. |

©Q Are there consistent greedy tree classifiers?

@ At first sight, there are no consistent greedy tree classifiers.

@ At first sight, there are no consistent greedy tree classifiers.

@ Example: The k-median tree.

@ At first sight, there are no consistent greedy tree classifiers.

@ Example: The k-median tree.

> When d = 1, split by finding the median element among the X;'s.

@ At first sight, there are no consistent greedy tree classifiers.

@ Example: The k-median tree.

> When d = 1, split by finding the median element among the X;'s.

> Keep doing this for k rounds.

@ At first sight, there are no consistent greedy tree classifiers.

@ Example: The k-median tree.
> When d = 1, split by finding the median element among the X;'s.
> Keep doing this for k rounds.

> In d dimensions, rotate through the coordinates.

@ At first sight, there are no consistent greedy tree classifiers.

@ Example: The k-median tree.

> When d = 1, split by finding the median element among the X;'s.
> Keep doing this for k rounds.

> In d dimensions, rotate through the coordinates.

@ This rule is consistent, provided k — oo and k2% /n — 0.

@ At first sight, there are no consistent greedy tree classifiers.
@ Example: The k-median tree.

> When d = 1, split by finding the median element among the X;'s.

> Keep doing this for k rounds.

> In d dimensions, rotate through the coordinates.

@ This rule is consistent, provided k — oo and k2% /n — 0.

This is not greedy. ‘

A randomized solution

@ The greedy splitting method o mimics the median tree classifier.

A randomized solution

@ The greedy splitting method o mimics the median tree classifier.

@ The dimension to cut is chosen uniformly at random.

A randomized solution

@ The greedy splitting method o mimics the median tree classifier.
@ The dimension to cut is chosen uniformly at random.

@ The selected dimension is then split at the median.

A randomized solution

@ The greedy splitting method o mimics the median tree classifier.
@ The dimension to cut is chosen uniformly at random.
@ The selected dimension is then split at the median.

@ The novelty is in the choice of the decision function 6.

A randomized solution

@ The greedy splitting method o mimics the median tree classifier.
@ The dimension to cut is chosen uniformly at random.

@ The selected dimension is then split at the median.

@ The novelty is in the choice of the decision function 6.

@ This function ignores the data altogether and uses a randomized
decision that is based on the size of the input.

@ Consider a nonincreasing function p : N — (0, 1).

@ Consider a nonincreasing function p : N — (0, 1).

@ Then, if U is the uniform [0, 1] random variable associated with
node A,

0 = Liuspv(a))-

@ Consider a nonincreasing function p : N — (0, 1).

@ Then, if U is the uniform [0, 1] random variable associated with
node A,

0 =1w>piv(ay)-

Let 8 be a real number in (0,1). Define

(n) = 1 ifn<3
pn) = l/logﬁn if n > 3.

Then

lim EL(g,) = L* asn — oo.

n—o0

Can one do without randomization?

@ The solution is in the hypothesis that the data elements are i.i.d.

Can one do without randomization?

@ The solution is in the hypothesis that the data elements are i.i.d.

@ The median classifier does not use the ordering in the data.

Can one do without randomization?

@ The solution is in the hypothesis that the data elements are i.i.d.
@ The median classifier does not use the ordering in the data.

@ One can use the randomness present in the permutation of the data.

Can one do without randomization?

@ The solution is in the hypothesis that the data elements are i.i.d.
@ The median classifier does not use the ordering in the data.
@ One can use the randomness present in the permutation of the data.

@ This corresponds to = nlog, n independent fair coin flips.

Can one do without randomization?

@ The solution is in the hypothesis that the data elements are i.i.d.

@ The median classifier does not use the ordering in the data.

@ One can use the randomness present in the permutation of the data.
@ This corresponds to = nlog, n independent fair coin flips.

@ The total number of bits required to carry out all computations is

@ ((3 + log, d)21°gﬁ+6 ") .

Can one do without randomization?

@ The solution is in the hypothesis that the data elements are i.i.d.

@ The median classifier does not use the ordering in the data.

@ One can use the randomness present in the permutation of the data.
@ This corresponds to = nlog, n independent fair coin flips.

@ The total number of bits required to carry out all computations is

@ ((3 + log, d)21°gﬁ+6 ") .

There is sufficient randomness at hand to do the job.

O A non-randomized solution

A full 2% ary tree

> At the root, we find the median in direction 1.

A full 2% ary tree

> At the root, we find the median in direction 1.

> Then on each of the two subsets, we find the median in direction 2.

A full 2% ary tree

> At the root, we find the median in direction 1.
> Then on each of the two subsets, we find the median in direction 2.

> Then on each of the four subsets, we find the median in direction 3,
and so forth.

A full 2% ary tree

> At the root, we find the median in direction 1.
> Then on each of the two subsets, we find the median in direction 2.

> Then on each of the four subsets, we find the median in direction 3,
and so forth.

> Repeating this for k levels of nodes leads to 2%% leaf regions.

The stopping rule 6

@ The quality of the classifier at node A is assessed by

. 1 : n n
L,(A) = N(A) min (; lix,ea,vi=1), ZI[X,;GA,Yi_O]> :

p=1l

The stopping rule 6

@ The quality of the classifier at node A is assessed by

. 1 : n n

L,(A) = m min (; 1ix,ea,v;=1] gl[xieA,Yi_O]> .
o Define the nonnegative integer k™ by

kT = |alogy(N(A) +1)].

The stopping rule 6

@ The quality of the classifier at node A is assessed by

A 1 n n
Ln A = . 1 » . : 1 : _ '
(4) —N(A) min (; [Xi€A,Y;=1] ; [Xi€A,Y; o])
@ Define the nonnegative integer k™ by

k' = |alogy(N(A) +1)].

9 Set

The stopping rule 6

@ The quality of the classifier at node A is assessed by

A 1 n n
Ln A = . 1 » . : 1 : _ '
(4) —N(A) min (; [Xi€A,Y;=1] ; [Xi€A,Y; o])
@ Define the nonnegative integer k™ by

kT = |alogy(N(A) +1)].

@ Set

P Ak = S Ra(ay) A
Aj€P,+(A)

o Both L, (A) and L, (A, k") may be evaluated on the basis of the
data points falling in A only.

The stopping rule 6

@ The quality of the classifier at node A is assessed by

A 1 n n
Ln .A = . 1 » . : 1 : _ '
(4) —N(A) min (; [Xi€A,Y;=1] ; [Xi€A,Y; o])
@ Define the nonnegative integer k™ by

kT = |alogy(N(A) +1)].

@ Set

P Ak = S Ra(ay) A
Aj€P,+(A)

o Both L, (A) and L, (A, k") may be evaluated on the basis of the
data points falling in A only.

‘ This is greedy.

The stopping rule ¢

Put 6 =0 if

Ea() - Enta, i) <

1
N(A) +1

)ﬁ.

The stopping rule 0

Put 6 =0 if

Ln(A) — ﬁ,,,,(A,/#)) < (N(Al) R 1>ﬂ.

Theorem

Let ¢)(n, k) = L} — L*. Set

{ 9de 1—da
kX =min¢ ¢ >0:¢(n,l) < <7> .

9 dk,

Then

— 0 asn — oo.

n

