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Introduction – discretization One shot

Introduction – models.
Partial differential equations

P.D.E.
These are relations — possibly nonlinear — between an unknown function
and its various derivatives.

Some examples
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Introduction – discretization One shot

Introduction – models.
Partial differential equations

Boltzmann equations
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Introduction – models.
Partial differential equations

Navier-Stokes
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Introduction – discretization One shot

Introduction – discretization.
One shot approximation

Discretization methods for approximating the solution to PDE’s are
various, if you have one yourself, certainly yours is the best one ! !

This can be

Finite Element Method

Finite Difference Method

Finite Volume Methods

Spectral Method

Wavelets Method

Mimetic Finite Difference Method

Meshless Method

without quoting the discretization in time

all being interesting for some particular application
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Introduction – discretization One shot

Introduction – discretization.
One shot approximation

Discretization methods for approximating the solution to PDE’s are
various, if you have one yourself, certainly yours is the best one ! !

This can be

Finite Element Method

Finite Difference Method

Finite Volume Methods

Spectral Method

Wavelets Method

Mimetic Finite Difference Method

Meshless Method

without quoting the discretization in time

all being interesting for some particular application
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Introduction – discretization One shot

Introduction – discretization.
One shot approximation

Discretization methods for approximating the solution to PDE’s are
various, if you have one yourself, certainly yours is the best one ! !

This can be

Finite Element Method

Finite Difference Method

Finite Volume Methods

Spectral Method

Wavelets Method

Mimetic Finite Difference Method

Meshless Method

without quoting the discretization in time

all being interesting for some particular application
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Introduction – discretization One shot

Introduction – discretization.
One shot approximation

As long as you will have to do a numerical simulation of a PDE, these
methods (and of course new ones) will be useful
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Introduction – discretization Multiple shots

Introduction – discretization.
Multiple shots approximation.

But if you need to solve many times the same type of problem, there is
room for invention ! !

Of course you are not solving the same problem, there will be slight
differences.

This is the case for :

Optimization

Control

Inverse Problem

Randomness

Unsteadiness

Numerical Homogenization

and more
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Introduction – discretization Multiple shots

Introduction – discretization.
Multiple shots approximation.

Here using over and over the same method may be expensive, and most of
the time there is not much parallelisation since the new simulation is often
based on the previous one (except maybe for randomness)

There is room to take into account the fact that it is not a multipurpose
approximation but a guided approximation ! !

Reduced Basis Approximations are associated to this context
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Introduction – discretization Multiple shots

Introduction – discretization.
Multiple shots approximation.

The parameters can be

Constitutive coefficients

Shape parameters

Inverse problem (size, position, number)

Randomness

Time

and more

This is the room for large dimensions
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Parameter dependent solutions Set of all solutions

Parameter dependent solutions.
Set of all solutions

Reduced Basis, POD and Reduced Order Methods for model and
computational reduction for the approximation of parameter
dependent PDE rely on the fact that the set of solutions (depending
on the parameters) is a manifold with a simple structure.

Stated in a mathematical way : . . .
It is relative to the smoothness of the set S = {u(µ), µ ∈ P}.
This smoothness can be characterized by the notion of n-width
following Kolmogorov
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Parameter dependent solutions Set of all solutions

Parameter dependent solutions.
Set of all solutions

Definition

Let X be a normed linear space, S be a subset of X and Xn be a generic
n-dimensional subspace of X . The deviation of S from Xn is

E (S; Xn) = sup
x∈S

inf
y∈Xn

‖x − y‖X .

The Kolmogorov n-width of S in X is given by

dn(S,X ) = inf{E (S; Xn) : Xn an n-dimensional subspace of X}
= inf

Xn

sup
x∈S

inf
y∈Xn

‖x − y‖X . (1)

The n-width of S thus measures the extent to which S may be
approximated by a n-dimensional subspace of X .
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Parameter dependent solutions Set of all solutions

Parameter dependent solutions.
Set of all solutions

Definition

Let X be a normed linear space, S be a subset of X and Xn be a generic
n-dimensional subspace of X . The deviation of S from Xn is

E (S; Xn) = sup
x∈S

inf
y∈Xn

‖x − y‖X .

The Kolmogorov n-width of S in X is given by

dn(S,X ) = inf{E (S; Xn) : Xn an n-dimensional subspace of X}
= inf

Xn

sup
x∈S

inf
y∈Xn

‖x − y‖X . (1)

The n-width of S thus measures the extent to which S may be
approximated by a n-dimensional subspace of X .
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Parameter dependent solutions Set of all solutions

Parameter dependent solutions.
Set of all solutions

A typical n-width.

First test on a smaller problem . . .
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Parameter dependent solutions Set of all solutions

Parameter dependent solutions.
Reduced Approximation

The ability of being approximable by a small dimensional discrete space
XN does not mean that

A pertinent choice is easy to find

A pertinent discrete scheme is easy to find

Such a discrete space is composed of solutions to problem (1)
obtained for well chosen parameters µi , i = 1, ..,N

There is some idea of the accuracy that is obtained

For the first item, if you have no idea . . .use POD (SVD) or even random
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Parameter dependent solutions Set of all solutions

Parameter dependent solutions.
Reduced Approximation

If you do not want to compute too many solutions . . .

Numerical Analysis allows to frame this type of approximation : error
analysis, a priori and a posteriori
These a posteriori error analysis allow to construct a strategy for guiding
the construction of XN : the greedy algorithm provides such an
opportunity. There are various implementations of such greedy procedure,
depending on the degree of maturity the analysis of the RBM has got.
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Selection of the basis set Greedy Algorithm

(Pure) greedy

µ1 = argmax{‖u(µ)‖X ;µ ∈ P}
If µ1, ..., µn have been chosen, define

Xn = Span{u(µ1), ...u(µn)}
PXn as the orthogonal projector onto Xn

µn+1 = argmax{‖u(µ)− PXn (u(µ))‖;µ ∈ P}
Thus at each step, the parameter µn is chosen in a greedy manner
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Selection of the basis set Greedy Algorithm

(Weak) greedy

µ1 = argmax{‖u(µ)‖X ;µ ∈ P}
If µ1, ..., µn have been chosen, define

Xn = Span{u(µ1), ...u(µn)}
error estimator ε̃(u(µ)) for all µ ∈ P (e.g. a posteriori estimator for
Galerkin reduced basis approximation onto Xn)
µn+1 = argmax{ε̃(u(µ));µ ∈ P}
intead of µn+1 = argmax{‖u(µ)− PXn (u(µ))‖;µ ∈ P}

allows to construct (an approximation) of the only u(µm)

until ε̃(u(µn)) is small enough

Of course, a discrete finite element method (or spectral method) has to be
added to compute accurately each solution that are incorporated into the
(reduced) basis set XN .

Yvon Maday (LJLL - UPMC/ Brown Univ) Méthode de bases réduites Lyon, 10/12/2012 16 / 161



Selection of the basis set Greedy Algorithm

(Weak) greedy

µ1 = argmax{‖u(µ)‖X ;µ ∈ P}
If µ1, ..., µn have been chosen, define

Xn = Span{u(µ1), ...u(µn)}
error estimator ε̃(u(µ)) for all µ ∈ P (e.g. a posteriori estimator for
Galerkin reduced basis approximation onto Xn)
µn+1 = argmax{ε̃(u(µ));µ ∈ P}
intead of µn+1 = argmax{‖u(µ)− PXn (u(µ))‖;µ ∈ P}

allows to construct (an approximation) of the only u(µm)

until ε̃(u(µn)) is small enough

Of course, a discrete finite element method (or spectral method) has to be
added to compute accurately each solution that are incorporated into the
(reduced) basis set XN .
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Selection of the basis set Greedy Algorithm

(Weak) greedy

µ1 = argmax{‖u(µ)‖X ;µ ∈ P}
If µ1, ..., µn have been chosen, define

Xn = Span{u(µ1), ...u(µn)}
error estimator ε̃(u(µ)) for all µ ∈ P (e.g. a posteriori estimator for
Galerkin reduced basis approximation onto Xn)
µn+1 = argmax{ε̃(u(µ));µ ∈ P}
intead of µn+1 = argmax{‖u(µ)− PXn (u(µ))‖;µ ∈ P}

allows to construct (an approximation) of the only u(µm)

until ε̃(u(µn)) is small enough

Of course, a discrete finite element method (or spectral method) has to be
added to compute accurately each solution that are incorporated into the
(reduced) basis set XN .
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Selection of the basis set Needs of locality

The above method thus works fine for many example,

Notion of off-line/on-line computation

When the solution regularity with respect to the parameter is not so good,
or when the dimension of the parameter grows, the actual size N of the
reduced basis may turn out to be larger than desired. This has led to
different adaptations of the method.

Remember that, by breaking the global framework to locally piecewise
global approaches, the spectral element methods reveals superiority with
respect to plain spectral method : a trade off between locality and
globality is generally preferred as is demonstrated in e.g. [Cantwell,
Sherwin, Kirby, Kelly] for approximation in spacial direction by spectral
element approximations.
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Selection of the basis set Needs of locality

Following the lines drawn above, a first idea in this context has been
presented in [Eftang, Patera, Rønquist] and also [Eftang, Stamm] where
the parameter space is decomposed into cells where different reduced basis
sets are assembled.
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Selection of the basis set Needs of locality
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Selection of the basis set Needs of locality

This approach presents clear advantages in the size of the matricial system
that appears in the on-line solution procedure, and corroborates the
natural feeling that, in order to approximate the solution at a given
parameter, primarily those solutions in the reduced basis corresponding to
parameters that are close to the parameter we are interested in are to be
involved in the linear approximation.
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Selection of the basis set Needs of locality

A drawback of the current approach however is that, in two adjacent
parameter-subdomains, some of the parameters that are selected may be
very close.
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Selection of the basis set Needs of locality

Due to the difference between the CPU time associated with exploiting a
RB method in the on-line stage, and that required for constructing the
basis elements in the off-line step, this leads to the idea that it might be
interesting to be able to use, in one parameter subdomain, the parameters
that are used in the adjacent ones.

Another drawback of all current greedy approach is to be unable to master
the size of the discrete system that will be solved in the on-line procedure.

These remarks have motivated us, with Benjamin Stamm, to investigate
the alternative discussed in the following.

Another feature that will be presented here is the detection of the
important parameters, or combination of parameters . . .i.e. a non isotropic
learning process for the geometry of the manifold S.
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Yvon Maday (LJLL - UPMC/ Brown Univ) Méthode de bases réduites Lyon, 10/12/2012 22 / 161



Selection of the basis set Needs of locality

Due to the difference between the CPU time associated with exploiting a
RB method in the on-line stage, and that required for constructing the
basis elements in the off-line step, this leads to the idea that it might be
interesting to be able to use, in one parameter subdomain, the parameters
that are used in the adjacent ones.

Another drawback of all current greedy approach is to be unable to master
the size of the discrete system that will be solved in the on-line procedure.

These remarks have motivated us, with Benjamin Stamm, to investigate
the alternative discussed in the following.

Another feature that will be presented here is the detection of the
important parameters, or combination of parameters . . .i.e. a non isotropic
learning process for the geometry of the manifold S.
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Selection of the basis set Needs of locality

ClassicalGreedy

1. Choose (possibly randomly) µ1 ∈ Ξtrial, set S1 = {µ1},
W1 = span{u(µ1)} and N = 1, err = maxµ∈Ξtrial η(µ; W1).

2. While err > tol

3. Find µN+1 = argmaxµ∈Ξtrial
η(µ; WN),

err = maxµ∈Ξtrial η(µ; WN).

4. Compute u(µN+1), set SN+1 = SN ∪ {µN+1} and
WN+1 = span{WN , u(µN+1)}.

5. Set N := N + 1.

6. End while.

Algorithm : Classical greedy algorithm.

The introduction of the finite set Ξtrial is due to practical
implementation. It should be large enough, but not too large
Actually the definition of this finite set can evolve during the algorithm.
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Selection of the basis set Locally adaptive reduced basis method

Locally adaptive reduced basis method

Here, we do not impose a clear partition of the parameter space but rather
collect a global set of sample points S (preliminary constructed — in an
off-line stage — with a given tolerance requirement )

We choose a priori the size of the system we want to solve online by
selecting an integer N, then when a reduced basis approximation is to be
computed for a certain given parameter value µ ∈ P, we only use the N
basis functions whose parameter values lie close to µ
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Selection of the basis set Locally adaptive reduced basis method

These N basis functions whose parameter values lie close to µ are in a ball

Bµ = {µ̃ ∈ P | d(µ, µ̃) ≤ r(µ)}, (2)

for a given semi-distance function d(·, ·) defined on the fly by learning the
topology of the manifold of all solutions.

The radius r(µ) is computed in such a way that there are actually N basis
functions in the ball. Therefore the local sample space is defined by

Sµ = Bµ ∩ S = {µ̃ ∈ S | µ̃ ∈ Bµ}

with cardinality equal to N.

The local reduced basis approximation space shall be defined by
Wµ = span{u(µ̃) | µ̃ ∈ Sµ} and its associated local projection by
Pµ : W→Wµ.
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Selection of the basis set Anisotropy and local metric

Definition of the Hessian.

The goal is to define a Hessian matrix H(µ) for each point µ ∈ Ξtrial

upon which the metric will be based on.

This Hessian is based on the reduced basis approximation : it is
updated/constructed at each iteration in the algorithm.
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Selection of the basis set Anisotropy and local metric

On-line construction of the metric.

One can then perform an eigenvalue decomposition

Hµ1µ2 = V Λ V T

where V is an orthogonal and (Λ)ii = λi a diagonal matrix consisting of
the eigenvalues λi . Consider the diagonal matrix

|Λ|ii =
|λi |√

λ2
1 + . . .+ λ2

P

, i = 1, . . . ,P,

and the associated symmetric positive definite matrix Mµ1µ2 = V |Λ|V T

to define the semi-distance between µ1 and µ2 by

d(µ1, µ2) =
√

(µ1 − µ2)T Mµ1µ2(µ1 − µ2).
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Selection of the basis set Varying train sets based on Hessian

We focus now on the trial set Ξtrial. It is aimed to keep its cardinality as
small as possible, but large enough to capture the local geometry of the
parametrized system.
Since not only the cardinality of Ξtrial but also the locations of its points
matters we propose to use the above constructed metric to design problem
adapted training sets of appropriate size which will increase with increasing
number of basis functions selected.

Firstly, we construct at each iteration of the algorithm a new trial set
Ξtrial. The cardinality of the Ξtrial being variable and an increasing
function of the inverse of the actual error (-estimation) err.
The new trial set Ξtrial is constructed such that edges of the
corresponding unique Delaunay triangulation are uniform in the slightly
modified metric
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matters we propose to use the above constructed metric to design problem
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number of basis functions selected.

Firstly, we construct at each iteration of the algorithm a new trial set
Ξtrial. The cardinality of the Ξtrial being variable and an increasing
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Selection of the basis set Numerical results

Before we start with the numerical tests, an abstract description of the
entire proposed local greedy algorithm is given in the following box :

LocallyAdaptiveGreedy

========= Stage 1 =========

1. Perform a classical greedy algorithm to select N + 1 basis functions.

========= Stage 2 =========

2. Compute the error estimate η(µ,Wµ) at each point µ ∈ Ξtrial.

3. Compute the metric function d .

4. Enrich the set of basis functions.

5. Create a new trial set Ξtrial.

6. Go to 2. until tolerance tol is achieved.

Algorithm : Locally adaptive greedy algorithm.
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Selection of the basis set Numerical results

First with no adaptation of the trial set Ξtrial
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Selection of the basis set Numerical results

We start with presenting a numerical example to illustrate the benefit of
the local anisotropic approximation spaces. Consider the function

f1(x;µ) = exp
[
−(x1−0.1(µ1−µ2))2

0.01 − (x2−(µ1+µ2))2

0.01

]
,

x ∈ Ω = (−1, 1)2, µ ∈ P = [−0.5, 0.5]2

that exhibits a constant anisotropy of parameters over the whole
parameter space. The dependency in the (µ1 + µ2)-direction is ten times
stronger than in the (µ1 − µ2)-direction.
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Selection of the basis set Numerical results
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Selection of the basis set Numerical results
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Selection of the basis set Numerical results
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Selection of the basis set Numerical results

the next example

f2(x;µ) = exp
[
− (x1−(µ2

1+µ2
2))2

0.01 − (x2−(µ2
1+µ2

2))2

0.01

]
,

x ∈ Ω = (−1, 1)2, µ ∈ P = [−0.5, 0.5]2

is more interesting. It presents a family of parametrized functions where
the functions (as functions of x) are constant along concentric circles
around the origin in parameter space.
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Selection of the basis set Numerical results
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Selection of the basis set Numerical results
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Selection of the basis set Numerical results
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Selection of the basis set Numerical results
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Selection of the basis set Numerical results

The next example

f3(x;µ) = exp
[
− (x1−(µ1+3µ2))2

0.1+5|µ1+3µ2| −
(x2−(3µ1−µ2))2

0.1+5|3µ1−µ2|

]
,

x ∈ Ω = (−1, 1)2, µ ∈ P = [−0.5, 0.5]2

is interesting in the sense that it presents an almost singularity in
parameter space at the origin.
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Selection of the basis set Numerical results
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Selection of the basis set Numerical results
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Selection of the basis set Numerical results
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Selection of the basis set Numerical results
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Selection of the basis set Numerical results
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Selection of the basis set Numerical results

Second with adaptation of the trial set Ξtrial
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Selection of the basis set Numerical results

We present only the third case
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Selection of the basis set Numerical results
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Selection of the basis set Numerical results
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Selection of the basis set Numerical results
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Selection of the basis set Numerical results
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Selection of the basis set Numerical results

In order to illustrate the benefit of using adaptive trial sets also in this case
we consider a test sample of 75× 75 uniformly distributed points in the
region [−0.05, 0.05]2 around the origin.

The following figure illustrates the error distribution using the online
procedure generated using a fixed and an adaptive trial set. The maximum
error is 0.043 resp. 0.00146. While the error tolerance is almost satisfied in
the latter case, it is clearly not the case for the former approach.
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Selection of the basis set Numerical results
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Selection of the basis set Numerical results
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Selection of the basis set Numerical results

Further, the number of error evaluations is given in the following table :

Number of trial point evaluations during greedy
using adapted trial sets : 215’888

Number of trial point evaluations during greedy
using fixed trial sets : 241’875

Thus, the adaptive version uses still less error estimator evaluations and is
more accurate in the region around the origin. Also, the error is more
equally distributed.
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Numerical Analysis A priori Analysis

Numerical Analysis
A priori Analysis

The convergence to zero of the Kolmogorov n-width dn(S,X ) is most of
the times very fast.

In all cases (either exponential decay or faster 1, or polynomial decay 2),
the greedy procedure provides a sample of parameter values that allow for
a suboptimal approximation with respect to the best possible choice
hidden in the definition of the n-width.

1. results by Buffa, Maday, Patera, Prud’homme, Turinici
2. results by Binev, Cohen, Dahmen, DeVore, Petrova, and Wojtaszczyk
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Numerical Analysis A priori Analysis

Let us define by σn(S) = ‖u(µn)− PXn−1(u(µn))‖X . The following allows
to state a comparison between σn(S) and dn(S,X )
More precisely

in [Buffa, Maday, Patera, Prud’homme, Turinici], it is proven that

σn(S) ≤ Cn2ndn(S,X )

showing that, provided that an exponential fast enough Kolmogorov
n−width exists, then the greedy algorithm provides also an
exponential approximation.
Since most of the time in the application a faster decay rate of the
approximation is noticed dn(S,X ) ≤ Ce−γn

β
, this results states that

the decay rate obtained by the greedy algorithm is the same.

this result has been improved in [Binev, Cohen, Dahmen, DeVore,
Petrova, Wojtaszczyk] , where it is proven that if e.g.
dn(S,X ) ≤ Cn−α, then σn(S) ≤ C ′n−α
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Numerical Analysis A priori Analysis

More recently even [DeVore, Petrova, Wojtaszczyk] proved e.g. that

σ2n(S) ≤ C
√

dn(S,X )

providing the first direct comparison between the sequence (σn(S))n and
(dn(S,X ))n

They also extend it to the Banach (non Hilbertian) framework.
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Numerical Analysis A priori Analysis

Parameter dependent solutions.
Basics of the RB method

Now the method . . .
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Numerical Analysis A priori Analysis

Parameter dependent solutions.
Basics of the RB method

Let X be a closed subspace of H1(Ω).
Find u(µ) ∈ X solution to the following variational problem :

∀v ∈ X , a(u(µ), v ;µ) = L(v ;µ) (3)

where a is a continuous, elliptic bilinear form over X depending on
one or many parameters µ that belong to P ⊂ RM .

The reduced basis method relies on the hypothesis that, for any
ε > 0, there exists a set of parameters µ1, µ2, ....., µN in P, well
chosen, such that

∀µ ∈ P, ∃{αi (µ)}i , ‖u(µ)−
N(ε)∑
i=1

αi (µ)u(µi )‖X ≤ ε.

Note that ε = ε(N)
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Numerical Analysis A priori Analysis

Parameter dependent solutions.
Basics of the RB method

Let X be a closed subspace of H1(Ω).
Find u(µ) ∈ X solution to the following variational problem :

∀v ∈ X , a(u(µ), v ;µ) = L(v ;µ) (3)

where a is a continuous, elliptic bilinear form over X depending on
one or many parameters µ that belong to P ⊂ RM .

The reduced basis method relies on the hypothesis that, for any
ε > 0, there exists a set of parameters µ1, µ2, ....., µN in P, well
chosen, such that

∀µ ∈ P, ∃{αi (µ)}i , ‖u(µ)−
N(ε)∑
i=1

αi (µ)u(µi )‖X ≤ ε.

Note that ε = ε(N)
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Numerical Analysis Reduced Approximation

Parameter dependent solutions.
Reduced Approximation

In a way or another, let X N be given

The reduced approximation consists in solving the Galerkin problem :
Find uN(µ) ∈ X N such that :

∀vN ∈ X N , a(uN(µ), vN ;µ) = L(vN) (4)

Cea’s lemma states an upper bound

‖u(µ)− uN(µ)‖X ≤ c inf
v∈XN

‖u(µ)− v‖X

and thus, by using hypothesis (2), we get :

‖u(µ)− uN(µ)‖X ≤ cε(N). (5)
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Numerical Analysis An Example

Application to Maxwell.... with Y. Chen, J. Hesthaven, J.
Rodriguez and X Zhu

We consider here a 2D problem on electromagnetism. In both cases, the
electromagnetic waves are TM-polarized, that is, the electric and magnetic
fields satisfy E = (0, 0,Ez) and H = (Hx ,Hy , 0) in the Maxwell’s equation.
The problem is set on the domains

Figure: Geometries of the problems.
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Numerical Analysis An Example

Application to Maxwell....

The coefficients that will determine the physics of the experiment are :

the angle of incidence,

the angle of measurement

the angular frequency

the angle of the wedge, leading to a modification of the geometry.

The output of interest is the radar cross section.
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Numerical Analysis An Example

Application to Maxwell....

The equations of interest are
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Numerical Analysis An Example

Application to Maxwell.... 1 parameter (angle)
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Application to Maxwell.... 1 parameter (angle)
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Numerical Analysis An Example

Application to Maxwell.... 2 parameters (angle and
frequency)
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Numerical Analysis A posteriori Analysis

Numerical Analysis
A posteriori Analysis

There are many contributions here, they require the evaluation of
ellipticity or inf sup constants

These are fundamental for an efficient offline construction of the RB
. . .but you can use POD . . .or random

These are also necessary to certify the results . . .but you can always do a
truth approximation at the end ! !
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Numerical Analysis A posteriori Analysis

Partial Conclusion
Link with what you may know on spectral methods

Spectral methods get their accuracy from the regularity of the solution. By
using global basis the convergence is very fast.

Here the regularity (in space) is replaced by the small Kolmogorov width

Regularity (as a function of the parameter) implies small Kolmogorov
width but is not equivalent

Small Kolmogorov width implies that the discrete space CAN BE
COMPOSED of well selected solutions (greedy algorithm)

A posteriori estimators : are fundamental in order to compute only THOSE
solutions
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Numerical Analysis A posteriori Analysis

Partial Conclusion
Link with what you may know on spectral methods

Spectral methods get their accuracy from the regularity of the solution. By
using global basis the convergence is very fast.

Here the regularity (in space) is replaced by the small Kolmogorov width

Regularity (as a function of the parameter) implies small Kolmogorov
width but is not equivalent

Small Kolmogorov width implies that the discrete space CAN BE
COMPOSED of well selected solutions (greedy algorithm)

A posteriori estimators : are fundamental in order to compute only THOSE
solutions
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Reduced basis element method Motivation

Motivation

Among the most prominent applications in medical applications is the
analysis of internal flows

blood flows in arteries
air flow in the lung

Figure: Reconstructed geometries of Willis complex (Thiriet) and of the upper
part of the lung (Fetita-Prêteux)
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Reduced basis element method Motivation

Motivation

In this range of applications, the challenge of the simulations comes
more from the complexity of the geometry

There is some repetitiveness or similarities in the behavior of the flow
that allows for the definition of reduced model strategies.
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Reduced basis element method Motivation

Motivation

The reduced basis element method

Reduced basis approximation

+

domain decomposition
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Reduced basis element method Motivation

Reduced element method

The domain of interest is first decomposed into several subdomains,

Ω = ∪K
k=1Ωbb

k

where each “building block” Ωbb
k is assumed to be the image of a

reference Ω̂.

The mapping ϕk between Ω̂ and Ωbb
k will be assume to be piecewise affine

(and obviouly continuous) so that

Ωbb
k = ϕk [Ω̂]
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Reduced element method
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Figure: A first deformation of a building block.
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Figure: A second deformation of a building block.
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Figure: A third deformation of a building block.
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Figure: A fourth deformation of a building block.
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Reduced basis element method Motivation

Reduced element method

As a precomputation, the problem of interest is solved over various
deformations of each reference building block and stored, after mapping,
on the reference building block.
This gives basis functions ζ̂1, ζ̂2, ..., ζ̂N , supposed to be linearly
independent
These basics solutions are mapped over each Ωbb

k through ϕk .
The solution corresponding to an unknown, deformed geometry is then
represented as a linear combination of these mapped solutions

X N = {vN ∈ L2(Ω)| vN|Ωbb
k
◦ ϕk ∈ span{ζ̂1, ζ̂2, ..., ζ̂N} } .

The discrete problem then reads : Find uN in XN such that

a(uN , vN) = f (vN), ∀vN ∈ XN .
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Reduced basis element method Application to fluid flows

Fluid flows

For flow problems the tranformations between the reference domain and
the subdomains are more involved : The PIOLA Transform that allow the
work with divergence free discrete spaces

û = J −1(u ◦ Φ)|J|,

→ The velocity is computed independently of the pressure
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Reduced basis element method Application to fluid flows

Fluid flows

For flow problems the tranformations between the reference domain and
the subdomains are more involved : The PIOLA Transform that allow the
work with divergence free discrete spaces
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Reduced basis element method Application to fluid flows

Fluid flows
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Figure: Domain decomposition.
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Figure: Error distribution for a new configuration NP = 15, NB = 15 error plot
for the pressure max =3.10−2, for the velocity error ' 3.10−3.
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Figure: Error distribution for a new configuration NP = 15, NB = 30 error plot
for the pressure max=6.10−3, for the velocity error ' 4.10−4, size problem < 340.
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Reduced basis element method Application to fluid flows

Fluid flows
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Figure: A stenosis problem with NP = 15, NB = 15.
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Reduced basis element method Application to fluid flows

Fluid flows

−2 −1 0 1 2 3 4 5 6 7 8

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure: A stenosis problem with NP = 15, NB = 30.
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Reduced basis element method Application to fluid flows

Fluid flows

N N1 N2 |uN − u|H1 ||pN − p||L2

45 9 9 9.3 · 10−3 3.3 · 10
55 11 11 3.1 · 10−3 5.3 · 10−1

65 13 13 2.3 · 10−3 9.0 · 10−2

75 15 15 1.4 · 10−3 5.3 · 10−2

105 15 30 5.4 · 10−4 3.0 · 10−2

Table: Steady Stokes solution on a multi-block bypass with three pipe blocks
and two bifurcation blocks. Here, N = 3N1 + 2N2.
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Reduced basis element method Application to fluid flows

Important remarks....

Note that contrarily to what happens in the parameter dependant
problem

The full problem over the global geometry is never constructed in the
reduced element method

This is a major achievement

Note also that, more generally, the reduced basis functions have to be
suitably prepared

Finally, do not forget that off-line pre-computations have to be done,
involving your favorit approximation method, and that the approach is
rapid for online computations.
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Reduced basis element method Application to fluid flows

Partial Conclusion
Link with what you may know on spectral methods

Spectral methods and RB methods allow to get fast convergence rates
(most of the times exponential)

Spectral element methods is generalized in this frame to the Reduced
Basis Element Method that allows to combine the accuracy of the RB
methods with the ease of DD (allowing to diminish the size of the
parameter space . . .and thus the complexity of the solution)

What about collocation for non linear problems, i.e. interpolation ? ?
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What about collocation for non linear problems, i.e. interpolation ? ?
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Reduced basis element method Application to fluid flows

Background.
General issues about interpolation

Interpolation is a general and classical tool for approximation
Assume you are given a set ϕ1, . . . , ϕn, . . . of linearly independent
functions, given a function f that you want to approximate, the problem is

find a familly of scalars {αn
M}1≤n≤M such that

f (ζm
M) =

∑M
n=1 αn

Mϕn(ζm
M)

where the interpolation points ζm
M are suitably chosen

of course, the project is generally not limited to the approximation in the
only

XM = Span{ϕn, 1 ≤ n ≤ M}
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Reduced basis element method Application to fluid flows

Background.
General issues about interpolation

Among the classical questions raised by interpolation

given a set of points, does the interpolant at these points exist ;

is the interpolant unique ;

how does the interpolation process compares with other
approximations (in particular orthogonal projections) ;

is there an optimal selection for the interpolation points ;

is there a constructive optimal selection for the interpolation points ;

These question are covered in the polynomial case, though not completely
and the answers are complex and rather recent
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Reduced basis element method Application to fluid flows

Approximation in a space of small n-width.
Interpolation

We are looking for a constructive way of approximating in X , we assume
that X ⊂ C0

We propose a greedy approach both for constructing the interpolation
points and the discrete spaces XM ,

our method is hierarchical
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Definition of the empirical interpolation procedure The magic points

Approximation in a space of small n-width.
definition of the magic points

The first interpolating function is

ϕ1 = arg max
Φ∈S1[X ]

‖Φ‖L∞(Ω)

The first interpolation point is

ζ1 = arg max
x∈Ω
|ϕ1|

Allows to define the first interpolation operator I1[Φ] = Φ(ζ1)ϕ1(·)/ϕ1(ζ1)
The second interpolating function is

ϕ2 = arg max
Φ∈S1[X ]

‖Φ(·)− I1[Φ]‖L∞(Ω)

The second interpolation point is

ζ2 = arg max
x∈Ω
|ϕ2(·)− I1[ϕ2]|

and we proceed by inductionYvon Maday (LJLL - UPMC/ Brown Univ) Méthode de bases réduites Lyon, 10/12/2012 96 / 161
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Definition of the empirical interpolation procedure The magic points

Approximation in a space of small n-width.
The recursion formula

We first solve the interpolation problem for αM−1
j (Φ), 1 ≤ j ≤ M − 1, from

M−1∑
j=1

ϕj(ζi )α
M−1
j (Φ) = Φ(ζi ), i = 1, . . . ,M − 1 , (6)

and set

IM−1[Φ] =
M−1∑
j=1

αM−1
j (Φ)ϕj , (7)

and
εM−1(Φ) = ‖Φ(·)− IM−1[Φ(·)]‖L∞(Ω) , (8)

for all Φ ∈ X ;
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Definition of the empirical interpolation procedure The magic points

Approximation in a space of small n-width.
The recursion formula

We then define
ϕM = arg max

Φ∈S1[X ]
εM−1(Φ) , (9)

and
ζM = arg max

x∈Ω
‖ϕM(x)− IM−1[ϕM(x)])‖L∞(Ω) , (10)

The procedure is well posed if X is of sufficently large dimension (for
M ≤ Mmax ≤ dimX ).
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Definition of the empirical interpolation procedure The magic points

Approximation in a space of small n-width.
The Lebesgue constant

The error analysis of the interpolation procedure classically involves the
Lebesgue constant ΛM = supx∈Ω

∑M
i=1 |hM

i (x)|, where the hM
i is the

associated Lagrange basis.
A (in practice very pessimistic) upper-bound for the Lebesgue constant is
2M − 1.
We remind also that the Lebesgue constant enters into the bound for the
interpolation error as follows

Lemma

For any u ∈ X , the interpolation error satisfies

‖Φ− IMΦ‖L∞(Ω) ≤ (1 + ΛM) inf
ψM∈span{ϕi ,1≤i≤M}

‖Φ− ψM‖L∞(Ω). (11)
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Definition of the empirical interpolation procedure The magic points

Approximation in a space of small n-width.
The Approximation of the greedy algorithm

We can also prove that

Theorem

Assume that there exists a sequence of finite dimensional spaces

X1 ⊂ X2 ⊂ · · · ⊂ XM ⊂ · · · ⊂ X , dim XM = M (12)

such that there exists c > 0 and α with

∀Φ ∈ X , inf
ψM∈XM

‖Φ− ψM‖X ≤ ce−αM (13)

then, if α > log(4), there exists β > 0 such that

‖Φ− IMΦ‖L∞(Ω) ≤ ce−βM . (14)
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Definition of the empirical interpolation procedure The magic points

Interpolation error..... a posteriori

For an estimator on the error, let M ≤ Mmax − 1, we define

ε̂M(Φ) ≡ |Φ(ζM+1)− IMΦ(ζM+1)|

Lemma : If Φ ∈ XM+1, then

‖Φ( ·)− IMΦ( ·)‖L∞(Ω) ≤ ε̂M(Φ)

Of course, in general Φ 6∈ XM+1

and hence our estimator ε̂M(Φ) is not a rigorous upper bound ;

however, if εM(Φ)→ 0 very fast, we expect (and check) that the
effectivity, ηM(Φ) ≡ ε̂M(Φ)/εM(Φ) ' 1.

Furthermore, the estimator is very inexpensive – one additional evaluation
of Φ.
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however, if εM(Φ)→ 0 very fast, we expect (and check) that the
effectivity, ηM(Φ) ≡ ε̂M(Φ)/εM(Φ) ' 1.

Furthermore, the estimator is very inexpensive – one additional evaluation
of Φ.
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Definition of the empirical interpolation procedure The magic points

Numerical results

We consider Φ(x) ≡ Φ ((x1, x2); (µ1, µ2)) ≡
(
(x1 − µ1)2 + (x2 − µ2)2

)−1/2

for x ∈]0, 1[ 2 and µ ∈ [−1,−0.01]2

M ε∗M,max ρM ΛM ηM

8 8.30 E-02 0.68 1.76 0.17
16 4.20 E-03 0.67 2.63 0.1.
24 2.68 E-04 0.49 4.42 0.28
32 5.64 E-05 0.48 5.15 0.20
40 3.66 E-06 0.54 4.98 0.60
48 6.08 E-07 0.37 7.43 0.29

ε∗M,max is the best fit error, ρM is the averaged ratio
ε

ε∗(1 + Λ)
, ΛM is the

“Lebesgue” constant and ηM is the averaged effectivity index
ε̂

ε
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24 2.68 E-04 0.49 4.42 0.28
32 5.64 E-05 0.48 5.15 0.20
40 3.66 E-06 0.54 4.98 0.60
48 6.08 E-07 0.37 7.43 0.29

Note that we have here approximated the full set of Φ ((x);µ) with a few

of them Φ ((x); (µ)) '
M∑
i=1

αiΦ
(
(x);µi

)
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Definition of the empirical interpolation procedure The magic points

Numerical results
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Figure: (a) Parameter sample set Sg
M , Mmax = 51, and (b) interpolation points

xm, 1 ≤ m ≤ Mmax.
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Definition of the empirical interpolation procedure The magic points

EIM 4 NLP

In the same way collocation methods have led to pseudo-spectral methods,
Empirical Interpolation Methods have led to an easy implementation of
nonlinear terms
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Definition of the empirical interpolation procedure The magic points

GEIM
Moments - dictionary of linear forms

The interpolation process requires the evaluation of the functions at some
points.
This can be replaced by any linear form σi (.) instead of δζi
Assume that you have a dictionary, a family, of such linear forms : relax
the continuity assumption : X ′ instead of point evaluation in C0.
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Definition of the empirical interpolation procedure The magic points

Problem at stake

The Laplace problem

Spatial domain : Ω ⊂ R2 and a non overlapping partition of it is :
Ω = Ω1

⋃
Ω2.

Model : the Laplace problem.

Hypothesis : only Ω1 is driving the phenomenon. The rest (Ω2) is
the environment.

Equation :
−∆u = f , in Ω

f = 1 + (α sin(x) + β cos(γπy))χ1(x , y)

α, β and γ are 3 parameters
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Definition of the empirical interpolation procedure The magic points

Problem at stake

Aim

1 Reconstruction over Ω2 with GEIM
2 Real-time simulation :

Ω2 : Data acquisition + reconstruction with GEIM
Ω1 : Implicit calculation with the boundary conditions provided by the
interpolant of Ω2.
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Definition of the empirical interpolation procedure The magic points

Application to Laplace equation

Figure: Ω1 and Ω2.
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Application to Laplace equation

Figure: Solution over Ω for various parameters
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Definition of the empirical interpolation procedure The magic points

1) Reconstruction of Ω2 with GEIM

We shall use a reconstruction over the environment (Ω2) by using data
acquisition and GEIM.
i.e :

Offline :
Computation of u(., µ1), . . . , u(., µQ), Q � 1 by an implicit method
(finite elements)
Computation of the basis functions {qi} and selection of the
appropriate captors (linear forms {σi}) by a Greedy process.

Online : Given µ, computation of a general interpolant of u(., µ)
thanks to the data provided by the selected captors.
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Definition of the empirical interpolation procedure The magic points

Solution over Ω2 for various parameters

Figure: Solution 1.
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Definition of the empirical interpolation procedure The magic points

Solution over Ω2 for various parameters

Figure: Solution 2.
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Definition of the empirical interpolation procedure The magic points

Solution over Ω2 for various parameters

Figure: Solution 3.
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Definition of the empirical interpolation procedure The magic points

1) Reconstruction over Ω2 with GEIM

Reconstruction over Ω2, via various moments via gaussian type

(L2-error)2 with 1 function/moment : 6 10−4

(L2-error)2 with 2 functions/moments : 110−7

(L2-error)2 with 3 functions/moments : 8 10−9

(L2-error)2 with 4 functions/moments : 7 10−9

(L2-error)2 with 5 functions/moments : 2 10−21
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Definition of the empirical interpolation procedure The magic points

1) Reconstruction over Ω2 with GEIM
The geometry of Ω2 is a further parameter

Parameters : everything that impacts the behavior of Ω1, i.e. α, β, γ and
the geometry of Ω2.
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Definition of the empirical interpolation procedure The magic points

1) Reconstruction of Ω2 with GEIM
Interpolation error

We have reconstructed several solutions and computed for 1 ≤ M ≤ 13 :

max
u reconstructed

‖u − IM [u]‖∗ ; ∗ = L2(Ω), H1(Ω)
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Definition of the empirical interpolation procedure The magic points

1) Reconstruction of Ω2 with GEIM
Comparison with POD

Our GEIM approach seems to have explored the set of solutions good
enough to perform as well as POD.
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Definition of the empirical interpolation procedure The magic points

1) Reconstruction of Ω2 with GEIM
The FEM noise

Going much beyond M = 13 is of no use since we reach the FEM precision
(≈ 10−4)
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Definition of the empirical interpolation procedure The magic points

1) Reconstruction of Ω2 with GEIM
The Lebesgue constant

A computational estimation of ΛM has been carried out :

Λ̃M = max
i∈[1,256]

‖IM [ui ]‖L2(Ω)

‖ui‖L2(Ω)
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Definition of the empirical interpolation procedure Data acquisition coupled with simulation

2) Data acquisition coupled with simulation
Aim in the long run

Imagine an experiment in a huge Ω and we wish a real-time simulation :

Ω1 : small subdomain but big Kolmogorov n-width. (e.g : wing, part
of a nuclear core)

Ω2 : big subdomain but small Kolmogorov n-width (e.g. an aircraft, a
nuclear core)
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Definition of the empirical interpolation procedure Data acquisition coupled with simulation

2) Data acquisition coupled with simulation
Application to the Laplace problem

The interpolant in the environment Ω2 can give the appropriate boundary
conditions to the subdomain that has a big Kolmogorov n-width (Ω1).
We compute Ω1 by FEM with the boundary conditions provided by the
GEIM procedure.
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Definition of the empirical interpolation procedure Data acquisition coupled with simulation

3) Include uncertainty in the captors

Note that very few captors are used to recover a fair enough
approximation of the solution.

There are generally more captors than required . . .at least if no noise in
the datas.

The reconstruction is polluted with noise. . .from many sets of datas, we
reconstruct a family of solutions, each polluted with noise.

An average allows to extract a better approximation together with average
and standard deviations
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Conclusion

Conclusion and Future - RBM

The reduced basis method is a powerfull method

Combined with a posteriori error estimators it allows to derive online
hyper fast reliable computations

Many parameters can be used to define the reduced basis : geometry,
time....

Greedy (especially local version) is a way to minimize the number of
RB functions that are computed and used at the end

The application to highly non linear problems is at end thanks to the
magic points, for which there also exists a a posteriori estimation

Can be used as a coarse solver for preconditionner – either algebraic –
or for the parareal algorithm (with Li Ping He)

Industrial code . . . fully non intrusive with Rachida Chakir and
Tigran A. Nagapetyan

You can also use accurate discrete solutions that might have been
given to you . . .
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Conclusion

Conclusion and Future - EIM

The magic point approach has been introduced for collocation
approach in reduced basis approximation methods

It appears as a simple and flexible approach to the general problem of
interpolation

The comparison in case where we know the behavior illustrates the
ability of the method.

Of course we could optimize the Lebesgue constant, but our approach
is hierarchical

Many possible applications for approximation on various discrete
spaces, and of course for numerical integration

Has really allowed a breakthrough in reduced basis approximations
(optimal complexity)

There exist a posteriori estimators

GEIM
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Conclusion

Conclusion and Future - RBEM - NIRB

The coupling between RBM and domain decomposition methods
allows to tackle very large problems where the geometry is a
parameter.

Note that contrarily to what happens in the parameter dependant
problem

The full problem over the global geometry is never constructed in the
reduced element method

This is a major achievement

NIRB gives a lot of flexibility with respect to the master code
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Conclusion

Thanks...

... Thanks ....
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Conclusion

We understand here that the reduce basis method is not an alternative to
your favorite code but a companion technique that allows to enhance its
features.

In the case we do not master the code, or if you do not want to get into
the use of the magic points, you cannot implement the reduced basis
method with an optimal complexity.
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Conclusion

What do we actually seek ? ? ?
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Conclusion

We seek the best approximation of u(µ) in the space spanned by the
uh(µi )

and the best approximation is the orthogonal projection of u(µ) in the
finite element space spanned by the uh(µi )

which is more easy to handle with an orthonormal basis
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Conclusion Orthonormalization of the reduced basis

Let us consider the following eigenvalue problem :
find ξ ∈ X N

h and λ ∈ R such that

∀v ∈ X N
h ,

∫
Ω
∇ξ∇v = λ

∫
Ω
ξv .

We obtain a set of eigenvalue, that we rank in increasing order λBR
i

and associated eigenvectors ξBR
i that constitute an orthonormal basis

of the space, X N
h both in L2 and in H1 ! ! .
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Conclusion

Let uhP
N (µ) be the best approximation of uh(µ) in XN , it is defined as

uhP
N (µ) =

N∑
i=1

βh
i (µ)ξBR

i where βh
i (µ) =

∫
Ω

uh(µ)ξBR
i

The reduced basis method is an alternative procedure to solve this
best approximation without knowing uh(µ)

We look for

uN
h (µ) =

N∑
i=1

γh
i (µ)ξBR

i ,

where the γh
i (µ) are substitute to the optimal coefficients βh

i (µ).
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Conclusion

The difficulty of the reduced basis method is to implement it with a
complexity that is linked to N (the dimension of the reduced basis
space) and not N (the dimension of the finite element space Xh)

Black box approaches have to be used, and this involves modifications
inside the original finite element code

this leads to the difference of “offline” and “online” computations
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Conclusion

Let us assume that we do not want — or even it is impossible — to
modify the finite element code.
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An alternative to the reduced basis approximation Case of the P1– finite elements

The computation of uH(µ), for H >> h, being cheaper that the
computation of uh(µ), we propose to replace the βh

i (µ) by
βH

i (µ) =
∫

Ω uH(µ)ξBR
i and then construct

uHh
N (µ) =

N∑
i=1

βH
i (µ)ξBR

i .

We remark that

|βh
i (µ)− βH

i (µ)| ≤ ‖uh(µ)− uH(µ)‖0,Ω

and this is Aubin Nietsche’s trick

‖u(µ)− uH(µ)‖0,Ω ≤ cH‖u(µ)− uH(µ)‖X ≤ cH2

It is then possible to get : ‖u(µ)− uHh
N (µ)‖X ≤ ε(N) + c5h + c6H2

that is asymptotically similar to (7) provided that we choose h ∼ H2.
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An alternative to the reduced basis approximation Case of the P1– finite elements

The computation of uH(µ), for H >> h, being cheaper that the
computation of uh(µ), we propose to replace the βh

i (µ) by
βH

i (µ) =
∫

Ω uH(µ)ξBR
i and then construct

uHh
N (µ) =

N∑
i=1

βH
i (µ)ξBR

i .

We remark that

|βh
i (µ)− βH

i (µ)| ≤ ‖uh(µ)− uH(µ)‖0,Ω

and this is Aubin Nietsche’s trick

‖u(µ)− uH(µ)‖0,Ω ≤ cH‖u(µ)− uH(µ)‖X ≤ cH2

It is then possible to get : ‖u(µ)− uHh
N (µ)‖X ≤ ε(N) + c5h + c6H2

that is asymptotically similar to (7) provided that we choose h ∼ H2.
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An alternative to the reduced basis approximation Case of the P2– finite elements

In the case of P2 finite elements, inequatity (7) becomes

‖u(µ)− uN
h (µ)‖X ≤ ε(N) + c2h2. (15)

Let ΦBR
i be the dual functions associated with ξBR

i be such that

∀v ∈ X , a(ΦBR
i , v ;µ) =

∫
Ω
ξBR
i v

Then

βh
i (µ)− βH

i (µ) =

∫
Ω
ξBR
i (uh(µ)− uH(µ))

= a(uh(µ)− uH(µ),ΦBR
i ;µ)
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An alternative to the reduced basis approximation Case of the P2– finite elements

Since XH ⊂ Xh, then by definition of uh(µ) and uH(µ) , we get

∀wH ∈ XH , a(uh(µ)− uH(µ),wH ;µ) = 0

Which leads to

|βh
i (µ)− βH

i | ≤ c‖uh(µ)− uH(µ)‖X‖ΦBR
i − wH ;µ)‖X ≤ cH4

and thus
‖u(µ)− uHh

N (µ)‖X ≤ ε(N) + c7h2 + c8H4.

that is asymptotically similar to (8) provided that we choose again
h ∼ H2.
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An alternative to the reduced basis approximation Case of the P2– finite elements

Important remark

In the case of P1− finite element we thus have

‖u(µ)− uHh
N (µ)‖X ≤ ε(N) + c5h + c6H2

While in the case of P2− finite element we get

‖u(µ)− uHh
N (µ)‖X ≤ ε(N) + c7h2 + c8H4.

The constants c6 et c8 depends on N
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Numerical results

Let us consider the following problem : find u ∈ H1(Ω) such that
−∆u + u3 = sin(x)sin(y) dans Ω = [0, 1]2 \ (] 1

2 , 1[2)

βu + ∂u
∂n = y(1− y) sur ΓF = {(1, y), y ∈ [0, 1

2 ]}
u = y 2 sur Γ2 = {(x , 1), x ∈ [0, 1]}

u = η xy(1− y)(1− x) sur ΓD = ∂Ω \ ΓF

In this example, the set of parameters is
µ = (β, η) ∈ D = [1, 37]× [1, 100].

Let
µHi

= argmax{||u(µ)− uhHi
N (µ)||1,Ω, µ ∈ D}

and
µh = argmax{||u(µ)− uh(µ)||1,Ω, µ ∈ D}
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Numerical results

Two grids method
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Numerical results

In the case where Xh = {v ∈ C0(Ω), v|T ∈ P1(T ), T ∈ T4}

||u(µh)− uh(µh)||1,Ω = 3.3× 10−2

Table:

Error for the problem in a L-shape domain when Xh = {v ∈ C0(Ω), v|T ∈ P1(T ), T ∈ T4}

||u(µMHi
)− u

hHi
N

(µMHi
)||1,Ω ||u(µMh)− uhR

N (µMh)||1,Ω ||u(µMHi
)− uHi

(µMHi
)||1,Ω

N = 5 TH0
0.132447 0.191438 0.48848

TH1
0.159983 0.191438 0.282155

TH2
0.182003 0.191438 0.148391

TH3
0.189419 0.191438 0.0727888

N = 10 TH0
0.353764 0.0361391 0.48848

TH1
0.0682768 0.0361391 0.282155

TH2
0.0381123 0.0361391 0.148391

TH3
0.035279 0.0361391 0.0727888

N = 15 TH0
0.473683 0.0338436 0.48848

TH1
0.141902 0.0338436 0.282155

TH2
0.0389836 0.0338436 0.148391

TH3
0.033873 0.0338436 0.0727888

N = 20 TH0
0.561913 0.0334947 0.48848

TH1
0.197724 0.0334947 0.282155

TH2
0.0483812 0.0334947 0.148391

TH3
0.0338948 0.0334947 0.0727888
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||u(µh)− uh(µh)||1,Ω = 3.3× 10−2

Table:

Error for the problem in a L-shape domain when Xh = {v ∈ C0(Ω), v|T ∈ P1(T ), T ∈ T4}

||u(µMHi
)− u

hHi
N

(µMHi
)||1,Ω ||u(µMh)− uhR

N (µMh)||1,Ω ||u(µMHi
)− uHi

(µMHi
)||1,Ω

N = 5 TH0
0.132447 0.191438 0.48848

TH1
0.159983 0.191438 0.282155

TH2
0.182003 0.191438 0.148391

TH3
0.189419 0.191438 0.0727888

N = 10 TH0
0.353764 0.0361391 0.48848

TH1
0.0682768 0.0361391 0.282155

TH2
0.0381123 0.0361391 0.148391

TH3
0.035279 0.0361391 0.0727888

N = 15 TH0
0.473683 0.0338436 0.48848

TH1
0.141902 0.0338436 0.282155

TH2
0.0389836 0.0338436 0.148391

TH3
0.033873 0.0338436 0.0727888

N = 20 TH0
0.561913 0.0334947 0.48848

TH1
0.197724 0.0334947 0.282155

TH2
0.0483812 0.0334947 0.148391

TH3
0.0338948 0.0334947 0.0727888
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Numerical results

Two grids method
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Numerical results

Another complex problem. . .
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