
Analyse de données en
grande dimension sur

graphes et réseaux
Pierre Vandergheynst

Signal Processing Lab, EPFL

Mathématiques et Grandes Dimensions
Lyon, 10 Décembre 2012

Graphs for Data Modeling
2

Electrical Network

“Neuronal” Network

Social Network

Ubiquitous sensing

2010: 980 exabytes of new digital information
Big Data

Graphs for Data Modeling
3

To process or analyze one typically extracts “features” or apply transforms

Local multi-scale averages or multi-scale differentials (wavelets)

12

f

(a)

 CKWT
2 f

(b)

 CKWT
4 f

(c)

 SGWT
scal f

(d)

 SGWT
t
2

f

(e)

 SGWT
t
4

f

(f)

Fig. 8. (a) A piecewise smooth signal f with a severe discontinuity on the
unweighted Minnesota graph. (b)-(c) Wavelet coefficients of two scales of the
CKWT. (d) Scaling coefficients of the SGWT. (e)-(f) Wavelet coefficients
of two scales of the SGWT. In both cases, the high-magnitude wavelet
coefficients cluster around the discontinuity.

the localized, multiscale transforms we discussed in Section
IV. For many of the generalized operators defined in Section
III and the localized, multiscale transforms reviewed in Section
IV, classical signal processing intuition from Euclidean spaces
can be fairly directly extended to the graph setting. For
example, we saw in Section II-C how the notion of frequency
extends nicely to the graph setting. However, signals and
transforms on graphs can also have surprising properties due
to the irregularity of the data domain. Moreover, these are
by no means the only conceivable ways to generalize these
operators and transforms to the graph setting. Thus, quite a few
challenges remain ahead. In this section, we briefly mention
a few important open issues and possible extensions.

A. Open Issues
• Because all of the signal processing methods described

in this paper incorporate the graph structure in some
way, construction of the underlying graph is extremely
important. Yet, relatively little is known about how the
construction of the graph affects properties of the local-
ized, multiscale transforms for signals on graphs.

• As mentioned in Section II-F, it is not always clear when
or why we should use the normalized graph Laplacian
eigenvectors, the non-normalized graph Laplacian eigen-
vectors, or some other basis as the graph filtering basis.

• Similarly, in the vertex domain, a number of different
distances, including the geodesic/shortest-path distance,
the resistance distance [64], the diffusion distance [44],
and algebraic distances [45], have useful properties, but it
is not always clear which is the best to use in constructing
or analyzing transform methods.

• Transform operators are only useful in high-dimensional
data analysis if the computational complexity of applying
the operator and its adjoint scales gracefully with the
size of the signal. This fact is confirmed, for exam-
ple, by the prevalence of fast Fourier transforms and

other efficient computational algorithms throughout the
signal processing literature. Most of the transforms for
signals on graphs involve computations requiring the
eigenvectors of the graph Laplacian or the normalized
graph Laplacian. However, it is not practical to explicitly
compute these eigenvectors for extremely large graphs,
as the computational complexity of doing so does not
scale gracefully with the size of the graph. Thus, an
important area of research is approximate computation
techniques for signal processing on graphs. Efficient
numerical implementations for certain classes of graph
operators have been suggested using polynomial approx-
imations [4], [40], [41] and Krylov methods [11], but
plenty of numerical issues remain open, including, e.g.,
a fast graph Fourier transform implementation.

• In Euclidean data domains, there is a deep mathematical
theory of approximation linking properties of classes of
signals to properties of their wavelet transform coeffi-
cients (see, e.g., [65]). A major open issue in the field
of signal processing on graphs is how to link structural
properties of graph signals and their underlying graphs
to properties (such as sparsity and localization) of the
generalized operators and transform coefficients. Such a
theory could inform transform designs, and help identify
which transforms may be better suited to which appli-
cations. One issue at the heart of the matter is the need
to better understand localization of signals in both the
vertex and graph spectral domains. As discussed briefly in
Section IV, even defining appropriate notions of spreads
in these domains is highly non-trivial. Moreover, unlike
in the classical Euclidean settings, the graph Laplacian
eigenvectors are often highly non-localized, making it
more difficult to precisely identify the trade-off between
resolution in the vertex domain and resolution in the
graph spectral domain. Agaskar and Lu [60] have begun
to define such localization notions and study the resolu-
tion trade-off.

B. Extensions

The signal processing techniques we have described are
focused on extracting information from a static signal on a
static, weighted, undirected graph. Some clear extensions of
this framework include: 1) considering directed graphs, as is
done for example in [66]; 2) considering time series of data
on each vertex in a graph; 3) considering a time-varying series
of underlying graphs, as is done for example in [67]; or any
combination of these.

Finally, while the number of new analytic techniques for
signals on graphs has been steadily increasing over the past
decade, the application of these techniques to real science
and engineering problems is still in its infancy. We believe
the number of potential applications is vast, and hope to
witness increased utilization of these important theoretical
developments over the coming decade.

The localization/scale properties often induces interesting effects such as sparsity:
12

f

(a)

 CKWT
2 f

(b)

 CKWT
4 f

(c)

 SGWT
scal f

(d)

 SGWT
t
2

f

(e)

 SGWT
t
4

f

(f)

Fig. 8. (a) A piecewise smooth signal f with a severe discontinuity on the
unweighted Minnesota graph. (b)-(c) Wavelet coefficients of two scales of the
CKWT. (d) Scaling coefficients of the SGWT. (e)-(f) Wavelet coefficients
of two scales of the SGWT. In both cases, the high-magnitude wavelet
coefficients cluster around the discontinuity.

the localized, multiscale transforms we discussed in Section
IV. For many of the generalized operators defined in Section
III and the localized, multiscale transforms reviewed in Section
IV, classical signal processing intuition from Euclidean spaces
can be fairly directly extended to the graph setting. For
example, we saw in Section II-C how the notion of frequency
extends nicely to the graph setting. However, signals and
transforms on graphs can also have surprising properties due
to the irregularity of the data domain. Moreover, these are
by no means the only conceivable ways to generalize these
operators and transforms to the graph setting. Thus, quite a few
challenges remain ahead. In this section, we briefly mention
a few important open issues and possible extensions.

A. Open Issues
• Because all of the signal processing methods described

in this paper incorporate the graph structure in some
way, construction of the underlying graph is extremely
important. Yet, relatively little is known about how the
construction of the graph affects properties of the local-
ized, multiscale transforms for signals on graphs.

• As mentioned in Section II-F, it is not always clear when
or why we should use the normalized graph Laplacian
eigenvectors, the non-normalized graph Laplacian eigen-
vectors, or some other basis as the graph filtering basis.

• Similarly, in the vertex domain, a number of different
distances, including the geodesic/shortest-path distance,
the resistance distance [64], the diffusion distance [44],
and algebraic distances [45], have useful properties, but it
is not always clear which is the best to use in constructing
or analyzing transform methods.

• Transform operators are only useful in high-dimensional
data analysis if the computational complexity of applying
the operator and its adjoint scales gracefully with the
size of the signal. This fact is confirmed, for exam-
ple, by the prevalence of fast Fourier transforms and

other efficient computational algorithms throughout the
signal processing literature. Most of the transforms for
signals on graphs involve computations requiring the
eigenvectors of the graph Laplacian or the normalized
graph Laplacian. However, it is not practical to explicitly
compute these eigenvectors for extremely large graphs,
as the computational complexity of doing so does not
scale gracefully with the size of the graph. Thus, an
important area of research is approximate computation
techniques for signal processing on graphs. Efficient
numerical implementations for certain classes of graph
operators have been suggested using polynomial approx-
imations [4], [40], [41] and Krylov methods [11], but
plenty of numerical issues remain open, including, e.g.,
a fast graph Fourier transform implementation.

• In Euclidean data domains, there is a deep mathematical
theory of approximation linking properties of classes of
signals to properties of their wavelet transform coeffi-
cients (see, e.g., [65]). A major open issue in the field
of signal processing on graphs is how to link structural
properties of graph signals and their underlying graphs
to properties (such as sparsity and localization) of the
generalized operators and transform coefficients. Such a
theory could inform transform designs, and help identify
which transforms may be better suited to which appli-
cations. One issue at the heart of the matter is the need
to better understand localization of signals in both the
vertex and graph spectral domains. As discussed briefly in
Section IV, even defining appropriate notions of spreads
in these domains is highly non-trivial. Moreover, unlike
in the classical Euclidean settings, the graph Laplacian
eigenvectors are often highly non-localized, making it
more difficult to precisely identify the trade-off between
resolution in the vertex domain and resolution in the
graph spectral domain. Agaskar and Lu [60] have begun
to define such localization notions and study the resolu-
tion trade-off.

B. Extensions

The signal processing techniques we have described are
focused on extracting information from a static signal on a
static, weighted, undirected graph. Some clear extensions of
this framework include: 1) considering directed graphs, as is
done for example in [66]; 2) considering time series of data
on each vertex in a graph; 3) considering a time-varying series
of underlying graphs, as is done for example in [67]; or any
combination of these.

Finally, while the number of new analytic techniques for
signals on graphs has been steadily increasing over the past
decade, the application of these techniques to real science
and engineering problems is still in its infancy. We believe
the number of potential applications is vast, and hope to
witness increased utilization of these important theoretical
developments over the coming decade.

12

f

(a)

 CKWT
2 f

(b)

 CKWT
4 f

(c)

 SGWT
scal f

(d)

 SGWT
t
2

f

(e)

 SGWT
t
4

f

(f)

Fig. 8. (a) A piecewise smooth signal f with a severe discontinuity on the
unweighted Minnesota graph. (b)-(c) Wavelet coefficients of two scales of the
CKWT. (d) Scaling coefficients of the SGWT. (e)-(f) Wavelet coefficients
of two scales of the SGWT. In both cases, the high-magnitude wavelet
coefficients cluster around the discontinuity.

the localized, multiscale transforms we discussed in Section
IV. For many of the generalized operators defined in Section
III and the localized, multiscale transforms reviewed in Section
IV, classical signal processing intuition from Euclidean spaces
can be fairly directly extended to the graph setting. For
example, we saw in Section II-C how the notion of frequency
extends nicely to the graph setting. However, signals and
transforms on graphs can also have surprising properties due
to the irregularity of the data domain. Moreover, these are
by no means the only conceivable ways to generalize these
operators and transforms to the graph setting. Thus, quite a few
challenges remain ahead. In this section, we briefly mention
a few important open issues and possible extensions.

A. Open Issues
• Because all of the signal processing methods described

in this paper incorporate the graph structure in some
way, construction of the underlying graph is extremely
important. Yet, relatively little is known about how the
construction of the graph affects properties of the local-
ized, multiscale transforms for signals on graphs.

• As mentioned in Section II-F, it is not always clear when
or why we should use the normalized graph Laplacian
eigenvectors, the non-normalized graph Laplacian eigen-
vectors, or some other basis as the graph filtering basis.

• Similarly, in the vertex domain, a number of different
distances, including the geodesic/shortest-path distance,
the resistance distance [64], the diffusion distance [44],
and algebraic distances [45], have useful properties, but it
is not always clear which is the best to use in constructing
or analyzing transform methods.

• Transform operators are only useful in high-dimensional
data analysis if the computational complexity of applying
the operator and its adjoint scales gracefully with the
size of the signal. This fact is confirmed, for exam-
ple, by the prevalence of fast Fourier transforms and

other efficient computational algorithms throughout the
signal processing literature. Most of the transforms for
signals on graphs involve computations requiring the
eigenvectors of the graph Laplacian or the normalized
graph Laplacian. However, it is not practical to explicitly
compute these eigenvectors for extremely large graphs,
as the computational complexity of doing so does not
scale gracefully with the size of the graph. Thus, an
important area of research is approximate computation
techniques for signal processing on graphs. Efficient
numerical implementations for certain classes of graph
operators have been suggested using polynomial approx-
imations [4], [40], [41] and Krylov methods [11], but
plenty of numerical issues remain open, including, e.g.,
a fast graph Fourier transform implementation.

• In Euclidean data domains, there is a deep mathematical
theory of approximation linking properties of classes of
signals to properties of their wavelet transform coeffi-
cients (see, e.g., [65]). A major open issue in the field
of signal processing on graphs is how to link structural
properties of graph signals and their underlying graphs
to properties (such as sparsity and localization) of the
generalized operators and transform coefficients. Such a
theory could inform transform designs, and help identify
which transforms may be better suited to which appli-
cations. One issue at the heart of the matter is the need
to better understand localization of signals in both the
vertex and graph spectral domains. As discussed briefly in
Section IV, even defining appropriate notions of spreads
in these domains is highly non-trivial. Moreover, unlike
in the classical Euclidean settings, the graph Laplacian
eigenvectors are often highly non-localized, making it
more difficult to precisely identify the trade-off between
resolution in the vertex domain and resolution in the
graph spectral domain. Agaskar and Lu [60] have begun
to define such localization notions and study the resolu-
tion trade-off.

B. Extensions

The signal processing techniques we have described are
focused on extracting information from a static signal on a
static, weighted, undirected graph. Some clear extensions of
this framework include: 1) considering directed graphs, as is
done for example in [66]; 2) considering time series of data
on each vertex in a graph; 3) considering a time-varying series
of underlying graphs, as is done for example in [67]; or any
combination of these.

Finally, while the number of new analytic techniques for
signals on graphs has been steadily increasing over the past
decade, the application of these techniques to real science
and engineering problems is still in its infancy. We believe
the number of potential applications is vast, and hope to
witness increased utilization of these important theoretical
developments over the coming decade.

Outline

l Wavelets on (undirected) graps
- Definitions, implementation
- Localization

l Schematic application to (transductive) learning

4

L = D �A

(Lf)(i) =
�

i�j

wi,j(f(i)� f(j))

G = (V,E, w)

Graphs, Laplacian and Spectral Theory
5

Non-normalized Laplacian: Real, symmetric

Lnorm = D�1/2LD�1/2 = I �D�1/2AD�1/2

Remark:

Why Laplacian ? Z2

(Lf)i,j = 4fi,j � fi+1,j � fi�1,j � fi,j+1 � fi,j�1

with usual stencil

In general, graph laplacian from nicely sampled
manifold converges to Laplace-Beltrami operator

weighted, undirected graph

{�l}l=0,1,...,N�1 0 = �
0

< �
1

 �
2

...  �N�1

:= �
max

f̂(`) := hf, �li =
NX

n=1

�⇤
` (n)f(n)

Graphs, Laplacian and Spectral Theory
6

The Graph Laplacian induces a convenient Fourier-like transform

eigen decomposition of Laplacian Spectral Graph Theory

(a)

λ

f̂ () =Ce−5λ

f̂ ()

(b)

Figure 2: A signal represented in two domains. (a) The vertex domain. (b) The graph spectral domain.

eigenvalues (frequencies) are relatively smooth, whereas those associated with higher eigenvalues oscillate
more rapidly. The graph Laplacian eigenvalues and associated eigenvectors satisfy

�` = �T
`L�` =

X

(m,n)2E

Wmn[�`(m)� �`(n)]
2.

Therefore, since each term in the summation of the right-hand side is non-negative, the eigenvectors associ-
ated with smaller eigenvalues are smoother; i.e., the component di↵erences between neighboring vertices are
small (see, e.g., [6, Figure 3]). As the eigenvalue or “frequency” increases, larger di↵erences in neighboring
components of the graph Laplacian eigenvectors may be present. This well-known property has been ex-
tensively utilized in a wide range of problems, including spectral clustering [7], machine learning [8, Section
III], and ill-posed inverse problems in image processing [9].

3.2. Localization of Graph Laplacian Eigenvectors and Coherence

There has recently been a number of interesting research results concerning the localization properties
of graph Laplacian eigenvectors. For di↵erent classes of random graphs, [10, 11, 12] show that with high
probability for graphs of su�ciently large size, the eigenvectors of the graph Laplacian (or in some cases,
the graph adjacency operator), are delocalized; i.e., the restriction of the eigenvector to a large set must
have substantial energy, or in even stronger statements, the element of the matrix � := [�

0

,�
1

, . . . ,�N�1

]
with the largest absolute value is small. We refer to this latter value as the coherence between the basis of
Dirac deltas on the graph and the basis of graph Laplacian eigenvectors:

µ := max
`2{0,1,...,N�1}
i2{1,2,...,N}

|h�`, �ii| 2


1p
N

, 1

�
. (7)

While the previously mentioned non-localization results rely on estimates from random matrix theory, Brooks
and Lindenstrauss [13] also show that for su�ciently large, unweighted, non-random, regular graphs that do
not have too many short cycles through the same vertex, in order for

P
i2S |�`(i)|2 > ✏ for any `, the subset

S ⇢ V must satisfy |S| � N �, where the constant � depends on both ✏ and structural restrictions placed on
the graph.

These non-localization results are consistent with the intuition one might gain from considering the
eigenvectors of the Laplacian for the unweighted path and ring graphs shown in Figure 3. The eigenvalues
of the graph Laplacian of the unweighted path graph with N vertices are given by

�` = 2� 2 cos

✓
⇡`

N

◆
, 8` 2 {0, 1, . . . , N � 1},

4

�f =
X

i,j2X

Wij(f(xi)� f(xj))2

= f t
Lf

Smoothness via Laplacian
7

Example (Belkin, Niyogi)

Affinity between data points represented by edge weights
(affinity matrix W)

measure of smoothness:

L = W - D

kXt
S� � yk2

2 + ↵k�k2
2 + ��tXLXt�Revisit ridge regression:

Solution is smooth in graph “geometry”

kfk2
G,2s =

X

l

�2s
l |f̂(�l)|2 discrete Sobolev semi-norm on G

Smoothness via Laplacian
8

Algorithm 1 Distributed Computation of Φ̃f

Inputs at Node n: fn, Ln,m ∀m, {ck,j}j=1,2,...,η; k=0,1,...,M ,
and λmax

Outputs at Node n:

{(
Φ̃f

)

(j−1)N+n

}

j=1,2,...,η

1: Set
(
T 0(L)f

)
n

= fn

2: Transmit fn to all neighbors Nn := {m : Ln,m < 0}
3: Receive fm from all neighbors Nn

4: Compute and store

(
T 1(L)f

)
n

=
∑

m∈Nn∪n

2

α
Ln,mfm − 2fn

5: for k = 2, . . . ,M do

6: Transmit
(
T k−1(L)f

)
n

to all neighbors Nn

7: Receive
(
T k−1(L)f

)
m

from all neighbors Nn

8: Compute and store

(
T k(L)f

)
n

=
∑

m∈Nn∪n

2

α
Ln,m

(
T k−1(L)f

)
m

− 2
(
T k−1(L)f

)
n
−

(
T k−2(L)f

)
n

9: end for

10: Output for j ∈ {1, 2, . . . , η}:

(
Φ̃f

)

(j−1)N+n
=

1

2
cj,0fn +

M∑

k=1

cj,k

(
T k(L)f

)
n

distributed manner. Let

a = [a1; a2; . . . ; aη] ∈ RηN ,

where aj ∈ RN . Then it is straightforward to show that

(
Φ̃∗a

)

n
=

η∑

j=1

(
1

2
cj,0aj +

M∑

k=1

cj,kT k(L)aj

)

n

. (13)

We assume each node n starts with knowledge of aj(n) for all
j ∈ {1, 2, . . . , η}. For each j ∈ {1, 2, . . . , η}, the distributed
computation of the corresponding term on the right-hand side
of (13) is done in an analogous manner to the distributed
computation of Φ̃f discussed above. Since this has to be done
for each j, 2M |E| messages, each a vector of length η, are

required for every node n to compute
(
Φ̃∗a

)

n
.

C. Distributed Computation of Φ̃∗Φ̃f and Φ̃Φ̃∗a

Using the property of Chebyshev polynomials that

Tk(x)Tk′(x) =
1

2

[
Tk+k′(x) + T|k−k′|(x)

]
,

we can write (see [17] for a similar calculation)

(
Φ̃∗Φ̃f

)

n
=

(
1

2
d0f +

2M∑

k=1

dkT k(L)f

)

n

.

Therefore, with each node n starting with f(n) as in Section
IV-A, the nodes can compute Φ̃∗Φ̃f in a distributed manner

using 4M |E| messages of length 1, with each node n finishing

with knowledge of
(
Φ̃∗Φ̃f

)

n
. Similarly, there exist coeffi-

cients d′j,i,k such that

(
Φ̃Φ̃∗a

)

(j−1)N+n
=

η∑

i=1

(
1

2
d′j,i,0ai +

2M∑

k=1

d′j,i,kT k(L)ai

)

n

.

Thus, Φ̃Φ̃∗a can be computed in a distributed manner with
4M |E| messages, each a vector of length η.

V. APPLICATION EXAMPLES

In this section, we provide more detailed explanations
of how the Chebyshev polynomial approximation of graph
Fourier multipliers can be used in the context of specific
distributed signal processing tasks.

A. Distributed Smoothing

Perhaps the simplest example application is distributed
smoothing with the heat kernel as the graph Fourier multiplier.
One way to smooth a signal y ∈ RN is to compute Hty,
where, for a fixed t, (Hty)(n) :=

∑N−1
"=0 e−tλ! ŷ($)χ"(n). Ht

clearly satisfies our definition of a graph Fourier multiplier
operator (with η = 1). In the context of a centralized image
smoothing application, [13] discusses the heat kernel, Ht, and
its relationship to classical Gaussian filtering in detail. Similar
to the example at the end of Section III-A, the main idea is
that the multiplier e−tλ! acts as a low-pass filter that attenuates
the higher frequency (less smooth) components of y.

Now, to perform distributed smoothing, we just need to
compute H̃ty in a distributed manner according to Algorithm
1, where H̃t is the shifted Chebyshev polynomial approxima-
tion to the graph Fourier multiplier operator Ht.

B. Distributed Regularization

Regularization is a common signal processing technique to
solve ill-posed inverse problems using a priori information
about a target signal to recover it accurately. Here we use
regularization to solve the distributed denoising task discussed
in Section I, starting with a noisy signal y ∈ RN defined on
a graph of N sensors. The prior belief we want to enforce is
that the target signal is smooth with respect to the underlying
graph topology. The class of regularization terms we consider
is fTLrf for r ≥ 1, and the resulting regularization problem
has the form

argmin
f

τ

2
‖f − y‖2

2 + fTLrf. (14)

To see intuitively why incorporating such a regularization term
into the objective function encourages smooth signals (with
r = 1 as an example), note that fTLf = 0 if and only if f is
constant across all vertices, and, more generally

fTLf =
1

2

∑

n∈V

∑

m∼n

am,n [f(m) − f(n)]2 ,

so fTLf is small when the signal f has similar values at
neighboring vertices with large weights (i.e., it is smooth).

We now show how our novel method is useful in solving
this distributed regularization problem.

Proposition 1: The solution to (14) is given by Ry, where
R is a graph Fourier multiplier operator of the form (5), with
multiplier g(λ!) = τ

τ+2λr
!

.1

Proof: The objective function in (14) is convex in f .
Differentiating it with respect to f , any solution f∗ to

Lrf∗ +
τ

2
(f∗ − y) = 0 (15)

is a solution to (14).2 Taking the graph Fourier transform of
(15) yields

L̂rf∗(#) + τ
2

(
f̂∗(#) − ŷ(#)

)
= 0, (16)

∀# ∈ {0, 1, . . . , N − 1}.

From the real, symmetric nature of L and the definition of the
Laplacian eigenvectors (Lχ! = λ!χ!), we have:

L̂rf∗(#) = χ∗
!Lrf∗ = (Lrχ!)

∗ f∗ = λr
!χ

∗
!f∗ = λr

! f̂∗(#). (17)

Substituting (17) into (16) and rearranging, we have

f̂∗(#) =
τ

τ + 2λr
!

ŷ(#), ∀# ∈ {0, 1, . . . , N − 1}. (18)

Finally, taking the inverse graph Fourier transform of (18), we
have

f∗(n) =
N−1∑

!=0

f̂∗(#)χ!(n) =
N−1∑

!=0

[
τ

τ + 2λr
!

]
ŷ(#)χ!(n), (19)

∀n ∈ {1, 2, . . . , N}.

So, one way to do distributed denoising is to compute
R̃y in a distributed manner via the Chebyshev polynomial
approximation of Section IV-A. We show this now with a
numerical example. We place 500 sensors randomly in the
[0, 1] × [0, 1] square. We then construct a weighted graph
according to the thresholded Gaussian kernel weighting (1)
with σ = 0.074 and κ = 0.600, so that two sensor nodes
are connected if their physical separation is less than 0.075.
We create a smooth 500-dimensional signal with the nth

component given by f0
n = n2

x + n2
y − 1, where nx and ny are

node n’s x and y coordinates in [0, 1]× [0, 1]. One instance of
such a network and signal f0 are shown in Figure 2, and the
eigenvectors of the graph Laplacian are shown in Figure 3.

Next, we corrupt each component of the signal f0 with
uncorrelated additive Gaussian noise with mean zero and stan-
dard deviation 0.5. Then we apply the graph Fourier multiplier
operator R̃, the Chebyshev polynomial approximation to R
from Proposition 1, with τ = r = 1. The multiplier and its
Chebyshev polynomial approximations are shown in Figure 4,
and the denoised signal R̃y is shown in Figure 5. We repeated
this entire experiment 1000 times, with a new random graph

1This filter g(λ!) is the graph analog of a first-order Bessel filter from
classical signal processing of functions on the real line.

2In the case r = 1, the optimality equation (15) corresponds to the
optimality equation in [12, Section III-A] with p = 2 in that paper.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

Fig. 2. A network of 500 sensors places randomly in the [0, 1]× [0, 1] plane.
The background colors represent the values of the smooth signal f0.

χ0

(a)

χ1

(b)

χ2

(c)

χ50

(d)

Fig. 3. Some eigenvectors of the Laplacian of the graph shown in Figure
2. The blue bars represent positive values and the black bars negative values.
(a) χ0, the constant eigenvector associated with λ0 = 0. (b) χ1, the Fiedler
vector associated with the lowest strictly positive eigenvalue, nicely separates
the graph into two components. (c) χ2 is also a smooth eigenvector. (d) χ50

is far less smooth with some large differences across neighboring nodes.

and random noise each time, and the average mean square
error for the denoised signals was 0.013, as compared to 0.250
average mean square error for the noisy signals.

We conclude this section by returning to the distributed
binary classification task discussed in the introduction. In [9],
Belkin et al. show that the regularizer fTLrf also works
well in graph-based semi-supervised learning. One approach
to distributed binary classification is to let yn be the labels (-1
or 1) of those nodes who know their labels, and 0 otherwise.
Then the nodes compute R̃y in a distributed manner via
Algorithm 1, and each node n sets it label to 1 if (R̃y)n ≥ 0
and -1 otherwise. We believe our approach to distributedly
applying graph Fourier multipliers can also be used for more
general distributed classification and semi-supervised learning
problems, but we leave this for future work.

We now show how our novel method is useful in solving
this distributed regularization problem.

Proposition 1: The solution to (14) is given by Ry, where
R is a graph Fourier multiplier operator of the form (5), with
multiplier g(λ!) = τ

τ+2λr
!

.1

Proof: The objective function in (14) is convex in f .
Differentiating it with respect to f , any solution f∗ to

Lrf∗ +
τ

2
(f∗ − y) = 0 (15)

is a solution to (14).2 Taking the graph Fourier transform of
(15) yields

L̂rf∗(#) + τ
2

(
f̂∗(#) − ŷ(#)

)
= 0, (16)

∀# ∈ {0, 1, . . . , N − 1}.

From the real, symmetric nature of L and the definition of the
Laplacian eigenvectors (Lχ! = λ!χ!), we have:

L̂rf∗(#) = χ∗
!Lrf∗ = (Lrχ!)

∗ f∗ = λr
!χ

∗
!f∗ = λr

! f̂∗(#). (17)

Substituting (17) into (16) and rearranging, we have

f̂∗(#) =
τ

τ + 2λr
!

ŷ(#), ∀# ∈ {0, 1, . . . , N − 1}. (18)

Finally, taking the inverse graph Fourier transform of (18), we
have

f∗(n) =
N−1∑

!=0

f̂∗(#)χ!(n) =
N−1∑

!=0

[
τ

τ + 2λr
!

]
ŷ(#)χ!(n), (19)

∀n ∈ {1, 2, . . . , N}.

So, one way to do distributed denoising is to compute
R̃y in a distributed manner via the Chebyshev polynomial
approximation of Section IV-A. We show this now with a
numerical example. We place 500 sensors randomly in the
[0, 1] × [0, 1] square. We then construct a weighted graph
according to the thresholded Gaussian kernel weighting (1)
with σ = 0.074 and κ = 0.600, so that two sensor nodes
are connected if their physical separation is less than 0.075.
We create a smooth 500-dimensional signal with the nth

component given by f0
n = n2

x + n2
y − 1, where nx and ny are

node n’s x and y coordinates in [0, 1]× [0, 1]. One instance of
such a network and signal f0 are shown in Figure 2, and the
eigenvectors of the graph Laplacian are shown in Figure 3.

Next, we corrupt each component of the signal f0 with
uncorrelated additive Gaussian noise with mean zero and stan-
dard deviation 0.5. Then we apply the graph Fourier multiplier
operator R̃, the Chebyshev polynomial approximation to R
from Proposition 1, with τ = r = 1. The multiplier and its
Chebyshev polynomial approximations are shown in Figure 4,
and the denoised signal R̃y is shown in Figure 5. We repeated
this entire experiment 1000 times, with a new random graph

1This filter g(λ!) is the graph analog of a first-order Bessel filter from
classical signal processing of functions on the real line.

2In the case r = 1, the optimality equation (15) corresponds to the
optimality equation in [12, Section III-A] with p = 2 in that paper.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

Fig. 2. A network of 500 sensors places randomly in the [0, 1]× [0, 1] plane.
The background colors represent the values of the smooth signal f0.

χ0

(a)

χ1

(b)

χ2

(c)

χ50

(d)

Fig. 3. Some eigenvectors of the Laplacian of the graph shown in Figure
2. The blue bars represent positive values and the black bars negative values.
(a) χ0, the constant eigenvector associated with λ0 = 0. (b) χ1, the Fiedler
vector associated with the lowest strictly positive eigenvalue, nicely separates
the graph into two components. (c) χ2 is also a smooth eigenvector. (d) χ50

is far less smooth with some large differences across neighboring nodes.

and random noise each time, and the average mean square
error for the denoised signals was 0.013, as compared to 0.250
average mean square error for the noisy signals.

We conclude this section by returning to the distributed
binary classification task discussed in the introduction. In [9],
Belkin et al. show that the regularizer fTLrf also works
well in graph-based semi-supervised learning. One approach
to distributed binary classification is to let yn be the labels (-1
or 1) of those nodes who know their labels, and 0 otherwise.
Then the nodes compute R̃y in a distributed manner via
Algorithm 1, and each node n sets it label to 1 if (R̃y)n ≥ 0
and -1 otherwise. We believe our approach to distributedly
applying graph Fourier multipliers can also be used for more
general distributed classification and semi-supervised learning
problems, but we leave this for future work.

Graph Fourier

We now show how our novel method is useful in solving
this distributed regularization problem.

Proposition 1: The solution to (14) is given by Ry, where
R is a graph Fourier multiplier operator of the form (5), with
multiplier g(λ!) = τ

τ+2λr
!

.1

Proof: The objective function in (14) is convex in f .
Differentiating it with respect to f , any solution f∗ to

Lrf∗ +
τ

2
(f∗ − y) = 0 (15)

is a solution to (14).2 Taking the graph Fourier transform of
(15) yields

L̂rf∗(#) + τ
2

(
f̂∗(#) − ŷ(#)

)
= 0, (16)

∀# ∈ {0, 1, . . . , N − 1}.

From the real, symmetric nature of L and the definition of the
Laplacian eigenvectors (Lχ! = λ!χ!), we have:

L̂rf∗(#) = χ∗
!Lrf∗ = (Lrχ!)

∗ f∗ = λr
!χ

∗
!f∗ = λr

! f̂∗(#). (17)

Substituting (17) into (16) and rearranging, we have

f̂∗(#) =
τ

τ + 2λr
!

ŷ(#), ∀# ∈ {0, 1, . . . , N − 1}. (18)

Finally, taking the inverse graph Fourier transform of (18), we
have

f∗(n) =
N−1∑

!=0

f̂∗(#)χ!(n) =
N−1∑

!=0

[
τ

τ + 2λr
!

]
ŷ(#)χ!(n), (19)

∀n ∈ {1, 2, . . . , N}.

So, one way to do distributed denoising is to compute
R̃y in a distributed manner via the Chebyshev polynomial
approximation of Section IV-A. We show this now with a
numerical example. We place 500 sensors randomly in the
[0, 1] × [0, 1] square. We then construct a weighted graph
according to the thresholded Gaussian kernel weighting (1)
with σ = 0.074 and κ = 0.600, so that two sensor nodes
are connected if their physical separation is less than 0.075.
We create a smooth 500-dimensional signal with the nth

component given by f0
n = n2

x + n2
y − 1, where nx and ny are

node n’s x and y coordinates in [0, 1]× [0, 1]. One instance of
such a network and signal f0 are shown in Figure 2, and the
eigenvectors of the graph Laplacian are shown in Figure 3.

Next, we corrupt each component of the signal f0 with
uncorrelated additive Gaussian noise with mean zero and stan-
dard deviation 0.5. Then we apply the graph Fourier multiplier
operator R̃, the Chebyshev polynomial approximation to R
from Proposition 1, with τ = r = 1. The multiplier and its
Chebyshev polynomial approximations are shown in Figure 4,
and the denoised signal R̃y is shown in Figure 5. We repeated
this entire experiment 1000 times, with a new random graph

1This filter g(λ!) is the graph analog of a first-order Bessel filter from
classical signal processing of functions on the real line.

2In the case r = 1, the optimality equation (15) corresponds to the
optimality equation in [12, Section III-A] with p = 2 in that paper.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

Fig. 2. A network of 500 sensors places randomly in the [0, 1]× [0, 1] plane.
The background colors represent the values of the smooth signal f0.

χ0

(a)

χ1

(b)

χ2

(c)

χ50

(d)

Fig. 3. Some eigenvectors of the Laplacian of the graph shown in Figure
2. The blue bars represent positive values and the black bars negative values.
(a) χ0, the constant eigenvector associated with λ0 = 0. (b) χ1, the Fiedler
vector associated with the lowest strictly positive eigenvalue, nicely separates
the graph into two components. (c) χ2 is also a smooth eigenvector. (d) χ50

is far less smooth with some large differences across neighboring nodes.

and random noise each time, and the average mean square
error for the denoised signals was 0.013, as compared to 0.250
average mean square error for the noisy signals.

We conclude this section by returning to the distributed
binary classification task discussed in the introduction. In [9],
Belkin et al. show that the regularizer fTLrf also works
well in graph-based semi-supervised learning. One approach
to distributed binary classification is to let yn be the labels (-1
or 1) of those nodes who know their labels, and 0 otherwise.
Then the nodes compute R̃y in a distributed manner via
Algorithm 1, and each node n sets it label to 1 if (R̃y)n ≥ 0
and -1 otherwise. We believe our approach to distributedly
applying graph Fourier multipliers can also be used for more
general distributed classification and semi-supervised learning
problems, but we leave this for future work.

“Low pass” filtering !

f̂(`)ĝ(�`; p)) g(L; p)Simple linear features:

(Tif) (n) :=
p

N(f ⇤ �i)(n) =
p

N
N�1X

`=0

f̂(`)�⇤` (i)�`(n)

“Convolutions” and “Translations”
9

Note that

µ = max
`2{0,1,...,N�1}

{µ`} = max
i2{1,2,...,N}

{µ̃i} . (12)

4. Generalized Convolution and Translation Operators

The main objective of this section is to define a generalized translation operator that allows us to shift a
window around the vertex domain so that it is localized around any given vertex, just as we shift a window
along the real line to any center point in the classical windowed Fourier transform for signals on the real
line. We use a generalized notion of translation that is – aside from a constant factor that depends on the
number of vertices in the graph – the same notion used as one component of the spectral graph wavelet
transform (SGWT) in [1, Section 4].3 However, in order to leverage intuition from classical time-frequency
analysis, we motivate its definition di↵erently here by first defining a generalized convolution operator for
signals on graphs. We then discuss and analyze a number of properties of the generalized translation as a
standalone operator, including the localization of translated kernels.

4.1. Generalized Convolution of Signals on Graphs

For signals f, g 2 L2(R), the classical convolution product h = f ⇤ g is defined as

h(t) = (f ⇤ g)(t) :=
Z

R
f(⌧)g(t� ⌧)d⌧. (13)

Since the simple translation g(t � ⌧) cannot be directly extended to the graph setting, we cannot directly
generalize (13). However, the classical convolution product also satisfies

h(t) = (f ⇤ g)(t) =
Z

R
ĥ(k) k(t)dk =

Z

R
f̂(k)ĝ(k) k(t)dk, (14)

where k(t) = e2⇡ikt. This important property that convolution in the time domain is equivalent to multi-
plication in the Fourier domain is the notion we generalize instead. Specifically, by replacing the complex
exponentials in (14) with the graph Laplacian eigenvectors, we define a generalized convolution of signals
f, g 2 RN on a graph by

(f ⇤ g)(n) :=
N�1X

`=0

f̂(`)ĝ(`)�`(n). (15)

Proposition 1: The generalized convolution product defined in (15) satisfies the following properties:

1. Generalized convolution in the vertex domain is multiplication in the graph spectral domain:

[f ⇤ g = f̂ ĝ. (16)

2. Let ↵ 2 R be arbitrary. Then

↵(f ⇤ g) = (↵f) ⇤ g = f ⇤ (↵g). (17)

3. Commutativity:

f ⇤ g = g ⇤ f. (18)

3The other component in the SGWT is dilation, whereas the proposed WGFT here uses modulation in combination with
translation. See Section 9 for further comparisons between the SGWT and WGFT.

6

Inherits a lot of properties of the usual convolution

associativity, distributivity, diagonalized by GFT

4. Distributivity:

f ⇤ (g + h) = f ⇤ g + f ⇤ h. (19)

5. Associativity:

(f ⇤ g) ⇤ h = f ⇤ (g ⇤ h). (20)

6. Define a function g
0

2 RN by g
0

(n) :=
PN�1

`=0

�`(n). Then g
0

is an identity for the generalized
convolution product:

f ⇤ g
0

= f. (21)

7. An invariance property with respect to the graph Laplacian (a di↵erence operator):

L(f ⇤ g) = (Lf) ⇤ g = f ⇤ (Lg). (22)

8. The sum of the generalized convolution product of two signals is a constant times the product of the
sums of the two signals:

NX

n=1

(f ⇤ g)(n) = 1p
N

"
NX

n=1

f(n)

#"
NX

n=1

g(n)

#
=

p
Nf̂(0)ĝ(0). (23)

4.2. Generalized Translation of Signals on Graphs

Now the application of the classical translation operator Tu defined in (1) to a function f 2 L2(R) can
be seen as a convolution with �u:

(Tuf)(t) := f(t� u) = (f ⇤ �u)(t)
(14)

=

Z

R
f̂(k) b�u(k) k(t)dk =

Z

R
f̂(k) ⇤

k(u) k(t)dk,

where the equalities are in the weak sense. Thus, for any signal f 2 RN defined on the the graph G and any
i 2 {1, 2, . . . , N}, we also define a generalized translation operator Ti : RN ! RN via generalized convolution
with a delta centered at vertex i:

(Tif) (n) :=
p
N(f ⇤ �i)(n)

(15)

=
p
N

N�1X

`=0

f̂(`)�⇤
` (i)�`(n). (24)

The translation (24) is a kernelized operator. The window to be shifted around the graph is defined in the
graph spectral domain via the kernel f̂(·). To translate this window to vertex i, the `th component of the
kernel is multiplied by �⇤

` (i), and then an inverse graph Fourier transform is applied. As an example, in
Figure 4, we apply generalized translation operators to the normalized heat kernel from Figure 1(c). We
can see that doing so has the desired e↵ect of shifting a window around the graph, centering it at any given
vertex i.

4.3. Properties of the Generalized Translation Operator

Some expected properties of the generalized translation operator follow immediately from the generalized
convolution properties of Proposition 1.

Corollary 1: For any f, g 2 RN and i, j 2 {1, 2, . . . , N},

1. Ti(f ⇤ g) = (Tif) ⇤ g = f ⇤ (Tig).

2. TiTjf = TjTif .

7

4. Distributivity:

f ⇤ (g + h) = f ⇤ g + f ⇤ h. (19)

5. Associativity:

(f ⇤ g) ⇤ h = f ⇤ (g ⇤ h). (20)

6. Define a function g
0

2 RN by g
0

(n) :=
PN�1

`=0

�`(n). Then g
0

is an identity for the generalized
convolution product:

f ⇤ g
0

= f. (21)

7. An invariance property with respect to the graph Laplacian (a di↵erence operator):

L(f ⇤ g) = (Lf) ⇤ g = f ⇤ (Lg). (22)

8. The sum of the generalized convolution product of two signals is a constant times the product of the
sums of the two signals:

NX

n=1

(f ⇤ g)(n) = 1p
N

"
NX

n=1

f(n)

#"
NX

n=1

g(n)

#
=

p
Nf̂(0)ĝ(0). (23)

4.2. Generalized Translation of Signals on Graphs

Now the application of the classical translation operator Tu defined in (1) to a function f 2 L2(R) can
be seen as a convolution with �u:

(Tuf)(t) := f(t� u) = (f ⇤ �u)(t)
(14)

=

Z

R
f̂(k) b�u(k) k(t)dk =

Z

R
f̂(k) ⇤

k(u) k(t)dk,

where the equalities are in the weak sense. Thus, for any signal f 2 RN defined on the the graph G and any
i 2 {1, 2, . . . , N}, we also define a generalized translation operator Ti : RN ! RN via generalized convolution
with a delta centered at vertex i:

(Tif) (n) :=
p
N(f ⇤ �i)(n)

(15)

=
p
N

N�1X

`=0

f̂(`)�⇤
` (i)�`(n). (24)

The translation (24) is a kernelized operator. The window to be shifted around the graph is defined in the
graph spectral domain via the kernel f̂(·). To translate this window to vertex i, the `th component of the
kernel is multiplied by �⇤

` (i), and then an inverse graph Fourier transform is applied. As an example, in
Figure 4, we apply generalized translation operators to the normalized heat kernel from Figure 1(c). We
can see that doing so has the desired e↵ect of shifting a window around the graph, centering it at any given
vertex i.

4.3. Properties of the Generalized Translation Operator

Some expected properties of the generalized translation operator follow immediately from the generalized
convolution properties of Proposition 1.

Corollary 1: For any f, g 2 RN and i, j 2 {1, 2, . . . , N},

1. Ti(f ⇤ g) = (Tif) ⇤ g = f ⇤ (Tig).

2. TiTjf = TjTif .

7

4. Distributivity:

f ⇤ (g + h) = f ⇤ g + f ⇤ h. (19)

5. Associativity:

(f ⇤ g) ⇤ h = f ⇤ (g ⇤ h). (20)

6. Define a function g
0

2 RN by g
0

(n) :=
PN�1

`=0

�`(n). Then g
0

is an identity for the generalized
convolution product:

f ⇤ g
0

= f. (21)

7. An invariance property with respect to the graph Laplacian (a di↵erence operator):

L(f ⇤ g) = (Lf) ⇤ g = f ⇤ (Lg). (22)

8. The sum of the generalized convolution product of two signals is a constant times the product of the
sums of the two signals:

NX

n=1

(f ⇤ g)(n) = 1p
N

"
NX

n=1

f(n)

#"
NX

n=1

g(n)

#
=

p
Nf̂(0)ĝ(0). (23)

4.2. Generalized Translation of Signals on Graphs

Now the application of the classical translation operator Tu defined in (1) to a function f 2 L2(R) can
be seen as a convolution with �u:

(Tuf)(t) := f(t� u) = (f ⇤ �u)(t)
(14)

=

Z

R
f̂(k) b�u(k) k(t)dk =

Z

R
f̂(k) ⇤

k(u) k(t)dk,

where the equalities are in the weak sense. Thus, for any signal f 2 RN defined on the the graph G and any
i 2 {1, 2, . . . , N}, we also define a generalized translation operator Ti : RN ! RN via generalized convolution
with a delta centered at vertex i:

(Tif) (n) :=
p
N(f ⇤ �i)(n)

(15)

=
p
N

N�1X

`=0

f̂(`)�⇤
` (i)�`(n). (24)

The translation (24) is a kernelized operator. The window to be shifted around the graph is defined in the
graph spectral domain via the kernel f̂(·). To translate this window to vertex i, the `th component of the
kernel is multiplied by �⇤

` (i), and then an inverse graph Fourier transform is applied. As an example, in
Figure 4, we apply generalized translation operators to the normalized heat kernel from Figure 1(c). We
can see that doing so has the desired e↵ect of shifting a window around the graph, centering it at any given
vertex i.

4.3. Properties of the Generalized Translation Operator

Some expected properties of the generalized translation operator follow immediately from the generalized
convolution properties of Proposition 1.

Corollary 1: For any f, g 2 RN and i, j 2 {1, 2, . . . , N},

1. Ti(f ⇤ g) = (Tif) ⇤ g = f ⇤ (Tig).

2. TiTjf = TjTif .

7

Use convolution to induce translations

Spectral Graph Wavelets
10

T t
g = g(tL)Dilation operates through operator:

 t,j(i) =
N�1X

`=0

g(t�`)�
⇤
` (j)�`(i) L�`(j) = �`�`(j)

⇥t,j = T t
g�j

�t,a(u) =
�

R
d⇥ �̂(t⇥)e�j�aej�u

Translation (localization):

Define response to a delta at vertex j

Wf (t, j) = T t
gf(j) =

N�1X

`=0

g(t�`)f̂(`)�`(j)Wf (t, j) = ��t,j , f⇥

And so formally define the graph wavelet coefficients of f:

L = D �AG=(E,V) a weighted undirected graph, with Laplacian

�(�`) =
Z 1

1/2

dt

t
g2(t�`) g̃(�`) =

p
�(�`)� �(2�`)

�n = Th�n = h(L)�n

Frames
11

9A, B > O, 9h : R+ ! R+ (i.e. scaling function)

0 < A 6 h2
(u) +

P
s g(tsu)

2 6 B < 1

scaling function wavelets

0 10
0

1

2

λ

A

B

A simple way to get a tight frame:

for any admissible kernel g

−1 0 1−1
0

1
−1

0

1

 t,i(j)

Scaling & Localization
12

−1 0 1−1
0

1
−1

0

1

−0.05 0 0.05

−1 0 1−1
0

1
−1

0

1

−0.2 0 0.2

−1 0 1−1
0

1
−1

0

1

−0.15 0 0.15

decreasing scale

Example
13

−98 −96 −94 −92 −90 −88
44

46

48

−98 −96 −94 −92 −90 −88
44

46

48

−98 −96 −94 −92 −90 −88
44

46

48

−98 −96 −94 −92 −90 −88
44

46

48

−98 −96 −94 −92 −90 −88
44

46

48

Sparsity and Smoothness on Graphs
14

scaling functions coeffs

�n(m) =
�
Tng

�
(m) �n(m) =

p
N

N�1X

`=0

ĝ(�`)�⇤` (m)�⇤` (n)

Polynomial Localization
15

Given a spectral kernel g, construct the family of features:

Are these features localized ?

B = sup
x

|ĝ(K+1)(x)|

Suppose the GFT of the kernel is smooth enough (K+1 different.):

sup
`

|ĝ(x)� PK(x)|  B

2K(K + 1)!

Construct an order K polynomial approximation:

�0
n(m) = h�m, PK(L)�ni

�n(m) = h�m, g(L)�ni

Polynomial Localization
16

sup
`

|ĝ(x)� PK(x)|  B

2K(K + 1)!

Now consider:

Exactly localized in a K-ball around n

The original feature is well-localized in a K-ball around n:

Bĝ(K) = inf
cpk

(
sup

�2[0,�
max

]
|ĝ(�)� bpk(�)|

)

|(Tig)(n)| 
p
NBĝ(din � 1)din > K

Bounds on Localization
17

Example: for the heat kernel ĝ(�) = e�⌧�

|(Tig)(n)|
kTigk2

 2
p
N

din!

✓
⌧�

max

4

◆din


r

2N

din⇡
e�

1
12din+1

✓
⌧�

max

e

4din

◆din

⌧ = 5
⌧ = 25

⌧ = 50

T t
g �

K�1�

k=0

ak(t)Lk

0 40

0

1

λ

Remark on Implementation
18

Not necessary to compute spectral decomposition for filtering

Polynomial approximation :

ex: Chebyshev, minimax

Then wavelet operator expressed with powers of Laplacian:

And use sparsity of Laplacian in an iterative way

g(t�) �
K�1�

k=0

ak(t)pk(�)

W̃f (t, j) =
�
p(L)f#

⇥
j

|Wf (t, j)� W̃f (t, j)| ⇥ B⌅f⌅

W̃f (tn, j) =

�
1
2
cn,0f

+
Mn⇤

k=1

cn,kT k(L)f#

⇥

j

T k(L)f =
2
a1

(L� a2I)
�
T k�1(L)f

⇥
� T k�2(L)f

Remark on Implementation
19

sup norm control (minimax or Chebyshef)

O(
J�

n=1

Mn|E|)

Computational cost dominated by matrix-vector multiply with
(sparse) Laplacian matrix.
In particular

Note: “same” algorithm for adjoint !

http://wiki.epfl.ch/sgwt

http://wiki.epfl.ch/sgwt
http://wiki.epfl.ch/sgwt

Each point has a desired class label (suppose binary)

x1, x2, ..., xn 2 Rd

|S| = l < n

Transductive Learning
20

Let X be an array of data points

yk 2 Y

At training you have the labels of a subset S of X

GOAL: predict remaining labels
Rationale: minimize empirical risk on your training data such that
- your model is predictive
- your model is simple, does not overfit
- your model is “stable” (depends continuously on your training set)
- ...

Getting data is easy but labeled data is a scarce resource

21

kXt� � yk2
2

yk = � · xk + b

� = (XXt)�1Xy

� = (XXt + ↵I)�1XykXt� � yk2
2 + ↵k�k2

2

Transductive Learning
22

Ex: Linear regression

Empirical Risk:

if not enough observations, regularize (Tikhonov):

Ridge Regression

k�X� � yk2
2,S + ↵S(�)

How can unlabeled data be used ?
Questions:

More general linear model with a dictionary of features ?

dictionary depends on data points simplifies/stabilizes selected model

Learning on/with Graphs
23

How can unlabeled data be used ?

Assumption:
target function is not globally smooth but it is locally smooth over
regions of data space that have some geometrical structure

Use graph to model this structure

�X

arg min
�
ky �M�X�k2

2 + ↵S(�)

Transduction & Representation
24

More general linear model with a dictionary of features ?

dictionary of features on the complete data set (data dependent)

M restricts to labeled data points (mask)

Empirical Risk
Model Selection penalty, sparsity ?
Smoothness on graph ?

Important Note: our dictionary will be data dependent but its
construction is not part of the above optimization

arg min
�
ky �M�X�k2

2 + ↵k�k1

Sparsity and Transduction
25

Since sparsity = smoothness on graph, why not simple LASSO ?

arg min
�
ky �M�X�k2

2 + ↵S(�)

Bad Idea:

We know there are strongly correlated coefficients
(LASSO will kill some of them)

scaling level

Group Sparsity
26

Scaling functions not sparse are optimized separately

Group potentially correlated variables (scales)

scale 1

scale 2
group k

group l

Few groups should be active = local smoothness

Inside group, all coefficients can be active

Simple model, no overlap, optimized like LASSO

Formulate with mixed-norms k�kp,q

Preliminary Results
27

Ground truth

5% labeled recovered

Wavelets on trees, graphs and high dimensional data

For a regression problem, our estimator for f is

f̂(x) =
∑

!,k,j

â!,k,j ψ!,k,j(x) (12)

whereas for binary classification we output sign(f̂).

Note that conditional on all subfolders of X!
k having

at least one labeled point, â!,k,j is unbiased, E[â!,k,j] =
a!,k,j . For small folders there is a non-negligible prob-
ability of having empty subfolders, so overall â!,k,j is
biased. However, by Theorem 1, for smooth functions
these coefficients are exponentially small in ". The
following theorem quantifies the expected L2 error of
both the estimate â!,k,j , and the function estimate f̂ .
Its proof is in the supplementary material.

Theorem 4 Let f be (C,α) Hölder, and define C1 =
C2α+1. Assume that the labeled samples si ∈ S ⊂ X
were randomly chosen from the uniform distribution
on X with replacement. Let f̂ be the estimator (12)
with coefficients estimated via Eq. (11). Up to o(1/|S|)
terms, the mean squared error of coefficient estimates
is bounded by

E[â!,k,j − a!,k,j]
2 ! 1

|S|
C2

1B
2α

ν(X"
k)

2α

1−e−|S|Bν(X"
k
)

(13)

+ 1
B e−|S|Bν(X"

k) · a2!,k,j

The resulting overall MSE is bounded by

E ‖f − f̂‖2 = 1
N

∑

i

(f(xi)− f̂(xi))
2

≤ C2
1B

2α

|S|

∑

!,k,j

B
2α(!−1)

1− e−|S|B" (14)

+ 22α+1C2
1

B

∑

!,k,j

e−|S|B"

(B
2α+1

)!−1

The first term in (13) is the estimation error whereas
the second term is the approximation error, e.g. the
bias-variance decomposition. For sufficiently large
folders, with |S|Bν(X!

k) & 1, the estimation error de-
cays with the number of labeled points as |S|−1, and is
smaller for smoother functions (larger α). The approx-
imation error, due to folders empty of labeled points,
decays exponentially with |S| and with folder size.

The values B and B can be easily extracted from a
given tree. Theorem 4 thus provides a non-parametric
risk analysis that depends on a single parameter, the
assumed smoothness class α of the target function.

5. Numerical Results

We present preliminary numerical results of our SSL
scheme on several datasets. More results and Matlab

0 20 40 60 80 100
0

5

10

15

20

25

30

of labeled points (out of 1500)

T
e
s
t
E

rr
o
r

(%
)

Laplacian Eigenmaps
Laplacian Reg.
Adaptive Threshold
Haar−like basis
State of the art

Figure 2. Results on the USPS benchmark.

code appear in supplementary material. We focus on
two well-known handwritten digit data sets, MNIST
and USPS. These are natural choices due to the inher-
ent multiscale structures present in handwritten digits.

Given a dataset X of N digits, of which only a small
subset S is labeled, we first use all samples inX to con-
struct an affinity matrix Wi,j described below. A tree
is constructed as follows: At the finest level, " = L,
we have N singleton folders: XL

i = {xi}. Each coarse
level is constructed from a finer level as follows: Ran-
dom (centroid) points are selected s.t. no two are con-
nected by an edge of weight larger than a ”radius”
parameter. This yields a partition of the current level
according to the nearest centroid. The partition el-
ements constitute the points of the coarser level. A
coarse affinity matrix is constructed, where the edge
weight between two partition elements C and D is
∑

i∈C,j∈D W 2
ij where W is the affinity matrix of the

finer level graph. The motivation for squaring the
affinities at each new coarse level is to capture struc-
tures at different scales. As the choice of centroids
is (pseudo) random, so is the resulting partition tree.
With the partition tree at hand, we construct a Haar-
like basis induced by the tree and estimate the co-
efficients of the target label function as described in
Section 4.

We compare our method to Laplacian Eigenmaps
(Belkin & Niyogi, 2003), with |S|/5 eigenfunctions, as
suggested by the authors, and to the Laplacian Reg-
ularization approach of (Zhu et al., 2003). For the
latter, we also consider an adaptive threshold for clas-
sification (sign(y > qth)), with qth chosen such that
the proportion of test labeled points of each class is
equal to its value in the training set2.

2Note that this method is different from the class mass
normalization approach of (Zhu et al., 2003).

Simulation results from Gavish et al, ICML 2010

2-class USPS

Conclusions
l Processing data on graphs is still an emerging

field.
l Interesting connections with other areas
l How to scale computations ?
l Diverse applications:
- fMRI [Leonardi, Van de Ville, 2012], cortical smoothing
- Network Analysis [Tremblay, Borgnat, 2012]
- Learning, Distributed regularization [Shuman et al, 2012]

28

