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Abstract. – The volume of a unit vector field V of a Riemannian manifold (M, g)
is the volume of its image V (M) in the unit tangent bundle endowed with the
Sasaki metric. Unit Hopf vector fields, that is, unit vector fields that are tangent
to the fiber of a Hopf fibration Sn → CP

n−1
2 (n odd) are well known to be critical

for the volume functional on the round n-dimensional sphere Sn(r) for every radius
r > 1. Regarding the Hessian, it turns out that its positivity actually depends
on the radius. Indeed, in [2], it is proven that for n ≥ 5 there is a critical radius
rc = 1√

n−4
such that Hopf vector fields are stable if and only if r ≤ rc. In this paper

we consider the question of the existence of a critical radius for space forms Mn(c)
(n odd) of positive curvature c. These space forms are isometric quotients Sn(r)/Γ
of round spheres and naturally carry a unit Hopf vector field which is critical for
the volume functional. We prove that rc = +∞, unless Γ is trivial. So, in contrast
with the situation for the sphere, the Hopf field is stable on Sn(r)/Γ, Γ 6= {Id},
whatever the radius.
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1 Introduction and Main Results

In [10], H. Gluck and W. Ziller raised the question of finding unit vector fields
of S2m+1 which are the “best organised” ones. Precisely, they first defined
a volume functional V ol on the space of unit vector fields and then asked
for finding the infimum of V ol and possibly its minimizers. This volume
functional is the natural one: it maps a unit vector field V onto the volume
of the image submanifold in the unit tangent bundle V (S2m+1) ⊂ T 1S2m+1

endowed with the Sasaki metric (the metric which canonically extends the
metric of the base space to the tangent space). For m = 1, Gluck and Ziller
showed that the infimum is reached by Hopf fields, i. e. unit vector fields
tangent to the fibers of a Hopf fibration S2m+1 → CPm. For m > 1, the
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question revealed to be more muddled than initially expected and gave rise
to a sizeable amount of work (see [6] for a survey). In particular, Hopf fields
are no longer minimizers of the volume on the unit sphere S2m+1, m > 1.
In 1993, S. L. Pedersen conjectured that for m > 1 the infimum is reached
by a singular field derived from a Pontrjagin cycle [18]. This conjecture is
still open. In 2004, a non-trivial lower bound for the volume is obtained by
F. Brito, P. Chacón and A. Naveira [4], on the other hand the regularity of
minimizers is investigated by D. Johnson and P. Smith in a sequel of articles
[15],[16] and [17]. It was suspected in [9] that the radius of the base sphere
could play a role and this was confirmed in [2]. Precisely, whatever the ra-
dius of S2m+1(r) Hopf vector fields are minimal but, as soon as m > 1, the
non-negativity of the Hessian, that is their stability, depends on the radius.
In fact, for each odd-dimensional sphere S2m+1, m > 1, there exists a critical
radius rc = 1√

2m−3
such that Hopf fields are stable if and only if r ≤ rc.

It was then noticed that a similar phenomenon occurs in a more general
setting, namely for K-contact manifolds [14] (see also [19]). The goal of
this article is to investigate the question of the existence of critical radius
for quotients of spheres. Any space form with positive sectional curvature
is a quotient of a S2m+1(r) by a finite fixed point free isometry subgroup Γ
of O(2m + 2). It turns out that there is still (at least) a Hopf field HΓ on
the quotient S2m+1(r)/Γ which remains critical for the volume functional.
But something a priori unexpected occurs: the field HΓ is always stable,
whatever the radius r > 0.

Theorem 1.– Let M = S2m+1(r)/Γ be a space form with Γ 6= {Id}, then
the Hopf field HΓ is stable on S2m+1(r)/Γ.

As a consequence, there is no critical radius for quotients S2m+1(r)/Γ, Γ 6=
{Id}. Technics used to prove this theorem differ from the ones of [2]. In that
last article the crucial point to prove the non negativity of the Hessian for
r ≤ rc was to take advantage of the Hopf fibration to read any vector field
as a Fourier serie along the fibers of the fibration. Here, our starting point
is the fact that the non negativity of the Hessian of the volume is implied
by the non negativity of the Hessian of a simpler functional : the energy.
Given a vector field V , its energy is the number

E(V ) :=
1
2

∫
S2m+1(r)

(2m+ 1 + ‖∇V ‖2)dvol,

the relevant term B(V ) :=
∫

S2m+1(r) ‖∇V ‖
2dvol being called the bending of

V. In constrast with the volume, the Hessian of the energy behaves homoge-
neously with the radius and no critical radius phenomenon can appear for it.
We then observe that the stability of the Hopf vector field as a critical point
of the energy is equivalent to a certain lower bound of the first eigenvalue of
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an elliptic operator acting over vector fields orthogonal to the Hopf distri-
bution. This lower bound is obtained by relating the elliptic operator with
the rough Laplacian for functions over the sphere. The key point is that
the geometry of any quotient S2m+1(r)/Γ, Γ 6= {Id} forces the vanishing of
the constant term of the homogeneous harmonic decomposition of a vector
field. That is why vector fields that give unstable directions for the Hessian
of volume on spheres do not descend to the quotient.

In §4, we inspect the situation for quotients of Berger spheres. A Berger
sphere (S2m+1, gµ) is a sphere in which the usual metric has been modified
of a factor µ in the Hopf direction (see §4 for a precise definition). In a
Berger sphere, the stability of both the volume and the energy at the Hopf
fields depends on µ, precisely there exists µvol (resp. µe) such that the Hopf
field is stable for the volume (resp. the energy) if and only if µ ≤ µvol (resp.
µ ≤ µe) [8]. The numbers µvol and µe are both equal to 1 for S3 and de-
crease toward zero when the dimension of the sphere increases. Once again
the situation simplifies for quotients due to the fact that certain unstable
directions on (S2m+1, gµ) do not descend to (S2m+1/Γ, gµ).

Theorem 2 and 3.– Let 0 < µ ≤ 1 then the Hopf field Hµ
Γ is stable for both

energy and volume on (S2m+1/Γ, gµ), Γ 6= {Id}, m ≥ 1. Moreover any non
identically zero vector field orthogonal to Hµ

Γ provides an unstable direction
for both energy and volume if µ is large enough.

This result is sharp in the following sense: it cannot be improved for Berger
projective spaces (RP 4m−1, gµ), m ≥ 1.

Proposition 4.– Let Γ = Z2. If µ > 1, the Hopf vector field of Hµ
Γ is

unstable for both energy and volume on (RP 4m−1, gµ), m ≥ 1.

2 Hopf Fields on Spherical Space Forms

2.1 Spherical Space forms

For the sake of completeness, we recall in this subsection the basic facts
about spherical space forms that will be needed in the sequel of the article.
Our reference is [24].

A well-known result of W. Killing and H. Hopf states that any complete
connected manifold Mn with constant positive sectional curvature is iso-
metric to a quotient Sn(r)/Γ of a sphere of radius r > 0 by a finite group
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Γ < O(n+1) of fixed point free isometries1. The free action of Γ just means
that only the identity element of Γ has +1 as eigenvalue. If G is a subgroup
of O(n + 1) conjugate to Γ (i. e. ∃h ∈ O(n + 1) such that Γ = hGh−1)
then h induces an isometry h : Sn(r)/Γ → Sn(r)/G by conjugating classes.
Conversely, if h : Sn(r)/Γ→ Sn(r)/G is an isometry, standard arguments of
Riemannian coverings theory show that Γ and G are conjugate.

The classification problem for complete connected Riemannian manifolds of
constant positive curvature was solved by G. Vincent in the late 1940s [22].
Its main conceptual technique was to view Γ as the image of an abstract
group G by a fixed point free real orthogonal representation σ : G→ O(n+
1): every complete connected Riemannian manifold Mn of positive constant
sectional curvature is isometric to a quotient

Sn(r)/σ(G) = Sn(r)/(σ1 ⊕ ...⊕ σs)(G)

where σ = ⊕si=1, σi : G → O(Wi) are irreducible and fixed point free and
s∑
i=1

dimWi = n + 1. We then need to determine groups which admit fixed

point free irreducible representations and then to classify irreductible rep-
resentations of such groups. This last point is achieved with the help of the
Frobenius-Schur theorem by classifying complex irreducible representations
π : G→ End(V ⊗C). Every real representation σ : G→ End(V ) induces a
complex representation σC : G→ End(V ⊗C) by C-linear extension. Con-
versely, if π is the conjugate representation of π, then π⊕ π is equivalent to
a representation σC with σ real.2 Indeed, if π(g) = X + iY with X, Y real
matrices and if

A =
[
Id −Id
−Id Id

]
,

(π ⊕ π)(g) =
[
X + iY 0

0 X − iY

]
∈ End((V ⊗ C)⊕ (V ⊗ C)),

then

A ◦ (π ⊕ π)(g) ◦A−1 =
[
X −Y
Y X

]
= σC(g) ∈ Gl((V ⊕ V )⊗ C)

where

σ(g) =
[
X −Y
Y X

]
=
[
Re(π(g)) −Im(π(g))
Im(π(g)) Re(π(g))

]
∈ Gl(V ⊕ V ).

Frobenius-Schur theorem states that for every irreducible real representa-
tion σ : G → Gl(W ) there exists an irreducible complex representation π

1All our manifolds are assume to be without boundary
2Two representations φ, ψ : G → End(V ⊗ C) are equivalent if there exists a C-linear

isomorphism A ∈ Gl(V ⊗ C) such that: ∀g ∈ G; Aφ(g)A−1 = ψ(g).
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such that:
- either σC is equivalent to π⊕ π̂ with π : G→ End(V ⊗C), V ⊕V = W,
- either σC is equivalent to π with π : G→ End(W ⊗C), then we com-

mit an abuse of language and say that π is equivalent to a real representation.

The classification of fixe point free irreducible complex representations π
shows that they are not equivalent to a real representation except if G =
{Id} or Z2. In other words, if Mn is complete, connected and with positive
sectional curvature then:

- either Mn is isometric to Sn(r) or RPn(r),
- either n is odd, Mn is isometric to Sn(r)/Γ with Γ < U(n+1

2 ).
Indeed, Γ = (σ1 ⊕ ... ⊕ σs)(G) with σi : G → O(Wi) and if G 6= {Id} and
G 6= Z2 then, from the Frobenius-Schur theorem, for all g ∈ G and for all
i ∈ {1, ..., s}, σi(g) is of the form[

X −Y
Y X

]
∈ U(Vi ⊗ C) ⊂ O(Vi ⊕ Vi),

where Wi = Vi⊕Vi. In particular, if M2m+1 is complete, connected and with
positive sectional curvature then M2m+1 is orientable.

2.2 Hopf fields

Definition.– Let M2m+1 be a complete connected manifold with positive
constant sectional curvature. We say that a unit vector field V : M → T 1M
is a unit Hopf field on M2m+1 if there exists an isometry from M2m+1 to
some S2m+1(r)/Γ such that the image of V lifts to a unit Hopf vector field
of S2m+1.

Proposition 1.– Every complete connected manifold M2m+1 with positive
constant sectional curvature admits (at least) one unit Hopf vector field.

Proof of Proposition 1.– The result is obvious if M2m+1 is isometric to
S2m+1(r). If M2m+1 is isometric to RP 2m+1, then the Hopf field H(x) = Jx
on S2m+1(r) ⊂ (R2m+2, J) ≈ Cm+1 defined a Hopf field on the quotient
RP 2m+1(r) since H(−x) = −H(x). In the other cases, from the results
mentioned above, M2m+1 is isometric to S2m+1(r)/Γ where Γ < U(m+ 1).
The field H(x) = Jx of S2m+1(r) ⊂ (R2m+2, J) induces a well-defined vector
field on the quotient S2m+1(r)/Γ if and only if

∀g ∈ Γ,∀x ∈ S2m+1(r) : dπx (H(x)) = dπg(x) (H(g(x)))

where π : S2m+1(r) → S2m+1(r)�Γ is the Riemannian covering. Since
π ◦ g = π we have dπx(H(x)) = dπg(x)(g(H(x))). It ensues that

dπg(x)(g(H(x))) = dπg(x) (H(g(x))) .
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Since dπx : TxS2m+1(r)→ Tπ(x)(S2m+1(r)�Γ) is an isomorphism we deduce
that
H(g(x)) = g(H(x)) i. e. gJ = Jg for every g ∈ Γ and this last condition
is fulfilled since Γ < U(m+ 1). �

Notation. We denote by HΓ the unit Hopf vector field on S2m+1(r)/Γ in-
duced by the unit Hopf vector field H(x) = Jx of S2m+1(r) ⊂ (R2m+2, J).
Given an isometry f : S2m+1(r)/Γ→M2m+1 the image f∗HΓ is a unit Hopf
field of M2m+1. By a slight abuse of notation, we will still denote by HΓ

any vector field of M2m+1 of the form f∗HΓ for some isometry f.

Harmonicity and minimality. A unit vector field V on a Riemannian
manifold (M, g) can be considered as a map V : M → T 1M of M into
its unit tangent bundle. If we equip T 1M with the Sasaki metric gS , V
is called a harmonic unit vector field if the map is harmonic and a mini-
mal unit vector field if the submanifold V (M) is minimal in (T 1M, gS). (see.

Lemma 1.– Unit Hopf fields are minimal and harmonic.

Proof of Lemma 1.– This is obvious since unit Hopf fields of S2m+1(r) are
minimal and harmonic (see [7] for instance) and π : S2m+1(r)→ S2m+1(r)/Γ
is a Riemannian covering. �

3 Bending over Sections of the Orthogonal Distri-
bution of the Hopf Field

The key point in the proof of our main result is to obtain the following es-
timate for the bending of vector fields orthogonal to HΓ.

Proposition 2. – Let V be a smooth vector field of S2m+1(r)/Γ, Γ 6= {Id},
such that at every point 〈HΓ, V 〉 = 0, then:∫

S2m+1(r)/Γ
‖∇V ‖2dvol ≥ 2m

r2

∫
S2m+1(r)/Γ

‖V ‖2dvol.

General strategy of the proof.- Let ∆ be the rough Laplacian on sections
of TS2m+1(r), that is ∆ = ∇∗∇ where ∇∗ is the L2-adjoint of ∇. Given a
Hopf fieldH, we denote by E = Γ(H⊥) the space of sections of the orthogonal
distribution to H and we define an operator L : E → E by:

L(V ) := ∆V − 〈∆V,H〉H

Since L is an elliptic operator, the set of its eigenvalues is countably infinite
with +∞ as limit point (see for instance [21] p. 39, proposition 5.1 and p. 69,
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theorem 8.3 for a proof of that classical result). Moreover:∫
S2m+1(r)

〈L(V ), V 〉dvol =
∫

S2m+1(r)
(〈∆V, V 〉 − 〈∆V,H〉〈V,H〉)dvol

=
∫

S2m+1(r)
〈∆(V ), V 〉dvol

=
∫

S2m+1(r)
‖∇V ‖2dvol ≥ 0

since 〈V,H〉 = 0. Therefore Proposition 2 reduces to an estimation of the
lowest eigenvalue of L. The precise computation of eigenvalues of L proves
to be difficult, we bypass this by introducing another operator L : E → E
the eigenvalues of which are easier to control. In the sequel, we first define
L and study its link with L (Lemma 2), we then state a property of unit
vector fields that descend on a proper quotient of spheres (Lemma 3), that
property is crucial to obtain an estimate (Proposition 3) which will imply
Proposition 2.

Operator L.– Precisely let

L(V ) = π ◦∆V

where π is the canonical projection onto the orthogonal distribution H⊥ of
H:

π : TS2m+1(r)→ H⊥

and ∆ is the rough Laplacian on sections of the trivial bundle

TR2m+2 |S2m+1(r)= S2m+1(r)× R2m+2 → S2m+1(r).

In particular, if (E1, ..., E2m+1) is a local orthonormal frame of TS2m+1(r),
∇ is the standard connection of R2m+2 ⊃ S2m+1(r) and V is a vector field
of the sphere considered as a map from S2m+1(r) to R2m+2, then

∆V = −
2m+1∑
i=1

(∇Ei∇EiV −∇∇EiEiV ).

Lemma 2. – If V is a section of H⊥ → S2m+1(r) then L(V ) = L(V )− 1
r2
V.

Proof of Lemma 2. – Let (E1, ..., E2m, H) be a local orthonormal ba-
sis of S2m+1(r) such that, at the point x where the computation is done,
∇EiEi(x) = 0 for all i ∈ {1, ..., 2m}. We have:

∇EiV = ∇EiV − 〈∇EiV,N〉N
= ∇EiV + 〈∇EiN,V 〉N
= ∇EiV +

1
r
〈V,Ei〉N
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so
∇Ei∇EiV = ∇Ei∇EiV − 〈∇Ei∇EiV,N〉N.

But

∇Ei∇EiV = ∇Ei(∇EiV +
1
r
〈V,Ei〉N)

= ∇Ei∇EiV +
1
r

(〈∇EiV,Ei〉N + 〈V,∇EiEi〉N + 〈V,Ei〉∇EiN)

Since ∇EiEi = ∇EiEi + 〈∇EiEi, N〉N = −1
r
N , we have

∇Ei∇EiV = ∇Ei∇EiV − 〈∇Ei∇EiV,N〉N +
1
r2
〈V,Ei〉Ei.

Therefore
(∇Ei∇EiV )H

⊥
= (∇Ei∇EiV )H

⊥
+

1
r2
〈V,Ei〉Ei

where (X)H
⊥

denotes the H⊥-component of X. It remains to deal with
∇H(∇HV ), we have:

∇HV = ∇HV − 〈∇HV,N〉N
= ∇HV +

1
r
〈V,H〉N

= ∇HV

and
∇H∇HV = ∇H∇HV − 〈∇H∇HV,N〉N

= ∇H∇HV + 〈∇HV,∇HN〉N
= ∇H∇HV + 〈V,N〉N
= ∇H∇HV.

Finally, we obtain

L(V ) = −
2m∑
i=1

(∇Ei∇EiV +
1
r2
〈V,Ei〉Ei)H

⊥ − (∇H∇HV )H
⊥

= −
2m+1∑
i=1

(∇Ei∇EiV )H
⊥ − 1

r2
V = L(V )− 1

r2
V

�

Let (e1, ..., e2m+2) be the standard basis of R2m+2 and V =
2m+2∑
i=1

Viei, then

a direct computation shows that

∆V =
2m+2∑
i=1

(∆Vi)ei

8



where ∆ is the Laplacian on functions of the sphere. The link between L
and ∆ is crucial to estimate the first eigenvalue of L but we need an extra
argument to show that this eigenvalue is not too small, i. e. greater or equal
to 2m. This will be a consequence of the following lemma.

Lemma 3.– Let Γ 6= {Id} be a finite fixed point free isometry subgroup of
O(2m+2) and let V : S2m+1(r) −→ R2m+2 be a continuous map equivariant

under the action of Γ (i.e. ∀g ∈ Γ, V ◦g = g◦V ) then
∫

S2m+1(r)
V dvol = 0.

Proof of Lemma 3.– We denote byN the cardinality of Γ and by 1, g1, ..., gN−1

the elements of Γ. Let X ⊂ S2m+1 be a fundamental domain for the Γ-action:
X ∪ g1X ∪ ... ∪ gN−1X = S2m+1. We have:∫

S2m+1(r)

V dvol =
∫
X

V dvol +
∫
g1X

V dvol + ...+
∫

gN−1X

V dvol

=
∫
X

V dvol +
∫
X

V ◦ g1 dvol + ...+
∫
X

V ◦ gN−1 dvol

=
∫
X

V dvol +
∫
X

g1 ◦ V dvol + ...+
∫
X

gN−1 ◦ V dvol

=
∫
X

(1 + g1 + .....gN−1) ◦ V dvol.

Let x be any point of S2m+1, we denote by W (x) the vector

(1 + g1 + .....gN−1)(V (x)) ∈ R2m+2.

It is obvious that W (x) is fixed by any element of Γ. Since Γ is a fixed point
free isometry subgroup of O(2m + 2), necessarily W (x) vanishes. Thus∫

S2m+1(r)
V dvol = 0. �

Proposition 3.– Let Γ 6= {Id} be a fixed point free isometry subgroup of
O(2m+ 2) acting isometrically on S2m+1(r). If V ∈ Γ(H⊥Γ ) descends to the
quotient S2m+1(r)/Γ then∫

S2m+1(r)/Γ
〈∆V, V 〉dvol ≥ 2m+ 1

r2

∫
S2m+1(r)/Γ

‖V ‖2dvol.

Remark. – In that proposition ∆ must be understood as an operator of
the space EΓ of sections of the distribution H⊥Γ over S2m+1(r)/Γ. Note that
EΓ can be identified with the space of vector fields of S2m+1(r) that are both
equivariant for the action of Γ and orthogonal to the distribution H. This
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last space is stable by L and L, we denote by LΓ and LΓ the restriction of
these operators on that space. Of course, we can also consider these new
operators LΓ and LΓ as operators on EΓ .

Proof of Proposition 3.– From the density of polynomial functions in
C0(Sn), it is enough to show the proposition in the case where the compo-

nents (V 1, V 2, ..., V 2m+2) of V =
2m+2∑
i=1

V iei are polynomial functions (we see

V as an equivariant vector field of S2m+1(r) ⊂ R2m+2, thus defining a map
V : S2m+1(r)→ R2m+2). Let k ≥ 0, we set:

P≤k := { restrictions P |S2m+1(r) of polynomial functions P : R2m+2 → R
of degree ≤ k}

and

Hk := { restrictions P |S2m+1(r) of homogeneous harmonic polynomial
functions P : R2m+2 → R of degree k}.

It is well-known (see [5] for instance) that homogeneous harmonic polyno-
mial functions are eigenvector for the Laplacian on the sphere S2m+1(r):

∀P ∈ Hk, ∆P = λkP with λk =
k(k + 2m)

r2
.

Moreover P≤k admits an orthogonal decomposition P≤k =
⊕k

j=0Hj , hence
V has an orthogonal decomposition:

V = V0 + V1 + ...+ Vk

with

Vj =


V 1
j

.

.

.

V 2m+2
j

 j ∈ {0, ..., k} Vj ∈
(2m+2) times︷ ︸︸ ︷
Hj × ...×Hj

It ensues that
∆V = λ1V1 + ...+ λkVk,

since λ0 = 0. From Lemma 3, and since V descends to the quotient S2m+1(r)/Γ,
we have: ∫

S2m+1(r)
V dvol = 0 ∈ R2m+2.
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For j > 0 we have λj 6= 0 and therefore:∫
S2m+1(r)

Vj dvol =
1
λj

∫
S2m+1(r)

λjVj dvol

=
1
λj

∫
S2m+1(r)

∆Vj dvol = 0,

since S2m+1(r) is compact. Thus the relation
∫

S2m+1(r)
V dvol = 0 implies

that
∫

S2m+1(r)
V0 dvol = 0 which in turn implies that V0 = 0 since H0 is the

space of constant functions. We have:∫
S2m+1(r)/Γ

〈∆V, V 〉dvol =
k∑
j=1

∫
S2m+1(r)/Γ

λj‖Vj‖2dvol

≥ λ1

∫
S2m+1(r)/Γ

(
k∑
j=1

‖Vj‖2)dvol

≥ λ1

∫
S2m+1(r)/Γ

‖V ‖2dvol.

Since λ1 =
2m+ 1
r2

we obtain the proposition. �

Proof of Proposition 2.– It follows easily from Proposition 1 since:∫
S2m+1(r)/Γ

〈L(V ), V 〉dvol =
∫

S2m+1(r)/Γ
(〈L(V ), V 〉 − 1

r2
‖V ‖2)dvol

=
∫

S2m+1(r)/Γ
(〈∆(V ), V 〉 − 1

r2
‖V ‖2)dvol

≥ (λ1 −
1
r2

)
∫

S2m+1(r)/Γ
‖V ‖2dvol

≥ 2m
r2

∫
S2m+1(r)/Γ

‖V ‖2dvol.

�

Proof of Theorem 1

Theorem 1.– Let M = S2m+1(r)/Γ be a space form with Γ 6= {Id}, then
the Hopf field HΓ is stable on S2m+1(r)/Γ for both energy and volume.

Proof of Theorem 1.– Energy.– Let V ∈ EΓ, from Lemma 10 of [9] the
Hessian of the energy functional E at HΓ has the following expression:

(HessE)HΓ
(V ) =

∫
S2m+1(r)/Γ

(−2m
r2
‖V ‖2 + ‖∇V ‖2)dvol.
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From Proposition 2 we have:∫
S2m+1(r)/Γ

‖∇V ‖2dvol ≥ 2m
r2

∫
S2m+1(r)/Γ

‖V ‖2dvol,

thus (HessE)HΓ
(V ) ≥ 0 and the Hopf fieldHΓ is stable for E on S2m+1(r)/Γ.

Volume.– Let V ∈ EΓ, the volume of V is given by

V ol(V ) :=
1
2

∫
S2m+1(r)/Γ

√
det LV dvol

where LV = Id+T∇V ◦∇V. From the expression of the Hessian of the volume
functional V ol at HΓ given in the Main Proposition of [2] we deduce:

(Hess V ol)HΓ
(V ) =

(
1 +

1
r2

)m−2 ∫
S2m+1(r)/Γ

(−2m
r2
‖V ‖2 + ‖∇V ‖2

+
1
r2
‖∇HΓ

V +
1
r
JV ‖2)dvol,

hence

(Hess V ol)HΓ
(V ) ≥

(
1 +

1
r2

)m−2

(HessE)HΓ
(V ).

Therefore the Hopf field HΓ is stable for V ol on S2m+1(r)/Γ. �

Remark.– A lot of works have been devoted to the study of volume and
energy of vector fields in dimension three (see [11],[13], [23] for instance), in
particular, for Riemannian quotients of S3(r), our theorem can be deduced
from the work of F. Brito [3].

4 Energy, Volume and Quotients of Berger Spheres

4.1 Hopf Fields on Berger Spheres

Recall that the Berger metric on S2m+1(1) ⊂ (R2m+2, 〈 , 〉) is the one-
parameter family of metrics (gµ)µ>0 defined by:

gµ|H = µ〈 , 〉, gµ|H⊥ = 〈 , 〉 and gµ(H, H⊥) = 0

where H denotes the distribution spanned by H(p) = Jp. The unit vector
field Hµ(p) = 1√

µJp is called the Hopf field of the Berger sphere (S2m+1, gµ).
Let Γ 6= {Id} be a finite subgroup of U(m+1), the component of the isometry
group of the Berger sphere (S2m+1, gµ), µ 6= 1, which contains the identity.
We will always assume that Γ is finite and acts freely so that S2m+1/Γ
is a manifold locally isometric to (S2m+1, gµ) and that the Hopf field Hµ

descends to a “Hopf vector field” Hµ
Γ on the quotient. In [8], it is shown

that the Hopf field Hµ is harmonic and minimal on (S2m+1, gµ), it ensues
that Hµ

Γ is itself harmonic and minimal.

12



4.2 Stability for 0 < µ ≤ 1

Theorem 2.– Let 0 < µ ≤ 1 then the Hopf field Hµ
Γ is stable for both energy

and volume on (S2m+1/Γ, gµ), Γ 6= {Id}, m ≥ 1.

Remark.– The case m = 1 of this theorem follows from the following result
of [8]: Hopf fields minimise both energy and volume in (S3, gµ) if µ ≤ 1.

Proof of Theorem 2.– The proof of this theorem is similar to the one of
Theorem 1 but more involved. We just give the main steps.

STEP 1: Notations and a first lower bound.– We denote by ∇µ
the Levi-Civita connection of gµ, it is related to the Levi-Civita connection
∇ of the standard metric of the sphere by the following relations (see. [8]):

∇µHX = ∇HX + (µ− 1)∇XH, ∇µXH = µ∇XH and ∇µXY = ∇XY

for every X,Y in E = Γ(H⊥). We denote indifferently by ∆µ the rough
Laplacian on functions or vector fields of (S2m+1, gµ). If (E1, ..., E2m+1) is a
local gµ-orthonormal frame and V a vector field we have:

∆µV = −
2m+1∑
i=1

(∇µEi∇
µ
Ei
V −∇µ∇µEiEi

V ).

This Laplacian on functions is studied in [1] (see also [20]). From these
papers it is easily deduced that the first non zero eigenvalue of ∆µ is λµ1 =

2m +
1
µ
. We also denote by ∆µ the rough Laplacian on the trivial bundle

over (S2m+1, gµ) with fiber R2m+2:

∆µ
V = −

2m+1∑
i=1

(∇Ei∇EiV −∇∇µEiEiV ).

As before,∇ denotes the usual connection of R2m+2. In particular, if (e1, ..., e2m+2)

is the standard frame of R2m+2 and V =
2m+2∑
i

Viei then:

∆µ
V =

2m+2∑
i

(∆µVi)ei.

Arguments similar to those seen above show that∫
S2m+1/Γ

gµ(∆µ
V, V )dvgµ ≥ (2m+

1
µ

)
∫

S2m+1/Γ
‖V ‖2dvgµ ,
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with p > 1.

STEP 2.– In that step we prove that∫
S2m+1/Γ

‖∇µV ‖2µdvgµ ≥ C(µ,m)
∫

S2m+1/Γ
‖V ‖2dvgµ

with

C(µ,m) =
2m2µ+ (1− µ)(2 + µ+ 2m− 2mµ)

mµ− µ+ 1

if 0 < µ ≤ 1. For every V ∈ E we put:

Lµ(V ) = π ◦∆µV and L
µ(V ) = π ◦∆µ

V

where π is the orthogonal projection TS2m+1 → H⊥. A computation yields
to:

Lµ(V ) = L
µ(V ) +

2µ2 − 4µ+ 1
µ

V − 2(µ− 1)
µ

J∇HΓ
V.

From this:∫
S2m+1/Γ
gµ(Lµ(V ), V )dvgµ =

∫
S2m+1/Γ

(
gµ(Lµ(V ), V ) +

2µ2 − 4µ+ 1
µ

‖V ‖2
)
dvgµ

+
2(µ− 1)
√
µ

∫
S2m+1/Γ

gµ(∇HΓ
V, JV )dvgµ (∗)

The presence of the last term introduces a technical difficulty. Using the
relation between ∇ and ∇µ we can write:

2(µ− 1)
√
µ

∫
S2m+1/Γ

gµ(∇HΓ
V, JV )dvgµ =

2(µ− 1)
√
µ

∫
S2m+1/Γ

gµ(∇µ
Hµ

Γ
V, JV )dvgµ

−2(µ− 1)2

µ

∫
S2m+1/Γ

‖V ‖2dvgµ

And in [8], it is shown that:

−2(1− µ)
√
µ

∫
S2m+1/Γ

gµ(∇µ
Hµ

Γ
V, JV )dvgµ =

1− µ
mµ

∫
S2m+1/Γ

(‖∇µ
Hµ

Γ
V ‖2µ − ‖∇µV ‖2µ

+
1
2
‖π ◦DCV ‖2µ,H⊥

+(2 + µ− 2mµ+ 2m)‖V ‖2)dvgµ

where DCV denotes the operator DC
XV = ∇JXV − J∇XV and the norm is

taken on the orthogonal distribution H⊥. Thus, in one hand we have (we
assume 0 < µ ≤ 1):

−2(1− µ)
√
µ

∫
S2m+1/Γ

gµ(∇µ
Hµ

Γ
V, JV )dvgµ ≥

14



1− µ
mµ

∫
S2m+1/Γ

((2 + µ− 2mµ+ 2m)‖V ‖2 − ‖∇µV ‖2µ)dvgµ .

In an other hand, from Step 1:∫
S2m+1/Γ

gµ(LµV, V )dvgµ ≥ (2m+
1
µ

)
∫

S2m+1/Γ
‖V ‖2dvgµ .

Putting these together in the relation (∗) we obtain∫
S2m+1/Γ

gµ(LµV, V )dvgµ ≥ C(µ,m)
∫

S2m+1/Γ
‖V ‖2dvgµ .

STEP 3: Energy.– Since 0 < µ ≤ 1 we have:

(HessE)Hµ
Γ

(V ) =
∫

S2m+1/Γ
(−2mµ‖V ‖2 + ‖∇µV ‖2µ)dvgµ

≥ (1− µ)
2m+ 2mµ(m− 2) + µ+ 2

mµ− µ+ 1

∫
S2m+1/Γ

‖V ‖2dvgµ

≥ 0.

Hence the stability for E of the Hopf field Hµ
Γ on S2m+1/Γ for 0 < µ ≤ 1

and m ≥ 1.

STEP 4: Volume.– Since 0 < µ ≤ 1 we have:

(Hess V ol)Hµ
Γ

(V ) = (1 + µ)m−2

∫
S2m+1/Γ

(‖∇µV ‖2µ + µ‖∇µ
Hµ

Γ
V +

√
µJV ‖2µ

+µ(2− 2mµ− 2µ)‖V ‖2)dvgµ

≥ (1 + µ)m−2

∫
S2m+1/Γ
(‖∇µV ‖2µ + µ(2− 2mµ− 2µ)‖V ‖2)dvgµ

≥ C1(µ,m)
∫

S2m+1/Γ
‖V ‖2dvgµ ≥ 0

where

C1(µ,m) = (1 + µ)m−2(1− µ)
2µm2(1 + µ) + 2(µ+m)(1− µ) + µ+ 2

mµ− µ+ 1
.

Hence the stability for V ol of the Hopf field Hµ
Γ on S2m+1/Γ for 0 < µ ≤ 1

and m ≥ 1. �

4.3 Unstability for Large µ

Theorem 3.– Let m > 1. Every non identically zero vector field V in the
orthogonal distribution H⊥ gives an unstable direction of the Hopf field Hµ

Γ

in (S2m+1/Γ, gµ) for both energy and volume Hµ
Γ provided µ is large enough.
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In particular these two functionals are unstable at Hµ
Γ for large µ.

Proof of Theorem 3.– Let V ∈ E be a non zero vector field. Theo-
rem 3 follows from the expansions in µ of the Hessians (HessE)Hµ

Γ
(V ) and

(Hess V ol)Hµ
Γ

(V ) since the coefficients of the leading terms when µ is large
are negative. Here are some details.

The point is, in the expressions of the two Hessians, to get rid of the µ in
the ‖.‖µ’s and in Hµ

Γ . We have:

‖∇µV ‖2µ =
2m∑
i=1

‖∇µEiV ‖
2
µ + ‖∇µ

Hµ
Γ
V ‖2µ

=
2m∑
i,j

〈∇EiV,Ej〉2 + µ‖V ‖2 + ‖∇µ
Hµ

Γ
V ‖2

=
2m∑
i,j=1

〈∇EiV,Ej〉2 − 2‖V ‖2 + 2〈∇HΓ
V, JV 〉+ 2µ‖V ‖2

+
1
µ

(‖∇HΓ
V ‖2 + ‖V ‖2 − 2〈∇HΓ

V, JV 〉).

Substituing in the expression of the Hessian of E at Hµ
Γ , we obtain:

(HessE)Hµ
Γ

(V ) =
∫

S2m+1

(2µ(1−m)‖V ‖2 +
1
µ
‖∇HΓ

V ‖ − ‖JV ‖2

+
2m∑
i,j=1

〈∇EiV,Ej〉2 − 2‖V ‖2 + 2〈∇HΓ
V, JV 〉)dvgµ

If m 6= 1, the leading term for µ large is∫
S2m+1

2µ(1−m)‖V ‖2dvgµ

which is negative if m > 1, hence the unstability of E at Hµ
Γ is µ is large

enough. For the volume we have:

(Hess V ol)Hµ
Γ

(V ) = (1 + µ)m−2

∫
S2m+1

(‖∇µV ‖2µ + µ‖∇µ
Hµ

Γ
V +

√
µJV ‖2µ

+µ(2− 2mµ− 2µ)‖V ‖2µ)dvgµ .

Using the relation ∇µHΓ
V = ∇HΓ

V + (µ− 1)∇VHΓ, we obtain

‖∇µ
Hµ

Γ
V +

√
µJV ‖2µ =

1
µ
‖∇µHΓ

V ‖2 + µ‖V ‖2 + 2〈∇µHΓ
V, JV 〉

=
1
µ

(‖∇HΓ
V ‖2 + ‖V ‖2 − 2〈∇HΓ

V, JV 〉)

+4µ‖V ‖2 − 4‖V ‖2 + 4〈∇HΓ
V, JV 〉.
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It ensues that

(Hess V ol)Hµ
Γ

(V ) = (1 + µ)m−2

∫
S2m+1

(2µ2(1−m)‖V ‖2 +
1
µ
‖∇HΓ

V ‖2

−‖JV ‖2 + 4µ〈∇HΓ
V, JV 〉+ ‖∇HΓ

V ‖2)dvgµ .

If m > 1, the leading term for µ large is

(1 + µ)m−2

∫
S2m+1

2µ2(1−m)‖V ‖2dvgµ

hence the unstability of V ol at Hµ
Γ for large µ. �

4.4 Critical Radii for Berger Projective Spaces

In this subsection we completely solve the stability question for Γ = Z2

in dimension 4m− 1, that is for Berger Projective Spaces (RP 4m−1, gµ),
µ > 0 et m ≥ 1. From theorem 3 we already know that, if 0 < µ ≤ 1, the
Hopf field Hµ

Γ is stable for both energy and volume on (RP 4m−1, gµ), m ≥ 1.

Proposition 4.– Let Γ = Z2. If µ > 1, the Hopf vector field Hµ
Γ is unstable

for both energy and volume on (RP 4m−1, gµ), m ≥ 1.

Proof of Proposition 4.– Consider S4m−1(1) ⊂ Hm as the hypersphere
of the m-th Cartesian power of the quaternionic field H = Span(1, i, j, k).
Let J1 be the complex structure of R4m = Hm induced by the multiplication
by j. We define a unit vector field V of (S4m−1(1), gµ) orthogonal to H by
putting

∀p ∈ S4m−1(1), V (p) = J1p.

This field obviously descends to the quotient (RP 4m−1, gµ). If m > 1 a direct
computation then shows:

(HessE)Hµ
Γ

(V ) =
4
√
µ

(1−m)(µ− 1)(µ+
1

m− 1
)volm

(Hess V ol)Hµ
Γ

(V )=
4
√
µ

(1 + µ)2m−3(1−m)(µ− 1)(µ+ 1)(µ+
1

m− 1
)volm.

where volm stands for the volume of S4m−1(1) with the round metric. If
µ > 1 and m > 1 these expressions are negative.

If m = 1 the instability of Hµ over (S3, gµ), µ > 1, is also obtained in the
direction given by V (p) = J1p. The computations essentially reduce to the
ones already done in [8]. �
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