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Abstract. – The volume of a unit vector field V of the sphere S
n (n odd) is the

volume of its image V (Sn) in the unit tangent bundle. Unit Hopf vector fields, that

is, unit vector fields that are tangent to the fibre of a Hopf fibration Sn → CP
n−1

2 ,

are well known to be critical for the volume functional. Moreover, Gluck and Ziller

proved that these fields achieve the minimum of the volume if n = 3 and they

opened the question of whether this result would be true for all odd dimensional

spheres. It was shown to be inaccurate on spheres of radius one. Indeed, Pedersen

exhibited smooth vector fields on the unit sphere with less volume than Hopf vector

fields for a dimension greater than five. In this article, we consider the situation for

any odd dimensional spheres, but not necessarily of radius one. We show that the

stability of the Hopf field actually depends on radius, instability occurs precisely

if and only if r > 1
√

n−4
. In particular, the Hopf field cannot be minimum in this

range. On the contrary, for r small, a computation shows that the volume of vector

fields built by Pedersen is greater than the volume of the Hopf one thus, in this

case, the Hopf vector field remains a candidate to be a minimizer. We then study

the asymptotic behaviour of the volume; for small r it is ruled by the first term of

the Taylor expansion of the volume. We call this term the twisting of the vector

field. The lower this term is, the lower the volume of the vector field is for small r.

It turns out that unit Hopf vector fields are absolute minima of the twisting. This

fact, together with the stability result, gives two positive arguments in favour of

the Gluck and Ziller conjecture for small r.
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1 Introduction and main results

The volume of a unit vector field V on a compact oriented Riemannian
manifold M can be defined (see [8]) as the volume of the submanifold V (M)
of the unit tangent bundle equipped with the restriction of the Sasaki metric.
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It is given by

V ol(V ) =

∫

M

√

det(Id +T ∇V ◦ ∇V )dvol

where dvol is the volume element determined by the metric and ∇ is the
Levi-Civita connection. There is a trivial absolute minimum of the volume
functional when unit parallel vector fields exist, but this is not always the
case, since such a vector field will determine two mutually orthogonal, com-
plementary and totally geodesic foliations.

An odd dimensional sphere admits unit vector fields but not parallel ones.
A natural unit vector field is then given by the tangents to the fibers of the
Hopf fibration and it is shown in [9] that this field is critical for the vol-
ume functional. In fact, we can go further, for [8] Gluck and Ziller proved
that Hopf vector fields achieved the minimum of the volume among all unit
vector fields of the unit sphere of dimension three. The method they used
could not be extended to higher dimensions and they opened the question
of whether that result was still true for all odd-dimensional spheres. This
was shown to be inaccurate on spheres of radius one. Indeed, Pedersen [10]
exhibited smooth vector fields on the unit sphere with less volume than Hopf
vector fields for a dimension greater than five.

One remarkable fact with the volume functional is that it is not homoge-
neous with a dilatation of the metric. The influence of radius on the index
and on the nullity of Hopf vector fields of the sphere is studied in [6], [7].
It is shown that Hopf vector fields remain critical for any radius and that,
for n ≥ 5, instability occurs if the radius is strictly greater than 1√

n−4
(or

equivalently, if the curvature k is less than n − 4). Whether Hopf vector
fields are unstable for k ≥ n − 4 was an open question. In this article, we
completely solve the stability problem, which actually depends on curvature.

Stability Theorem. – Let n ≥ 5. The Hopf vector field is stable if and
only if k ≥ n − 4.

Note that the situation for n = 3 is independent of curvature. Hopf vector
fields are not only stable but absolute minimizers of the volume [8], [1].

We then study the asymptotic behaviour of the volume functional with the
curvature. If V is a unit vector field on S

n(1), we consider the function
k 7→ V ol(V k) where V ol(V k) is the volume of the corresponding unit vector

field V k on the sphere S
n(r) of radius r = k− 1

2 . If k is small, a Taylor
expansion shows that this behaviour is ruled by the bending B(V ) of V, a
notion previously introduced by Wiegmink [12] (see the end of section 3).
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If k is large, this behaviour is ruled by another quantity which we call the
twisting of V

Tw(V ) =

∫

Sn(1)

√

σn−1( T∇V ◦ ∇V ) dvol

(in this expression, σn−1 denotes the (n− 1)-th elementary symmetric poly-
nomial function).

Twisting Theorem. –
1) For every unit vector field V of S

n(1), Tw(V ) ≥ Tw(H).
2) If Tw(V ) > Tw(H) then there is k0 > 0 such that for all k > k0, we

have V ol(V k) > V ol(Hk).

As a consequence, vector fields constructed by Pedersen cannot achieve the
minimum of the volume functional for large values of curvature since their
twisting is strictly greater than that of the Hopf vector field (see Lemma
4). In fact, we do not know of any unit vector field with less volume than
the Hopf one for these large values. So Gluck and Ziller’s conjecture is still
open for spheres of small radii.

Besides the Hopf field, there is another field which plays an important role
in that problem, namely the radial field R (see the end of section 3 for a
description of it). Indeed, it is shown in [3] that the volume of any smooth
unit vector field is greater than or equal to the volume of R and that equality
uniquely holds for this vector field. Nevertheless, since it has two singular-
ities this vector field is not the minimum of the volume functional among
globally defined smooth unit vector fields. We conclude this article with an
appendix in which we consider a family of globally defined unit vector fields
(Rǫ) which is built from the radial field. We explicitly compute its volume
and compare it with the volume of the Hopf field H and the volume of the
field P obtained by Pedersen in [10]. Lower values of the volume are reached
by Rǫ for small k, P for medium k and H for large k.

Acknowledgments. – This work was done in part during the first au-
thor’s visit to the University of Valencia and the second author’s visit to
the University of Lyon. Both authors are grateful to each other and their
institutions for promoting these visits. The second author was partially
supported by DGI Grant No. BFM2001-3548.

2 Hessian of the volume functional

In this section, we state three different expressions of the Hessian, each of
them giving interesting insight into the stability problem. Nevertheless, only
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the two last are needed to prove the Stability Theorem.

Let S
2m+1(r) ⊂ C

m+1 be the sphere of curvature k = r−2, N(p) =
√

kp the
outwards unit normal at p and J the usual complex structure on C

m+1, so
the Hopf vector field can then be written in the form H = JN.

We denote by ∇̄ the Levi-Civita connection on R
2m+2, the Levi-Civita con-

nection ∇ on S
2m+1(r) is ∇XY = ∇̄XY − < ∇̄XY,N > N and ∇̄XH =

J∇̄XN = 1
r JX. Therefore ∇HH = 0 and if < X,H >= 0 then ∇XH =

1
rJX.

Let W : U ⊂ C
m+1 → C

m+1 be a vector field, we put DC
XW = ∇̄JXW −

J∇̄XW and D̄C
XW = ∇̄JXW + J∇̄XW. Recall that W is holomorphic

(resp.anti-holomorphic) if for all X, DC
XW = 0 (resp. D̄C

XW = 0).

Let H⊥ be the distribution Span(x, Jx)⊥ on C
m+1 \ {0} and π : T (Cm+1 \

{0}) → H⊥ be the natural projections {x} × C
m+1 → H⊥

x . We denote by
‖π ◦ DCW‖H⊥ the norm of π ◦ DCW|H⊥ : H⊥ → H⊥ that is

‖π ◦ DCW‖2
H⊥ =

2m
∑

i=1

‖π ◦ DC
Ei

W‖2

where E1, ..., E2m is a local orthonormal frame of H⊥. Similarly

‖π ◦ D̄CW‖2
H⊥ =

2m
∑

i=1

‖π ◦ D̄C
Ei

W‖2,

but in that case

π ◦ D̄CW|H⊥ = D̄CW|H⊥ : H⊥ → H⊥

so that
‖π ◦ D̄CW‖2

H⊥ = ‖D̄CW‖2
H⊥ .

Recall that, for every r, the unit Hopf vector field H is critical for the vol-
ume functional defined on the space Γ∞(T 1

S
2m+1(r)) of smooth unit vector

fields of S
2m+1(r) (see [7]). An element of the tangent space to the Fréchet

manifold Γ∞(T 1
S

2m+1(r)) at the point H is a smooth vector field A every-
where orthogonal to H. In [6] Lemma 10, the Hessian of the volume at H is
computed and the following result gives a new expression of it in which the
role of radius (equivalently the role of curvature) becomes clearer.
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Main proposition. – Let A be a smooth vector field on S
2m+1(r) such that

< A,H >= 0. Then

i) (Hess V ol )H(A) = (1 + k)m−2

∫

S2m+1(r)

(

−2mk‖A‖2 + ‖∇A‖2

+k‖∇HA +
√

kJA‖2
)

dvol.

ii) (Hess V ol )H(A) = (1 + k)m−2

∫

S2m+1(r)

(

k(1 − m)

k + 1
(3 + 4k + m)‖A‖2

+(k + 1)‖∇HA +
√

k
k + m

k + 1
JA‖2 +

1

2
‖π ◦ DCA‖2

H⊥

)

dvol.

iii) (Hess V ol )H(A) = (1 + k)m−2

∫

S2m+1(r)

(

−k
(m + 1)2

k + 1
‖A‖2

+(k + 1)‖∇HA +
√

k
k − m

k + 1
JA‖2 +

1

2
‖D̄CA‖2

H⊥

)

dvol.

Proof. – Let (M,< ., . >) be a Riemannian manifold and let W be a unit
Killing vector field which is critical for the volume functional V and let A
be a vector field orthogonal to W . Then the Hessian of the volume at W
can be expressed using Theorem 7 and Lemma 9 of [6] as

(Hess V ol )W (A) =

∫

M

(

‖A‖2ωW (W ) + f(W )tr(L−1
W ◦T∇A ◦ L−1

W ◦ ∇A)

+
2

f(W )
σ2(KW ◦ ∇A)

)

dvol.

where LW = Id +T ∇W ◦ ∇W, f(W ) =
√

det LW, KW = f(W )L−1
W ◦T ∇W,

ωW = C1
1∇KW is the tensor contraction of ∇KW , and 2σ2(C) = tr(C)2 −

tr(C2). This expression is useful for our purpose since Hopf vector fields can
also be characterized as the unit Killing vector fields of the sphere S

2m+1(r).
In that case LH |H⊥ = (k + 1)Id and LH(H) = H (see [6]). So

f(H) = (1 + k)m, KH = (1 + k)m−1 T (∇H), ωH(H) = −2mk(1 + k)m−1.

Moreover, KHH = 0 and if < X,H >= 0 then

< KH(X), Y >= (1 + k)m−1 < X,∇Y H >= −
√

k(1 + k)m−1 < JX,Y > .

So, KH(X) = −
√

k(1 + k)m−1J(X− < X,H > H) and therefore

KH(∇XA) = −
√

k(1 + k)m−1J(∇XA− < ∇XA,H > H).

Since ∇XJA = J∇XA −
√

k < X,A > H +
√

k < JA,X > N, then

(KH ◦ ∇A)(X) = −
√

k(1 + k)m−1((∇JA)(X) +
√

k < X,A > H).
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To compute σ2(KH ◦∇A) in terms of σ2(∇JA), we choose a local orthonor-
mal frame (E1, ..., E2m+1) such that E2m+1 = H and Em+j = JEj , for
1 ≤ j ≤ m. So, (E1, ..., Em) is an orthonormal J-frame of H⊥. It is easy to
see that

2σ2(KH ◦ ∇A) = k(1 + k)2m−2
(

2σ2(∇JA)

−2
√

k
2m
∑

i=1

< Ei, A >< ∇HJA,Ei >
)

,

thus

2σ2(KH ◦ ∇A) = k(1 + k)2m−2(2σ2(∇JA) + 2
√

k < ∇HA, JA >).

On the other hand

tr(L−1
H ◦T∇A ◦ L−1

H ◦ ∇A) = (1 + k)−2(‖∇A‖2 + k2‖JA‖2 + k‖∇HA‖2).

Consequently, we have

(Hess V ol )H(A) = (1 + k)m−2

∫

S2m+1(r)

(

− 2mk(1 + k)‖A‖2 + 2kσ2(∇JA)

+2k
√

k < ∇HA, JA > +‖∇A‖2 + k2‖JA‖2 + k‖∇HA‖2
)

dvol.

Now for any vector field X on a Riemannian manifold M, we have (see, for
example, [11] p. 170)

∫

M
Ricci(X,X)dvol = 2

∫

M
σ2(∇X)dvol,

from where part i follows immediately. To show ii and iii we compute
‖π ◦ DCA‖2

H⊥ and ‖D̄CA‖2
H⊥ in terms of the matrix B of ∇A in a local

frame, i. e. Bj
i =< ∇Ei

A,Ej >, obtaining

1

2
‖π ◦ DCA‖2

H⊥ =
m
∑

i,j=1

(Bj+m
i+m − Bj

i )
2 + (Bj

i+m + Bj+m
i )2

=

2m
∑

i,j=1

(Bj
i )

2 + 2

m
∑

i,j=1

(Bj
i+mBj+m

i − Bj+m
i+m Bj

i ),

and

1

2
‖D̄CA‖2

H⊥ =

m
∑

i,j=1

(Bj+m
i+m + Bj

i )
2 + (Bj

i+m − Bj+m
i )2

=

2m
∑

i,j=1

(Bj
i )

2 − 2

m
∑

i,j=1

(Bj
i+mBj+m

i − Bj+m
i+m Bj

i ).
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To go further, we need the following lemma which relates H with vectors on
the orthogonal distribution.

Lemma 1. – We have

a) 2m
√

kH = −
m
∑

i=1

[Ei, JEi] +
m
∑

i=1

div(JEi)Ei −
m
∑

i=1

div(Ei)JEi.

b) 2m
√

k

∫

S2m+1(r)
< ∇HA, JA > = −2k

∫

S2m+1(r)
‖A‖2

+2

∫

S2m+1(r)

m
∑

i=1

< J∇Ei
A,∇JEi

A > .

Proof. – A simple computation shows that

m
∑

i=1

[Ei, JEi] =

2m+1
∑

i,j

(< Ei,∇Ei
JEj > Ej+ < JEi,∇JEi

JEj > Ej)

−
2m+1
∑

i,j

(< Ei,∇Ei
Ej > JEj+ < JEi,∇JEi

Ej > JEj) − 2m
√

kH

hence a) and then

2m
√

k <∇HA, JA>=
m
∑

i=1

(

− <∇[Ei,JEi]A, JA> +div(JEi) <∇Ei
A, JA>

)

−
m
∑

i=1

div(Ei) < ∇JEi
A, JA > .

On the other hand

k‖A‖2 =

m
∑

i=1

R(Ei, JEi, A, JA) =

m
∑

i=1

(JEi)(< ∇Ei
A, JA >)

−
m
∑

i=1

Ei(< ∇JEi
A, JA >) +

m
∑

i=1

< ∇[Ei,JEi]A, JA >

−
m
∑

i=1

< ∇Ei
A,∇JEi

JA > +

m
∑

i=1

< ∇JEi
A,∇Ei

JA > .

By integrating and using Stokes Theorem and the identity div(fX) = fdiv(X)+
X(f), we get

2m
√

k

∫

S2m+1(r)
< ∇HA, JA >=

7



∫

S2m+1(r)

(

− k‖A‖2 −
m
∑

i=1

< ∇Ei
A,∇JEi

JA > +

m
∑

i=1

< ∇JEi
A,∇Ei

JA >
)

hence the result. �

Using the lemma
∫

S2m+1(r)

1

2
‖π ◦ DCA‖2

H⊥dvol =

∫

S2m+1(r)

(

‖∇A‖2 − 3k‖A‖2 − ‖∇HA‖2 − 2m
√

k < ∇HA, JA >
)

dvol,

and
∫

S2m+1(r)

1

2
‖D̄CA‖2

H⊥dvol =

∫

S2m+1(r)

(

‖∇A‖2 + k‖A‖2 − ‖∇HA‖2 + 2m
√

k < ∇HA, JA >
)

dvol.

From here

(Hess V ol)H(A) =

∫

S2m+1(r)

(

(1 + k)m−2 1

2
‖π ◦ DCA‖2

H⊥

+(−2m+3+k)k‖A‖2 +(k+1)‖∇HA‖2 +2(k+m)
√

k < ∇HA, JA >
)

dvol,

and

(Hess V ol)H(A) =

∫

S2m+1(r)

(

(1 + k)m−2 1

2
‖DCA‖2

H⊥

+(−2m−1+k)k‖A‖2 +(k+1)‖∇HA‖2 +2(k−m)
√

k < ∇HA, JA >
)

dvol.

That the Hessian admits expressions ii and iii is now an easy computation.
�

Remarks. – We will use ii and iii to show the Stability Theorem. Ex-
pression i) relates the Hessian of the volume with the Hessian of the energy
functional that is the functional

V
E7−→ 1

2

∫

S2m+1(r)
tr(Id +T∇V ◦ ∇V)dvol.

Just as for the volume, Hopf vector fields are critical for the energy and from
Lemma 10 of [6] we have

(Hess E)H(A) =

∫

S2m+1(r)
−2mk‖A‖2 + ‖∇A‖2.

This gives us some idea why the curvature could have an influence on the
signature of (Hess V ol)H ; the term −2mk‖A‖2 + ‖∇A‖2 is of order k and
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k‖∇HA +
√

kJA‖2 is of order k2.

Putting m = 1 in the expression ii gives

(Hess V ol)H(A) =
1

1+ k

∫

S3(r)

(

(k+1)‖∇HA+
√

kJA‖2+
1

2
‖π◦DCA‖2

H⊥

)

dvol

so we immediately get that the Hopf vector field on S
3(r) is stable for any

radius.

3 Proof of the Stability Theorem

The Stability Theorem will follow from the main proposition of the preced-
ing section and the two lemmas below.

Let A : S
2m+1(r) → H⊥ ⊂ C

m+1 be a smooth vector field orthogonal to H,
that is A(p) ∈ Span(p, Jp)⊥ for every p ∈ S

2m+1(r). We set

Al(p) =
1

2π

∫ 2π

0
A(eiθp)e−ilθdθ ∈ H⊥

p

so that the Fourier serie of this smooth map A is

A(p) =
∑

l∈Z

Al(p).

Since Al(e
iθp) = eilθAl(p), we have

∇HA = ∇̄HA =
∑

l∈Z

i
√

klAl

and, if C(p) denotes the fiber of the Hopf fibration S
2m+1 → CPm passing

through p,
∫

C(p)
< Al, Aq >= 0,

if l 6= q. We denote the symmetric bilinear form associated to (Hess V ol )H
by BV ol, that is BV ol(A,A) = (Hess V ol )H(A).

Lemma 2. – If l 6= q then BV ol(Al, Aq) = 0, thus

(Hess V ol )H(A) =
∑

l∈Z

(Hess V ol )H(Al).
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Proof. – We write

BV ol(Al, Aq) = (1 + k)m−2

∫

S2m+1(r)

(

− k
(m + 1)2

k + 1
< Al, Aq >

+(k + 1) < ∇HAl +
√

k
k − m

k + 1
JAl,∇HAq +

√
k
k − m

k + 1
JAq >

+
1

2

2m
∑

j=1

< D̄C
Ej

Al, D̄
C
Ej

Aq >
)

dvol.

Let l 6= q, we have

∫

C(p)
−k

(m + 1)2

k + 1
< Al, Aq >= 0

and
∫

C(p)
(k + 1) < ∇HAl +

√
k
k − m

k + 1
JAl,∇HAq +

√
k
k − m

k + 1
JAq >= 0.

Let (E1, ..., Em) be an orthonormal J-frame of H⊥ along C(p) satisfying

∀ 1 ≤ j ≤ m, Ej(e
iθp) = eiθEj(p).

Then
(D̄C

Ej
A)l = D̄C

Ej
Al.

Indeed, let X ∈ H⊥ such that X(eiθp) = eiθX(p), and γp,Xp be a path on
S

2m+1(r) such that γ(0) = p and γ′(0) = Xp, we have

(∇̄XpAl)(p) =
d

dt

(

Al ◦ γp,Xp(t)
)

|t=0

=
d

dt

(

1

2π

∫ 2π

0
A(eiθγp,Xp(t))e

−ilθdθ

)

|t=0

=
1

2π

∫ 2π

0

d

dt

(

A ◦ γeiθp,eiθXp
(t)
)

|t=0

=
1

2π

∫ 2π

0
(∇̄eiθXp

A)(eiθp)e−ilθdθ.

On the other hand

(∇̄XA)l(p) =
1

2π

∫ 2π

0
(∇̄X

eiθp
A)(eiθp)e−ilθdθ.

Thus, if l 6= q

∫

C(p)
< DC

Ej
Al,D

C
Ej

Aq >=

∫

C(p)
< (D̄C

Ej
A)l, (D̄

C
Ej

A)q >= 0
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Lemma 3. – If k ≥ 2m − 3 then for all l ∈ Z, (Hess V ol )H(Al) ≥ 0.

Proof. – Note that
∫

C(p)
‖∇HAl + α

√
kJAl‖2 = (l + α)2k

∫

C(p)
‖Al‖2.

Thus, from expression ii of the main proposition, we have

(Hess V ol )H(Al) = (1 + k)m−2

∫

S2m+1(r)

(1

2
‖π ◦ DCAl‖2

H⊥

(3 − 2m + k + l((k + 1)l + 2(k + m)))k‖Al‖2
)

dvol

Since k ≥ 2m − 3, (Hess V ol )H(Al) < 0 implies −3 ≤ −2(k+m)
k+1 < l < 0,

hence l = −1 or −2. But, from expression iii of the main proposition

(Hess V ol )H(A−1) = (1 + k)m−2

∫

S2m+1(r)

1

2
‖D̄CA−1‖2

H⊥dvol ≥ 0

and
(Hess V ol )H(A−2) =

(1 + k)m−2

∫

S2m+1(r)

(

(k + 2m + 3)k‖A−2‖2 +
1

2
‖D̄CA−2‖2

H⊥

)

dvol ≥ 0

�

Lemmas 2 and 3 prove the Stability Theorem.

4 Asymptotic behaviour of the volume

In this section we prove the Twisting Theorem and then compare the asymp-
totic behaviour of different vector fields, namely the Hopf vector field, the
perturbed parallel field (Pedersen construction) and the perturbed radial
field.

Let V be a unit vector field on S
2m+1(1), the volume of the corresponding

unit vector field V k on the sphere S
2m+1(r) with radius r = k− 1

2 is given by

V ol(V k) =

∫

S2m+1(1)

√

det(
1

k
Id + M)dvol

=

∫

S2m+1(1)

√

1

kn
+

1

kn−1
σ1(M)+ ... +

1

k
σ2m(M) + σ2m+1(M)dvol

11



where M denotes T∇V ◦ ∇V and the σj’s are the elementary symmetric
polynomial functions. It is well-known that, since ‖V ‖ = 1, σ2m+1(M) is
zero. Hence when k is large, the behaviour of the volume is ruled by

∫

S2m+1(1)

√

σ2m(T∇V ◦ ∇V )dvol.

that is the twisting of V. In particular, if W is another unit vector field such
that Tw(W ) > Tw(V ) then we have k0 > 0 such that for every k > k0 the
volume of W k is strictly greater than that of V k. This states part 2) of the
Twisting Theorem.

Proof of the Twisting Theorem, part 1.– Since

T∇H ◦ ∇H =

(

Id 0
0 0

)

,

then Tw(H) = vol(S2m+1(1)). It remains to show that if V is any unit vector
field then Tw(V ) ≥ vol(S2m+1(1)). Note that

σ2m( T∇V ◦ ∇V ) =
∑

i1<...<in−1

‖∇ei1
V ∧ ... ∧∇ein−1

V ‖2

≥ ‖∇e1
V ∧ ... ∧∇en−1

V ‖2.

So, if S = ∇V|V ⊥ , we obtain

σ2m( T∇V ◦ ∇V ) ≥ σ2m( T S. ◦ S) = det2(S).

Thus
√

σ2m( T∇V ◦ ∇V ) ≥ |det(S)| ≥ det(S) = σ2m(S).

According to [4],
∫

S2m+1(1)
σ2m(S) dvol = vol(S2m+1(1)),

henceforth
Tw(V ) ≥ vol(S2m+1(1)).

Since Tw(H) = vol(S2m+1(1)), the Hopf field actually achieves the mini-
mum. �

The Pedersen construction. – In [10], we can see the construction of
smooth vector fields on S

2m+1(1) with less volume than the Hopf one. They
are obtained from parallel vector fields, that is a parallel translation along
the geodesics of a given vector at a point p. These parallel vector fields have
a singularity of index 0 at −p but a C∞-pertubation on a small neighbour-
hood of −p gives smooth vector fields on the whole sphere. The volume

12



of these vector fields approaches the volume of the parallel vector field and
similarly so for the twisting.

Lemma 4. – Let P be a unit vector field obtained by the parallel transport
of any given unit vector. Then

Tw(P ) =
1

22m

C2m
4m

Cm
2m−1

vol(S2m+1(1)).

In particular Tw(P ) > Tw(H), thus the Pedersen construction cannot yield
to the minimum of the volume for large k.

Proof. – Let S
n(1) ⊂ R

n+1 with n = 2m + 1, and S = (0, ..., 0,−1) be
the south pole. The parallel vector field P on S

n(1) \ {S} obtained by the
parallel transport of ∂n = (0, ..., 0, 1, 0) along geodesics has the following
expression

P (x) = xn(h(x)x − ∂n+1) + ∂n

where x =
∑n

j=1 xj∂j and h(x) = −(1 + xn+1)
−1. Let Ei =

∑n
l=1(δli +

hxlxi)∂l −xi∂n+1. According to [7], the n×n matrix of ∇P in the basis (Ei)
is given by

∇P = h

(

xnId T a
0 0

)

with a = (−x1, ...,−xn−1). Thus

1

k
Id + T∇P ◦ ∇P =

(

(h2x2
n + 1

k )Id xnh2 T a
xnh2a h2a. T a + 1

k

)

,

and a simple computation shows that

det( 1
kId + T∇P ◦ ∇P) = 1

k (h2x2
n + 1

k )n−2(h2x2
n + h2‖a‖2 + 1

k )
= 1

k (h2x2
n + 1

k )n−2(−2h − 1 + 1
k ).

Since σ2m(T∇P ◦∇P ) is the 1
k term of the expansion of the above determi-

nant, we obtain

σ2m(T∇P ◦ ∇P ) = h2n−4x2n−4
n (−2h − 1).

Note that h2n−4(−2h − 1) = (1 − xn+1)(1 + xn+1)
3−2n, so

√

σ2k(T∇P ◦ ∇P ) = (1 − xn+1)
1/2(1 + xn+1)

3/2−n|xn|n−2.

Let xn+1 = cos t, xn = sin t cos α, 0 < t < π, 0 < α < π, we then have

Tw(P ) = I · vol(Sn−2(1))

13



with

I =

∫ π

0

∫ π

0
(1 − cos t)

1

2 (1 + cos t)
3

2
−nsinn−2t| cos α|n−2 sinn−1t sinn−2αdtdα.

Let

I1 =

∫ π

0
(1 − cos t)

1

2 (1 + cos t)
3

2
−n(1 − cos2 t)n−3/2dt

=

∫ π

0
(1 − cos t)n−1dt =

∫ π

0
2n−1 sin2n−2 t

2
dt

= 2n

∫ π
2

0
sin2n−2 t dt = C2m

4m

π

22m
,

and

I2 =

∫ π

0
| cos α|n−2 sinn−2 α dα = 2

∫ π
2

0
cosn−2 α sinn−2 α dα

=
1

2n−3

∫ π
2

0
sinn−2 2α dα =

1

2n−2

∫ π

0
sinn−2 β dβ

=
1

2n−3

∫ π
2

0
sinn−2 β dβ =

1

(2m − 1)Cm−1
2m−2

.

Since

Tw(P ) = I1I2vol(S
n−2(1))

= C2m
4m

π

22m

1

(2m − 1)Cm−1
2m−2

m

π
vol(S2m+1(1)),

we get the result.

We know from the proof of the Twisting Theorem part 1 that Tw(H) =
vol(S2m+1(1)). From this, it is easily checked that Tw(P ) > Tw(H). �

The perturbed radial field. – Analogously, the behaviour of the
volume for k small is ruled by the bending, that is

B(V ) =

∫

S2m+1(1)
σ1(M)dvol =

∫

S2m+1(1)
‖∇V ‖2dvol.

In [3] it is shown that the volume of any smooth unit vector field is greater
than or equal to the volume of the radial field R and equality uniquely holds
for this vector field. This field is the one given by the unit tangent vectors
to the radial geodesics issuing from a given point p. It has two singularities
at points p and −p of opposite index ±1. Due to the non-vanishing of these
indices, it is impossible to obtain a smooth unit vector field from the field by
a C∞-perturbation on small neighbourhoods of p and −p. This perturbation
has to be realised on a small tubular neighbourhood of an arc joining p and
−p. In [2] a construction following these lines is performed to obtain a family

14



Rǫ of smooth unit vector fields. Unfortunately, as ǫ tends to 0, the volume
of Rǫ does not converge to the volume of R (see appendix). Although the
twisting of H is equal to the twisting of R, the limit limǫ→0 Tw(Rǫ) is strictly
bigger than the twisting of H and then by the Twisting Theorem, for large
k

lim
ǫ→0

V ol(Rk
ǫ ) > V ol(Hk).

On the contrary, in [2] and [5] it is proven that for every smooth vector field
V

lim
ǫ→0

B(Rǫ) = B(R) < B(V ).

So for any given V , we have

lim
ǫ→0

V ol(Rk
ǫ ) < V ol(V k)

for sufficiently small k. To sum up, we have

Proposition 5 (“Bending Theorem”). – Let V be a unit vector field of
S

2m+1(1). Then 1) B(V ) > limǫ→0 B(Rǫ) = B(R) ([2], [5]),
2) There are ǫ > 0 and k0 > 0 such that, for all k < k0, we have

V ol(V k) > V ol(Rk
ǫ ).

5 Appendix

In this appendix we explicitly compute and then compare the volume of the
parallel field and the volume of the perturbed radial field.

Proposition 6. – Let m ≥ 1 and r = k− 1

2 .
1) V ol(Hk) = (1 + k)mvol(S2m+1(r),
2) V ol(P k) =

k(2m + 1)42m

2C2m
4m

3F2(
1

2
,
2m + 1

2
, 2m + 1, 1, 2m +

1

2
; 1 − k)vol(S2m+1(r)),

3) lim
ǫ→0

V ol(Rk
ǫ ) =





m
∑

j=0

(Cj
m)2

C2j
2m

kj +
4m

Cm
2m

km



 vol(S2m+1(r))

Remark. – In 2) 3F2 denotes the generalized hypergeometric series. This
series is convergent if k < 2. Since k 7→ V ol(P k) is analytic, the formula for
k ≥ 2 is the analytic continuation of the above expression.

Let
V(k) = min(V ol(Hk), V ol(P k), lim

ǫ→0
V ol(Rk

ǫ )).

The study of these three functions shows that
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Corollary 7. – For every m ≥ 2 there is 0 < k1(m) < k2(m) such that:

V(k) = limǫ→0 V ol(Rǫ) if k ≤ k1(m),
V(k) = V ol(P k) if k1(m) ≤ k ≤ k2(m),
V(k) = V ol(Hk) if k2(m) ≤ k.

A numerical computation gives k1(2) = 0.269..., k1(3) = 0.494..., k1(4) =
0.618..., k1(10) = 0.848..., k1(100) = 0.985... and k2(2) = 1.815..., k2(3) =
5.563..., k2(4) = 8.729..., k2(10) = 26.29..., k2(100) = 286.1...

Recall that
Tw(H) = vol(S2m+1(1)),

Tw(P ) =
1

22m

C2m
4m

Cm
2m−1

vol(S2m+1(1)),

(see the proof of the Twisting Theorem and Lemma 4). The mere power
expansion of the expression 3) in Proposition 6 shows that

Corollary 8. – limǫ→0 Tw(Rǫ) = (1 + 4m

Cm
2m

) vol(S2m+1(1)).

The next two subsections are devoted to the proof of points 2) and 3) of
Proposition 6. Point 1) is well-known and easy.

5.1 Volume of the field obtained by parallel transport

The volume of the parallel field P k on the n-dimensional sphere S
n(r) of

radius r = k− 1

2 is given by

V ol(P k) =

∫

Sn(1)

√

det (
1

k
Id + T∇P ◦ ∇P) dvol.

Let f =
√

det ( 1
k Id + T∇P ◦ ∇P), from the proof of Lemma 4 we know

that f only depends on xn and xn+1. Putting xn+1 = cos t, xn = sin t cos α,
0 < t < π, 0 < α < π, we get

g(t, α) = f(sin t cos α, cos t) =

r(1 + cos t)
1−n

2 ((1 − cos t)(cos2 α − r2) + 2r2)
n−2

2 ((r2 − 1)(1 + cos t) + 2)
1

2 .

Thus

V ol(P k) =

∫

Sn(1)
f dvol = vol(Sn−2(1)) I.

with

I =

∫ π

0

∫ π

0
g(t, α) sinn−1 t sinn−2 α dtdα.
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Let u =
1

2
(1 − cos t), we obtain

I =

∫ π

0

∫ 1

0
rn2n−1u

n−2

2 (1 − u)−
1

2 (1 − (1 − cos2 α

r2
)u)

n−2

2

(1 − (1 − 1

r2
)u)

1

2 sinn−2 αdudα

=

∫ π

0
F1(

n

2
, 1 − n

2
,−1

2
,
n + 1

2
; 1 − cos2 α

r2
, 1 − 1

r2
)

rn2n−1B(n
2 , 1

2) sinn−2 αdα,

where B is the Beta function and F1 is the first hypergeometric function of
two variables. Since

F1(α, β, β′, γ;x, y) = (1 − y)−αF1(α, β, γ − β − β′, γ;
y − x

y − 1
,

y

y − 1
)

we have

I = 2nr2nB(
n

2
,
1

2
)

∫ π/2

0
F1(

n

2
, 1 − n

2
, n,

n + 1

2
, sin2 α, 1 − r2) sinn−2 αdα.

Let x = sin2 α, we finally obtain

I = 2n−1r2nB(
n

2
,
1

2
) J

with

J =

∫ 1

0
x

n−3

2 (1 − x)−
1

2 F1(
n

2
, 1 − n

2
, n,

n + 1

2
, x, 1 − r2)dx.

We put ρ − 1 = n−3
2 , σ − 1 = −1

2 , α = n
2 , β = 1 − n

2 , β′ = n, γ = n+1
2 and

y = 1 − r2. As usual (α)k denotes Γ(α + k)/Γ(α). Then

J =

∫ 1

0
xρ−1(1 − x)σ−1F1(α, β, β′, γ, x, y)dx

=

∫ 1

0
xρ−1(1 − x)σ−1

∑

k,l

(α)k+l(β)k(β′)l
(γ)k+lk! l!

xkyldx

=
∑

k,l

B(ρ + k, σ)
(α)k+l(β)k(β′)l

(γ)k+lk! l!
yl

=
∑

k,l

B(ρ, σ)
(ρ)k

(ρ + σ)k

(α)k+l(β)k(β′)l
(γ)k+lk! l!

yl

= B(ρ, σ)
∑

l

(α)l(β
′)l

(γ)ll!

(

∑

k

(α + l)k(β)k(ρ)k
(γ + l)k(ρ + σ)kk!

)

yl

= B(ρ, σ)
∑

l

(α)l(β
′)l

(γ)ll!
3F2(α + l, β, ρ, γ + l, ρ + σ; 1)yl.
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Since

3F2(a, b, c, e, f ; 1) =
Γ(e)Γ(f)Γ(s)

Γ(a)Γ(b + s)Γ(c + s)
3F2(e − a, f − a, s, s + b, s + c; 1)

with s = e + f − a − b − c we deduce

3F2(α + l, β, ρ, γ + l, ρ + σ; 1) =
(γ)l
(α)l

Γ(n+1
2 )Γ(n

2 )

Γ(n − 1
2)

3F2(
1

2
,−l,

n

2
, 1, n − 1

2
; 1)

and therefore

J =
Γ(n+1

2 )Γ(1
2 )Γ(n−1

2 )

Γ(n − 1
2)

K

where

K =
∑

l

(n)l
l!

3F2(
1

2
,−l,

n

2
, 1, n − 1

2
; 1)yl.

We have

K =
∑

k,l

(n)l(
1
2)k(−l)k(

n
2 )k

(1)k(n − 1
2)kl! k!

yl =
∑

k

(1
2)k(

n
2 )k

(1)k(n − 1
2)kk!

Lk(y)

with Lk(y) =
∑

l

(n)l(−l)k
l!

yl. Since (−l)k = (−1)kl(l − 1)...(l − k + 1) we

get

Lk(y) =
∑

l≥k

(n)l(−l)k
l!

yl = (−1)k
∑

l≥k

(n)l
(l − k)!

yl.

It is straightforward that

L0(y) = (1 − y)−n

and that

Lk(y) = (−1)kykL(k)
0 (y) = (−1)k(n)ky

k(1 − y)−(n+k).

Thus

K =
∑

k

(1
2)k(

n
2 )k(n)k

(1)k(n − 1
2)kk!

(

y

y − 1

)k 1

(1 − y)n

=
1

(1 − y)n
3F2(

1

2
,
n

2
, n, 1, n − 1

2
;

y

y − 1
)

=
1

r2n 3F2(
1

2
,
n

2
, n, 1, n − 1

2
;
r2 − 1

r2
).

Putting all these successive expressions together, we obtain

V ol(P k) = Cn · 3F2(
1

2
,
n

2
, n, 1, n − 1

2
;
r2 − 1

r2
),
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with

Cn = 2n−1B(
n

2
,
1

2
)
Γ(n+1

2 )Γ(1
2 )Γ(n−1

2 )

Γ(n − 1
2 )

n − 1

2π
vol(Sn(1)).

It is easy to check that

Cn =
4n−1

Cn−1
2n−2

vol(Sn(1)),

thus

V ol(P k) = k
n
2

4n−1

Cn−1
2n−2

3F2(
1

2
,
n

2
, n, 1, n − 1

2
; 1 − k)vol(Sn(r)).

The preceding computations are valid only if 1√
2

< r <
√

2. Nevertheless,

since k 7→ V ol(P k) is analytic and 3F2(
1
2 , n

2 , n, 1, n− 1
2 ; 1−k) is converging if

k < 2, the above expression is in fact valid as soon as k < 2. For n = 2m+1,
we obtain the result stated in Proposition 6. �

5.2 Volume of the perturbed radial fields

The perturbed radial field Rǫ built in [2] is such that Rǫ = R out of an
ǫ-neighbourhood Gǫ of a geodesic segment joining the two singular points
p and −p of the radial field. When computing the volume of Rk

ǫ and then
passing to the limit, we obtain a result which splits in two parts, one term
coming from the underlying radial field Rk and another taking into account
(the limit of) the pertubation on Gǫ.

Lemma 9. – limǫ→0 V ol(Rk
ǫ ) = V ol(Rk) + π 1√

k
vol(S2m(1)).

Since

V ol(Rk) = (

m
∑

j=0

(Cj
m)2

C2j
2m

kj) vol(S2m+1(r))

and
vol(S2m(1))

vol(S2m+1(r))
=

1

π

4m

Cm
2m

km+ 1

2 ,

we obtain the expression 3) of Proposition 6.

Proof. – See [2] for the construction of Rǫ (in this article, Rǫ is denoted Tǫ).
Let O be the middle point of the geodesic segment [−p, p]. In the image of the
stereographic projection from −O, let Gǫ be the full (2m + 1)-dimensional
ellipsoid with focal points {−p, p} defined by

Gǫ = {q ∈ R
2m+1 | d(q, p) + d(q,−p) ≤ 2

√

ǫ2 + d2(O, p)}.

19



We denote by x the coordinate on the line D =]−p, p[ and by y = (y1, ..., y2m)
those of D⊥.

/2

εC

G ε

ε

Ο

/2−ε

p-p

X

Y

ε

Let Aǫ = Gǫ∩{|x| ≤ ǫ
2}, B+

ǫ = Gǫ∩{x ≥ p−ǫ/2}, B−
ǫ = Gǫ∩{x ≥ −p+ǫ/2}

and Cǫ = Gǫ \ (Aǫ ∪ B+
ǫ ∪ B−

ǫ ). By dimensional arguments

lim
ǫ→0

V ol(Rk
ǫ |Aǫ) = 0 and lim

ǫ→0
V ol(Rk

ǫ |B±
ǫ
) = 0.

Let Sǫ = Rk
ǫ (Cǫ), Sǫ is a submanifold of T 1

S
2m+1(r)|Cǫ and obviously

lim
ǫ→0

V ol(Rk
ǫ ) = V ol(Rk) + lim

ǫ→0
vol(Sǫ).

Now let Σ = π−1(]− p, p[) ⊂ T 1
S

2m+1(r) where π : T 1
S

2m+1(r) → S
2m+1(r)

is the projection. Since π is a Riemannian submersion, when we consider in
the first manifold the Sasaki metric, the volume of Σ is πr times the common
volume of each fiber, which is equal to vol(S2m(1)).

To conclude, we only need to show that limǫ→0 vol(Sǫ) = vol(Σ). Let

f : Cǫ −→ Sǫ h : Cǫ −→ Σ
(x, y) 7−→ (x, y,Rr

ǫ (x, y)), (x, y) 7−→ (x,Rr
ǫ(x, y))

and gS be the Sasaki metric on T 1
S

2m+1(r). Of course f∗gS = h∗gS + d2y.
Thus if F,H and Y are the corresponding matrices of f∗gS , h∗gS and d2y,
we have

dSǫ = detF)
1

2 dxdy = det(H + Y)
1

2 dxdy.

Since ‖ ∂h
∂yi

‖ = O(1
ǫ ), ‖∂h

∂x‖ = O(1) (see [2]) we deduce det(H)
1

2 = O( 1
ǫ2m

) and

det(H + Y)
1

2 = det(H)
1

2 + o( 1
ǫ2m

), thus

vol(Sǫ) = vol(h(Cǫ)) + o(1).
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When ǫ goes to zero, h(Cǫ) covers Σ except on a set of zero measure. There-
fore, limǫ→0 vol(h(Cǫ)) = vol(Σ). �
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