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Abstract. – A vector field V on a n-dimensional round sphere Sn(r) defines a

submanifold V (Sn) of the tangent bundle TSn. The Gluck and Ziller question is to

find the infimum of the n-dimensional volume of V (Sn) among unit vector fields.

This volume is computed with respect to the natural metric on the tangent bundle

as defined by Sasaki. Surprisingly, the problem is only solved for dimension three

[10]. In this article we tackle the question for the 2-sphere. Since there is no glob-

ally defined vector field on S2, the infimum is taken on singular unit vector fields

without boundary. These are vector fields defined on a dense open set and such

that the closure of their image is a surface without boundary. In particular if the

vector field is area minimizing it defines a minimal surface of T 1S2(r). We prove

that if this minimal surface is homeomorphic to RP 2 then it must be the Pontrya-

gin cycle. It is the closure of unit vector fields with one singularity obtained by

parallel translating a given vector along any great circle passing through a given

point. We show that Pontryagin fields of the unit 2-sphere are area minimizing.
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1 Introduction and main results

The volume V ol(V ) of a smooth unit vector field V : Mn → T 1Mn is the n-
dimensional volume of its image V (M) as a submanifold of the unit tangent
bundle T 1M. A natural question, that goes back to the pioneering work of
H. Gluck and W. Ziller [10], is to ask for the (absolute) minimizers of the
volume. More precisely, given an oriented compact Riemannian manifold
(M,g) the question is to determine

inf
V ∈Γ∞(T 1M)

V ol(V )
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and to find the minimizers, if this infimum is a minimum. This volume
V ol(V ) is computed with respect to the Sasaki metric (T 1M,gSas) which is
defined by declaring the orthogonal complement of the vertical distribution
to be the horizontal distribution given by the Levi-Civita connection ∇. It
is then easy to see that V ol(V ) ≥ vol(M,g), with equality if and only if the
vector field is parallel ∇V = 0. Therefore the problem is nontrivial only if
the unit tangent bundle does not admit any smooth parallel section. Natu-
ral examples of such a situation are standard spheres. It turns out that the
only dimension for which the problem is solved is three [10]. In that case,
the infimum is reached by unit Hopf vector fields i. e. those tangent to
the fibers of a Hopf fibration. Of course, for two dimensional spheres (and
more generally for even dimensional spheres) the space of smooth sections
of the unit tangent bundle is empty, so this problem has no interest unless
we consider vector fields with singularities.

In a manifold M without smooth unit vector fields, the first natural space
of sections to consider is the space Γsing(T 1M) of singular unit vector fields,
that is, the space of unit smooth vector fields which are defined on a dense
open set of M. The new problem is then to determine

inf
V ∈Γsing(T 1M)

V ol(V ).

Even if M is a standard sphere this last problem is unsolved, partial results
have been recently obtained in the case of isolated singularities in [3]. The
aim of this paper is to study the Gluck and Ziller problem on an intermedi-
ate space between smooth sections and singular ones, namely on the space
Γwb(T 1M) of unit vector fields without boundary (see definition below). We
solve it when M is the standard 2-sphere.

Theorem 1. – Among unit vector fields without boundary of S
2(1) those

of least area are Pontryagin fields and no others.

We call a Pontryagin field of S
n any unit vector field P defined in a dense

open subset U such that the closure of P (U) is the n-dimensional gener-
alized Pontryagin cycle of T 1

S
n. This cycle is the set of all unit vectors

obtained by parallel translating a given vector v tangent at x along any
great circle passing through x. The resulting field has a single singularity at
−x of index 0 or 2 depending on the dimension n of the sphere (see figure
below). Pedersen showed that P (U) is a minimal submanifold of T 1

S
n(1)

and conjectured that for odd dimensional Sn(1) with n ≥ 5 the infimum is
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not reached by any globally defined unit vector field but is the volume of
the Pontryagin fields [17].

One of the intriguing points of the Gluck and Ziller problem is the depen-
dence on dilatations of the metric [2]. The reason is that a dilatation on the
base manifold produces dilatations with different rates on horizontal or ver-
tical distributions of the tangent bundle. In particular, T 1

S
2(1) is isometric

to RP 3 with a round metric while for r 6= 1 we will see that T 1
S

2(r) is
isometric to a projective space obtained as a quotient of a Berger 3-sphere.
In general it is not known if a solution of this problem for S

n(1) will give a
solution for S

n(r).

If a vector field minimizes the volume among unit vector fields its image
must be a minimal submanifold of the tangent bundle [8]. We will show
that any great 2-sphere is a minimal surface of the Berger 3-sphere and we
obtain as a consequence that the image of a Pontryagin field is a minimal
surface of T 1

S
2(r). Moreover, great 2-spheres define on the Berger 3-sphere

an open book structure with binding a fiber of the Hopf fibration and with
minimal leaves, as defined by Hardt and Rosenberg [12]. Following similar
arguments as those used in their work we obtain a unicity result for Pon-
tryagin cycles.

Theorem 2. – The only minimal surfaces of T 1
S

2(r) homeomorphic to the

projective plane arising from vector fields without boundary are Pontryagin

cycles.

Since for r = 1 the area minimizing surface is precisely a great RP 2, one can
think that minimal surfaces homeomorphic to a projective space are good
candidates to be area minimizing, at least for r near 1. The existence of an
area minimizing vector field with the topology of the projective plane would
imply that this vector field should be the Pontryagin one. Although classical
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results (see [5], [4]) assure the existence of a smooth area minimizing surface
of T 1

S
2(r), there is no reason why this surface should arise from a vector

field. The corresponding existence result for vector fields due to Johnson
and Smith [15] does not apply since it applies to the class of non singular
vector fields. In the proof of Theorem 1 we use the fact that the totally
geodesic projective planes in the standard projective 3-space are precisely
the surfaces of least area in their homology class but, as far as we know, it
is an open question to know if this result is also true for the projective space
with the Berger metric. Anyhow the next theorem gives another evidence
in favour of the Pontryagin field.

Theorem 3. – Among unit vector fields of S
2(r) with one singularity those

of least area are Pontryagin ones and no others.

Acknowledgements. – The authors are indebted to David Johnson and
Harold Rosenberg for their important comments. This work was done in
part during the first author’s visit to the University of Valencia and the
second author’s visit to the University of Lyon I. Both authors are grateful
to their institutions for promoting these visits. The second author was
supported by spanish DGI and FEDER Project MTM2004-0615-C02-01.

2 Geometry of the unit tangent bundle of a sphere

The unit tangent bundle T 1
S

n(1) can be seen as the Stiefel manifold V2,n+1

of orthonormal 2-frames of R
n+1 and therefore it is diffeomorphic to the

homogeneous space SO(n+1)/SO(n− 1). If g is the usual metric on S
n(r),

the Sasaki metric gSas on T 1
S

n(r) can be geometrically described as follows:
If V (t) is a curve in T 1

S
n(r) with projection x(t) = π(V (t)), then

gSas(V ′(0), V ′(0)) = g(x′(0), x′(0)) + g(
∇V

dt
(0),

∇V

dt
(0)).

With respect to this metric, the projection π is a Riemannian submersion
and to vary the radius of the sphere is essentially equivalent to perform the
canonical variation of this submersion. The Sasaki metric on T 1

S
n(1) is

homothetic to the standard homogeneous metric on SO(n + 1)/SO(n − 1)
(see [9]). For r 6= 1, although T 1

S
n(r) is the same homogeneous manifold,

the Sasaki metric is no longer the standard one.
In the 2-dimensional case, the unit tangent bundle T 1

S
2(r) is the total space

of a Riemannian S1-fibration over a 2-sphere. It is natural to compare it with

4



the family of Riemannian manifolds obtained as the canonical variation of
the Hopf fibration. The manifolds so obtained are known as Berger spheres
(S3, gµ). The metric gµ for µ > 0 is defined as follows: We denote by J the
complex structure of R

4 ≃ C
2 and by H the Hopf vector field JN, where

N(p) = p is the outwards unit normal of S3, then

gµ(H,H) = µg(H,H) = µ, (gµ)|H⊥ = g|H⊥ , and gµ(H,H⊥) = 0,

where ⊥ means orthogonal with respect to the metric g.

Proposition 1 The unit tangent bundle of S2(r) is isometric to the projec-

tive space RP 3 with the metric obtained by the quotient of a Berger sphere

(S3, gBer). In particular, the unit tangent bundle of the unit sphere T 1
S

2(1)
is isometric to the round RP 3 obtained as the quotient of S

3(2).

Proof.

We show first that the map ψ(x, v) = (x, v, x ∧ v) is an isometry from
(T 1

S
2(1), gSas) onto (SO(3), 1

2 < , >) where < , > is the bi-invariant metric
on SO(3) defined as

∀A,B ∈ so(3), < A,B >= tr(AtB).

Let V (t) = (x(t), v(t)) be a curve in T 1
S

2(1) with x(0) = e1 and v(0) = e2,
we have

dψ(e1,e2)(V
′(0)) = (x′(0), v′(0), x′(0) ∧ e2 + e1 ∧ v

′(0))

where (e1, e2, e3) is the usual orthonormal basis of R
3. Thus, since x′1(0) = 0,

v′2(0) = 0 and x′2(0) + v′1(0) = 0, we obtain

< dψ(e1,e2)(V
′(0)), dψ(e1 ,e2)(V

′(0)) >= 2(|x′2(0)|
2 + |x′3(0)|

2 + |v′3(0)|
2).

On the other hand

∇V

dt
(0) = V ′(0) − g(V ′(0), x(0))x(0),

therefore

gSas(V ′(0), V ′(0)) = (|x′2(0)|
2 + |x′3(0)|

2) + (|v′1(0)|
2 + |v′3(0)|

2 − |v′1(0)|
2)

and ψ∗ < , >= 2gSas.
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The next step is to show that T 1
S

2(1) is isometric to RP 3(2). The unit
tangent bundle T 1

S
2(r) is diffeomorphic to projective space RP 3 via the

Euler parametric representation of SO(3)

Φ : S
3 ⊂ R

4 −→ SO(3)

with

Φ(κ, λ, µ, ν) =





κ2 + λ2 − µ2 − ν2 2κν + 2λµ −2κµ+ 2λν
−2κν + 2λµ κ2 − λ2 + µ2 − ν2 2κλ+ 2µν
2κµ+ 2λν −2κλ+ 2µν κ2 − λ2 − µ2 + ν2



 .

The map Φ is a group epimorphism from the subgroup S
3 of the quaternionic

field H onto SO(Im H). If we write q = κ+ iλ + jµ+ kν, then Φ(q) is the
orthogonal transformation of Im H given by

u 7−→ q−1uq.

The differential of Φ at e = 1 ∈ S
3 is a linear map from TeS

3 = Im H to
the vector space of skewsymmetric endomorphisms of Im H. In particular,
if X = X1i+X2j +X3k, then

dΦe(X) : Im H −→ Im H

u 7−→ Xu− uX.

Since X and u are purely imaginary, the product Xu is again imaginary and
can be identified with the usual wedge product in R

3 ≃ Im H. Thus

dΦe(X) = 2





0 −X3 X2

X3 0 −X1

−X2 X1 0





from where < dΦe(X), dΦe(X) >= 8‖X‖2 and Φ∗ < , >= 8g.

Therefore the map Φ induces an isometry between RP 3(2) = S
3(2)/Z2 and

(SO(3), 1
2 < , >) which composite with ψ−1 gives an isometry between

RP 3(2) and T 1
S

2(1).

To finish the proof we only need to see how T 1
S

2(r) is related with T 1
S

2(1).
Let h be the map from T 1S2(1) to T 1S2(r) given by h(x, v) = (rx, v) then
dh(x,v)(V

′(0)) = (rx′(0), v′(0)) and we have

gSas
r (dh(x,v)(V

′(0)), dh(x,v)(V
′(0))) = r2g(x′(0), x′(0)) + g(

∇V

dt
(0),

∇V

dt
(0))
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where to avoid confusion we have denoted gSas
r the Sasaki metric on T 1

S
2(r).

So the Sasaki metric gSas
1 only differs from the pull-back metric h∗gSas

r by
a factor r2 on the horizontal distribution. On the other hand, the Berger
metric gBer

µ on S
3(2) differs from the round metric by a factor µ in the di-

rection of the Hopf fibration. Since the natural structures of S1-bundle over
S

2 of both spaces S
3 and T 1

S
2(r) are preserved by the map Φ, the pull-back

metric h∗gSas
r is equal to r2gBer

µ with µ = 1
r2 . �

Remark.– The last assertion of Proposition 1 was shown by Klingenberg
and Sasaki [16].

Proposition 2 Great 2-spheres are minimal surfaces of the 3-dimensional

Berger sphere.

Proof

Let S
2 be the great sphere S

3 ∩ v⊥ with v ∈ S
3 ⊂ R

4 and let {E1, E2} be a
local g-orthonormal frame of S

2. We put E3(p) = p and E4(p) = v so that
{E1, E2, E3} is a basis of v⊥ and {Ei}

4
i=1 is a basis of R

4, at each point of
the definition domain. The unit normal η of the surface S

2 ⊂ (S3, gµ) must
satisfy

g(η,E3) = 0, gµ(η, η) = 1 and gµ(η,Ei) = 0, i = 1, 2.

Since the Hopf vector field is H = JE3, it is not difficult to see that we can
choose

η =
aµ

µ
E4 +

(1 − µ)g(H,E4)

aµ

2
∑

i=1

g(H,Ei)Ei

where aµ =
√

µ+ µ(µ− 1)(1 − g(H,E4)2); it is easily checked that this
function is well defined even if 0 < µ < 1. Let us remember that ∇HH = 0
and ∇XH = JX for all X ∈ H⊥. The Levi-Civita connection ∇µ of the
Berger metric gµ is related with the connection ∇ of the round sphere by

∇µ
HX = ∇HX + (µ− 1)∇XH, ∇µ

XH = µ∇XH, ∇µ
XY = ∇XY,

for X,Y ∈ H⊥. Using these expressions for any Z tangent to S
3 we obtain

∇µ
Zη = ∇Zη + (µ− 1) (g(Z,H)J(η − g(η,H)H) + g(η,H)J(Z − g(Z,H)H)

and then

g(∇µ
Zη, Z) = g(∇Zη, Z) + (µ− 1)g(Z,H)g(Jη,Z).
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The mean curvature kmean is given by

2kmean =

2
∑

i=1

g(∇µ
Ei
η,Ei) = (µ− 1)g(H,E4)g(Jη,E4) +

2
∑

i=1

g(∇Ei
η,Ei)

where we have used the fact that g(Jη,H) = 0 and g(Jη,E4) = 0. Moreover,

it is easy to see that g(Jη,E4) and that g(η,H) =
g(H,E4)

aµ
and then the

diagonal elements of the covariant derivative of η are

g(∇Ei
η,Ei) = (1 − µ){Ei(g(η,H)g(H,Ei)) − g(η,H)g(H,Ej )g(∇Ei

Ei, Ej)}
= (1 − µ){Ei(g(η,H))g(H,Ei)

+g(η,H)g(∇Ei
Ei,H − g(H,Ej)Ej)}

= (1 − µ)g(H,Ei)Ei(g(η,H)),

where either (i, j) = (1, 2) or (i, j) = (2, 1). For the last equality we have
used that E4 is a constant field. We thus have

2kmean = (1 − µ)
2
∑

i=1

g(H,Ei)Ei(g(η,H)).

Since E4(g(H,E4)) = 0 and H(g(H,E4)) = 0 we have E4(g(η,H)) = 0 and
H(g(η,H)) = 0 and finally

2kmean = (1 − µ)H(g(η,H)) = 0.

�

Definition. – For each vector v 6= 0 of R
3, let ρv be the reflection across

the hyperplane v⊥. A two dimensional Pontryagin cycle of SO(3) is any
subset of the form P = {ρvρv0

; v ∈ S
2} where v0 6= 0 is any vector of R

3.

It was observed by Pedersen that there is a smooth unit vector field P de-
fined on the whole sphere except one point such that the closure of its image
on T 1

S
2 is precisely P . She also defined this vector field analogously on any

sphere and gave an alternative description in terms of parallel transport [17].

Definition. A Pontryagin vector field of S
n is any field P defined by par-

allel translating a given vector v0 ∈ T 1
p0

S
n along great circles of S

n passing
through p0.

Proposition 3 The Pontryagin fields of S
2(r) are minimal submanifolds of

T 1
S

2(r). Furthermore for r = 1 this submanifold is totally geodesic.
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Proof.

Let (ǫ1, ǫ2, ǫ3) be an orthonormal basis of R
3 and let P be the Pontryagin

field obtained from v0 = −ǫ2 ∈ T 1
ǫ1

S
2(r). At a point (rx, ry, rz) ∈ S

2(r), P
has the following expression (see [8])

P (rx, ry, rz) = −
xy

1 + z
ǫ1 + (1 −

y2

1 + z
)ǫ2 − yǫ3.

It is then easily checked that P = (h ◦ Φ)(S2) where S
2 = {(κ, λ, µ,−λ) ∈

S
3} = S

3 ∩ v⊥ and v = (0, 1, 0, 1). Since h ◦ Φ is a Riemannian covering
it yields from the above proposition that P is a minimal submanifold of
(T 1

S
2(r), gSas). If r = 1 the Berger metric on S

3 is the usual one and great
spheres are totally geodesic surfaces, therefore P is a totally geodesic RP 2

inside a round RP 3(2). �

3 Vector fields without boundary

Definition. – Let U be a dense open subset of M and let V : U → T 1M
be a smooth vector field. The field V is said to be without boundary if
the closure V of its image V (U) in T 1M is a smooth submanifold without
boundary.

3.1 Pontryagin fields have no boundary

From Proposition 3, a Pontryagin field is a unit vector field without bound-
ary. Here is another way to see that P ≃ RP 2. Let Dρ be the disk of S

2

centered at ǫ1 and of radius ρ. Since the index of P at the singularity is 2,
the image V (∂Dρ) is a closed curve that surrounds twice the fiber sitting
above the singularity. If π : T 1

S
2 −→ S

2 is the projection, we have

P ∩ π−1(Dρ) ≃ M (Moebius band).

Since P (S2 \ Dρ) is a disk, we obtain P = Disk ∪ M ≃ RP 2. P is a RP 2

inside RP 3. The figure below shows both the Pontryagin field and the sub-
manifold P . The picture on the left represents the flow and its stereographic
projection from the point antipodal to the sigularity, the one on the right
visualizes the image of the vector field in T 1

S
2 in the trivialization given

by the stereographic projection from the point antipodal to the singularity.
The fibers are represented in the vertical axis as intervals, as usual the ends
of each interval must be identified.
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S1

Remark.– For dimension n > 2 the Pontryagin field is no longer a vector
field without boundary since P has an isolated conical point, see [17]. Nev-
ertheless the vector field P has an interesting property: its closure P is a
Z2-cycle.

3.2 The radial field has boundary

A radial field R is a unit vector field defined on the complementary of two
antipodal points {−p, p} of S

n and which is tangent to great circles passing
through p. This field seems to play an important role in the Gluck and Ziller
problem. In fact Brito, Chacón and Naveira have shown that the volume of
the radial field provides a lower bound for the volume of smooth everywhere
defined unit vector field on odd-dimensional spheres [3]. In dimension two,
the area of the radial field is lower than the one of the Pontryagin field.
Nevertheless the radial field has boundary. Indeed,

∂R = π−1(p) ∪ π−1(−p)

and thus R is a cylinder with boundary two fibers. The figure below shows
the flow of the radial vector field and a portion of R with one boundary
component.

S1
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3.3 Examples of singular vector fields with boundary

We have seen that the singularities of index one of the radial field give bound-
ary components. Above a singularity of index two, the fiber is covered (at
least) twice. So, generically the local situation is that of two (or more)
half planes that fit together along the fiber. It can thus happen that the
boundary component disappears as it is the case for Pontryagin fields. The
following two pictures illustrate some situations where the index is greater
than two.

S1

The image of the left is the stereographic projection of the flow from the
antipodal point of the singularity. The resulting space in the right has the
structure of a CW-complex. In each loop the tangent vector turns on a
2π
3 angle, so the index of the singularity is 3. The figure below shows an

example with a singularity of index 4.

S1

3.4 Topology of unit vector fields without boundary

Lemma. – Let V be a unit vector field of S
2 without boundary and let

[V ] ∈ H2(T
1
S

2,Z2) be the Z2-fundamental class of V . Then [V ] is the non-

trivial class of H2(T
1
S

2,Z2) = Z2.
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Proof

First observe that the integral 2-homology group of T 1
S

2 is trivial while it is
not the case with Z2-coefficient sinceH2(T

1
S

2,Z2) = H2(RP
3,Z2) = Z2 (the

generator is the class of RP 2 ⊂ RP 3). Let π∗ : H2(T
1
S

2,Z2) −→ H2(S
2,Z2)

be the map induced by the projection π : T 1S2 −→ S2. Using the theory of
local degree (with Z2 coefficient) and since V is a vector field it is readily
checked that π∗[V ] = [S2] where [S2] denotes the Z2-fundamental class of
S

2. In particular [V ] cannot be the trivial class. �

Let V be a unit vector field of S
2 without boundary. We say that V is in

general position if V has only a finite number of singular points p1, ..., pN

and the fibers π−1(p1),...,π
−1(pN ) are all included in V .

Lemma. – Let V be a unit vector field of S
2 without boundary in general

position. Then V is homeomorphic to RP 2♯Tg for some g ∈ N.

Proof

As V is a submanifold, the indexes of p1, ..., pN must be ±2. Let n2 (resp.
n−2) be the number of singularities with index 2 (resp. with index -2). Since
the Euler number of S

2 is 2, we have n2 = n−2 + 1. Let Di
ρ be a disk of S

2

centered at pi and of small radius ρ, we have

V ∩ π−1(Di
ρ) ≃ M

and thus

V ≃

(

S
2 \

N
∐

i=1

Di
ρ

)

N
⋃

i=1

M ≃ RP 2♯Tg

where Tg denote the torus with g holes (g = n−2) and N = 2n−2 + 1. �

3.5 Proof of Theorem 1

By the previous result, the closure of every unit vector field without bound-
ary of S

2(1) belongs to the Z2-homology class represented by the totally
geodesic RP 2. Berger and Fomenko have shown that totally geodesic pro-
jective planes are the only area minimizers in their homology class [1], [6].
And every totally geodesic RP 2 is the closure of a Pontryagin field. �

Remark. In [14] Johnson studies the Gluck and Ziller problem in any
Riemannian 2-torus. He shows that, for any homotopy class of unit vector
fields, there is a smooth field of smallest area. The problem has also been
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solved in Berger 3-spheres (S3, gBer
µ ) with µ < 1, [11]. For µ > 1 some results

can be found in [7].

4 Proof of Theorem 2

To prove this theorem we follow the ideas of Hardt and Rosenberg in Theo-
rem 1.2 of [12]. Nevertheless, since our hypothesis is weaker than their, we
need to adapt the proof. In particular we need the following lemma.

Lemma Let V be a vector field without boundary and let F be a fiber of

π : T 1
S

2 → S
2 such that #(F ∩ V ) ≥ 2. Then at every point p ∈ F ∩ V the

intersection is not transverse, i. e. TpF ⊂ TpV .

Proof.

Assume that there exist p ∈ F ∩ V such that TpV is transverse to TpF. For
any other point q ∈ F ∩ V the space TqV cannot be transverse to TqF since
this will immediatly lead to a contradiction with the fact that V is a section
of T 1

S
2 over a dense open set. This point is isolated from A = (F ∩V )\{p}

in F. Indeed, if (qn)n∈N is a sequence of points in A converging towards
p then the inclusions Tqn

F ⊂ Tqn
V will imply TpF ⊂ TpV . Therefore the

subset A is closed in F. Moreover it has non empty boundary on F since
otherwise the connectedness of the fiber will imply that A = F which is
impossible. Let q be an element of this boundary. Since V is a submanifold,
locally it is a graph over an open ball B of TqV , more precisely in a bundle
chart of T 1

S
2 in which the projection π reads (x, y, z) 7→ (x, y) there is a

neighborhood U ⊂ V of q, a smooth function f : B −→ R such that we have

U = {(f(y, z), y, z) ; (y, z) ∈ B}.

We also assume that in this chart the coordinates of q are (0, 0, 0). Since
q ∈ Fr A there exists a sequence (0, zn)n∈N of points of TqF converging
towards q and such that f(0, zn) 6= 0. By the Mean-value theorem, there is
a sequence (wn)n∈N such that

∀n ∈ N, 0 < |wn| < |zn| and
∂f

∂z
(0, wn) 6= 0.

Let q̃n = (f(0, wn), 0, wn). We thus have rank dπq̃n
= 2 and π is a diffeo-

morphism from an open disk Dn centered at q̃n onto its image. Since TpV
is transverse to TpF the projection, π is a diffeomorphism from an open
disk B centered at p onto its image. Note that we can always assume that
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Dn ∩B = ∅. Since q̃n → q we have π(q̃n) → π(q) = π(p) thus π(B) ∩ π(Dn)
is non empty for sufficiently large n. Finally W = π(B) ∩ π(Dn) is an open
set for which

∀w ∈W, #(π−1(w) ∩ V ) ≥ 2.

This is a contradiction because V is a vector field on a dense set. �

Theorem 2 The only minimal surfaces of T 1
S

2(r) homeomorphic to the

projective plane arising from vector fields without boundary are Pontryagin

cycles.

Proof.

Let V be a minimal smooth surface homeomorphic to RP 2 arising from
V : U ⊂ S

2(r) −→ T 1
S

2(r). Since the Euler characteristic of the 2-sphere is
2, the set of singular points

Sing(V ) = {x ∈ S
2 ; #(π−1(x) ∩ V ) ≥ 2}

is not empty. Take x ∈ Sing(V ) and let {P θ ; θ ∈ S
1} be the family of

Pontryagin surfaces whose singular fibre is precisely π−1(x). This fibration
of T 1

S
2(r) \π−1(x) into smooth minimal surfaces is an open book structure

for N = T 1
S

2(r) with binding Γ = π−1(x) and leaves Lθ = P θ \Γ, as defined
in [12]. Every Pontryagin cycle P θ can be seen as the image of a map ψθ

from a closed 2-disk D2 to T 1
S

2(r) such that

1. The restriction of ψθ to the interior of D2 is a diffeomorphism onto
the leaf Lθ.

2. ψ−1
θ (Γ) = ∂D2.

3. The restriction of ψθ to ∂D2 is 2 : 1.

The map F : N \Γ −→ S
1, given by F (z) = θ if z ∈ Lθ, is a smooth submer-

sion and then the pull-back under F of an orienting 1-form α of the circle
is an smooth closed 1-form ω = F ∗α in N \ Γ. If we denote by ϕ : V −→ N
the inclusion map, the pull-back ϕ∗ω is a closed 1-form defined on V \ V Γ,
where V Γ = V ∩Γ. By construction, V Γ contains at least two points and by
the previous lemma, V and Γ cannot intersect transversely. More precisely,
this intersection is of maximal rank at every point, i. e. for all p ∈ V Γ

we have TpΓ ⊂ TpV . Therefore, by the maximality of the rank, ϕ∗ω ex-
tends to a smooth 1-form on all of V (see [13] p. 478), which is exact since
H1(V ,R) = 0.
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Now we can use the same arguments as in the proof of Theorem 1.2 of [12]
to obtain that V should be one of the Pθ.

�

5 Proof of Theorem 3

Theorem 3 Among unit vector fields of S
2(r) with one singularity those of

least area are Pontryagin fields and no others.

Proof.

For each unit vector field V r of S
2(r), let us define a unit vector field of

S
2(1) by V (p) = V r(rp). The volume of V r is given by

V ol(V r) =

∫

S2(1)

√

det(r2Id+T ∇V ◦ ∇V ) dvol

Let us assume that the single singular point of V is the south pole s =
(0, 0,−1) and let us choose an orthonormal frame {P,P⊥} on S

2(1) \ {s}
consisting of two Pontryagin fields

P (x, y, z) =
(

−
xy

1 + z
, 1−

y2

1 + z
,−y

)

, P⊥(x, y, z) =
(

1−
x2

1 + z
,−

xy

1 + z
,−x

)

.

Thus there is a function θ : S
2(1) \ {s} → R such that on S

2(1) \ {s} the
vector field is of the form

V = cos θP + sin θP⊥.

Lemma. – If {E1, E2} is an orthonormal frame on an open set U of a

2-dimensional Riemannian manifold (M2, g) and V = cos θE1 + sin θE2 is

a unit vector field on U then

T∇V ◦ ∇V =

(

β2
1 β1β2

β1β2 β2
2

)

where β = dθ + α, α(X) = g(∇XE1, E2) and βi = β(Ei), i = 1 or 2.
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We omit the proof of this lemma that reduces to an elementary computation.
For the local frame {E1, E2} = {P,P⊥}, it is easy to show that

α(E1) = α(P ) =
x

1 + z
, α(E2) = α(P⊥) = −

y

1 + z

and thus

det(r2Id+T ∇V ◦ ∇V ) = r2
(

r2 + (θ1 + x
1+z

)2 + (θ2 −
y

1+z
)2
)

= r2
(

r2 + 1−z
1+z

+ 2
1+z

(xθ1 − yθ2) + θ2
1 + θ2

2

)

where θi = θ(Ei), i = 1 or 2. Moreover

xθ1 − yθ2 = xE1(θ) − yE2(θ) = (xP − yP⊥)(θ) = T (θ)

with
T (x, y, z) = (−y, x, 0).

Finally

V ol(V r) =

∫

S2(1)
r
(

r2 +
1 − z

1 + z
+

2

1 + z
T (θ) + θ2

1 + θ2
2

) 1

2

dvol

=

∫

S2(1)
r
(

r2 +
1 − z

1 + z

)
1

2

(

1 + h1(z)T (θ) + h2(z)(θ
2
1 + θ2

2)
)

1

2

dvol

where

h1(z) =
2

(r2 + 1) + (r2 − 1)z
and h2(z) =

1 + z

(r2 + 1) + (r2 − 1)z
.

In particular, if θ ≡ 0, then V r = P r and we obtain

V ol(P r) =

∫

S2(1)
r

√

r2 +
1 − z

1 + z
dvol.

Let p 7→ R(p) = p ∧
T (p)

√

x2 + y2
be the unit radial field on S

2(1) ⊂ R
3, we

have

θ2
1 + θ2

2 = R(θ)2 +
T (θ)2

1 − z2

and thus

V ol(V r) =

∫

S2(1)
λ
(

1 + h1(z)T (θ) +
h2(z)

1 − z2
T (θ)2 + h2(z)R(θ)2

)
1

2

dvol

=

∫

S2(1)
λ
(

(

1 +
h1(z)

2
T (θ)

)2

+ h̃3(z)T (θ)2 + h2(z)R(θ)2
) 1

2

dvol
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where

λ = r

√

r2 +
1 − z

1 + z
and h̃3(z) =

h2(z)

1 − z2
−
h1(z)

2

4
.

Since h̃3(z) > 0 for −1 ≤ z < 1 we set

h3(z) :=

√

h2(z)

1 − z2
−
h1(z)2

4
= r

√

1 + z

1 − z

h1(z)

2

and finally we have

V ol(V r) =

∫

S2(1)
λ

√

(

1 +
1

2
h1(z)T (θ)

)2

+ h3(z)2T (θ)2 + h2(z)R(θ)2 dvol.

For z ≥ −1, h2(z) ≥ 0 and then

V ol(V r) ≥

∫

S2(1)
λ

∣

∣

∣

∣

1 +
h1(z)

2
T (θ)

∣

∣

∣

∣

dvol

≥

∣

∣

∣

∣

∣

∫

S2(1)
λ

(

1 +
h1(z)

2
T (θ)

)

dvol

∣

∣

∣

∣

∣

The integral curves of T are the parallel circles Ca = S
2(1) ∩ {z = a} of

S
2(1) and :

∫

Ca

λh1(z)T (θ) dvolCa
= function(a) × 2kπ

with k ∈ Z. The relative integer k is the algebraic number of turns of V in
the frame {P,P⊥}. Since s is the only singular point of V and the index of
V at s is the same as the one of P at s, the number k is zero and the above
integral vanishes for every a ∈ [−1, 1]. Therefore

V ol(V r) ≥

∫

S2(1)
λ dvol = V ol(P r).

Equality holds if and only if θ ≡ cte i.e if V r is a Pontryagin field. �
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