

Dérivation des fonctions

Aimé Lachal

Cours de mathématiques 1^{er} cycle, 1^{re} année

Sommaire

- Dérivabilité en un point
 - Nombre dérivé
 - Dérivabilité à gauche/à droite
 - Interprétation graphique
 - Fonctions à valeurs complexes
- Dérivabilité sur un intervalle
 - Opérations
 - Dérivation d'une réciproque
 - Extremum d'une fonction
 - Théorème de Rolle
 - Théorème des accroissements finis
 - Dérivée et variations
 - Limite de la dérivée

- Oérivation d'ordre supérieur
 - Dérivées successives
 - Classe C^n
 - Opérations
- Convexité d'une fonction
 - Fonctions convexes
 - Point d'inflexion
- Compléments
 - Règle de L'Hospital

Sommaire

- Dérivabilité en un point
 - Nombre dérivé
 - Dérivabilité à gauche/à droite
 - Interprétation graphique
 - Fonctions à valeurs complexes
- Dérivabilité sur un intervalle
- Dérivation d'ordre supérieur
- Convexité d'une fonction
- Compléments

Dans ce qui suit, sauf indication contraire, I désigne un intervalle de $\mathbb R$ non réduit à un point, f une application de I dans $\mathbb R$ et x_0 un point de I.

Définition 1.1 (Dérivabilité)

- Pour tout $x \in I \setminus \{x_0\}$, on appelle **taux d'accroissement de f entre x_0 et x** le rapport $\tau_{x_0}(x) = \frac{f(x) f(x_0)}{x x_0}$.
- On dit que f est dérivable en x_0 si l'application τ_{x_0} admet une limite finie en x_0 . On note alors cette limite $f'(x_0)$ et on l'appelle le nombre dérivé de f en x_0 :

$$f'(x_0) = \lim_{\substack{x \to x_0 \\ x \neq x_0}} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{\substack{h \to 0 \\ h \neq 0}} \frac{f(x_0 + h) - f(x_0)}{h}.$$

Si x_0 est une borne de l'intervalle I, la limite de τ_{x_0} en x_0 est supposée être une limite à gauche ou une limite à droite selon le cas de figure.

1. Dérivabilité en un point a) Nombre dérivé

Corollaire 1.2 (Dérivabilité ⇒ continuité)

Si une fonction f est **dérivable** en x_0 alors f est **continue** en x_0 .

Attention, la **réciproque** de cette implication est **fausse**. Par exemple, pour f(x) = |x| et $x_0 = 0$, la fonction f est **continue** mais **pas dérivable** en x_0 .

Exemple 1.3 (Fonction puissance)

Soit $n \in \mathbb{N}$, $f(x) = x^n$ et $x_0 \in \mathbb{R}$. Les deux formulations conduisent à $f'(x_0) = nx_0^{n-1}$:

•
$$\frac{f(x) - f(x_0)}{x - x_0} = \frac{x^n - x_0^n}{x - x_0} = x^{n-1} + x_0 x^{n-2} + x_0^2 x^{n-3} + \dots + x_0^{n-1} \xrightarrow[x \to x_0]{} n x_0^{n-1};$$

•
$$\frac{f(x_0+h)-f(x_0)}{h} = \frac{(x_0+h)^n-x_0^n}{h} = \binom{n}{1}x_0^{n-1}+\binom{n}{2}x_0^{n-2}h+\cdots+\binom{n}{n}h^{n-1}\underset{h\to 0}{\longrightarrow} nx_0^{n-1}.$$

Exemple 1.4 (Fonction sinus)

Soit $f(x) = \sin x$ et $x_0 \in \mathbb{R}$. Les deux formulations conduisent à $f'(x_0) = \cos x_0$.

En effet, à l'aide de $\lim_{h\to 0} \frac{\sin h}{h} = 1$ et $\lim_{h\to 0} \frac{\cos h - 1}{h} = 0$:

•
$$\frac{f(x) - f(x_0)}{x - x_0} = \frac{\sin x - \sin x_0}{x - x_0} = 2\cos\left(\frac{x + x_0}{2}\right) \frac{\sin\left(\frac{x - x_0}{2}\right)}{x - x_0} \xrightarrow[x \to x_0]{} \cos x_0;$$

$$\frac{f(x_0+h)-f(x_0)}{h} = \frac{\sin(x_0+h)-\sin x_0}{h} = \sin x_0 \left(\frac{\cos h-1}{h}\right) + \cos x_0 \left(\frac{\sin h}{h}\right) \xrightarrow[h\to 0]{} \cos x_0.$$

2

Définition 1.5 (Dérivabilité à gauche, à droite)

On dit que f est **dérivable à gauche en x_0** (resp. **dérivable à droite en x_0**) lorsque τ_{x_0} admet une limite **finie** à gauche en x_0 (resp. une limite **finie** à droite en x_0).

On note alors
$$f'_g(x_0) = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0}$$
 et $f'_d(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}$.

Proposition 1.6

Si f est définie dans un voisinage de x₀ :

f est **dérivable** en x_0 ssi f est **dérivable** à gauche et à droite en x_0 et $f'_{\sigma}(x_0) = f'_{\sigma}(x_0)$.

On a alors $f'(x_0) = f'_{\sigma}(x_0) = f'_{\sigma}(x_0)$.

Exemple 1.7 (Valeur absolue)

Soit f la fonction «valeur absolue» : f(x) = |x|.

On a
$$\frac{f(x)-f(0)}{x} = \begin{cases} +1 & \text{si } x > 0 \\ -1 & \text{si } x < 0 \end{cases}$$
 puis $\lim_{x \to 0^+} \frac{f(x)-f(0)}{x} = +1$, $\lim_{x \to 0^-} \frac{f(x)-f(0)}{x} = -1$.

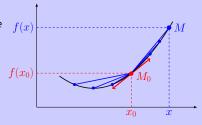
Ainsi f est dérivable à droite et à gauche en $0: f'_d(0) = +1$ et $f'_g(0) = -1$, mais $f'_g(0) \neq f'_d(0)$ donc f n'est pas dérivable en 0.

3

On munit le plan d'un repère orthonormal.

1 Si f est une fonction **dérivable** en x_0 , la droite d'équation $y = f'(x_0)(x - x_0) + f(x_0)$ est appelée **tangente** à la courbe représentative de f au point d'abscisse x_0 .

C'est la position limite des **cordes** reliant un point de la courbe M(x, f(x)) au point $M_0(x_0, f(x_0))$ lorsque M tend vers M_0 .



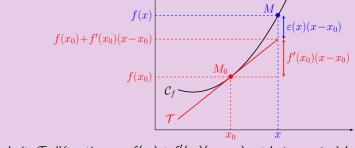
Dans le cas d'une **dérivabilité** de f uniquement à gauche ou à droite en x_0 , on parle de **demi-tangente**.

- **2** Dans le cas où $\lim_{x \to x_0^- \text{ ou } x_0^+} \frac{f(x) f(x_0)}{x x_0} = \pm \infty$, on dit que la courbe représentative de f admet une **demi-tangente verticale** en x_0 .
- **3** Si f est continue en x_0 et dérivable à gauche et à droite en x_0 avec $f'_g(x_0) \neq f'_d(x_0)$ on dit que la courbe représentative de f admet un point anguleux en x_0 .

Proposition 1.9 (Approximation affine)

Supposons f dérivable en x_0 . Alors il existe une application ε définie dans un voisinage de x_0 avec $\lim_{x_0} \varepsilon = 0$ telle que

au voisinage de
$$x_0$$
, $f(x) = f(x_0) + f'(x_0)(x - x_0) + (x - x_0)\varepsilon(x)$.



La droite \mathcal{T} d'équation $y = f(x_0) + f'(x_0)(x - x_0)$ est la **tangente** à la courbe représentative \mathcal{C}_f de f (cf. Définition 1.8).

Remarque: la relation $f(x) = f(x_0) + f'(x_0)(x - x_0) + (x - x_0)\varepsilon(x)$ est appelée **développement limité d'ordre 1 de f en x₀** (cf. chapitre « Développements limités »).

Exemple 1.10 (Raccord dérivable)

Interprétation graphique

f(x)

Exemple 1.10 (Naccord derivable)

Soit
$$f(x) = \begin{cases} x^2 & \text{si } x \leq 1, \\ -x^2 + 4x - 2 & \text{si } x \geq 1. \end{cases}$$

• f est continue sur \mathbb{R} ;

1. Dérivabilité en un point

- on a $\frac{f(x) f(1)}{x 1} = \begin{cases} x + 1 & \text{si } x < 1, \\ -x + 3 & \text{si } x > 1, \end{cases}$
 - $\begin{aligned}
 x 1 & \left(-x + 3 & \text{si } x > 1, \\
 \text{puis } \lim_{x \to 1} \frac{f(x) f(1)}{x 1} &= \lim_{x \to 1} \frac{f(x) f(1)}{x 1} &= 2;
 \end{aligned}$
- donc f est dérivable à droite et à gauche en 1 et $f'_g(1) = f'_d(1) = 2$. Ainsi f est dérivable en 1 et f'(1) = 2;
- la courbe admet la droite d'équation y = 2x 1 pour **tangente** au point de coordonnées (1, 1).

Exemple 1.11 (Fonctions non dérivables en un point)

- Soit $g(x) = \sqrt[3]{x}$. On a $\lim_{x \to 0} \frac{g(x) g(0)}{x} = +\infty$ donc la courbe admet une **tangente verticale** en l'origine
- ② Soit $h(x) = |\sin x|$. On a $\lim_{x \to 0^{\pm}} \frac{h(x) h(0)}{x} = \pm 1$ donc la courbe admet un **point anguleux** en l'origine.

point) y $y = \sqrt[3]{x}$ $y = |\sin x|$

On peut étendre la notion de dérivabilité aux fonctions definies sur $\mathbb R$ à valeurs dans $\mathbb C$ en utilisant les limites complexes des fonctions de $\mathbb R$ dans $\mathbb C$.

Proposition 1.12 (Dérivée d'une fonction à valeurs complexes)

Soit f une fonction de I dans \mathbb{C} telle que $f(x) = f_1(x) + if_2(x)$, où f_1 et f_2 sont deux fonctions de I dans \mathbb{R} et $x_0 \in I$.

La fonction f est dérivable en x_0 ssi f_1 et f_2 le sont, et l'on a alors

$$f'(x_0) = f_1'(x_0) + if_2'(x_0).$$

Proposition 1.13 (Dérivation de l'exponentielle complexe)

Rappelons que pour tout $z=a+\mathrm{i} b\in\mathbb{C}$, $\mathrm{e}^z=\mathrm{e}^a(\cos b+\mathrm{i}\sin b)$ (exponentielle complexe). Soit $\lambda\in\mathbb{C}$ et f définie par $\forall\,x\in\mathbb{R},\,f(x)=\mathrm{e}^{\lambda x}$. Alors

$$\forall x \in \mathbb{R}, \quad f'(x) = \lambda e^{\lambda x}.$$

7

Sommaire

- Dérivabilité en un poin
- Dérivabilité sur un intervalle
 - Opérations
 - Dérivation d'une réciproque
 - Extremum d'une fonction
 - Théorème de Rolle
 - Théorème des accroissements finis
 - Dérivée et variations
 - Limite de la dérivée
- Dérivation d'ordre supérieur
- Convexité d'une fonction
- Compléments

On dit qu'une fonction f est dérivable sur un intervalle I lorsque f est dérivable en tout point de I. On note f' la **fonction dérivée** de f qui à tout $x \in I$ associe f'(x).

a) Opérations

Proposition 2.2 (Addition, multiplication, division)

Soit f et g deux fonctions **dérivables** sur un intervalle I et $\lambda \in \mathbb{R}$. Les fonctions λf , f + g, $f \times g$ sont alors **dérivables** sur I et I'on a :

$$\bullet (\lambda f)' = \lambda f' \qquad \bullet (f + g)' = f' + g' \qquad \bullet (f \times g)' = f' \times g + f \times g'$$

Si g ne s'annule pas sur I, $\frac{f}{g}$ est aussi **dérivable** sur I et $\left(\frac{f}{\sigma}\right)' = \frac{f'g - fg'}{\sigma^2}$.

Exemple 2.3 (Fonctions homographiques)

Soit $a, b, c, d \in \mathbb{R}$, c étant **non nul.** On définit la fonction f par

$$f(x) = \frac{ax+b}{cx+d}.$$

- Son ensemble de définition est $\mathcal{D}_f = \mathbb{R} \setminus \{-\frac{d}{c}\}.$
- La fonction f est **dérivable** sur \mathcal{D}_f comme quotient de fonctions dérivables et

$$f'(x) = \frac{ad - bc}{(cx + d)^2}.$$

Remarque: f est constante ssi les couples (a, b) et (c, d) sont proportionnels.

2. Dérivabilité sur un intervalle **Proposition 2.4 (Composition)**

a) Opérations

Soit I et J deux intervalles, f une fonction de I dans J et g une fonction de J dans \mathbb{R} . Si f est dérivable sur l et g est dérivable sur J alors $g \circ f$ est dérivable sur l et l'on a la formule de dérivation d'une fonction composée :

$$(g \circ f)' = f' \times (g' \circ f).$$

Exemple 2.5 (Composées <u>usuelles</u>)

Lorsque les conditions le permettent, on a :

$$\bullet (\cos f)' = -f' \sin f$$

$$(f^{\alpha})' = \alpha f' f^{\alpha-1}$$

$$(\tan f)' = \frac{f'}{f'}$$

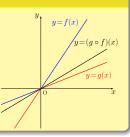
Les conditions f et g dérivables sont suffisantes mais non **nécessaires** pour que $g \circ f$ soit dérivable.

Par exemple, soit a et b deux réels et

$$f(x) = \begin{cases} ax & \text{si } x \leq 0 \\ bx & \text{si } x \geq 0 \end{cases} \text{ et } g(x) = \begin{cases} bx & \text{si } x \leq 0 \\ ax & \text{si } x \geq 0 \end{cases}.$$

La fonction $h = f \circ g = g \circ f$ est définie par $h(x) = (ab)x$.

Ainsi, lorsque $a \neq b$, f et g ne sont pas dérivables en 0 alors que h l'est.



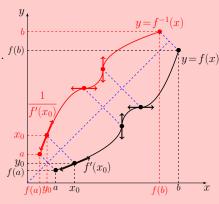
Théorème 2.7 (Dérivation d'une bijection réciproque)

Soit f une application **continue et strictement monotone** sur un intervalle I. Elle induit une **bijection** de I sur f(I) que I'on notera encore f.

- **1** Supposons f dérivable en $x_0 \in I$.
 - Si $f'(x_0) \neq 0$ alors f^{-1} est **dérivable** en $y_0 = f(x_0)$ et l'on a

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)} = \frac{1}{f'(f^{-1}(y_0))}.$$
 $f(b)$

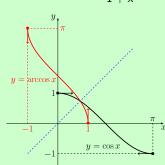
- Si f'(x₀) = 0 alors f⁻¹ n'est pas dérivable en y₀ = f(x₀) et sa courbe représentative présente une (demi-)tangente verticale au point d'abscisse y₀.
- **2** Supposons $\lim_{x\to x_0} \frac{f(x) f(x_0)}{x x_0} = \pm \infty$. Alors f^{-1} est dérivable en $y_0 = f(x_0)$, $(f^{-1})'(y_0) = 0$ et sa courbe représentative présente une **tangente horizontale** au point d'abscisse y_0 .

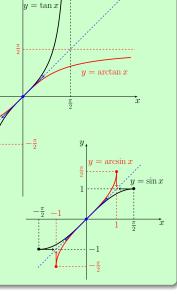


2. Dérivabilité sur un intervalle b) Dérivation d'une réciproque

Exemple 2.8 (Fonctions trigonométriques réciproques)

- arcsin est dérivable sur]-1,1[et $\forall x \in]-1,1[$, $\arcsin'(x)=\frac{1}{\sqrt{1-x^2}}.$
- arccos est dérivable sur]-1,1[et $\forall x \in]-1,1[$, $\arccos'(x)=-\frac{1}{\sqrt{1-x^2}}.$
- arctan est dérivable sur \mathbb{R} et $\forall x \in \mathbb{R}$, $\operatorname{arctan}'(x) = \frac{1}{1+x^2}$.





Définition 2.9 (Extremum)

Soit f une fonction définie sur un intervalle I et $x_0 \in I$.

1 On dit que f admet un **maximum local** (resp. un **minimum local**) en x_0 s'il existe un réel $\alpha > 0$ tel que :

$$\forall x \in]x_0 - \alpha, x_0 + \alpha[\cap I, \quad f(x) \leqslant f(x_0) \quad (resp. f(x) \geqslant f(x_0))$$

Un maximum ou un minimum local est appelé un extremum local.

9 On dit que f admet un **maximum global** (resp. un **minimum global**) sur I en x_0 lorsque : $\forall x \in I$, $f(x) \leq f(x_0)$ (resp. $f(x) \geq f(x_0)$).

Proposition 2.10 (Condition nécessaire d'extremum)

Soit f une fonction **dérivable** sur un intervalle I et $x_0 \in I$ qui **n**'est **pas** une borne de I **Si** f possède un **extremum local** en x_0 **alors** $f'(x_0) = 0$.

Remarque 2.11 (Point critique)

Lorsque $f'(x_0) = 0$ on dit que x_0 est un **point critique** de f.

Attention, la **réciproque** de la proposition 2.10 est **fausse** : un point critique **n'est pas nécessairement** un extremum. Par exemple, $f(x) = x^3$ et $x_0 = 0$.

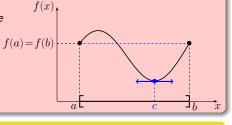
2. Dérivabilité sur un intervalle Théorème 2.12 (Théorème de Rolle)

Théorème de Rolle

Soit $f:[a,b] \longrightarrow \mathbb{R}$ une fonction telle que • f est continue sur [a, b];

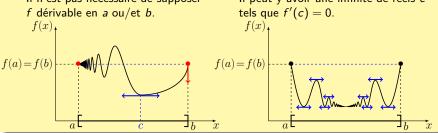
- f est dérivable sur]a, b[;
- f(a) = f(b).

Alors $\exists c \in]a, b[$ tel que f'(c) = 0.



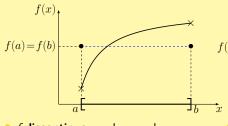
Les hypothèses « f est continue sur [a, b] et dérivable sur [a, b] » sont équivalentes

- à «f dérivable sur]a, b[et continue en a et b.» Il n'est pas nécessaire de supposer Il peut y avoir une infinité de réels c
 - tels que f'(c) = 0. f dérivable en a ou/et b.

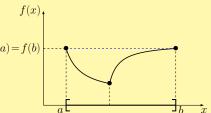


Remarque 2.14 (Contre-exemples)

Le théorème peut être mis en défaut lorsqu'une hypothèse n'est pas satisfaite.



 f discontinue aux bornes de l'intervalle, f' ne s'annule pas.



 f non dérivable en un point à l'intérieur de l'intervalle, f' ne s'annule pas.

Remarque 2.1!

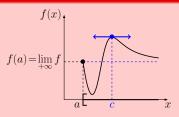
Le théorème de Rolle ne s'étend pas aux fonctions à valeurs complexes.

Par exemple, la fonction $f:[0,2\pi] \longrightarrow \mathbb{C}$ définie par $f(t)=e^{it}$ est dérivable sur $[0,2\pi]$, satisfait $f(0)=f(2\pi)$ alors que sa dérivée, $f'(t)=i\,e^{it}$, ne s'annule pas.

Théorème 2.16 (Théorème de Rolle généralisé (facultatif))

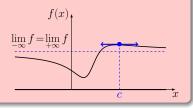
- **1** Soit $f:[a,+\infty[\longrightarrow \mathbb{R}]$ une fonction telle que
 - f est **continue** sur $[a, +\infty[$;
 - f est **dérivable** sur $]a, +\infty[$;
 - $\bullet \lim_{+\infty} f = f(a).$

Alors $\exists c \in]a, +\infty[$ tel que f'(c) = 0.



- **2** Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction telle que
 - f est **dérivable** sur \mathbb{R} ;
 - $\lim_{n \to \infty} f$ et $\lim_{n \to \infty} f$ existent et coïncident.

Alors $\exists c \in \mathbb{R}$ tel que f'(c) = 0.

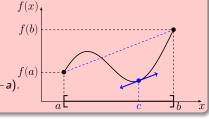


Théorème 2.17 (Théorème des accroissements finis)

Soit $f:[a,b] \longrightarrow \mathbb{R}$ une fonction telle que

- *f* est **continue** sur [a, b];
- f est **dérivable** sur]a, b[.

Alors $\exists c \in]a, b[$ tel que f(b)-f(a)=f'(c)(b-a).



Corollaire 2.18 (Inégalité des accroissements finis - version 1)

Soit f une fonction **continue** sur [a,b] et **dérivable** sur [a,b] (a < b). S'il existe des réels m et M tels que $\forall x \in]a,b[,m \leqslant f'(x) \leqslant M$, alors $m(b-a) \leqslant f(b) - f(a) \leqslant M(b-a)$.

Si f est **dérivable** sur un intervalle I et si $\exists k > 0$ tel que $\forall x \in I$, $|f'(x)| \leq k$ alors : $\forall (x,y) \in I \times I$, $|f(x) - f(y)| \leq k|x - y|$.

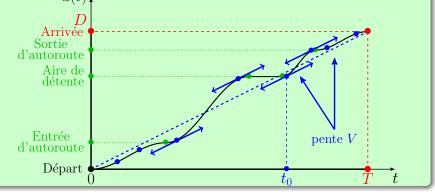
On dit que f est une fonction **k-Lipschitzienne** sur l (cf. cours du 2nd semestre).

e) Théorème des accroissements finis 2. Dérivabilité sur un intervalle Exemple 2.20 (Cinématique)

Un véhicule parcourt une distance de D km durant un laps de temps de T minutes. Soit $d:[0,T] \longrightarrow [0,D]$ la fonction modélisant le problème : à chaque instant $t \in [0, T], d(t)$ représente la distance parcourue durant l'intervalle de temps [0, t].

L'application d (« loi horaire » du mouvement) est dérivable sur [0, T], sa dérivée étant la vitesse instantanée du véhicule : d'(t) = v(t). La vitesse moyenne est V =Le théorème des accroissements finis stipule qu'il existe au moins un instant en lequel

la vitesse instantanée coïncide avec la vitesse moyenne : $\exists t_0 \in [0, T], \ v(t_0) = V$. Arrivée Sortie d'autoroute Aire de détente



Théorème 2.21 (Dérivée et variations)

Soit f une fonction dérivable sur un intervalle I. On a les équivalences suivantes :

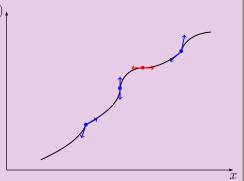
- **1** fest croissante sur $I \iff \forall x \in I, \quad f'(x) \geqslant 0$
- **2** f est décroissante $sur\ I$ \iff $\forall x \in I, f'(x) \leqslant 0$
- **6** fest constante sur $I \iff \forall x \in I, \quad f'(x) = 0$

Proposition 2.22 (Condition suffisante de stricte monotonie)

f(x)

Soit f une fonction **continue** sur un intervalle I et **dérivable** sur I sauf peut-être en un **nombre fini** de points.

Si f' est de **signe constant** et ne s'**annule** qu'en un **nombre fini** de points, alors f est **strictement monotone** sur l



2. Dérivabilité sur un intervalle g) Limite de la dérivée Théorème 2.23 (Théorème de la limite de la dérivée)

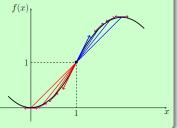
Soit f une fonction **continue** sur un intervalle I, **dérivable** sur $I \setminus \{x_0\}$, où $x_0 \in I$.

- $oldsymbol{0}$ Si $\lim_{x \to x_0} f'(x) = \ell$ où $\ell \in \mathbb{R}$, alors f est **dérivable** en x_0 et $f'(x_0) = \ell$
- $x \to x_0 \\ x \neq x_0$ (et donc f' est même continue en x_0). On dit que f est de **classe** \mathcal{C}^1 en x_0 .
- **9** Si $\lim_{x \to x_0^- \text{ ou } x_0^+} f'(x) = \pm \infty$, alors f n'est **pas dérivable** en x_0 et sa courbe représentative admet une (demi-)tangente **verticale** en x_0 .
- **§** Si f' admet des limites à gauche et à droite en x_0 distinctes alors f n'est pas dérivable en x_0 . Si ces limites sont finies, f est dérivable à gauche et à droite en x_0 .

Exemple 2.24 (Raccord de classe C^1)

Soit
$$f(x) = \begin{cases} x^2 & \text{si } x \leq 1, \\ -x^2 + 4x - 2 & \text{si } x \geq 1. \end{cases}$$

- f est continue sur \mathbb{R} et dérivable sur $\mathbb{R}\setminus\{1\}$;
- on a $f'(x) = \begin{cases} 2x & \text{si } x < 1, \\ -2x + 4 & \text{si } x > 1, \end{cases}$ puis $\lim_{x \to 1} f'(x) = \lim_{x \to 1} f'(x) = 2;$
- donc f est **dérivable** en 1 (et C^1) et f'(1) = 2.



emarque 2.2

Dans le théorème 2.23, l'hypothèse « f est continue sur I et dérivable sur $I \setminus \{x_0\}$ » est équivalente à « f est continue en x_0 et dérivable sur $I \setminus \{x_0\}$ ».

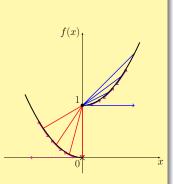
Le théorème est mis en défaut si f n'est **pas continue** en x_0 , f n'est évidemment **pas dérivable** en x_0 même si la limite $\lim_{\substack{x \to x_0 \\ x \neq 0}} f'(x)$ existe comme le montre l'exemple ci-dessous.

Soit
$$f(x) = \begin{cases} x^2 & \text{si } x < 0, \\ x^2 + 1 & \text{si } x \geqslant 0. \end{cases}$$

- f est dérivable sur $\mathbb{R}\setminus\{0\}$;
- on a $\forall x \in \mathbb{R}^*$, f'(x) = 2x donc $\lim_{\substack{x \to 0 \\ x \neq 0}} f'(x) = 0$;
- mais f n'est pas dérivable en 0 (discontinue en 0).

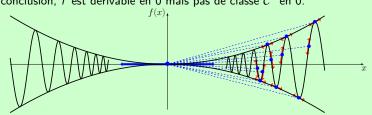
En fait f est dérivable à droite en 0, $f'_d(0) = 0$, mais pas à gauche.

Le graphe de f admet ainsi une demi-tangente horizontale à droite en 0, mais contrairement aux apparences, pas à gauche.



Soit
$$f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & \text{si } x \neq 0, \\ 0 & \text{si } x = 0. \end{cases}$$

- f est clairement dérivable sur ℝ*.
- Avec $|f(x)| \le x^2$, on voit que $\lim_{x \to 0} f(x) = 0 = f(0)$, donc f est continue en 0.
- On a $\forall x \in \mathbb{R}^*$, $\frac{f(x) f(0)}{x} = x \sin\left(\frac{1}{x}\right)$, donc $\left|\frac{f(x) f(0)}{x}\right| \leqslant |x|$, puis $\lim_{x\to 0} \frac{f(x)-f(0)}{x} = 0$, et alors f est dérivable en 0 de dérivée 0.
- On a $\forall x \in \mathbb{R}^*$, $f'(x) = 2x \sin\left(\frac{1}{x}\right) \cos\left(\frac{1}{x}\right)$. On voit que f' n'a pas de limite en 0.
- En conclusion, f est dérivable en 0 mais pas de classe C^1 en 0.



Sommaire

- Dérivabilité en un point
- Dérivabilité sur un intervalle
- 3 Dérivation d'ordre supérieur
 - Dérivées successives
 - Classe C^n
 - Opérations
- 4 Convexité d'une fonction
- 6 Compléments

3. Dérivation d'ordre supérieur

a) Dérivées successives

Définition 3.1 (Dérivées successives)

Soit $n \in \mathbb{N}$. On dit qu'une fonction f est **n** fois dérivable lorsqu'on peut dériver successivement n fois en commençant par f. On note alors $f^{(2)}$ (ou f'') la **dérivée** 2^{nde} de f, $f^{(3)}$ (ou f''') sa **dérivée** 3^e , etc., $f^{(n)}$ sa **dérivée** n^e . Par convention : $f^{(0)} = f$.

Remarque 3.

Pour que f soit n fois dérivable en x_0 , il est implicitement nécessaire que $f^{(n-1)}$ soit définie sur un voisinage de x_0 , i.e. que f soit (n-1) fois dérivable sur un voisinage de x_0 . En effet : $f^{(n-1)}(x) = f^{(n-1)}(x_0)$

t:
$$f^{(n)}(x_0) = \lim_{\substack{x \to x_0 \\ x \neq x_0}} \frac{f^{(n-1)}(x) - f^{(n-1)}(x_0)}{x - x_0}$$

Exemple 3.3 (Fonctions usuelles)

•
$$\exp^{(n)}(x) = \exp(x)$$
 • $\cos^{(n)}(x) = \cos\left(x + n\frac{\pi}{2}\right)$ • $\sin^{(n)}(x) = \sin\left(x + n\frac{\pi}{2}\right)$

• si
$$\varphi(x) = x^p$$
 avec $p \in \mathbb{N}$, $\varphi^{(n)}(x) = \begin{cases} p(p-1)\dots(p-n+1)x^{p-n} & \text{si } n p \end{cases}$

$$ullet$$
 si $\psi(x)=rac{1}{x^p}$ avec $p\in\mathbb{N},\;\psi^{(n)}(x)=(-1)^nrac{p(p+1)\dots(p+n-1)}{x^{p+n}}$

Définition 3.4 (Classe C^n)

Soit f une fonction définie sur un voisinage de x_0 . On dit que :

- **1** f est de **classe** C^0 en x_0 lorsque f est **continue** en x_0 .
- **9** f est de **classe** C^n en x_0 $(n \in \mathbb{N}^*)$ lorsque f est **n fois dérivable** en x_0 et lorsque $f^{(n)}$ est **continue** en x_0 .
- **3** f est de classe C^{∞} en x_0 lorsque elle est de classe C^n en x_0 pour tout $n \in \mathbb{N}$.

Proposition 3.5 (Hiérarchie)

- **1** fest de classe $C^n \Longrightarrow$ fest **n** fois dérivable \Longrightarrow fest de classe C^{n-1}
- **2** f est n fois dérivable \implies f est d eclasse $C^{n-1} \implies f$ est (n-1) fois dérivable

Exemple 3.6 (Fonctions usuelles)

- **1** Les fonctions exp, cos, sin, ch, sh, polynômes sont de **classe** \mathcal{C}^{∞} sur \mathbb{R} .
- **2** Les fonctions In et puissances sont de **classe** \mathcal{C}^{∞} sur $]0, +\infty[$.
- $oldsymbol{3}$ Les fonctions rationnelles sont de classe $oldsymbol{\mathcal{C}}^{\infty}$ sur leur ensemble de définition.

Proposition 3.7 (Opérations)

Soit f et g deux fonctions **n** fois dérivables sur un intervalle I et $\lambda \in \mathbb{R}$. Alors :

- **1** les fonctions λf et f + g sont **n** fois dérivables sur I et I'on a:
 - $(\lambda f)^{(n)} = \lambda f^{(n)}$ $(f+g)^{(n)} = f^{(n)} + g^{(n)}$
- **2** la fonction $f \times g$ est **n** fois dérivable sur l et l'on a (formule de Leibniz) :

$$\bullet (f \times g)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(k)} g^{(n-k)}.$$

Exemple 3.8 (Formule de Leibniz)

- Pour n = 2 et n = 3, la formule de Leibniz s'écrit :
 - (fg)'' = fg'' + 2f'g' + f''g (fg)''' = fg''' + 3f'g'' + 3f''g' + f'''g.
- **2** Soit φ la fonction définie $\varphi(x) = x^2 e^x$.

Posons $f(x) = x^2$ et $g(x) = e^x$.

On a f'(x) = 2x, f''(x) = 2 puis $\forall k \in \mathbb{N} \setminus \{0, 1, 2\}$, $f^{(k)}(x) = 0$.

Par ailleurs $\forall k \in \mathbb{N}, g^{(k)}(x) = e^x$.

Ainsi $\forall n \in \mathbb{N}, \ \varphi^{(n)}(x) = (x^2 + 2nx + n(n-1))e^x$.

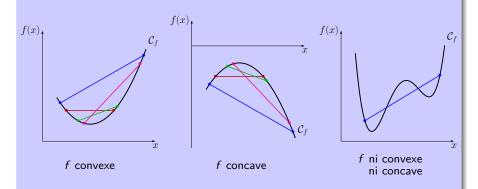
Sommaire

- Dérivabilité en un point
- Dérivabilité sur un intervalle
- 3 Dérivation d'ordre supérieur
- Convexité d'une fonction
 - Fonctions convexes
 - Point d'inflexion
- Compléments

Définition 4.1 (Fonction convexe)

Soit f une fonction définie sur un intervalle I de courbe représentative \mathcal{C}_f .

- Définition géométrique
 - On dit que f est convexe sur I (resp. concave sur I) lorsque toutes les cordes reliant deux points de C_f sont au-dessus (resp. au-dessous) de C_f .
 - La fonction f est **concave sur** I ssi la fonction -f est **convexe sur** I.



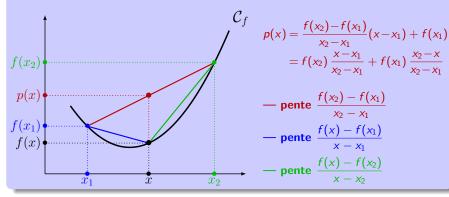
Définition 4.1 (Fonction convexe)

Soit f une fonction définie sur un intervalle I de courbe représentative \mathcal{C}_f .

2 Définition analytique

f est convexe ssi

$$\forall x_1, x_2 \in I_{(x_1 < x_2)}, \ \forall x \in]x_1, x_2[, \quad f(x) \leqslant f(x_2) \frac{x - x_1}{x_2 - x_1} + f(x_1) \frac{x_2 - x}{x_2 - x_1}$$
ou encore
$$\frac{f(x) - f(x_1)}{x - x_1} \leqslant \frac{f(x) - f(x_2)}{x - x_2}$$



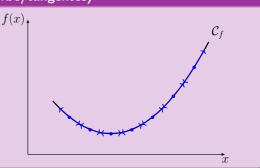
Proposition 4.2 (Fonction convexe et dérivation)

Soit f une fonction dérivable sur un intervalle I.

- **1** La fonction f est **convexe sur I** ssi la fonction f' est **croissante** sur I.
- **Q** La fonction f est **concave sur l** ssi la fonction f' est **décroissante** sur l.

Proposition 4.3 (Position courbe/tangentes)

La courbe représentative d'une fonction convexe (resp. concave) est au-dessus (resp. au-dessous) de chacune de ses tangentes.



4. Convexité d'une fonction a) F

a) Fonctions convexes

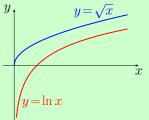
Proposition 4.4 (Un critère de convexité)

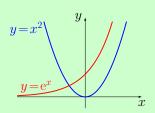
Soit f une fonction **deux fois dérivable** sur un intervalle I.

f est **convexe** sur I (resp. **concave** sur I) ssi $\forall x \in I$, $f''(x) \ge 0$ (resp. $f''(x) \le 0$).

Exemple 4.5 (Fonctions usuelles)

- **1** Les fonctions carré et exponentielle sont **convexes** sur \mathbb{R} .
- 2 Les fonctions racine carrée et logarithme sont concaves sur $]0,+\infty[$.
- § Plus généralement : la fonction $x \mapsto x^{\alpha}$ est **convexe** pour tout $\alpha \in]-\infty,0] \cup [1,+\infty[$ y, $\alpha \in [0,1]$ sur $[0,+\infty[$





Remarque 4.6 (Convexité et réciprocité)

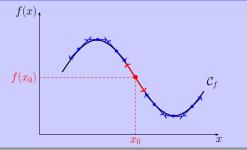
Une bijection convexe admet une réciproque concave et réciproquement.

4. Convexité d'une fonction

b) Point d'inflexion

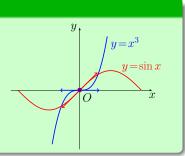
Définition 4.7 (Point d'inflexion)

Lorsque f'' s'annule en x_0 en changeant de signe, on dit que sa courbe représentative change de concavité et le point d'abscisse x_0 est alors appelé point d'inflexion de la courbe.



Exemple 4.8 (Fonctions «cube» et sinus)

- Les fonctions cube et sinus admettent un point d'inflexion en l'origine.
- Plus généralement, pour tout entier positif impair n, la fonction x → xⁿ admet un point d'inflexion en l'origine.



Sommaire

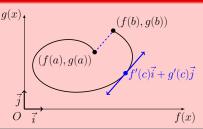
- 1 Dérivabilité en un poin
- Dérivabilité sur un intervalle
- Oérivation d'ordre supérieur
- Convexité d'une fonction
- Compléments
 - Règle de L'Hospital

Théorème 5.1 (Accroissements finis généralisés (facultatif))

Soit f et g deux fonctions continues sur un intervalle [a, b] et dérivables sur]a, b[.

Alors il existe un réel c dans]a, b[tel que

$$(f(b)-f(a))g'(c)=(g(b)-g(a))f'(c).$$



Corollaire 5.2 (Règle de L'Hospital (facultatif))

Soit f et g deux fonctions **continues** sur un intervalle I, **dérivables** sur $I \setminus \{x_0\}$ où $x_0 \in I$, telles que $g'(x) \neq 0$ sur $I \setminus \{x_0\}$. Alors :

$$\lim_{\substack{x \to x_0 \\ x \neq x_0}} \frac{f'(x)}{g'(x)} = \ell \quad \Longrightarrow \quad \lim_{\substack{x \to x_0 \\ x \neq x_0}} \frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \ell.$$

Cette règle permet d'étudier certaines formes indéterminées $\frac{0}{0}$.

Corollaire 5.3 (Initiation à la formule de Taylor-Young (cf. chapitre « Développements limités »))

1 Soit f une fonction **deux fois dérivable** en x_0 . Alors :

$$\lim_{\substack{x \to x_0 \\ x \neq x_0}} \frac{f(x) - f(x_0) - f'(x_0)(x - x_0)}{(x - x_0)^2} = \frac{1}{2} f''(x_0).$$

2 Plus généralement, si f est une fonction **n** fois dérivable en x_0 , alors :

$$\lim_{\substack{x \to x_0 \\ x \neq x_0}} \frac{f(x) - \sum_{k=0}^{n-1} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k}{(x - x_0)^n} = \frac{1}{n!} f^{(n)}(x_0).$$

Exemple 5.4 (Fonctions cosinus/sinus et cosinus/sinus hyperbolique)

$$\bullet \lim_{x\to 0}\frac{\cos x-1}{x^2}=-\frac{1}{2}$$

$$\bullet \lim_{x \to 0} \frac{\operatorname{ch} x - 1}{x^2} = \frac{1}{2}$$

$$\bullet \lim_{x\to 0} \frac{\sin x - x}{x^3} = -\frac{1}{6}$$

$$\bullet \lim_{x \to 0} \frac{\mathsf{sh} x - x}{x^3} = \frac{1}{6}$$

5. Compléments

Et pour aller plus loin...

Notions à retenir

- Dérivée
 - * Opérations, techniques de calcul
 - \star Ordre supérieur, classe \mathcal{C}^n
- Tangente
 - * Équation à connaître
 - ★ Position relative de la courbe par rapport à sa tangente
- Dérivabilité
 - * Théorèmes fondamentaux (théorème de Rolle, TAF, IAF)
 - * Dérivée de la réciproque d'une bijection
- Variations
 - * Monotonie
 - * Détermination d'extremums
 - * Étude de la convexité, détermination de points d'inflexion
- Fonctions trigonométriques réciproques
 - * Dérivées à connaître