

Suites numériques

Aimé Lachal

Cours de mathématiques 1^{er} cycle, 1^{re} année

Sommaire

- Rappels sur les suites
 - Monotonie d'une suite réelle
 - Suites majorées, minorées, bornées
- 2 Limite d'une suite
 - Suites convergentes
 - Propriétés des limites
- Suites extraites
- Suites adjacentes

- Suites récurrentes
 - Définition
 - Monotonie de la fonction associée
 - Points fixes d'une fonction
 - Fonctions lipschitziennes/contractantes
 - Théorème du point fixe
 - Illustration d'une suite récurrente
- 6 Approximation des zéros d'une fonction : méthode de Newton
 - Principe de la méthode
 - Convergence de la méthode
 - Vitesse de convergence de la méthode

Sommaire

- Rappels sur les suites
 - Monotonie d'une suite réelle
 - Suites majorées, minorées, bornées
- 2 Limite d'une suite
- Suites extraites
- Suites adjacentes
- Suites récurrentes
- 6 Approximation des zéros d'une fonction : méthode de Newton

Soit $(u_n)_{n\in\mathbb{N}}$ une suite **réelle**.

1 On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est **croissante** (resp. **strictement croissante**) lorsque :

$$\forall n \in \mathbb{N}, \quad u_{n+1} \geqslant u_n \quad (resp. \ u_{n+1} > u_n)$$

ι

Soit $(u_n)_{n\in\mathbb{N}}$ une suite **réelle**.

1 On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est **croissante** (resp. **strictement croissante**) lorsque :

$$\forall n \in \mathbb{N}, \quad u_{n+1} \geqslant u_n \qquad (resp. \ u_{n+1} > u_n)$$

2 On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est **décroissante** (resp. **strictement décroissante**) lorsque :

$$\forall n \in \mathbb{N}, \quad u_{n+1} \leqslant u_n \qquad (resp. \ u_{n+1} < u_n)$$

ι

Soit $(u_n)_{n\in\mathbb{N}}$ une suite **réelle**.

1 On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est **croissante** (resp. **strictement croissante**) lorsque :

$$\forall n \in \mathbb{N}, \quad u_{n+1} \geqslant u_n \qquad (resp. \ u_{n+1} > u_n)$$

2 On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est **décroissante** (resp. **strictement décroissante**) lorsque :

$$\forall n \in \mathbb{N}, \quad u_{n+1} \leqslant u_n \qquad (\textit{resp.} \ u_{n+1} < u_n)$$

3 On dit qu'une suite réelle est monotone (resp. strictement monotone) lorsqu'elle est croissante ou décroissante (resp. strictement croissante ou strictement décroissante).

L

Soit $(u_n)_{n\in\mathbb{N}}$ une suite **réelle**.

1 On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est **croissante** (resp. **strictement croissante**) lorsque :

$$\forall n \in \mathbb{N}, \quad u_{n+1} \geqslant u_n \qquad (resp. \ u_{n+1} > u_n)$$

2 On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est **décroissante** (resp. **strictement décroissante**) lorsque :

$$\forall n \in \mathbb{N}, \quad u_{n+1} \leqslant u_n \qquad (\textit{resp.} \ \ u_{n+1} < u_n)$$

On dit qu'une suite réelle est monotone (resp. strictement monotone) lorsqu'elle est croissante ou décroissante (resp. strictement croissante ou strictement décroissante).

Remarque 1.2 (Méthodes

Il y a plusieurs manières d'étudier les variations d'une suite :

• on peut étudier le signe de $u_{n+1} - u_n$;

Soit $(u_n)_{n\in\mathbb{N}}$ une suite **réelle**.

1 On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est **croissante** (resp. **strictement croissante**) lorsque :

$$\forall n \in \mathbb{N}, \quad u_{n+1} \geqslant u_n \qquad (resp. \ u_{n+1} > u_n)$$

2 On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est **décroissante** (resp. **strictement décroissante**) lorsque :

$$\forall n \in \mathbb{N}, \quad u_{n+1} \leqslant u_n \qquad (\textit{resp.} \ u_{n+1} < u_n)$$

On dit qu'une suite réelle est monotone (resp. strictement monotone) lorsqu'elle est croissante ou décroissante (resp. strictement croissante ou strictement décroissante).

Remarque 1.2 (Méthodes

Il y a plusieurs manières d'étudier les variations d'une suite :

- on peut étudier le signe de $u_{n+1} u_n$;
- si $u_n=f(n)$ avec f fonction réelle, on peut étudier la monotonie de f sur \mathbb{R}^+ ;

Soit $(u_n)_{n\in\mathbb{N}}$ une suite **réelle**.

1 On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est **croissante** (resp. **strictement croissante**) lorsque :

$$\forall n \in \mathbb{N}, \quad u_{n+1} \geqslant u_n \qquad (resp. \ u_{n+1} > u_n)$$

2 On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est **décroissante** (resp. **strictement décroissante**) lorsque :

$$orall n \in \mathbb{N}, \quad u_{n+1} \leqslant u_n \qquad (resp. \ u_{n+1} < u_n)$$

On dit qu'une suite réelle est monotone (resp. strictement monotone) lorsqu'elle est croissante ou décroissante (resp. strictement croissante ou strictement décroissante).

Remarque 1.2 (Méthodes)

Il y a plusieurs manières d'étudier les variations d'une suite :

- on peut étudier le signe de $u_{n+1} u_n$;
- si $u_n = f(n)$ avec f fonction réelle, on peut étudier la monotonie de f sur \mathbb{R}^+ ;
- si tous les termes sont **de signe constant**, on peut comparer $\frac{u_{n+1}}{u_n}$ et 1.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite **réelle**.

① On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est **majorée** lorsque $\exists A \in \mathbb{R}, \quad \forall n \in \mathbb{N}, \quad u_n \leqslant A.$

A est alors un **majorant** de
$$(u_n)_{n\in\mathbb{N}}$$
.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite **réelle**.

1 On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est **majorée** lorsque $\exists A \in \mathbb{R}, \forall n \in \mathbb{N}, u_n \leqslant A$.

A est alors un **majorant** de $(u_n)_{n\in\mathbb{N}}$.

- **2** On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est **minorée** lorsque
 - $\exists B \in \mathbb{R}, \quad \forall n \in \mathbb{N}, \quad u_n \geqslant B.$

B est alors un **minorant** de $(u_n)_{n\in\mathbb{N}}$.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite **réelle**.

1 On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est majorée lorsque $\exists A \in \mathbb{R}, \forall n \in \mathbb{N}, u_n \leqslant A.$

A est alors un **majorant** de $(u_n)_{n\in\mathbb{N}}$.

- **2** On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est **minorée** lorsque
- $\exists B \in \mathbb{R}, \quad \forall n \in \mathbb{N}, \quad u_n \geqslant B.$ B est alors un **minorant** de $(u_n)_{n \in \mathbb{N}}$.

B est alors un **minorant** de $(u_n)_{n\in\mathbb{N}}$

3 On dit qu'une suite réelle est **bornée** lorsqu'elle est **majorée et minorée**. De manière équivalente : la suite $(u_n)_{n\in\mathbb{N}}$ est **bornée** ssi

 $\exists M \in \mathbb{R}^+, \quad \forall n \in \mathbb{N}, \quad |u_n| \leqslant M.$

Soit $(u_n)_{n\in\mathbb{N}}$ une suite **réelle**.

1 On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est **majorée** lorsque

$$\exists A \in \mathbb{R}, \quad \forall n \in \mathbb{N}, \quad u_n \leqslant A.$$

A est alors un **majorant** de $(u_n)_{n\in\mathbb{N}}$.

② On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est **minorée** lorsque $\exists B \in \mathbb{R}, \forall n \in \mathbb{N}, u_n \geqslant B.$

B est alors un **minorant** de $(u_n)_{n\in\mathbb{N}}$.

On dit qu'une suite réelle est bornée lorsqu'elle est majorée et minorée. De manière équivalente : la suite (u_n)_{n∈N} est bornée ssi

$$\exists M \in \mathbb{R}^+, \forall n \in \mathbb{N}, |u_n| \leqslant M.$$

Définition 1.4 (Cas des suites complexes)

On dit que la suite **complexe** $(u_n)_{n\in\mathbb{N}}$ est **bornée** lorsque

$$\exists M \in \mathbb{R}^+, \forall n \in \mathbb{N}, |u_n| \leqslant M.$$

Soit (un)n∈ℕ une suite **réelle**.

1 On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est **majorée** lorsque

 $\exists A \in \mathbb{R}, \quad \forall n \in \mathbb{N}, \quad u_n \leqslant A.$

 $\exists A \in \mathbb{R}, \quad \forall n \in \mathbb{N}, \quad u_n \leqslant \lambda$ A est alors un **majorant** de $(u_n)_{n \in \mathbb{N}}$.

9 On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est **minorée** lorsque $\exists B \in \mathbb{R}, \forall n \in \mathbb{N}. u_n \geqslant B.$

B est alors un **minorant** de $(u_n)_{n\in\mathbb{N}}$.

3 On dit qu'une suite réelle est **bornée** lorsqu'elle est **majorée et minorée**. De manière équivalente : la suite $(u_n)_{n\in\mathbb{N}}$ est **bornée** ssi

$$\exists M \in \mathbb{R}^+, \forall n \in \mathbb{N}, |u_n| \leqslant M.$$

Définition 1.4 (Cas des suites complexes)

On dit que la suite **complexe** $(u_n)_{n\in\mathbb{N}}$ est **bornée** lorsque $\exists M\in\mathbb{R}^+, \forall n\in\mathbb{N}, |u_n|\leqslant M.$

Proposition 1.5 (Cas des suites complexes)

La suite **complexe** $(u_n)_{n\in\mathbb{N}}$ est **bornée** ssi les suites **réelles** $(\Re e(u_n))_{n\in\mathbb{N}}$ et $(\Im m(u_n))_{n\in\mathbb{N}}$ sont **bornées**.

Sommaire

- Rappels sur les suites
- 2 Limite d'une suite
 - Suites convergentes
 - Propriétés des limites
- Suites extraites
- Suites adjacentes
- Suites récurrentes
- 6 Approximation des zéros d'une fonction : méthode de Newton

On dit qu'une suite réelle ou complexe $(u_n)_{n\in\mathbb{N}}$ converge vers le nombre ℓ lorsque

$$\forall \varepsilon > 0, \quad \exists N_{\varepsilon} \in \mathbb{N}, \quad \forall n \in \mathbb{N}, \quad (n > N_{\varepsilon} \Longrightarrow |u_n - \ell| < \varepsilon).$$

On dit que ℓ est la **limite** de la suite $(u_n)_{n\in\mathbb{N}}$ et l'on note $\lim_{n\to+\infty}u_n=\ell$.

On dit qu'une suite réelle ou complexe $(u_n)_{n\in\mathbb{N}}$ converge vers le nombre ℓ lorsque

$$\forall \varepsilon > 0, \quad \exists N_{\varepsilon} \in \mathbb{N}, \quad \forall n \in \mathbb{N}, \quad (n > N_{\varepsilon} \Longrightarrow |u_n - \ell| < \varepsilon).$$

On dit que ℓ est la **limite** de la suite $(u_n)_{n\in\mathbb{N}}$ et l'on note $\lim_{n\to+\infty}u_n=\ell$.

Proposition 2.2

Toute suite **convergente** est **bornée**. La réciproque est **fausse**.

;

On dit qu'une suite réelle ou complexe $(u_n)_{n\in\mathbb{N}}$ converge vers le nombre ℓ lorsque

$$\forall \varepsilon > 0, \quad \exists N_{\varepsilon} \in \mathbb{N}, \quad \forall n \in \mathbb{N}, \quad (n > N_{\varepsilon} \Longrightarrow |u_n - \ell| < \varepsilon).$$

On dit que ℓ est la **limite** de la suite $(u_n)_{n\in\mathbb{N}}$ et l'on note $\lim_{n\to+\infty}u_n=\ell$.

Proposition 2.2

Toute suite convergente est bornée. La réciproque est fausse.

Définition 2.3 (Divergence)

Lorsque la suite $(u_n)_{n\in\mathbb{N}}$ ne converge pas, on dit qu'elle **diverge**, c'est-à-dire :

$$\forall \ell \in \mathbb{R} \ (ou \ \mathbb{C}), \quad \exists \varepsilon \in \mathbb{R}_+^*, \quad \forall N \in \mathbb{N}, \quad \exists n \in \mathbb{N}, \quad (n > N \ et \ |u_n - \ell| > \varepsilon)$$

On dit qu'une suite réelle ou complexe $(u_n)_{n\in\mathbb{N}}$ converge vers le nombre ℓ lorsque

$$\forall \varepsilon > 0, \quad \exists N_{\varepsilon} \in \mathbb{N}, \quad \forall n \in \mathbb{N}, \quad (n > N_{\varepsilon} \Longrightarrow |u_n - \ell| < \varepsilon).$$

On dit que ℓ est la **limite** de la suite $(u_n)_{n\in\mathbb{N}}$ et l'on note $\lim_{n\to+\infty}u_n=\ell$.

Proposition 2.2

Toute suite convergente est bornée. La réciproque est fausse.

Définition 2.3 (Divergence)

Lorsque la suite $(u_n)_{n\in\mathbb{N}}$ ne converge pas, on dit qu'elle **diverge**, c'est-à-dire :

$$\forall \ell \in \mathbb{R} \ (ou \ \mathbb{C}), \quad \exists \varepsilon \in \mathbb{R}_+^*, \quad \forall N \in \mathbb{N}, \quad \exists n \in \mathbb{N}, \quad (n > N \ et \ |u_n - \ell| > \varepsilon)$$

En particulier, pour une suite réelle divergente :

• on dit que $(u_n)_{n\in\mathbb{N}}$ tend vers $+\infty$ et l'on note $\lim_{n\to+\infty} u_n = +\infty$ lorsque $\forall A\in\mathbb{R}, \quad \exists n_A\in\mathbb{N}, \quad \forall n\in\mathbb{N}, \quad (n>n_A\Longrightarrow u_n>A);$

On dit qu'une suite réelle ou complexe $(u_n)_{n\in\mathbb{N}}$ converge vers le nombre ℓ lorsque

$$\forall \varepsilon > 0, \quad \exists N_{\varepsilon} \in \mathbb{N}, \quad \forall n \in \mathbb{N}, \quad (n > N_{\varepsilon} \Longrightarrow |u_n - \ell| < \varepsilon).$$

On dit que ℓ est la **limite** de la suite $(u_n)_{n\in\mathbb{N}}$ et l'on note $\lim_{n\to+\infty}u_n=\ell$.

Proposition 2.2

Toute suite convergente est bornée. La réciproque est fausse.

Définition 2.3 (Divergence)

Lorsque la suite $(u_n)_{n\in\mathbb{N}}$ ne converge pas, on dit qu'elle **diverge**, c'est-à-dire :

$$\forall \ell \in \mathbb{R} \ (ou \ \mathbb{C}), \quad \exists \varepsilon \in \mathbb{R}_+^*, \quad \forall N \in \mathbb{N}, \quad \exists n \in \mathbb{N}, \quad (n > N \ et \ |u_n - \ell| > \varepsilon)$$

En particulier, pour une suite réelle divergente :

- on dit que $(u_n)_{n\in\mathbb{N}}$ tend vers $+\infty$ et l'on note $\lim_{n\to+\infty} u_n = +\infty$ lorsque $\forall A\in\mathbb{R}, \quad \exists n_A\in\mathbb{N}, \quad \forall n\in\mathbb{N}, \quad (n>n_A\Longrightarrow u_n>A);$
- **Q** on dit que $(u_n)_{n\in\mathbb{N}}$ tend vers $-\infty$ et l'on note $\lim_{n\to+\infty}u_n=-\infty$ lorsque $\forall B\in\mathbb{R}, \quad \exists n_B\in\mathbb{N}, \quad \forall n\in\mathbb{N}, \quad (n>n_B\Longrightarrow u_n< B).$

3

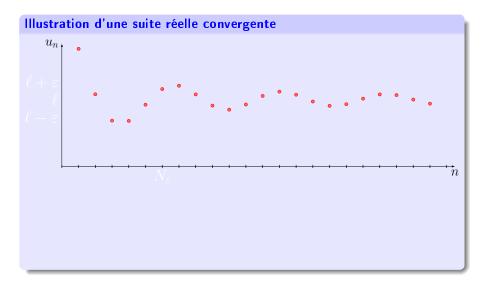
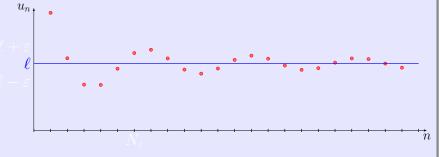
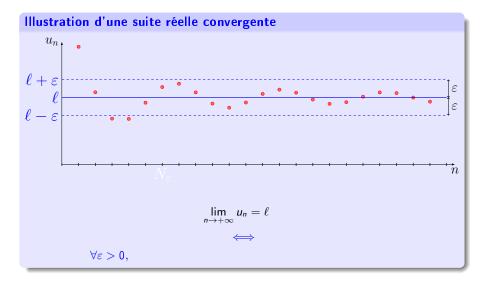
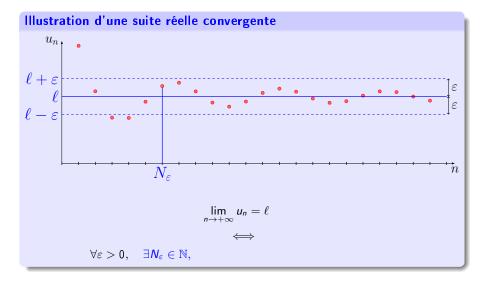


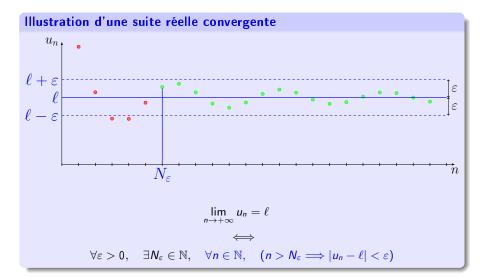
Illustration d'une suite réelle convergente

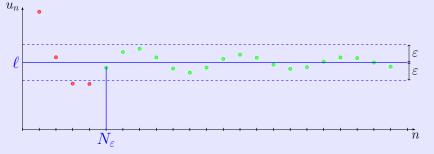


$$\lim_{n\to +\infty} u_n = \ell$$

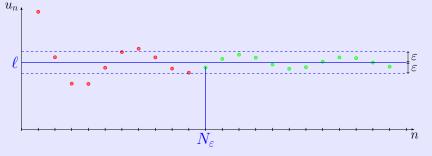




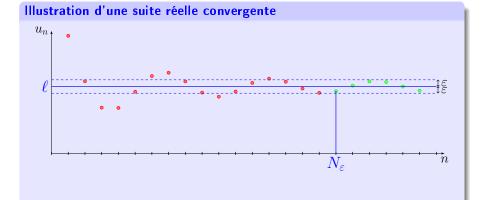




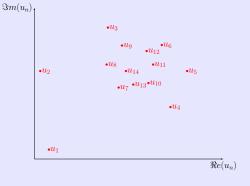
L'entier $\emph{N}_{arepsilon}$ dépend naturellement de arepsilon et il n'est pas unique.



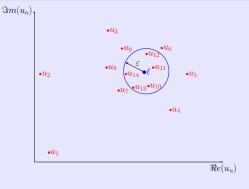
L'entier $extbf{ extit{N}}_arepsilon$ dépend naturellement de arepsilon et il n'est pas unique.



L'entier N_{ε} dépend naturellement de ε et il n'est pas unique.

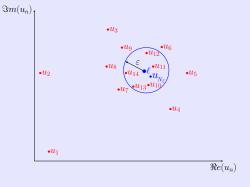


$$\lim_{n\to+\infty}u_n=\ell$$



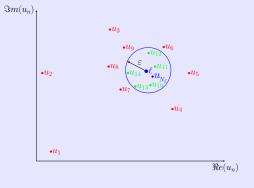
$$\lim_{n\to+\infty}u_n=\ell$$

 $\forall \varepsilon > 0,$



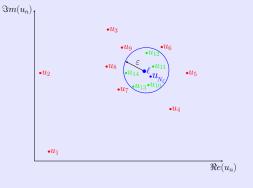
$$\lim_{n\to+\infty}u_n=\ell$$

$$\forall \varepsilon > 0, \quad \exists N_{\varepsilon} \in \mathbb{N},$$



$$\lim_{n\to+\infty}u_n=\ell$$

$$\forall \varepsilon > 0, \quad \exists N_{\varepsilon} \in \mathbb{N}, \quad \forall n \in \mathbb{N}, \quad (n > N_{\varepsilon} \Longrightarrow |u_n - \ell| < \varepsilon)$$



$$\lim_{n \to +\infty} u_n = \ell$$

$$\iff$$

$$\forall \varepsilon > 0, \quad \exists N_\varepsilon \in \mathbb{N}, \quad \forall n \in \mathbb{N}, \quad (n > N_\varepsilon \Longrightarrow |u_n - \ell| < \varepsilon)$$
ou encore $n > N_\varepsilon \Longrightarrow u_n \in \mathcal{D}_{\ell,\varepsilon}$

Remarque 2.4

Les effets sur les limites des **opérations usuelles** (somme, produit, quotient) sont les mêmes que ceux vus pour les limites de fonctions.

On a en particulier les mêmes formes indéterminées lorsqu'il s'agit

- ullet de la **somme** de deux suites de limites respectives $+\infty$ et $-\infty$;
- ullet du **produit** de deux suites de limites respectives ∞ et 0;
- du **quotient** de deux suites de limites ∞ ou de limites nulles toutes les deux.

On pourra être amené aussi à utiliser des **équivalents** et des **développements limités** dans les mêmes conditions que celles pour les fonctions.

Remarque 2.4

Les effets sur les limites des **opérations usuelles** (somme, produit, quotient) sont les mêmes que ceux vus pour les limites de fonctions.

On a en particulier les mêmes formes indéterminées lorsqu'il s'agit

- de la **somme** de deux suites de limites respectives $+\infty$ et $-\infty$;
- du **produit** de deux suites de limites respectives ∞ et 0;
- ullet du **quotient** de deux suites de limites ∞ ou de limites nulles toutes les deux.

On pourra être amené aussi à utiliser des **équivalents** et des **développements limités** dans les mêmes conditions que celles pour les fonctions.

Proposition 2.5 (Cas des suites complexes)

1 La suite **numérique** $(u_n)_{n\in\mathbb{N}}$ **converge** vers le nombre (réel ou complexe) ℓ ssi la suite **réelle** $(|u_n - \ell|)_{n\in\mathbb{N}}$ **converge** vers **0**.

Remarque 2.4

Les effets sur les limites des **opérations usuelles** (somme, produit, quotient) sont les mêmes que ceux vus pour les limites de fonctions.

On a en particulier les mêmes formes indéterminées lorsqu'il s'agit

- de la **somme** de deux suites de limites respectives $+\infty$ et $-\infty$;
- du **produit** de deux suites de limites respectives ∞ et 0;
- du **quotient** de deux suites de limites ∞ ou de limites nulles toutes les deux.

On pourra être amené aussi à utiliser des **équivalents** et des **développements limités** dans les mêmes conditions que celles pour les fonctions.

Proposition 2.5 (Cas des suites complexes)

- **1** La suite **numérique** $(u_n)_{n\in\mathbb{N}}$ **converge** vers le nombre (réel ou complexe) ℓ ssi la suite **réelle** $(|u_n-\ell|)_{n\in\mathbb{N}}$ **converge** vers **0**.
- **2** La suite **complexe** $(u_n)_{n\in\mathbb{N}}$ **converge** vers le complexe ℓ ssi les suites **réelles** $(\Re e(u_n))_{n\in\mathbb{N}}$ et $(\Im m(u_n))_{n\in\mathbb{N}}$ **convergent** vers les **réels** $\Re e(\ell)$ et $\Im m(\ell)$.

Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles telles qu'à partir d'un certain rang $u_n\leqslant v_n$.

 $\textbf{1} \ \ \textit{Si les suites} \ (u_n)_{n \in \mathbb{N}} \ \ \text{et} \ (v_n)_{n \in \mathbb{N}} \ \ \textit{sont convergentes, alors} \ \lim_{n \to +\infty} u_n \leqslant \lim_{n \to +\infty} v_n.$

Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles telles qu'à partir d'un certain rang $u_n\leqslant v_n$.

- $\textbf{1} \ \ \textit{Si les suites} \ (u_n)_{n \in \mathbb{N}} \ \ \text{et} \ (v_n)_{n \in \mathbb{N}} \ \ \textit{sont convergentes, alors} \ \lim_{n \to +\infty} u_n \leqslant \lim_{n \to +\infty} v_n.$
- $2 Si \lim_{n \to +\infty} u_n = +\infty, \ alors \lim_{n \to +\infty} v_n = +\infty.$
- $3 \ Si \lim_{n \to +\infty} v_n = -\infty, \ alors \lim_{n \to +\infty} u_n = -\infty.$

Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles telles qu'à partir d'un certain rang $u_n\leqslant v_n$.

- $\textbf{1} \ \ \textit{Si les suites} \ \ (u_n)_{n \in \mathbb{N}} \ \ \textit{et} \ \ (v_n)_{n \in \mathbb{N}} \ \ \textit{sont convergentes, alors} \ \ \lim_{n \to +\infty} u_n \leqslant \lim_{n \to +\infty} v_n.$
- $2 Si \lim_{n \to +\infty} u_n = +\infty, \ alors \lim_{n \to +\infty} v_n = +\infty.$
- $3 \ Si \lim_{n \to +\infty} v_n = -\infty, \ alors \lim_{n \to +\infty} u_n = -\infty.$

Théorème 2.7 (Théorème de l'encadrement)

Soit $\ell \in \mathbb{R}$ et soit $(u_n)_{n \in \mathbb{N}}$, $(v_n)_{n \in \mathbb{N}}$ et $(w_n)_{n \in \mathbb{N}}$ trois suites réelles telles qu'à partir d'un certain rang $u_n \leqslant v_n \leqslant w_n$.

$$Si \lim_{n \to +\infty} u_n = \lim_{n \to +\infty} w_n = \ell$$
, alors $\lim_{n \to +\infty} v_n = \ell$.

Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles telles qu'à partir d'un certain rang $u_n\leqslant v_n$.

- **1** Si les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont convergentes, alors $\lim_{n\to+\infty}u_n\leqslant \lim_{n\to+\infty}v_n$.
- 2 $Si \lim_{n \to +\infty} u_n = +\infty$, alors $\lim_{n \to +\infty} v_n = +\infty$.
- 3 $Si \lim_{n \to +\infty} v_n = -\infty$, alors $\lim_{n \to +\infty} u_n = -\infty$.

Théorème 2.7 (Théorème de l'encadrement)

Soit $\ell \in \mathbb{R}$ et soit $(u_n)_{n \in \mathbb{N}}$, $(v_n)_{n \in \mathbb{N}}$ et $(w_n)_{n \in \mathbb{N}}$ trois suites réelles telles qu'à partir d'un certain rang $u_n \leqslant v_n \leqslant w_n$.

$$Si \lim_{n \to +\infty} u_n = \lim_{n \to +\infty} w_n = \ell$$
, alors $\lim_{n \to +\infty} v_n = \ell$.

Exemple 2.8

Soit
$$\forall n \in \mathbb{N}^*$$
, $u_n = \frac{\sin n}{n}$.

Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles telles qu'à partir d'un certain rang $u_n\leqslant v_n$.

- **1** Si les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont convergentes, alors $\lim_{n\to+\infty}u_n\leqslant \lim_{n\to+\infty}v_n$.
- 2 $Si \lim_{n \to +\infty} u_n = +\infty$, alors $\lim_{n \to +\infty} v_n = +\infty$.

Théorème 2.7 (Théorème de l'encadrement)

Soit $\ell \in \mathbb{R}$ et soit $(u_n)_{n \in \mathbb{N}}$, $(v_n)_{n \in \mathbb{N}}$ et $(w_n)_{n \in \mathbb{N}}$ trois suites réelles telles qu'à partir d'un certain rang $u_n \leqslant v_n \leqslant w_n$.

$$Si \lim_{n \to +\infty} u_n = \lim_{n \to +\infty} w_n = \ell$$
, alors $\lim_{n \to +\infty} v_n = \ell$.

Exemple 2.8

Soit
$$\forall n \in \mathbb{N}^*$$
, $u_n = \frac{\sin n}{n}$.

On a $\forall n \in \mathbb{N}^*$, $-1 \leqslant \sin n \leqslant 1$, puis $-\frac{1}{n} \leqslant u_n \leqslant \frac{1}{n}$ et $\lim_{n \to +\infty} \frac{1}{n} = 0$. Ainsi $\lim_{n \to +\infty} u_n = 0$.

.

Proposition 2.9 (Monotonie et convergence)

- Toute suite réelle croissante et majorée est convergente.
 Toute suite réelle décroissante
- et minorée est convergente.

b) Propriétés des limites

Proposition 2.9 (Monotonie et convergence)

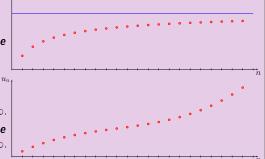
 u_n

- 1 Toute suite réelle croissante et majorée est convergente.
 - 2 Toute suite réelle décroissante et minorée est convergente.

Toute suite réelle croissante

- et non majorée $tend vers +\infty$.

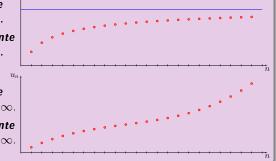
 Toute suite réelle décroissante
- et non minorée tend vers $-\infty$.



Proposition 2.9 (Monotonie et convergence)

 u_n

- 1 Toute suite réelle croissante et majorée est convergente.
- 2 Toute suite réelle décroissante et minorée est convergente.
- Toute suite réelle croissante et non majorée tend vers $+\infty$.
- ① Toute suite réelle décroissante et non minorée tend vers -∞.



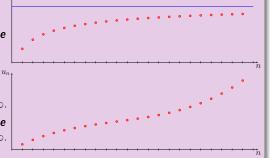
Proposition 2.10 (Suites et fonctions)

Soit $f: I \longrightarrow \mathbb{R}$ une fonction, $(u_n)_{n \in \mathbb{N}}$ une suite d'éléments de l'intervalle I. Soit $a \in \mathbb{R} \cup \{\pm \infty\}$ et $\ell \in \mathbb{R} \cup \{\pm \infty\}$.

Proposition 2.9 (Monotonie et convergence)

 u_n

- Toute suite réelle croissante et majorée est convergente.
- Toute suite réelle décroissante et minorée est convergente.
- 3 Toute suite réelle croissante et non majorée tend vers $+\infty$.
- Toute suite réelle décroissante et non minorée tend vers -∞.



Proposition 2.10 (Suites et fonctions)

Soit $f: I \longrightarrow \mathbb{R}$ une fonction, $(u_n)_{n \in \mathbb{N}}$ une suite d'éléments de l'intervalle I. Soit $a \in \mathbb{R} \cup \{\pm \infty\}$ et $\ell \in \mathbb{R} \cup \{\pm \infty\}$.

- ② $Si \lim_{n \to +\infty} u_n = a$ et si f est **continue** en a alors $\lim_{n \to +\infty} f(u_n) = f(a)$.

Sommaire

- Rappels sur les suites
- 2 Limite d'une suite
- Suites extraites
- Suites adjacentes
- Suites récurrentes
- 6 Approximation des zéros d'une fonction : méthode de Newton

Définition 3.1 (Suites extraites)

On dit que la suite numérique $(v_n)_{n\in\mathbb{N}}$ est une suite extraite de la suite $(u_n)_{n\in\mathbb{N}}$ s'il existe une application φ de \mathbb{N} dans \mathbb{N} strictement croissante telle que pour tout entier $n,\ v_n=u_{\varphi(n)}.$

Définition 3.1 (Suites extraites)

On dit que la suite numérique $(v_n)_{n\in\mathbb{N}}$ est une suite extraite de la suite $(u_n)_{n\in\mathbb{N}}$ s'il existe une application φ de \mathbb{N} dans \mathbb{N} strictement croissante telle que pour tout entier n, $v_n = u_{\varphi(n)}$.

Proposition 3.2 (Convergence et suites extraites)

• Si une suite $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ , alors toute suite extraite de $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ .

Définition 3.1 (Suites extraites)

On dit que la suite numérique $(v_n)_{n\in\mathbb{N}}$ est une suite extraite de la suite $(u_n)_{n\in\mathbb{N}}$ s'il existe une application φ de \mathbb{N} dans \mathbb{N} strictement croissante telle que pour tout entier n, $v_n = u_{\varphi(n)}$.

Proposition 3.2 (Convergence et suites extraites)

- Si une suite $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ , alors toute suite extraite de $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ .
- ② Si les suites extraites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ convergent vers la même limite ℓ , alors la suite $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ .

Définition 3.1 (Suites extraites)

On dit que la suite numérique $(v_n)_{n\in\mathbb{N}}$ est une suite extraite de la suite $(u_n)_{n\in\mathbb{N}}$ s'il existe une application φ de \mathbb{N} dans \mathbb{N} strictement croissante telle que pour tout entier n, $v_n = u_{\varphi(n)}$.

Proposition 3.2 (Convergence et suites extraites)

converge vers ℓ .

Si les suites extraites (192) et (1921) es convergent vers la même limite ℓ

1 Si une suite $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ , alors toute suite extraite de $(u_n)_{n\in\mathbb{N}}$

2 Si les suites extraites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ convergent vers la même limite ℓ , alors la suite $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ .

Exemple 3.3

 $\bullet \text{ Soit } \forall n \in \mathbb{N}^*, \ u_n = (-1)^n.$

Définition 3.1 (Suites extraites)

On dit que la suite numérique $(v_n)_{n\in\mathbb{N}}$ est une suite extraite de la suite $(u_n)_{n\in\mathbb{N}}$ s'il existe une application φ de \mathbb{N} dans \mathbb{N} strictement croissante telle que pour tout entier n, $v_n = u_{\varphi(n)}$.

Proposition 3.2 (Convergence et suites extraites)

- Si une suite $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ , alors toute suite extraite de $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ .
- ② Si les suites extraites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ convergent vers la même limite ℓ , alors la suite $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ .

Exemple 3.3

• Soit $\forall n \in \mathbb{N}^*$, $u_n = (-1)^n$. On a $u_{2n} = 1$ et $u_{2n+1} = -1$. Donc $\lim_{n \to +\infty} u_{2n} = 1$ et $\lim_{n \to +\infty} u_{2n+1} = -1$.

Définition 3.1 (Suites extraites)

On dit que la suite numérique $(v_n)_{n\in\mathbb{N}}$ est une suite extraite de la suite $(u_n)_{n\in\mathbb{N}}$ s'il existe une application φ de \mathbb{N} dans \mathbb{N} strictement croissante telle que pour tout entier n, $v_n = u_{\varphi(n)}$.

Proposition 3.2 (Convergence et suites extraites)

- Si une suite $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ , alors toute suite extraite de $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ .
- ② Si les suites extraites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ convergent vers la même limite ℓ , alors la suite $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ .

Exemple 3.3

On a $u_{2n} = 1$ et $u_{2n+1} = -1$. Donc $\lim_{n \to +\infty} u_{2n} = 1$ et $\lim_{n \to +\infty} u_{2n+1} = -1$.

Les limites de deux suites extraites étant **différentes**, la suite $(u_n)_{n\in\mathbb{N}}$ est **divergente**.

Définition 3.1 (Suites extraites)

On dit que la suite numérique $(v_n)_{n\in\mathbb{N}}$ est une suite extraite de la suite $(u_n)_{n\in\mathbb{N}}$ s'il existe une application φ de \mathbb{N} dans \mathbb{N} strictement croissante telle que pour tout entier n, $v_n = u_{\varphi(n)}$.

Proposition 3.2 (Convergence et suites extraites)

- Si une suite $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ , alors toute suite extraite de $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ .
- ② Si les suites extraites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ convergent vers la même limite ℓ , alors la suite $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ .

Exemple 3.3

- Soit $\forall n \in \mathbb{N}^*$, $u_n = (-1)^n$. On a $u_{2n} = 1$ et $u_{2n+1} = -1$. Donc $\lim_{n \to +\infty} u_{2n} = 1$ et $\lim_{n \to +\infty} u_{2n+1} = -1$.
 - On a $d_{2n} = 1$ et $d_{2n+1} = 1$. Soite $\min_{n \to +\infty} d_{2n} = 1$ et $\min_{n \to +\infty} d_{2n+1} = 1$.
- Les limites de deux suites extraites étant **différentes**, la suite $(u_n)_{n\in\mathbb{N}}$ est **divergente**.
- $\text{Soit } \forall n \in \mathbb{N}^*, \ v_n = 1 + \frac{(-1)^n}{n}.$

Définition 3.1 (Suites extraites)

On dit que la suite numérique $(v_n)_{n\in\mathbb{N}}$ est une suite extraite de la suite $(u_n)_{n\in\mathbb{N}}$ s'il existe une application φ de \mathbb{N} dans \mathbb{N} strictement croissante telle que pour tout entier n, $v_n = u_{\varphi(n)}$.

Proposition 3.2 (Convergence et suites extraites)

- Si une suite $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ , alors toute suite extraite de $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ .
- ② Si les suites extraites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ convergent vers la même limite ℓ , alors la suite $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ .

Exemple 3.3

- Soit $\forall n \in \mathbb{N}^*$, $u_n = (-1)^n$. On a $u_{2n} = 1$ et $u_{2n+1} = -1$. Donc $\lim_{n \to +\infty} u_{2n} = 1$ et $\lim_{n \to +\infty} u_{2n+1} = -1$.
 - Les limites de deux suites extraites étant différentes, la suite $(u_n)_{n\in\mathbb{N}}$ est divergente.
- Soit $\forall n \in \mathbb{N}^*$, $v_n = 1 + \frac{(-1)^n}{n}$. On a $v_{2n} = 1 + \frac{1}{n}$ et $v_{2n+1} = 1 - \frac{1}{n}$. Donc $\lim_{n \to \infty} v_{2n} = \lim_{n \to \infty} v_{2n+1} = 1$

Définition 3.1 (Suites extraites)

On dit que la suite numérique $(v_n)_{n\in\mathbb{N}}$ est une **suite** extraite de la suite $(u_n)_{n\in\mathbb{N}}$ s'il existe une application φ de \mathbb{N} dans \mathbb{N} **strictement croissante** telle que pour tout entier n, $v_n = u_{\varphi(n)}$.

Proposition 3.2 (Convergence et suites extraites)

converge vers l.

1 Si une suite $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ , alors toute suite extraite de $(u_n)_{n\in\mathbb{N}}$

② Si les suites extraites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ convergent vers la même limite ℓ , alors la suite $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ .

Exemple 3.3

- Soit $\forall n \in \mathbb{N}^*$, $u_n = (-1)^n$. On a $u_{2n} = 1$ et $u_{2n+1} = -1$. Donc $\lim_{n \to +\infty} u_{2n} = 1$ et $\lim_{n \to +\infty} u_{2n+1} = -1$.
 - Les limites de deux suites extraites étant **différentes**, la suite $(u_n)_{n\in\mathbb{N}}$ est **divergente**.
- Les limites de deux suites extraites étant **différentes**, la suite $(u_n)_{n\in\mathbb{N}}$ est **divergente**
- On a $v_{2n}=1+\frac{(-1)^n}{n}$. On a $v_{2n}=1+\frac{1}{n}$ et $v_{2n+1}=1-\frac{1}{n}$. Donc $\lim_{n\to+\infty}v_{2n}=\lim_{n\to+\infty}v_{2n+1}=1$ ce qui entraîne la **convergence** de la suite $(v_n)_{n\in\mathbb{N}}$ vers 1.

Sommaire

- Rappels sur les suites
- 2 Limite d'une suite
- Suites extraites
- Suites adjacentes
- Suites récurrentes
- 6 Approximation des zéros d'une fonction : méthode de Newton

Définition 4.1 (Suites adjacentes)

Deux suites **réelles** $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont dites **adjacentes** si les deux conditions suivantes sont satisfaites :

- 1 l'une est croissante et l'autre est décroissante;
- $\lim_{n\to+\infty}(u_n-v_n)=0.$

Définition 4.1 (Suites adjacentes)

Deux suites **réelles** $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont dites **adjacentes** si les deux conditions suivantes sont satisfaites :

- 1 l'une est croissante et l'autre est décroissante;
- $\lim_{n \to +\infty} (u_n v_n) = 0. \qquad \frac{1}{u_0} \quad \frac{1}{u_1} \quad \frac{1}{u_2} \quad \frac{1}{u_3} \quad \frac{1}{u_2} \quad \frac{1}{u_2}$

Théorème 4.2

Deux suites réelles **adjacentes** sont **convergentes** de **même limite**.

Définition 4.1 (Suites adjacentes)

Deux suites **réelles** $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont dites **adjacentes** si les deux conditions suivantes sont satisfaites :

- 1 l'une est croissante et l'autre est décroissante;
- $\lim_{n\to+\infty}(u_n-v_n)=0.$
- u_0 u_1 u_2 u_3 \cdots u_4 u_5 u_5 u_4 u_5 u_5 u_5 u_7 u_8

Théorème 4.2

Deux suites réelles **adjacentes** sont **convergentes** de **même limite**.

Exemple 4.3 (L'exponentielle)

Soit
$$\forall n \in \mathbb{N}$$
, $u_n = \sum_{k=0}^n \frac{1}{k!}$ et $v_n = u_n + \frac{1}{n \cdot n!}$.

Définition 4.1 (Suites adjacentes)

Deux suites réelles $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont dites **adjacentes** si les deux conditions suivantes sont satisfaites :

- 1 l'une est croissante et l'autre est décroissante;
- $\lim_{n\to+\infty} (u_n-v_n)=0. \qquad \frac{1}{u_0} \quad \frac{1}{u_1} \quad \frac{1}{u_2} \quad \frac{1$

10

Théorème 4.2

Deux suites réelles adjacentes sont convergentes de même limite.

Exemple 4.3 (L'exponentielle)

Soit
$$\forall n \in \mathbb{N}$$
, $u_n = \sum_{k=0}^n \frac{1}{k!}$ et $v_n = u_n + \frac{1}{n \cdot n!}$.

• On a $\forall n \in \mathbb{N}^*$, $u_{n+1} - u_n = \frac{1}{(n+1)!} > 0$ et $v_{n+1} - v_n = -\frac{1}{n(n+1)(n+1)!} < 0$, donc les suites $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ sont respectivement **croissante** et **décroissante**.

Définition 4.1 (Suites adjacentes)

Deux suites réelles $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont dites **adjacentes** si les deux conditions suivantes sont satisfaites :

- 1 l'une est croissante et l'autre est décroissante;
- $\lim_{n\to+\infty}(u_n-v_n)=0.$

Théorème 4.2

Deux suites réelles adjacentes sont convergentes de même limite.

Exemple 4.3 (L'exponentielle)

Soit $\forall n \in \mathbb{N}$, $u_n = \sum_{k=0}^n \frac{1}{k!}$ et $v_n = u_n + \frac{1}{n \cdot n!}$.

- On a $\forall n \in \mathbb{N}^*$, $u_{n+1} u_n = \frac{1}{(n+1)!} > 0$ et $v_{n+1} v_n = -\frac{1}{n(n+1)(n+1)!} < 0$, donc les suites $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ sont respectivement **croissante** et **décroissante**.
- On a $\forall n \in \mathbb{N}^*$, $v_n u_n = \frac{1}{n \cdot n!}$. Donc $\lim_{n \to +\infty} (v_n u_n) = 0$.

Définition 4.1 (Suites adjacentes)

Deux suites **réelles** $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont dites **adjacentes** si les deux conditions suivantes sont satisfaites :

- 1 l'une est croissante et l'autre est décroissante;
- $\lim_{n \to +\infty} (u_n v_n) = 0.$

Théorème 4.2

Deux suites réelles **adjacentes** sont **convergentes** de **même limite**.

Exemple 4.3 (L'exponentielle)

Soit $\forall n \in \mathbb{N}$, $u_n = \sum_{k=0}^n \frac{1}{k!}$ et $v_n = u_n + \frac{1}{n \cdot n!}$.

• On a $\forall n \in \mathbb{N}^*$, $u_{n+1} - u_n = \frac{1}{(n+1)!} > 0$ et $v_{n+1} - v_n = -\frac{1}{n(n+1)(n+1)!} < 0$, donc les suites $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ sont respectivement **croissante** et **décroissante**.

10

• On a $\forall n \in \mathbb{N}^*$, $v_n - u_n = \frac{1}{n \cdot n!}$. Donc $\lim_{n \to +\infty} (v_n - u_n) = 0$.

Ainsi, les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont adjacentes, donc convergentes.

Définition 4.1 (Suites adjacentes)

Deux suites réelles $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont dites **adjacentes** si les deux conditions suivantes sont satisfaites :

- 1 l'une est croissante et l'autre est décroissante;
- $\lim_{n\to+\infty}(u_n-v_n)=0.$

Théorème 4.2

Deux suites réelles adjacentes sont convergentes de même limite.

Exemple 4.3 (L'exponentielle)

Soit $\forall n \in \mathbb{N}$, $u_n = \sum_{k=0}^n \frac{1}{k!}$ et $v_n = u_n + \frac{1}{n \cdot n!}$.

- On a $\forall n \in \mathbb{N}^*$, $u_{n+1}^{k=0} u_n = \frac{1}{(n+1)!} > 0$ et $v_{n+1} v_n = -\frac{1}{n(n+1)(n+1)!} < 0$, donc les suites $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ sont respectivement **croissante** et **décroissante**.
- On a $\forall n \in \mathbb{N}^*$, $v_n u_n = \frac{1}{n \cdot n!}$. Donc $\lim_{n \to +\infty} (v_n u_n) = 0$.

Ainsi, les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont adjacentes, donc convergentes.

On démontre que $\lim_{n\to\infty} u_n = e...$

Exemple 4.4 (Deux séries de Riemann)

• Soit
$$\forall n \in \mathbb{N}^*$$
, $u_n = \sum_{k=1}^n \frac{1}{k^2} = 1 + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{n^2}$. Posons $v_n = u_n + \frac{1}{n}$.

Exemple 4.4 (Deux séries de Riemann)

- Soit $\forall n \in \mathbb{N}^*$, $u_n = \sum_{k=1}^n \frac{1}{k^2} = 1 + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{n^2}$. Posons $v_n = u_n + \frac{1}{n}$.
 - On a $\forall n \in \mathbb{N}^*$, $u_{n+1}^{k=1} u_n = \frac{1}{(n+1)^2} > 0$ et $v_{n+1} v_n = -\frac{1}{n(n+1)^2} < 0$. Donc les suites $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ sont respectivement **croissante** et **décroissante**.

ιı

Exemple 4.4 (Deux séries de Riemann)

- Soit $\forall n \in \mathbb{N}^*$, $u_n = \sum_{k=1}^n \frac{1}{k^2} = 1 + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{n^2}$. Posons $v_n = u_n + \frac{1}{n}$.
 - On a $\forall n \in \mathbb{N}^*$, $u_{n+1}^{\kappa=1} u_n = \frac{1}{(n+1)^2} > 0$ et $v_{n+1} v_n = -\frac{1}{n(n+1)^2} < 0$. Donc les suites $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ sont respectivement **croissante** et **décroissante**.
 - On a $\forall n \in \mathbb{N}^*$, $v_n u_n = \frac{1}{n}$. Donc $\lim_{n \to +\infty} (v_n u_n) = 0$.

Exemple 4.4 (Deux séries de Riemann)

- Soit $\forall n \in \mathbb{N}^*$, $u_n = \sum_{i=1}^n \frac{1}{k^2} = 1 + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{n^2}$. Posons $v_n = u_n + \frac{1}{n}$.
 - On a $\forall n \in \mathbb{N}^*$, $u_{n+1}^{\kappa-1} u_n = \frac{1}{(n+1)^2} > 0$ et $v_{n+1} v_n = -\frac{1}{n(n+1)^2} < 0$. Donc les suites $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ sont respectivement **croissante** et **décroissante**.
 - On a $\forall n \in \mathbb{N}^*$, $v_n u_n = \frac{1}{n}$. Donc $\lim_{n \to +\infty} (v_n u_n) = 0$.

Ainsi, les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont adjacentes, donc convergentes.

Exemple 4.4 (Deux séries de Riemann)

- Soit $\forall n \in \mathbb{N}^*$, $u_n = \sum_{k=1}^n \frac{1}{k^2} = 1 + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{n^2}$. Posons $v_n = u_n + \frac{1}{n}$.
 - On a $\forall n \in \mathbb{N}^*$, $u_{n+1}^{\kappa-1} u_n = \frac{1}{(n+1)^2} > 0$ et $v_{n+1} v_n = -\frac{1}{n(n+1)^2} < 0$. Donc les suites $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ sont respectivement **croissante** et **décroissante**.
 - On a $\forall n \in \mathbb{N}^*$, $v_n u_n = \frac{1}{n}$. Donc $\lim_{n \to +\infty} (v_n u_n) = 0$.

Ainsi, les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont adjacentes, donc convergentes.

On démontre que $\lim_{n\to+\infty}u_n=\frac{\pi^2}{4}...$

Exemple 4.4 (Deux séries de Riemann)

- Soit $\forall n \in \mathbb{N}^*$, $u_n = \sum_{i=1}^n \frac{1}{k^2} = 1 + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{n^2}$. Posons $v_n = u_n + \frac{1}{n}$.
 - On a $\forall n \in \mathbb{N}^*$, $u_{n+1}^{k=1} u_n = \frac{1}{(n+1)^2} > 0$ et $v_{n+1} v_n = -\frac{1}{n(n+1)^2} < 0$. Donc les suites $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ sont respectivement **croissante** et **décroissante**.
 - On a $\forall n \in \mathbb{N}^*$, $v_n u_n = \frac{1}{n}$. Donc $\lim_{n \to +\infty} (v_n u_n) = 0$.

Ainsi, les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont adjacentes, donc convergentes.

On démontre que $\lim_{n\to+\infty}u_n=\frac{\pi^2}{4}...$

② Soit
$$\forall n \in \mathbb{N}^*$$
, $w_n = \sum_{k=1}^n \frac{(-1)^{n-1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{(-1)^{n-1}}{n}$.

Posons $a_n = w_{2n}$ et $b_n = w_{2n+1}$.

Exemple 4.4 (Deux séries de Riemann)

- Soit $\forall n \in \mathbb{N}^*$, $u_n = \sum_{i=1}^n \frac{1}{k^2} = 1 + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{n^2}$. Posons $v_n = u_n + \frac{1}{n}$.
 - On a $\forall n \in \mathbb{N}^*$, $u_{n+1}^{\kappa=1} u_n = \frac{1}{(n+1)^2} > 0$ et $v_{n+1} v_n = -\frac{1}{n(n+1)^2} < 0$. Donc les suites $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ sont respectivement **croissante** et **décroissante**.
 - On a $\forall n \in \mathbb{N}^*$, $v_n u_n = \frac{1}{n}$. Donc $\lim_{n \to +\infty} (v_n u_n) = 0$.

Ainsi, les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont adjacentes, donc convergentes.

On démontre que $\lim_{n\to+\infty}u_n=\frac{\pi^2}{4}...$

② Soit $\forall n \in \mathbb{N}^*$, $w_n = \sum_{k=1}^n \frac{(-1)^{n-1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{(-1)^{n-1}}{n}$.

Posons $a_n = w_{2n}$ et $b_n = w_{2n+1}$.

• On a $\forall n \in \mathbb{N}^*$, $a_{n+1} - a_n = \frac{1}{(2n+1)(2n+2)} > 0$ et $b_{n+1} - b_n = -\frac{1}{(2n+2)(2n+3)} < 0$. Donc les suites $(a_n)_{n \in \mathbb{N}}$ et $(b_n)_{n \in \mathbb{N}}$ sont respectivement **croissante** et **décroissante**.

Exemple 4.4 (Deux séries de Riemann)

- Soit $\forall n \in \mathbb{N}^*$, $u_n = \sum_{i=1}^n \frac{1}{k^2} = 1 + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{n^2}$. Posons $v_n = u_n + \frac{1}{n}$.
 - On a $\forall n \in \mathbb{N}^*$, $u_{n+1} u_n = \frac{1}{(n+1)^2} > 0$ et $v_{n+1} v_n = -\frac{1}{n(n+1)^2} < 0$. Donc les suites $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ sont respectivement **croissante** et **décroissante**.
 - On a $\forall n \in \mathbb{N}^*$, $v_n u_n = \frac{1}{n}$. Donc $\lim_{n \to +\infty} (v_n u_n) = 0$.

Ainsi, les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont adjacentes, donc convergentes.

On démontre que $\lim_{n\to+\infty}u_n=\frac{\pi^2}{4}...$

 $\text{Soit } \forall n \in \mathbb{N}^*, \ w_n = \sum_{k=1}^n \frac{(-1)^{n-1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{(-1)^{n-1}}{n}.$

Posons $a_n = w_{2n}$ et $b_n = w_{2n+1}$.

- On a $\forall n \in \mathbb{N}^*$, $a_{n+1} a_n = \frac{1}{(2n+1)(2n+2)} > 0$ et $b_{n+1} b_n = -\frac{1}{(2n+2)(2n+3)} < 0$. Donc les suites $(a_n)_{n \in \mathbb{N}}$ et $(b_n)_{n \in \mathbb{N}}$ sont respectivement **croissante** et **décroissante**.
- On a $\forall n \in \mathbb{N}^*$, $b_n a_n = \frac{1}{2n+1}$. Donc $\lim_{n \to +\infty} (v_n u_n) = 0$.

4. Suites adjacentes

Exemple 4.4 (Deux séries de Riemann)

- Soit $\forall n \in \mathbb{N}^*$, $u_n = \sum_{k=1}^n \frac{1}{k^2} = 1 + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{n^2}$. Posons $v_n = u_n + \frac{1}{n}$.
 - On a $\forall n \in \mathbb{N}^*$, $u_{n+1}^{\kappa=1} u_n = \frac{1}{(n+1)^2} > 0$ et $v_{n+1} v_n = -\frac{1}{n(n+1)^2} < 0$. Donc les suites $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ sont respectivement **croissante** et **décroissante**.
 - On a $\forall n \in \mathbb{N}^*$, $v_n u_n = \frac{1}{n}$. Donc $\lim_{n \to +\infty} (v_n u_n) = 0$.

Ainsi, les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont adjacentes, donc convergentes.

On démontre que $\lim_{n\to+\infty}u_n=\frac{\pi^2}{4}...$

② Soit $\forall n \in \mathbb{N}^*$, $w_n = \sum_{k=1}^n \frac{(-1)^{n-1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{(-1)^{n-1}}{n}$.

Posons $a_n = w_{2n}$ et $b_n = w_{2n+1}$.

- On a $\forall n \in \mathbb{N}^*$, $a_{n+1} a_n = \frac{1}{(2n+1)(2n+2)} > 0$ et $b_{n+1} b_n = -\frac{1}{(2n+2)(2n+3)} < 0$. Donc les suites $(a_n)_{n \in \mathbb{N}}$ et $(b_n)_{n \in \mathbb{N}}$ sont respectivement **croissante** et **décroissante**.
- On a $\forall n \in \mathbb{N}^*$, $b_n a_n = \frac{1}{2n+1}$. Donc $\lim_{n \to \infty} (v_n u_n) = 0$.

Ainsi, les suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ sont **adjacentes**, donc **convergentes** de même limite. On en déduit que la suite $(w_n)_{n\in\mathbb{N}}$ est **convergente**.

11

4. Suites adjacentes

Exemple 4.4 (Deux séries de Riemann)

- Soit $\forall n \in \mathbb{N}^*$, $u_n = \sum_{k=1}^n \frac{1}{k^2} = 1 + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{n^2}$. Posons $v_n = u_n + \frac{1}{n}$.
 - On a $\forall n \in \mathbb{N}^*$, $u_{n+1}^{\kappa=1} u_n = \frac{1}{(n+1)^2} > 0$ et $v_{n+1} v_n = -\frac{1}{n(n+1)^2} < 0$. Donc les suites $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ sont respectivement **croissante** et **décroissante**.
 - On a $\forall n \in \mathbb{N}^*$, $v_n u_n = \frac{1}{n}$. Donc $\lim_{n \to +\infty} (v_n u_n) = 0$.

Ainsi, les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont adjacentes, donc convergentes.

On démontre que $\lim_{n\to+\infty}u_n=\frac{\pi^2}{4}...$

 $\text{Soit } \forall n \in \mathbb{N}^*, \ w_n = \sum_{k=1}^n \frac{(-1)^{n-1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{(-1)^{n-1}}{n}.$

Posons $a_n = w_{2n}$ et $b_n = w_{2n+1}$.

- On a $\forall n \in \mathbb{N}^*$, $a_{n+1} a_n = \frac{1}{(2n+1)(2n+2)} > 0$ et $b_{n+1} b_n = -\frac{1}{(2n+2)(2n+3)} < 0$. Donc les suites $(a_n)_{n \in \mathbb{N}}$ et $(b_n)_{n \in \mathbb{N}}$ sont respectivement **croissante** et **décroissante**.
- On a $\forall n \in \mathbb{N}^*$, $b_n a_n = \frac{1}{2n+1}$. Donc $\lim_{n \to \infty} (v_n u_n) = 0$.

Ainsi, les suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ sont **adjacentes**, donc **convergentes** de même limite. On en déduit que la suite $(w_n)_{n\in\mathbb{N}}$ est **convergente**.

On démontre que $\lim w_n = \ln 2...$

11

Sommaire

- Rappels sur les suites
- 2 Limite d'une suite
- Suites extraites
- Suites adjacentes
- Suites récurrentes
 - Définition
 - Monotonie de la fonction associée
 - Points fixes d'une fonction
 - Fonctions lipschitziennes/contractantes
 - Théorème du point fixe
 - Illustration d'une suite récurrente
- Approximation des zéros d'une fonction : méthode de Newton

Soit I un intervalle de $\mathbb R$ et f une application de I dans I.

On étudie dans cette partie les suites réelles définies par une relation du type :

$$\begin{cases} u_0 \in I \\ \forall n \in \mathbb{N}, \quad u_{n+1} = f(u_n) \end{cases}$$

On dit que $(u_n)_{n\in\mathbb{N}}$ est une suite récurrente de fonction associée f.

Soit I un intervalle de $\mathbb R$ et f une application de I dans I.

On étudie dans cette partie les suites réelles définies par une relation du type :

$$\begin{cases} u_0 \in I \\ \forall n \in \mathbb{N}, \quad u_{n+1} = f(u_n) \end{cases}$$

On dit que $(u_n)_{n\in\mathbb{N}}$ est une suite récurrente de fonction associée f.

Remarque 5.2 (Cohérence

La condition $f(I) \subset I$ assure que cette suite est bien définie : en effet, partant de $u_0 \in I$, on peut définir $u_1 = f(u_0)$. L'hypothèse entraı̂ne $u_1 \in I$; on peut donc définir $u_2 = f(u_1)$, et ainsi de suite.

Soit I un intervalle de \mathbb{R} et f une application de I dans I.

On étudie dans cette partie les suites réelles définies par une relation du type :

$$\begin{cases} u_0 \in I \\ \forall n \in \mathbb{N}, \quad u_{n+1} = f(u_n) \end{cases}$$

On dit que $(u_n)_{n\in\mathbb{N}}$ est une suite récurrente de fonction associée f.

Remarque 5.2 (Cohérence

La condition $f(I) \subset I$ assure que cette suite est bien définie : en effet, partant de $u_0 \in I$, on peut définir $u_1 = f(u_0)$. L'hypothèse entraı̂ne $u_1 \in I$; on peut donc définir $u_2 = f(u_1)$, et ainsi de suite.

Exemple 5.3 (Suites arithmétiques/géométriques)

1 Une suite **arithmétique** de raison r est une suite **récurrente** de fonction associée $f: x \longmapsto x + r$ définie de \mathbb{R} dans \mathbb{R} .

Soit I un intervalle de \mathbb{R} et f une application de I dans I.

On étudie dans cette partie les suites réelles définies par une relation du type :

$$\begin{cases} u_0 \in I \\ \forall n \in \mathbb{N}, \quad u_{n+1} = f(u_n) \end{cases}$$

On dit que $(u_n)_{n\in\mathbb{N}}$ est une suite récurrente de fonction associée f.

Remarque 5.2 (Cohérence

La condition $f(I) \subset I$ assure que cette suite est bien définie : en effet, partant de $u_0 \in I$, on peut définir $u_1 = f(u_0)$. L'hypothèse entraı̂ne $u_1 \in I$; on peut donc définir $u_2 = f(u_1)$, et ainsi de suite.

Exemple 5.3 (Suites arithmétiques/géométriques)

- **1** Une suite **arithmétique** de raison r est une suite **récurrente** de fonction associée $f: x \longmapsto x + r$ définie de \mathbb{R} dans \mathbb{R} .
- **Q** Une suite **géométrique** de raison q est une suite **récurrente** de fonction associée $f: x \longmapsto qx$ définie de \mathbb{R} dans \mathbb{R} .

b) Monotonie de la fonction associée

Soit $(u_n)_{n\in\mathbb{N}}$ une suite récurrente de fonction associée f définie sur I.

On peut donner des informations sur les variations de $(u_n)_{n\in\mathbb{N}}$ dans le cas où la fonction f est **monotone** :

b) Monotonie de la fonction associée

Soit $(u_n)_{n\in\mathbb{N}}$ une suite récurrente de fonction associée f définie sur I.

On peut donner des informations sur les variations de $(u_n)_{n\in\mathbb{N}}$ dans le cas où la fonction f est **monotone** :

Proposition 5.4 (Monotonie)

- ① Si l'application f est **croissante** sur I alors la suite $(u_n)_{n\in\mathbb{N}}$ est **monotone** et son sens de variation dépend de u_0 et u_1 :
 - $si \ u_1 \geqslant u_0$ alors la suite $(u_n)_{n \in \mathbb{N}}$ est **croissante**;
 - si $u_1 \leqslant u_0$ alors la suite $(u_n)_{n \in \mathbb{N}}$ est **décroissante**.

b) Monotonie de la fonction associée

Soit $(u_n)_{n\in\mathbb{N}}$ une suite récurrente de fonction associée f définie sur I.

On peut donner des informations sur les variations de $(u_n)_{n\in\mathbb{N}}$ dans le cas où la fonction f est **monotone** :

Proposition 5.4 (Monotonie)

- **1** Si l'application f est **croissante** sur I alors la suite $(u_n)_{n\in\mathbb{N}}$ est **monotone** et son sens de variation dépend de u_0 et u_1 :
 - $si \ u_1 \geqslant u_0$ alors la suite $(u_n)_{n \in \mathbb{N}}$ est **croissante**;
 - si $u_1 \leqslant u_0$ alors la suite $(u_n)_{n \in \mathbb{N}}$ est **décroissante**.
- ② Si l'application f est décroissante sur I alors les suites extraites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ sont monotones de sens de variation opposés.

b) Monotonie de la fonction associée

Soit $(u_n)_{n\in\mathbb{N}}$ une suite récurrente de fonction associée f définie sur I.

On peut donner des informations sur les variations de $(u_n)_{n\in\mathbb{N}}$ dans le cas où la fonction f est **monotone** :

Proposition 5.4 (Monotonie)

- Si l'application f est **croissante** sur l alors la suite $(u_n)_{n\in\mathbb{N}}$ est **monotone** et son sens de variation dépend de u_0 et u_1 :
 - si $u_1 \geqslant u_0$ alors la suite $(u_n)_{n \in \mathbb{N}}$ est **croissante**;
 - si $u_1 \leqslant u_0$ alors la suite $(u_n)_{n \in \mathbb{N}}$ est **décroissante**.
- ② Si l'application f est **décroissante** sur I alors les suites extraites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ sont monotones de sens de variation opposés.

Remarque 5

Les suites extraites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ ont toutes les deux pour fonction associée $f\circ f$.

b) Monotonie de la fonction associée

Soit $(u_n)_{n\in\mathbb{N}}$ une suite récurrente de fonction associée f définie sur I.

On peut donner des informations sur les variations de $(u_n)_{n\in\mathbb{N}}$ dans le cas où la fonction f est **monotone** :

Proposition 5.4 (Monotonie)

- **1** Si l'application f est **croissante** sur I alors la suite $(u_n)_{n\in\mathbb{N}}$ est **monotone** et son sens de variation dépend de u_0 et u_1 :
 - si $u_1 \geqslant u_0$ alors la suite $(u_n)_{n \in \mathbb{N}}$ est **croissante**;
 - si $u_1 \leqslant u_0$ alors la suite $(u_n)_{n \in \mathbb{N}}$ est **décroissante**.
- ② Si l'application f est **décroissante** sur I alors les suites extraites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ sont monotones de sens de variation opposés.

Remarque 5

Les suites extraites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ ont toutes les deux pour fonction associée $f\circ f$.

1 Lorsque l'application f est décroissante sur I, l'application $f \circ f$ est croissante, ce qui justifie la monotonie des suites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite récurrente de fonction associée f définie sur I.

On peut donner des informations sur les variations de $(u_n)_{n\in\mathbb{N}}$ dans le cas où la fonction f est **monotone** :

Proposition 5.4 (Monotonie)

- Si l'application f est **croissante** sur l alors la suite $(u_n)_{n\in\mathbb{N}}$ est **monotone** et son sens de variation dépend de u_0 et u_1 :
 - $si \ u_1 \geqslant u_0$ alors la suite $(u_n)_{n \in \mathbb{N}}$ est **croissante**;
 - si $u_1 \leqslant u_0$ alors la suite $(u_n)_{n \in \mathbb{N}}$ est **décroissante**.
- ② Si l'application f est **décroissante** sur I alors les suites extraites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ sont **monotones** de **sens de variation opposés**.

Remarque 5.

Les suites extraites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ ont toutes les deux pour fonction associée $f\circ f$.

- ① Lorsque l'application f est **décroissante** sur I, l'application $f \circ f$ est **croissante**, ce qui justifie la **monotonie** des suites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$.
- ② D'autre part, ces suites sont reliées par $u_{2n+1} = f(u_{2n})$. L'application f étant **décroissante**, on voit que les sens de variation sont opposés.

Soit f une fonction définie sur un intervalle I.

On appelle **point fixe** de f tout réel $c \in I$ tel que f(c) = c.

Soit f une fonction définie sur un intervalle I.

On appelle **point fixe** de f tout réel $c \in I$ tel que f(c) = c.

Un **point fixe** de f est donc une solution de l'équation f(x) = x ou encore un zéro de la fonction $x \mapsto f(x) - x$.

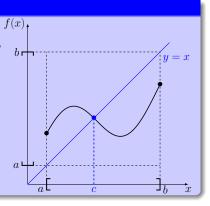
Soit f une fonction définie sur un intervalle I.

On appelle **point fixe** de f tout réel $c \in I$ tel

que f(c) = c. Un **point fixe** de f est donc une solution de l'équation f(x) = x ou encore un zéro de la fonction f(x) = x

function $x \mapsto f(x) - x$. Géométriquement les **points fixes** de f sont les

abscisses des **points** d'intersection de la représentation graphique de f et de la droite d'équation y=x.

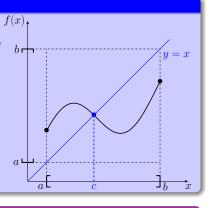


Soit f une fonction définie sur un intervalle I.

On appelle **point fixe** de f tout réel $c \in I$ tel que f(c) = c.

Un **point fixe** de f est donc une solution de l'équation f(x) = x ou encore un zéro de la fonction $x \mapsto f(x) - x$.

Géométriquement les **points fixes** de f sont les abscisses des **points d'intersection** de la représentation graphique de f et de la droite d'équation y = x.



Proposition 5.7 (Continuité et point fixe)

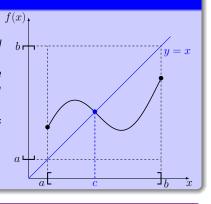
1 Si $f:[a,b] \longrightarrow [a,b]$ est **continue** alors f admet au moins un **point fixe**.

Soit f une fonction définie sur un intervalle I.

On appelle **point fixe** de f tout réel $c \in I$ tel que f(c) = c.

Un **point fixe** de f est donc une solution de l'équation f(x) = x ou encore un zéro de la fonction $x \mapsto f(x) - x$.

Géométriquement les **points fixes** de f sont les abscisses des **points d'intersection** de la représentation graphique de f et de la droite d'équation y = x.



Proposition 5.7 (Continuité et point fixe)

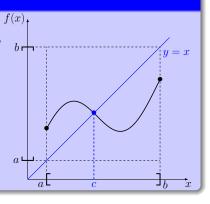
- **1** Si $f:[a,b] \longrightarrow [a,b]$ est **continue** alors f admet au moins un **point fixe**.
- **2** Si $f:[a,b] \longrightarrow [a,b]$ est **croissante** alors f admet au moins un **point fixe**.

Soit f une fonction définie sur un intervalle I.

On appelle **point fixe** de f tout réel $c \in I$ tel que f(c) = c.

Un **point fixe** de f est donc une solution de l'équation f(x) = x ou encore un zéro de la fonction $x \mapsto f(x) - x$.

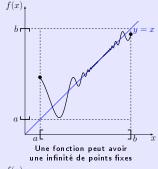
Géométriquement les **points fixes** de f sont les abscisses des **points d'intersection** de la représentation graphique de f et de la droite d'équation y = x.

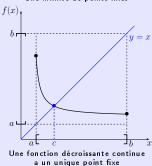


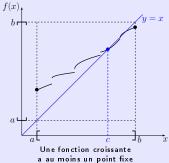
Proposition 5.7 (Continuité et point fixe)

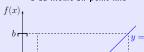
- **1** Si $f: [a, b] \longrightarrow [a, b]$ est **continue** alors f admet au moins un **point fixe**.
- **2** Si $f: [a,b] \longrightarrow [a,b]$ est **croissante** alors f admet au moins un **point fixe**.
- **③** Soit une suite récurrente $(u_n)_{n \in \mathbb{N}}$ de fonction associée f. Si $(u_n)_{n \in \mathbb{N}}$ converge vers le réel $\ell \in I$ et si f est **continue** sur I alors ℓ est un **point fixe** de f.

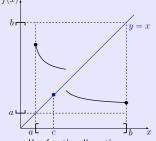
c) Points fixes d'une fonction











Une fonction discontinue peut ne pas avoir de point fixe

Soit f une application définie sur un intervalle I et $k \in \mathbb{R}_+$.

• On dit que f est **lipschitzienne** de rapport k sur l si

$$\forall (x,y) \in I^2, \quad |f(x) - f(y)| \leqslant k|x - y|.$$

Soit f une application définie sur un intervalle I et $k \in \mathbb{R}_+$.

• On dit que f est **lipschitzienne** de rapport k sur l si

$$\forall (x,y) \in I^2, \quad |f(x) - f(y)| \leqslant k|x - y|.$$

 Lorsque k ∈ [0,1[et f est lipschitzienne de rapport k sur l, on dit que f est k-contractante sur l.

Soit f une application définie sur un intervalle I et $k \in \mathbb{R}_+$.

• On dit que f est **lipschitzienne** de rapport k sur l si

$$\forall (x,y) \in I^2, \quad |f(x) - f(y)| \leqslant k|x - y|.$$

 Lorsque k ∈ [0,1[et f est lipschitzienne de rapport k sur l, on dit que f est k-contractante sur l.

Proposition 5.9 (Continuité/dérivabilité)

• Toute application lipschitzienne sur l est continue sur l.

Soit f une application définie sur un intervalle I et $k \in \mathbb{R}_+$.

• On dit que f est **lipschitzienne** de rapport k sur l si

$$\forall (x,y) \in I^2, \quad |f(x) - f(y)| \leqslant k|x - y|.$$

 Lorsque k ∈ [0,1[et f est lipschitzienne de rapport k sur l, on dit que f est k-contractante sur l.

Proposition 5.9 (Continuité/dérivabilité)

- 1 Toute application lipschitzienne sur I est continue sur I.
- ② Soit $f: [a,b] \longrightarrow \mathbb{R}$ continue sur[a,b], dérivable sur[a,b] et telle qu'il existe $k \in \mathbb{R}^+$ tel que, pour tout $x \in]a,b[,|f'(x)| \leqslant k$.

Soit f une application définie sur un intervalle I et $k \in \mathbb{R}_+$.

• On dit que f est **lipschitzienne** de rapport k sur l si

$$\forall (x,y) \in I^2$$
, $|f(x) - f(y)| \leq k|x - y|$.

 Lorsque k ∈ [0,1[et f est lipschitzienne de rapport k sur l, on dit que f est k-contractante sur l

Proposition 5.9 (Continuité/dérivabilité)

- Toute application lipschitzienne sur l est continue sur l.
- ② Soit $f : [a, b] \longrightarrow \mathbb{R}$ continue sur[a, b], dérivable sur[a, b] et telle qu'il existe $k \in \mathbb{R}^+$ tel que, pour tout $x \in]a, b[$, $|f'(x)| \le k$.

 Alors f est k-lipschitzienne sur[a, b].

Exemple 5.10 (Racine carrée)

Soit $f: \mathbb{R}^+ \longrightarrow \mathbb{R}$ définie par $f(x) = 2\sqrt{x}$.

Soit f une application définie sur un intervalle I et $k \in \mathbb{R}_+$.

• On dit que f est **lipschitzienne** de rapport k sur l si

$$\forall (x,y) \in I^2, \quad |f(x) - f(y)| \leqslant k|x - y|.$$

 Lorsque k ∈ [0,1[et f est lipschitzienne de rapport k sur l, on dit que f est k-contractante sur l.

Proposition 5.9 (Continuité/dérivabilité)

- Toute application **lipschitzienne** sur I est **continue** sur I.
- **2** Soit $f:[a,b] \longrightarrow \mathbb{R}$ continue sur[a,b], dérivable sur[a,b[et telle qu'il existe $k \in \mathbb{R}^+$ tel que, pour tout $x \in]a,b[$, $|f'(x)| \le k$.

 Alors f est k-lipschitzienne sur[a,b].

Exemple 5.10 (Racine carrée)

Soit $f: \mathbb{R}^+ \longrightarrow \mathbb{R}$ définie par $f(x) = 2\sqrt{x}$. La fonction f est dérivable sur $]0, +\infty[$ de dérivée $f'(x) = \frac{1}{\sqrt{x}}$.

Soit f une application définie sur un intervalle I et $k \in \mathbb{R}_+$.

• On dit que f est **lipschitzienne** de rapport k sur l si

$$\forall (x,y) \in I^2, \quad |f(x) - f(y)| \leqslant k|x - y|.$$

 Lorsque k ∈ [0,1[et f est lipschitzienne de rapport k sur l, on dit que f est k-contractante sur l

Proposition 5.9 (Continuité/dérivabilité)

- 1 Toute application lipschitzienne sur I est continue sur I.
- **Q** Soit $f:[a,b] \longrightarrow \mathbb{R}$ continue sur [a,b], dérivable sur [a,b] et telle qu'il existe $k \in \mathbb{R}^+$ tel que, pour tout $x \in]a,b[,|f'(x)| \leqslant k$. Alors f est k-lipschitzienne sur [a,b].

Exemple 5.10 (Racine carrée)

Soit $f: \mathbb{R}^+ \longrightarrow \mathbb{R}$ définie par $f(x) = 2\sqrt{x}$. La fonction f est dérivable sur $]0, +\infty[$ de dérivée $f'(x) = \frac{1}{\sqrt{x}}$. On a $\sup_{x \in [1/4,1]} |f'(x)| = 2$, $\sup_{x \in [4,+\infty[} |f'(x)| = \frac{1}{2}$ et $\sup_{x \in [0,1]} |f'(x)| = +\infty$.

Soit f une application définie sur un intervalle I et $k \in \mathbb{R}_+$.

• On dit que f est **lipschitzienne** de rapport k sur l si

$$\forall (x,y) \in I^2$$
, $|f(x) - f(y)| \leq k|x - y|$.

 Lorsque k ∈ [0,1[et f est lipschitzienne de rapport k sur l, on dit que f est k-contractante sur l

Proposition 5.9 (Continuité/dérivabilité)

- Toute application lipschitzienne sur I est continue sur I.
- **2** Soit $f:[a,b] \longrightarrow \mathbb{R}$ continue sur[a,b], dérivable sur[a,b[et telle qu'il existe $k \in \mathbb{R}^+$ tel que, pour tout $x \in]a,b[$, $|f'(x)| \le k$.

Alors f est k-lipschitzienne sur [a, b].

Exemple 5.10 (Racine carrée)

Soit $f: \mathbb{R}^+ \longrightarrow \mathbb{R}$ définie par $f(x) = 2\sqrt{x}$. La fonction f est dérivable sur $]0, +\infty[$ de dérivée $f'(x) = \frac{1}{\sqrt{x}}$. On a $\sup_{x \in [1/4,1]} |f'(x)| = 2$, $\sup_{x \in [4,+\infty[} |f'(x)| = \frac{1}{2}$ et $\sup_{x \in [0,1]} |f'(x)| = +\infty$.

Donc f est **lipschitzienne** de rapport 2 sur [1/4,1], **contractante** de rapport 1/2 sur $[4,+\infty[$ mais **pas lipschitzienne** sur [0,1].

5. Suites récurrentes e) Théorème du point fixe

Sous certaines conditions, il est possible de conclure à la convergence d'une suite récurrente dont la limite sera l'unique point fixe de la fonction associée. Il s'agit du **théorème du point fixe** :

e) Théorème du point fixe

Sous certaines conditions, il est possible de conclure à la convergence d'une suite récurrente dont la limite sera l'unique point fixe de la fonction associée. Il s'agit du **théorème du point fixe** :

Théorème 5.11 (Théorème du point fixe)

Soit $f:[a,b] \longrightarrow [a,b]$ une fonction k-contractante. Alors:

1 Ia fonction f admet un **unique point fixe** ℓ ;

Sous certaines conditions, il est possible de conclure à la convergence d'une suite récurrente dont la limite sera l'unique point fixe de la fonction associée. Il s'agit du **théorème du point fixe** :

Théorème 5.11 (Théorème du point fixe)

Soit $f:[a,b] \longrightarrow [a,b]$ une fonction k-contractante. Alors:

- la fonction f admet un unique point fixe ℓ ;
- 2 toute suite récurrente $(u_n)_{n\in\mathbb{N}}$ de fonction associée f **converge** vers ℓ quel que soit son premier terme $u_0\in[a,b]$ et l'on a

$$\forall n \in \mathbb{N}, \ |u_n - \ell| \leqslant k^n(b-a)$$
 et aussi $|u_n - \ell| \leqslant \frac{k^n}{1-k}|u_1 - u_0|$.

Sous certaines conditions, il est possible de conclure à la convergence d'une suite récurrente dont la limite sera l'unique point fixe de la fonction associée. Il s'agit du **théorème du point fixe** :

Théorème 5.11 (Théorème du point fixe)

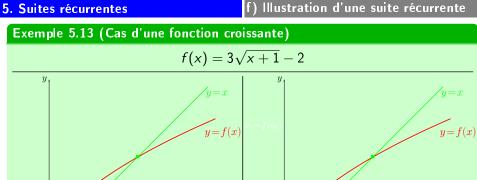
Soit $f:[a,b] \longrightarrow [a,b]$ une fonction k-contractante. Alors:

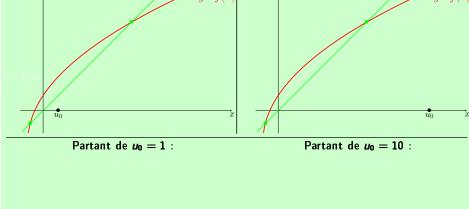
- la fonction f admet un unique point fixe ℓ ;
- **2** toute suite récurrente $(u_n)_{n\in\mathbb{N}}$ de fonction associée f **converge** vers ℓ quel que soit son premier terme $u_0 \in [a,b]$ et l'on a

$$\forall n \in \mathbb{N}, |u_n - \ell| \leqslant k^n(b-a)$$
 et aussi $|u_n - \ell| \leqslant \frac{k^n}{1-k}|u_1 - u_0|$.

Remarque 5.12

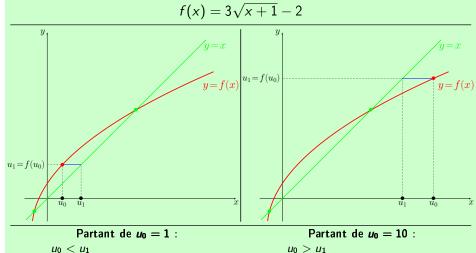
Le théorème du point fixe reste vrai si on remplace l'intervalle fermé borné [a,b] par un intervalle fermé non borné, i.e. du type $[a,+\infty[$ ou $]-\infty,a]$ ou $\mathbb R$ (ces intervalles sont appelés des **fermés** de $\mathbb R$).





Exemple 5.13 (Cas d'une fonction croissante)

5. Suites récurrentes

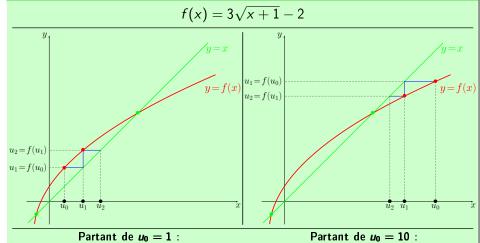


f) Illustration d'une suite récurrente

Exemple 5.13 (Cas d'une fonction croissante)

5. Suites récurrentes

 $u_0 < u_1 < u_2$



f) Illustration d'une suite récurrente

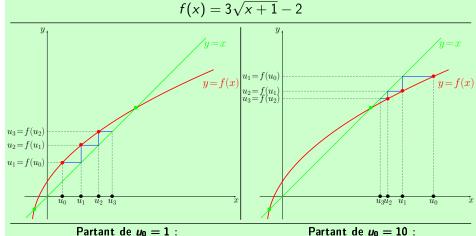
 $u_0 > u_1 > u_2$

1

Exemple 5.13 (Cas d'une fonction croissante)

5. Suites récurrentes

 $u_0 < u_1 < u_2 < u_3$



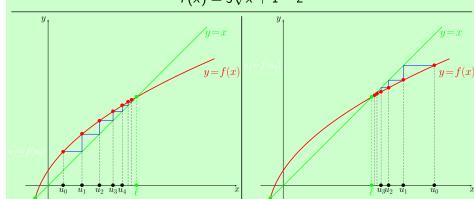
Partant de $u_0 = 10$: $u_0 > u_1 > u_2 > u_3$

f) Illustration d'une suite récurrente

1

$f(x) = 3\sqrt{x+1} - 2$

5. Suites récurrentes



Partant de
$$u_0 = 1$$
:

 $u_0 < u_1 < u_2 < u_3 < \dots < \ell$ La suite $(u_n)_{n \in \mathbb{N}}$ est **croissante** et **converge** vers $\ell = \frac{5+3\sqrt{5}}{2}$

Partant de
$$u_0 = 10$$
:

et converge vers $\ell = \frac{5+3\sqrt{5}}{2}$

 $u_0 > u_1 > u_2 > u_3 > \cdots > \ell$ La suite $(u_n)_{n \in \mathbb{N}}$ est décroissante

f) Illustration d'une suite récurrente

5. Suites récurrentes

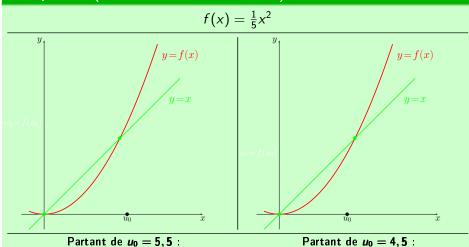
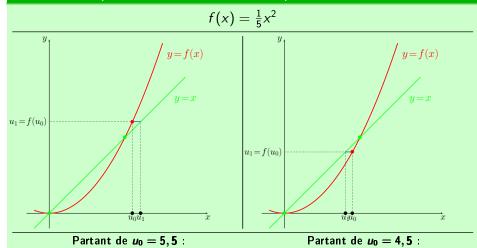


Illustration d'une suite récurrente

5. Suites récurrentes

 $u_0 < u_1$

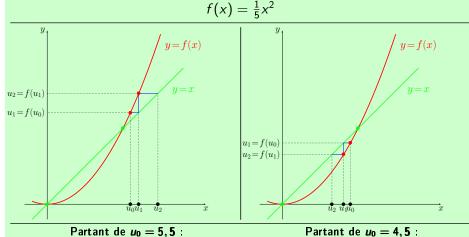


 $u_0 > u_1$

f) Illustration d'une suite récurrente

19

f) Illustration d'une suite récurrente 5. Suites récurrentes Exemple 5.14 (Cas d'une fonction croissante)



 $u_0 < u_1 < u_2$

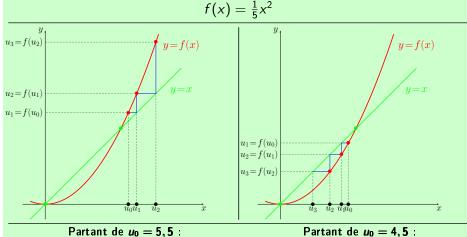
 $u_0 > u_1 > u_2$

5. Suites récurrentes f) Illust Exemple 5.14 (Cas d'une fonction croissante)

te)

f) Illustration d'une suite récurrente

c() 1 2



Partant de $u_0 = 5, 5$: $u_0 < u_1 < u_2 < u_3$

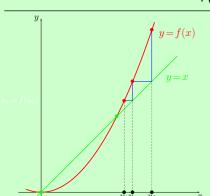
 $u_0 > u_1 > u_2 > u_3$

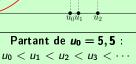
5. Suites récurrentes f) Illust Exemple 5.14 (Cas d'une fonction croissante)

ч.

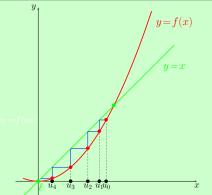
f) Illustration d'une suite récurrente

$f(x) = \frac{1}{5}x^2$





La suite $(u_n)_{n\in\mathbb{N}}$ est croissante et diverge vers $+\infty$

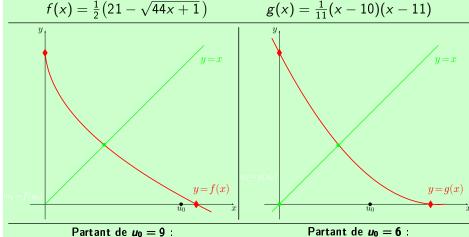


Partant de $u_0 = 4,5$: $u_0 > u_1 > u_2 > u_3 > \cdots > \ell$

La suite $(u_n)_{n\in\mathbb{N}}$ est **décroissante** et **converge** vers $\ell=0$

$$f(x) = \frac{1}{2}(21 - \sqrt{44x + 1})$$
 $g(x) = \frac{1}{2}(21 - \sqrt{44x + 1})$

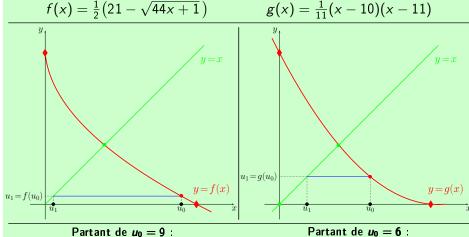
5. Suites récurrentes



Partant de $u_0 = 6$:

Illustration d'une suite récurrente

5. Suites récurrentes

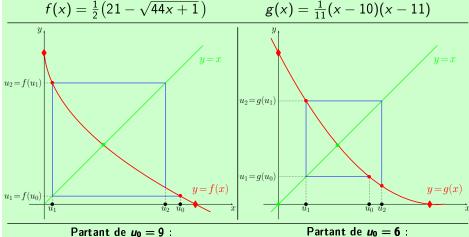


f) Illustration d'une suite récurrente

Partant de $u_0 = 6$:

5. Suites récurrentes

 $u_0 > u_2$



$$u_0 < u_2$$

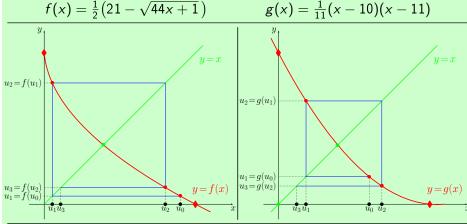
Partant de $u_0 = 6$:

f) Illustration d'une suite récurrente

 $u_1 < u_3$

5. Suites récurrentes

 $u_0 > u_2$



Partant de
$$u_0 = 9$$
: Partant de $u_0 = 6$: $u_1 < u_3$ $u_0 < u_2$ $u_1 > u_3$

f) Illustration d'une suite récurrente

f) Illustration d'une suite récurrente

$$f(x) = \frac{1}{2} (21 - \sqrt{44x + 1}) \qquad g(x) = \frac{1}{11} (x - 10)(x - 11)$$

$$y = x$$

$$u_2 = f(u_1)$$

$$u_4 = f(u_3)$$

$$u_1 = g(u_0)$$

$$u_1 = g(u_0)$$

$$u_2 = g(u_1)$$

$$u_3 = g(u_0)$$

$$u_4 = g(u_0)$$

$$u_3 = g(u_0)$$

$$u_4 = g(u_0)$$

$$u_5 = g(u_0)$$

$$u_6 = g(u_0)$$

$$u_7 = g(u_0)$$

$$u_8 = g(u_0)$$

$$u_8 = g(u_0)$$

$$u_9 = g(u_0)$$

$$u$$

Partant de $u_0 = 6$: $u_0 < u_2 < u_4$ $u_1 > u_3$

f) Illustration d'une suite récurrente

Exemple 5.15 (Cas d'une fonction décroissante)

$$f(x) = \frac{1}{2} (21 - \sqrt{44x + 1}) \qquad g(x) = \frac{1}{11} (x - 10)(x - 11)$$

$$u_2 = f(u_1)$$

$$u_4 = f(u_3)$$

$$u_5 = f(u_4)$$

$$u_3 = f(u_2)$$

$$u_1 = g(u_0)$$

$$u_3 = g(u_2)$$

$$u_1 = g(u_0)$$

$$u_3 = g(u_2)$$

$$u_4 = g(u_3)$$

$$u_2 = g(u_1)$$

$$u_3 = g(u_0)$$

$$u_4 = g(u_0)$$

$$u_3 = g(u_0)$$

$$u_4 = g(u_0)$$

$$u_3 = g(u_0)$$

$$u_4 = g(u_0)$$

$$u_4 = g(u_0)$$

$$u_5 = g(u_0)$$

$$u_7 = g(u_0)$$

$$u_8 = g(u_1)$$

$$u_9 = g(u_1)$$

$$u_1 = g(u_0)$$

$$u_1 = g(u_0)$$

$$u_2 = g(u_1)$$

$$u_3 = g(u_0)$$

$$u_4 = g(u_0)$$

$$u_5 = g(u_1)$$

$$u_1 = g(u_0)$$

$$u_1 = g(u_0)$$

$$u_2 = g(u_1)$$

$$u_3 = g(u_0)$$

$$u_4 = g(u_0)$$

$$u_5 = g(u_1)$$

$$u_1 = g(u_0)$$

$$u_1 = g(u_0)$$

$$u_2 = g(u_1)$$

$$u_3 = g(u_0)$$

$$u_4 = g(u_0)$$

$$u_5 = g(u_1)$$

$$u_1 = g(u_0)$$

$$u_1 = g(u_0)$$

$$u_2 = g(u_1)$$

$$u_3 = g(u_0)$$

$$u_4 = g(u_0)$$

$$u_5 = g(u_0)$$

$$u_5 = g(u_0)$$

$$u_5 = g(u_0)$$

$$u_7 = g(u_0)$$

$$u_8 = g(u_0)$$

$$u_8 = g(u_0)$$

$$u_9 = g(u$$

Partant de $u_0 = 9$:

Partant de $u_0 = 6$:

 $u_0 < u_2 < u_4$ $u_1 > u_3 > u_5$ $u_0 > u_2 > u_4$ $u_1 < u_3 < u_5$

f) Illustration d'une suite récurrente

Exemple 5.15 (Cas d'une fonction décroissante)

$$f(x) = \frac{1}{2} (21 - \sqrt{44x + 1}) \qquad g(x) = \frac{1}{11} (x - 10)(x - 11)$$

$$u_2 = f(u_1)$$

$$u_4 = f(u_3)$$

$$u_6 = f(u_5)$$

$$u_5 = f(u_4)$$

$$u_3 = f(u_2)$$

$$u_1 = g(u_0)$$

$$u_1 = g(u_0)$$

$$u_2 = g(u_1)$$

$$u_3 = g(u_2)$$

$$u_4 = g(u_3)$$

$$u_5 = g(u_4)$$

$$u_1 = g(u_0)$$

$$u_3 = g(u_2)$$

$$u_4 = g(u_3)$$

$$u_5 = g(u_4)$$

$$u_5 = g(u_5)$$

$$u_5 = g(u_4)$$

$$u_5 = g(u_5)$$

$$u_5 = g(u_4)$$

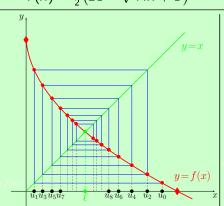
$$u_5 = g(u_5)$$

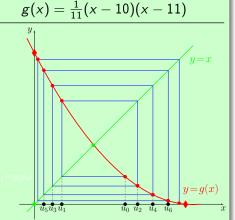
$$u_5 = g(u$$

Partant de
$$u_0 = 9$$
:

Partant de
$$u_0 = 9$$
: Partant de $u_0 = 6$: $u_0 > u_2 > u_4 > u_6$ $u_1 < u_3 < u_5$ $u_0 < u_2 < u_4 < u_6$ $u_1 > u_3 > u_5$

$f(x) = \frac{1}{2}(21 - \sqrt{44x + 1})$





f) Illustration d'une suite récurrente

Partant de $u_0 = 9$:

 $(u_n)_{n\in\mathbb{N}}$ converge vers $\ell=16-\sqrt{146}$

5. Suites récurrentes

La suite $(u_n)_{2n\in\mathbb{N}}$ est **décroissante** La suite $(u_n)_{2n+1\in\mathbb{N}}$ est **croissante**

Partant de $u_0 = 6$: $u_0 > u_2 > u_4 > u_6 > \cdots$ $u_1 < u_3 < u_5 < \cdots$ $u_0 < u_2 < u_4 < u_6 < \cdots$ $u_1 > u_3 > u_5 > \cdots$

La suite $(u_n)_{2n\in\mathbb{N}}$ converge vers 1 La suite $(u_n)_{2n+1\in\mathbb{N}}$ converge vers 0 La suite $(u_n)_{n\in\mathbb{N}}$ diverge

$f(x) = \frac{1}{2}(21 - \sqrt{44x + 1})$

$$f(x) = \frac{1}{2} (21 - \sqrt{44x + 1}) \qquad g(x) = \frac{1}{11} (x - 10)(x - 11)$$

$$y = x$$

$$y = y$$

f) Illustration d'une suite récurrente

Remarque: on a

5. Suites récurrentes

- f(0) = 10 et f(10) = 0 ce qui entraîne que 0 et 10 sont des **points fixes** de $f \circ f \dots$
- g(0) = 10 et g(10) = 0 ce qui entraîne que 0 et 10 sont des **points fixes** de $g \circ g...$
- $g = f^{-1}$ sur [0, 10] ce qui entraîne que f et g ont les mêmes **points fixes**...

Sommaire

- Rappels sur les suites
- 2 Limite d'une suite
- Suites extraites
- Suites adjacentes
- Suites récurrentes
- 6 Approximation des zéros d'une fonction : méthode de Newton
 - Principe de la méthode
 - Convergence de la méthode
 - Vitesse de convergence de la méthode

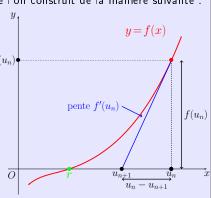
On considère une équation de la forme f(x)=0 où f est une fonction définie sur un intervalle [a,b] à valeurs réelles.

On cherche alors à approcher une éventuelle solution r de cette équation (appelée un **zéro de f**) à l'aide d'une suite récurrente que l'on construit de la manière suivante :

On considère une équation de la forme f(x)=0 où f est une fonction définie sur un intervalle [a,b] à valeurs réelles.

On cherche alors à approcher une éventuelle solution r de cette équation (appelée un zéro de f) à l'aide d'une suite récurrente que l'on construit de la manière suivante :

On fixe $u_0 \in [a,b]$ et pour tout $n \in \mathbb{N}$, on définit u_{n+1} comme étant l'abscisse du point d'intersection avec l'axe (Ox) de la tangente à la courbe de f au point d'abscisse u_n .



$$u_{n+1} = u_n - \frac{f(u_n)}{f'(u_n)}$$

On considère une équation de la forme f(x) = 0 où f est une fonction définie sur un intervalle [a, b] à valeurs réelles.

On cherche alors à approcher une éventuelle solution r de cette équation (appelée un zéro de f) à l'aide d'une suite récurrente que l'on construit de la manière suivante :

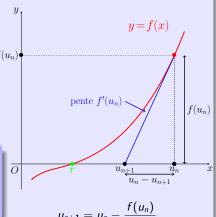
On fixe $u_0 \in [a,b]$ et pour tout $n \in \mathbb{N}$, on définit u_{n+1} comme étant l'abscisse du point d'intersection avec l'axe (Ox) de la tangente à la courbe de f au point d'abs- $f(u_n)$ cisse u_n

Pour cette construction que tive fonctionne, il faut faire hypothèses sur la fonction f:

 H_1 : f est **dérivable** sur [a, b];

 H_2 : f' ne s'annule pas sur [a, b];

 H_3 : pour tout $x \in [a, b]$, $x - \frac{f(x)}{f'(x)} \in [a, b]$.



$$u_{n+1} = u_n - \frac{f(u_n)}{f'(u_n)}$$

6. Méthode de Newton b) Convergence de la méthode Une fois la suite $(u_n)_{n\in\mathbb{N}}$ bien définie avec les hypothèses sur f, il reste à s'assurer

One fois la suite $(u_n)_{n\in\mathbb{N}}$ bien definie avec les hypothèses sur f, il reste à s'assurer que cette suite converge bien vers un zéro de la fonction f. Là encore, il va falloir des hypothèses supplémentaires :

Une fois la suite $(u_n)_{n\in\mathbb{N}}$ bien définie avec les hypothèses sur f, il reste à s'assurer que cette suite converge bien vers un zéro de la fonction f. Là encore, il va falloir des hypothèses supplémentaires :

Théorème 6.1 (Méthode de Newton)

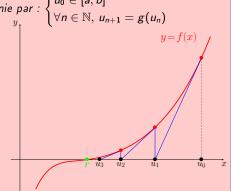
- Soit $f:[a,b] \longrightarrow \mathbb{R}$ vérifiant les hypothèses H_1, H_2, H_3 .
- Soit $g:[a,b] \longrightarrow [a,b]$ la fonction définie par $g(x) = x \frac{f(x)}{f'(x)}$. Soit $(u_n)_{n \in \mathbb{N}}$ la suite récurrente définie par : $\begin{cases} u_0 \in [a,b] \\ \forall n \in \mathbb{N}, \ u_{n+1} = g(u_n) \end{cases}$

Une fois la suite $(u_n)_{n\in\mathbb{N}}$ bien définie avec les hypothèses sur f, il reste à s'assurer que cette suite converge bien vers un zéro de la fonction f. Là encore, il va falloir des hypothèses supplémentaires :

Théorème 6.1 (Méthode de Newton)

- Soit $f:[a,b] \longrightarrow \mathbb{R}$ vérifiant les hypothèses H_1, H_2, H_3 .
- Soit $g:[a,b] \longrightarrow [a,b]$ la fonction définie par $g(x) = x \frac{f(x)}{f'(x)}$.
- Soit $(u_n)_{n\in\mathbb{N}}$ la suite récurrente définie par : $\begin{cases} u_0 \in [a,b] \\ \forall n \in \mathbb{N}, \ u_{n+1} = g(u_n) \end{cases}$

Si la fonction g est **contractante** sur [a,b] alors la suite $(u_n)_{n\in\mathbb{N}}$ **converge** vers l'unique point fixe de g, qui est aussi l'**unique zéro** de f sur [a,b].



6. Méthode de Newton c) Vitesse de convergence

Le théorème du point fixe fournit une majoration de l'erreur $|u_n-r|$ entre l'approximation obtenue à la $n^{\rm e}$ itération de la méthode de Newton et le zéro de f. En réalité, cette majoration est très grossière et on a une majoration bien plus fine de l'erreur :

Théorème 6.2 (Approximation quadratique)

- Soit $f:[a,b] \longrightarrow \mathbb{R}$ vérifiant les hypothèses H_1 , H_2 , H_3 .
- Supposons de plus f de classe C^2 sur [a, b].

Théorème 6.2 (Approximation quadratique)

- Soit $f:[a,b] \longrightarrow \mathbb{R}$ vérifiant les hypothèses H_1 , H_2 , H_3 .
- Supposons de plus f de classe C^2 sur [a, b].

 $Si\left(u_{n}\right)_{n\in\mathbb{N}}$ est la suite construite par la méthode de Newton pour approcher un zéro r, alors il existe une constante C (qui dépend de f) telle que :

$$\forall n \in \mathbb{N}, \quad |u_n - r| \leqslant \frac{1}{C} (C|u_0 - r|)^{2^n}.$$

Théorème 6.2 (Approximation quadratique)

- Soit $f:[a,b] \longrightarrow \mathbb{R}$ vérifiant les hypothèses H_1 , H_2 , H_3 .
- Supposons de plus f de classe C^2 sur [a, b].

Si $(u_n)_{n\in\mathbb{N}}$ est la suite construite par la méthode de Newton pour approcher un zéro r, alors il existe une constante C (qui dépend de f) telle que :

$$\forall n \in \mathbb{N}, \quad |u_n - r| \leqslant \frac{1}{C} (C|u_0 - r|)^{2^n}.$$

Plus précisément, on peut choisir $C = \frac{M}{2m}$ où $M = \sup_{[a,b]} |f''|$ et $m = \inf_{[a,b]} |f'|$.

Théorème 6.2 (Approximation quadratique)

- Soit $f:[a,b] \longrightarrow \mathbb{R}$ vérifiant les hypothèses H_1 , H_2 , H_3 .
- Supposons de plus f de classe C^2 sur [a, b].

 $Si(u_n)_{n\in\mathbb{N}}$ est la suite construite par la méthode de Newton pour approcher un zéro r, alors il existe une constante C (qui dépend de f) telle que :

$$\forall n \in \mathbb{N}, \quad |u_n - r| \leqslant \frac{1}{C} (C|u_0 - r|)^{2^n}.$$

Plus précisément, on peut choisir $C = \frac{M}{2m}$ où $M = \sup_{[a,b]} |f''|$ et $m = \inf_{[a,b]} |f'|$.

Ce qu'il faut surtout retenir de cette inégalité, c'est que la convergence de la méthode de Newton peut être très rapide, et que si $C|u_0-r|<1$ (c'est-à-dire qu'on démarre la méthode suffisamment proche de r), la convergence est **quadratique**, autrement dit, le nombre de décimales exactes **double** approximativement à chaque étape.

7. Compléments

Et pour aller plus loin...

Notions à retenir

- Suites numériques
 - Notion de convergence des suites réelles ou complexes;
 cas de la convergence monotone
 - * Suites extraites
 - ★ Suites adjacentes
 - ★ Suites récurrentes : cas d'une fonction itérative monotone ; théorème du point fixe
 - * Méthode de Newton