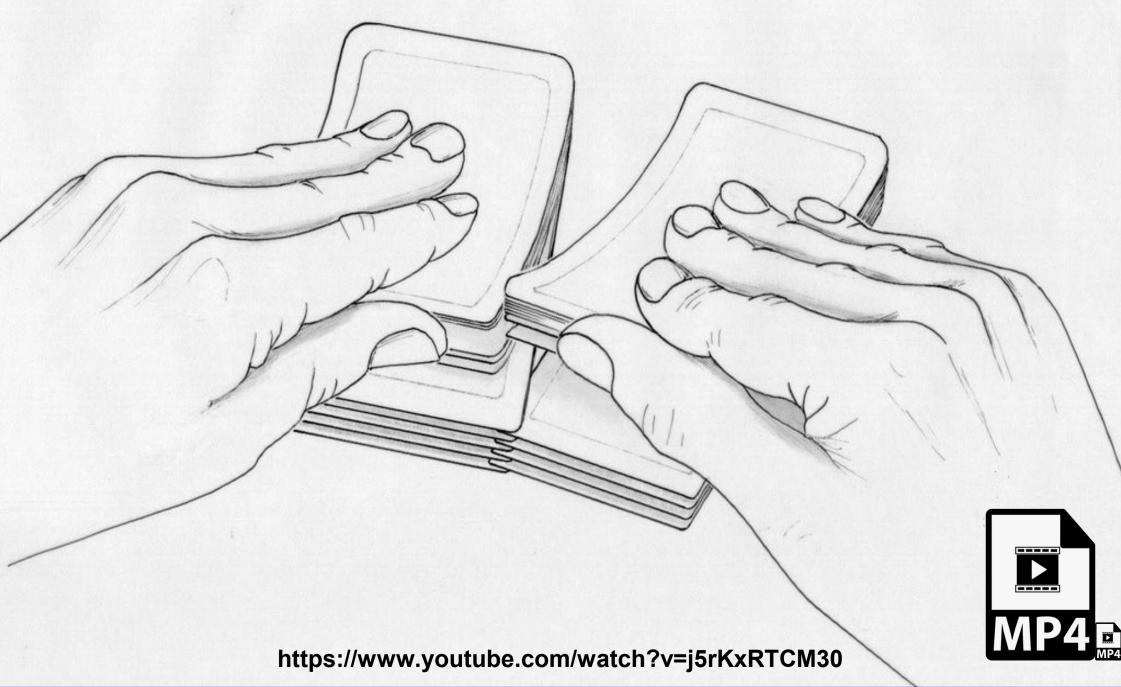


Mélanges Faros

« Mélange américain » ou « Riffle shuffle »

https://www.youtube.com/watch?v=boLx4T2-GeQ

« Mélange Pharaon » ou « Faro »

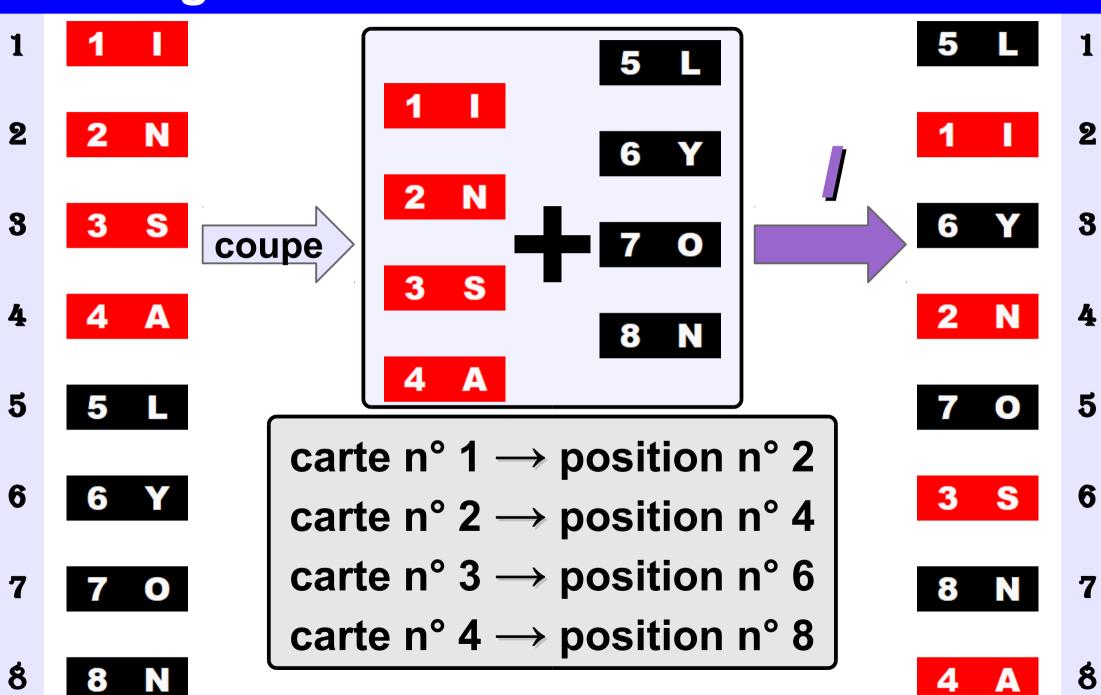


« Mélange Pharaon » ou « Faro »

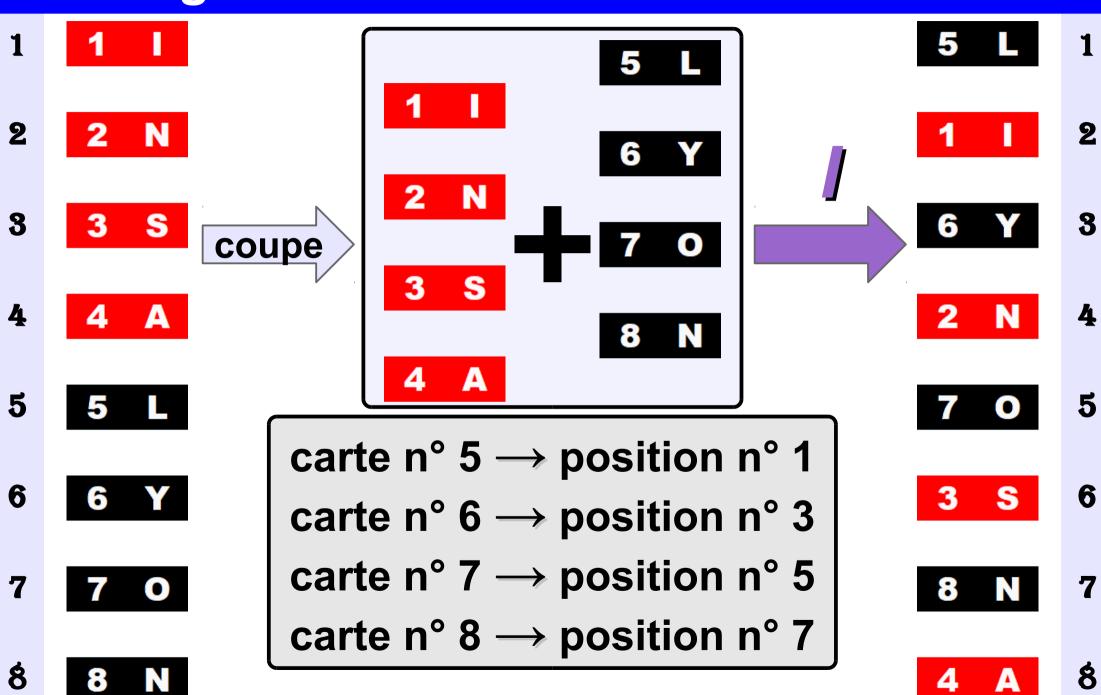
MODÉLISATION

FARO-IN

Mélange « Faro-in »



Mélange « Faro-in »



Modélisation : une permutation

 $f:\{1,2,3,4,5,6,7,8\} \rightarrow \{1,2,3,4,5,6,7,8\}$ i: position avant mélange $\leftrightarrow j=f(i):$ position après mélange

$$f(i) = \left\{ \begin{array}{ccc} 2i & \text{si } i \leq 4 \\ \end{array} \right\}$$

Modélisation : une permutation

 $f:\{1,2,3,4,5,6,7,8\} \rightarrow \{1,2,3,4,5,6,7,8\}$

i: position avant mélange $\leftrightarrow j = f(i)$: position après mélange

$$\begin{cases}
f(1) = 2 \\
f(2) = 4 \\
f(3) = 6 \\
f(4) = 8
\end{cases}$$

$$\begin{cases}
f(5) = 1 \\
f(6) = 3 \\
f(7) = 5 \\
f(8) = 7
\end{cases}$$

$$f(i) = \begin{cases} 2i & \text{si } i \leq 4 \\ 2i - 9 & \text{si } i \geq 5 \end{cases}$$

Modélisation : une permutation

$$f:\{1,2,3,4,5,6,7,8\} \rightarrow \{1,2,3,4,5,6,7,8\}$$

 $i: position avant mélange $\leftrightarrow j = f(i): position après mélange$$

$$f(i) = \begin{cases} 2i & \text{si } i \leq 4 \\ 2i - 9 & \text{si } i \geq 5 \end{cases} \equiv 2i \text{ [mod 9]}$$

Modélisation : et sa réciproque

$$\begin{cases}
f(1) = 2 & f(5) = 1 \\
f(2) = 4 & f(6) = 3 \\
f(3) = 6 & f(7) = 5 \\
f(4) = 8 & f(8) = 7
\end{cases}$$

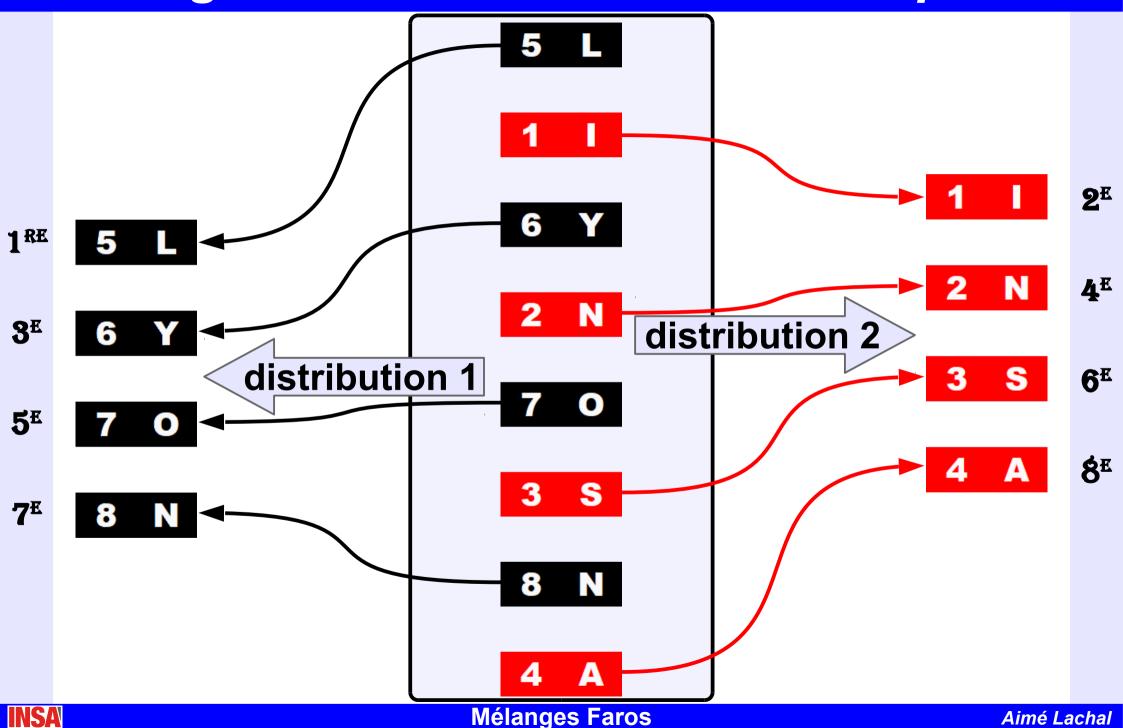
Modélisation : et sa réciproque

Modélisation : et sa réciproque
$$\begin{cases}
f(5) = 1 & f(7) = 5 \\
f(1) = 2 & f(3) = 6 \\
f(6) = 3 & f(8) = 7 \\
f(2) = 4 & f(4) = 8
\end{cases}$$

$$\begin{cases}
f^{-1}(1) = 5 & f^{-1}(5) = 7 \\
f^{-1}(2) = 1 & f^{-1}(6) = 3 \\
f^{-1}(3) = 6 & f^{-1}(7) = 8 \\
f^{-1}(4) = 2 & f^{-1}(8) = 4
\end{cases}$$

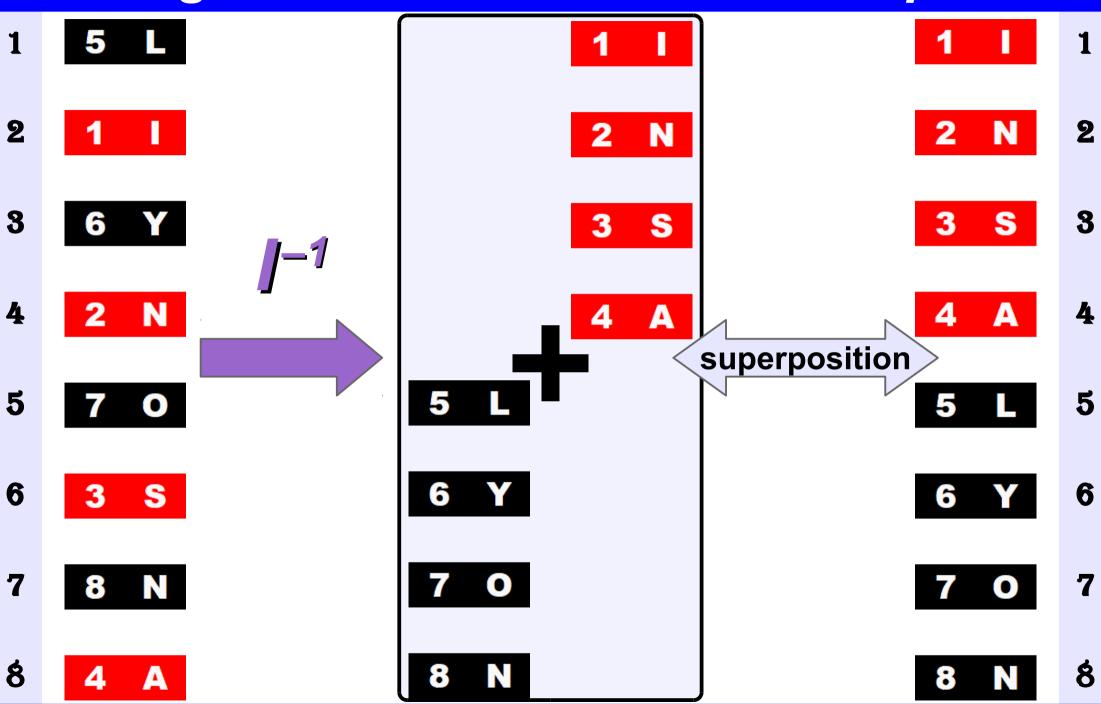
$$f^{-1}(j) = \begin{cases} j/2 & \text{si } j \text{ est pair} \\ (j+9)/2 & \text{si } j \text{ est impair} \end{cases}$$

Mélange « anti-Faro-in » : donne équitable



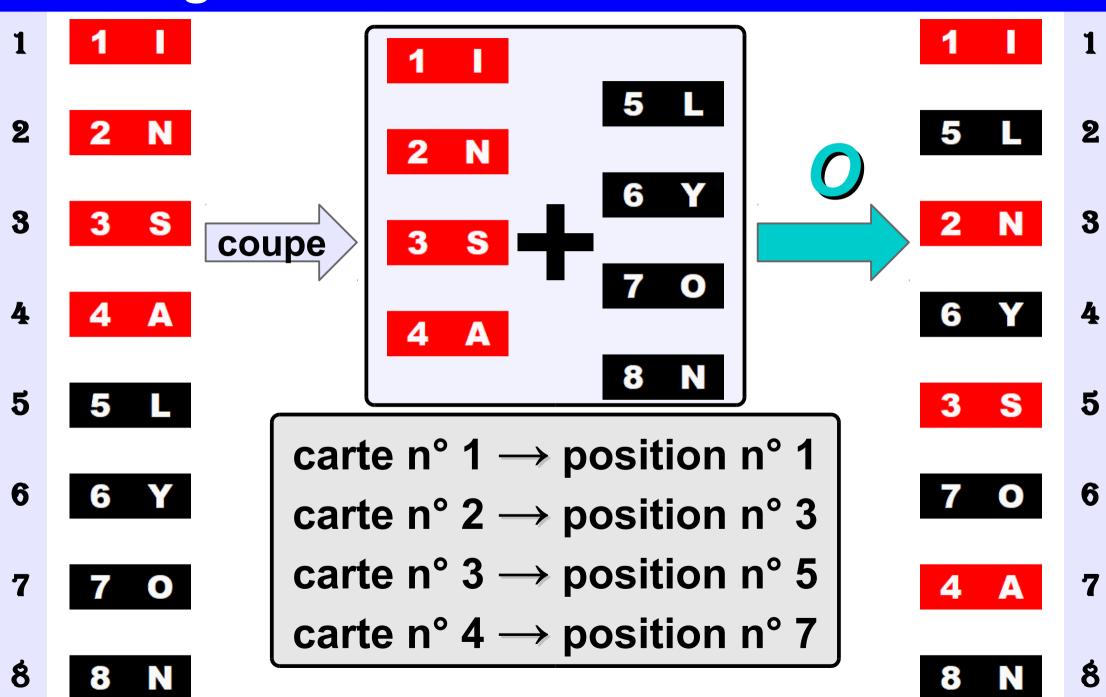
Mélange « anti-Faro-in » : donne équitable

Mélange « anti-Faro-in » : donne équitable

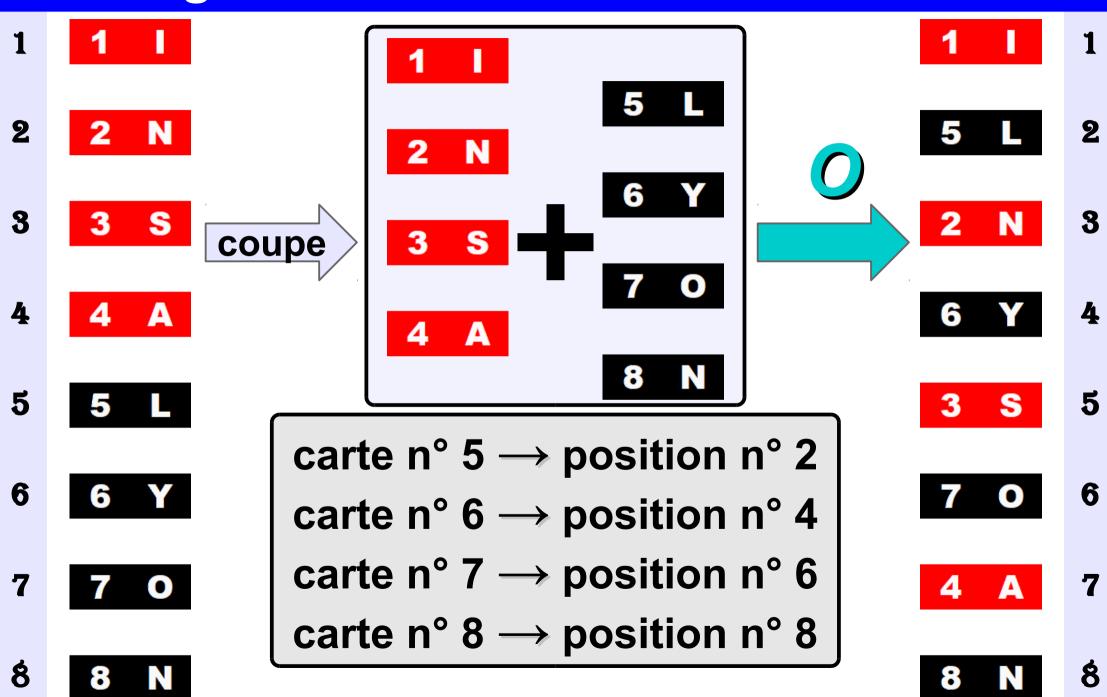


FARO-OUT

Mélange « Faro-out »



Mélange « Faro-out »



Modélisation : une autre permutation

 $g:\{1,2,3,4,5,6,7,8\} \rightarrow \{1,2,3,4,5,6,7,8\}$ i: position avant mélange $\leftrightarrow j=g(i):$ position après mélange

$$g(1) = 1$$

 $g(2) = 3$
 $g(3) = 5$
 $g(4) = 7$

$$g(i) = \left\{2i - 1 \quad \text{si } i \leq 4\right\}$$

Modélisation : une autre permutation

 $g:\{1,2,3,4,5,6,7,8\} \rightarrow \{1,2,3,4,5,6,7,8\}$

i: position avant mélange $\leftrightarrow j = g(i)$: position après mélange

$$\begin{cases}
g(1) = 1 \\
g(2) = 3
\end{cases} \qquad \begin{cases}
g(5) = 2 \\
g(6) = 4 \\
g(7) = 6 \\
g(4) = 7
\end{cases} \qquad g(8) = 8$$

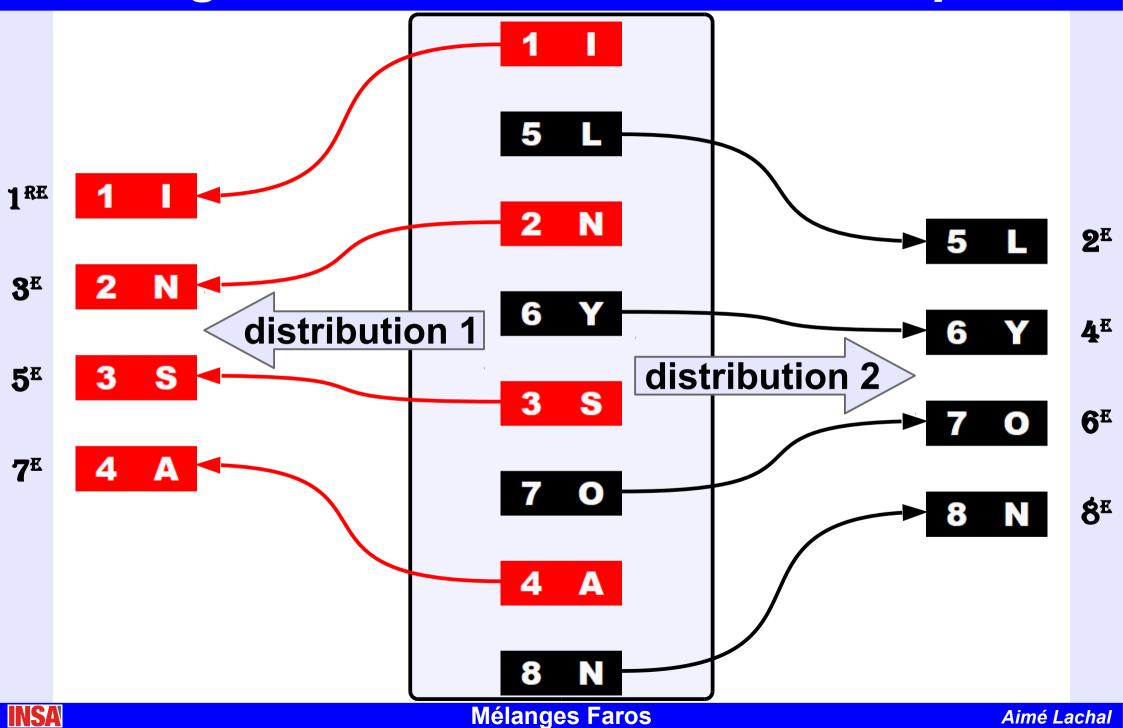
$$g(i) = \begin{cases} 2i - 1 & \text{si } i \leq 4 \\ 2i - 8 & \text{si } i \geq 5 \end{cases}$$

Modélisation : une autre permutation

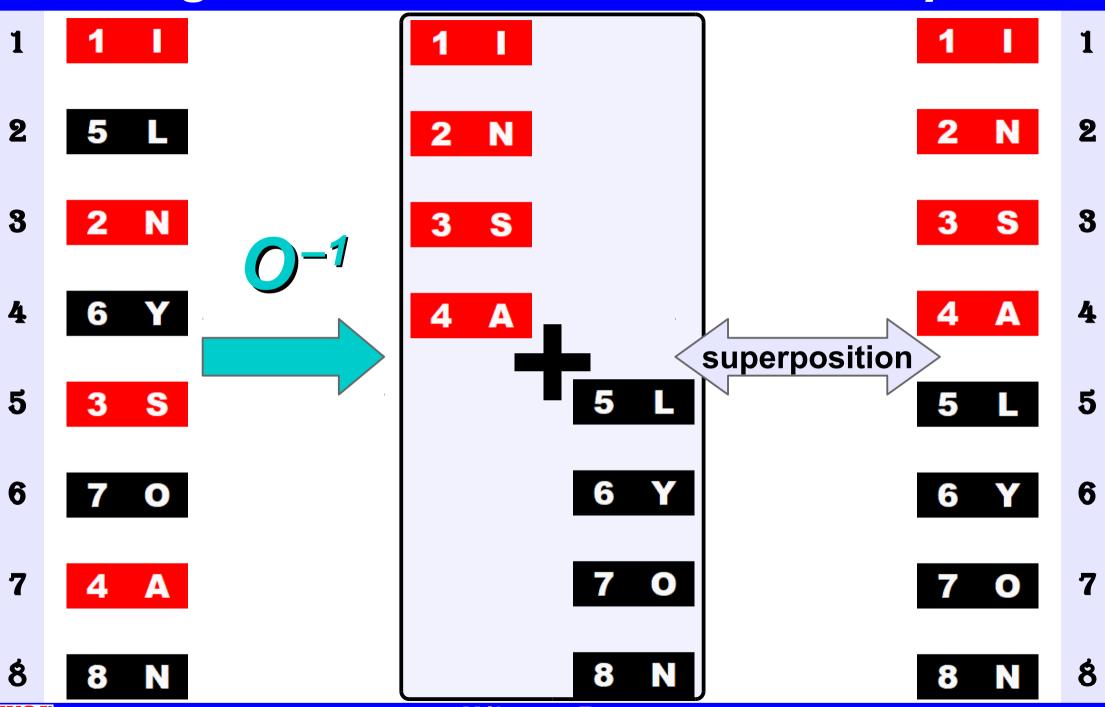
 $g:\{1,2,3,4,5,6,7,8\} \rightarrow \{1,2,3,4,5,6,7,8\}$ i: position avant mélange $\leftrightarrow j=g(i):$ position après mélange

$$g(i) = \begin{cases} 2i - 1 & \text{si } i \leq 4 \\ 2i - 8 & \text{si } i \geq 5 \end{cases} \equiv 2i - 1 \text{ [mod 7]}$$

Mélange « anti-Faro-out » : donne équitable



Mélange « anti-Faro-out » : donne équitable



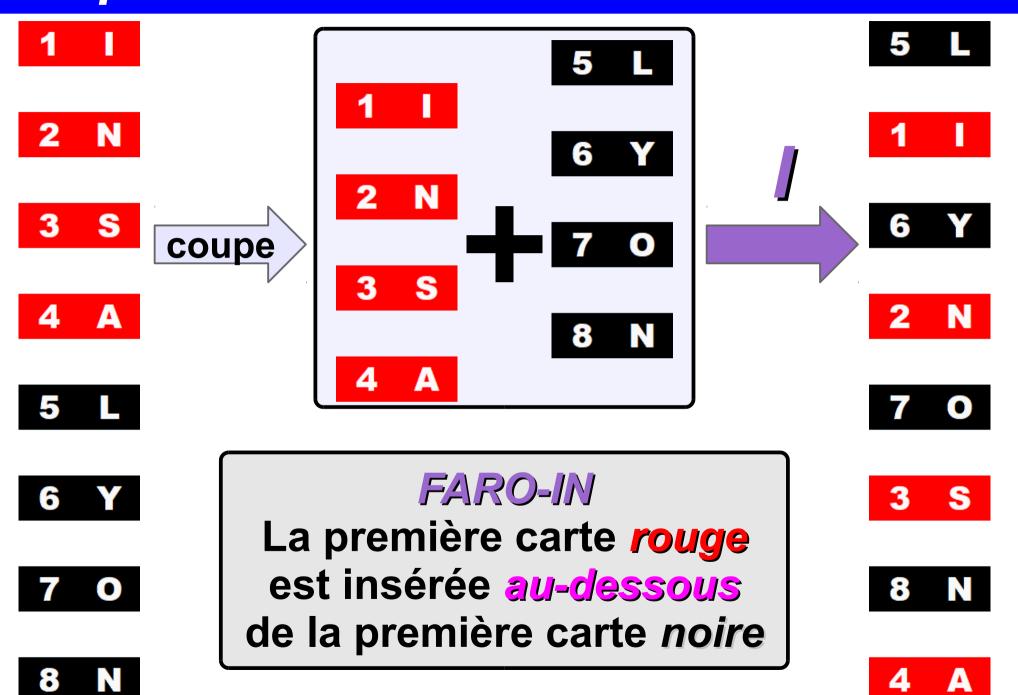
INSA

Mélanges Faros

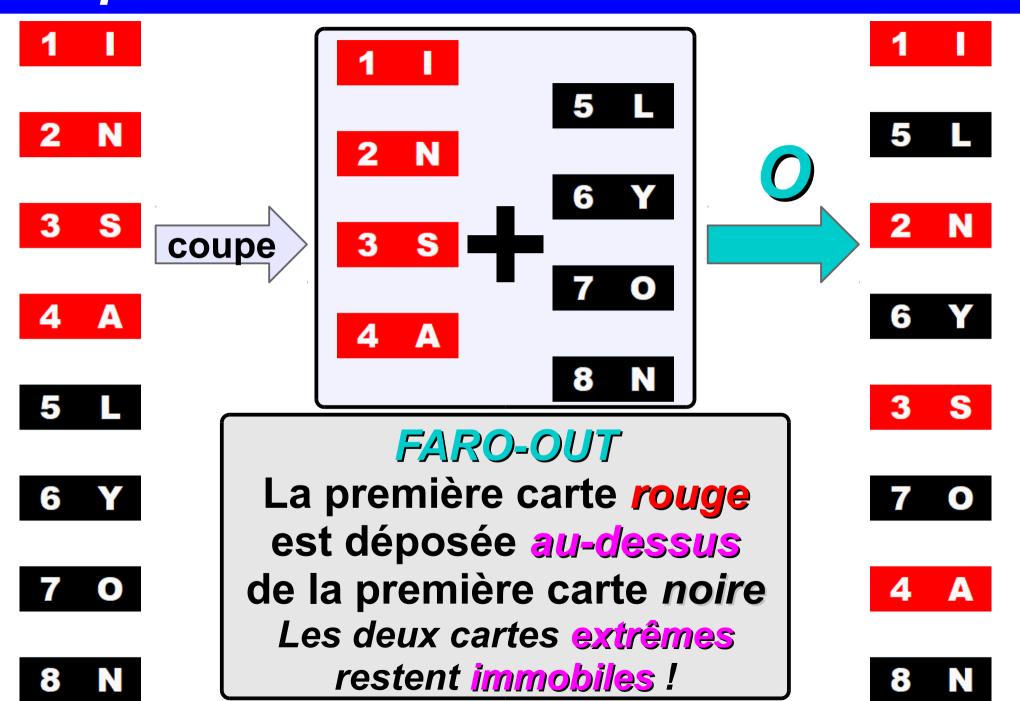
Aimé Lachal

COMPARAISON FARO-IN VS FARO-OUT

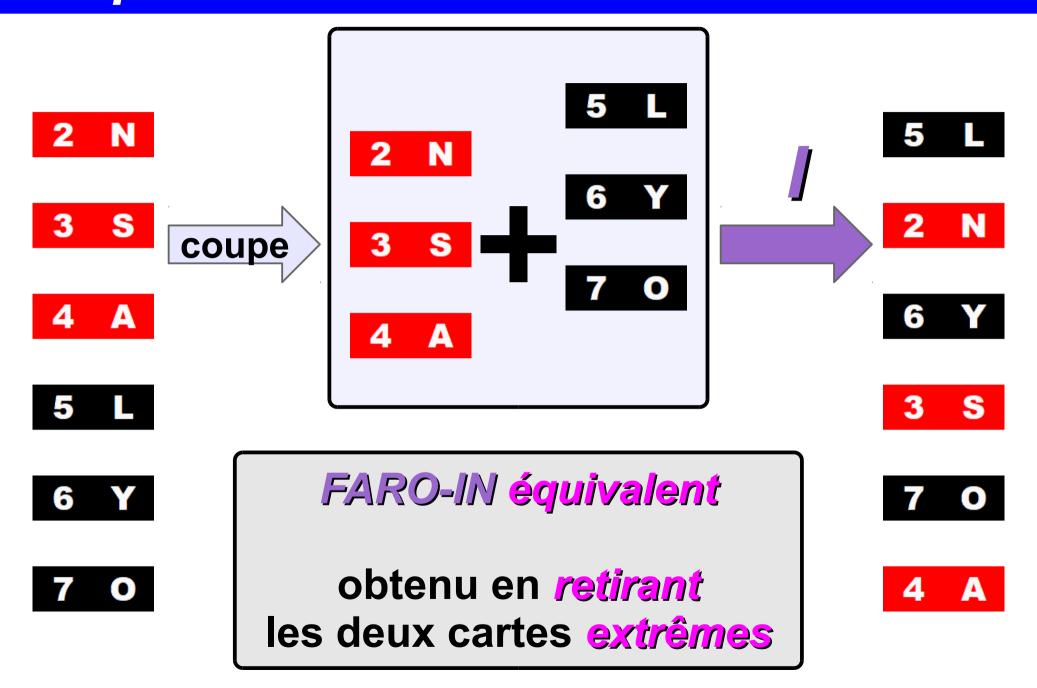
Comparaison: « Faro-in » et « Faro-out »



Comparaison: « Faro-in » et « Faro-out »



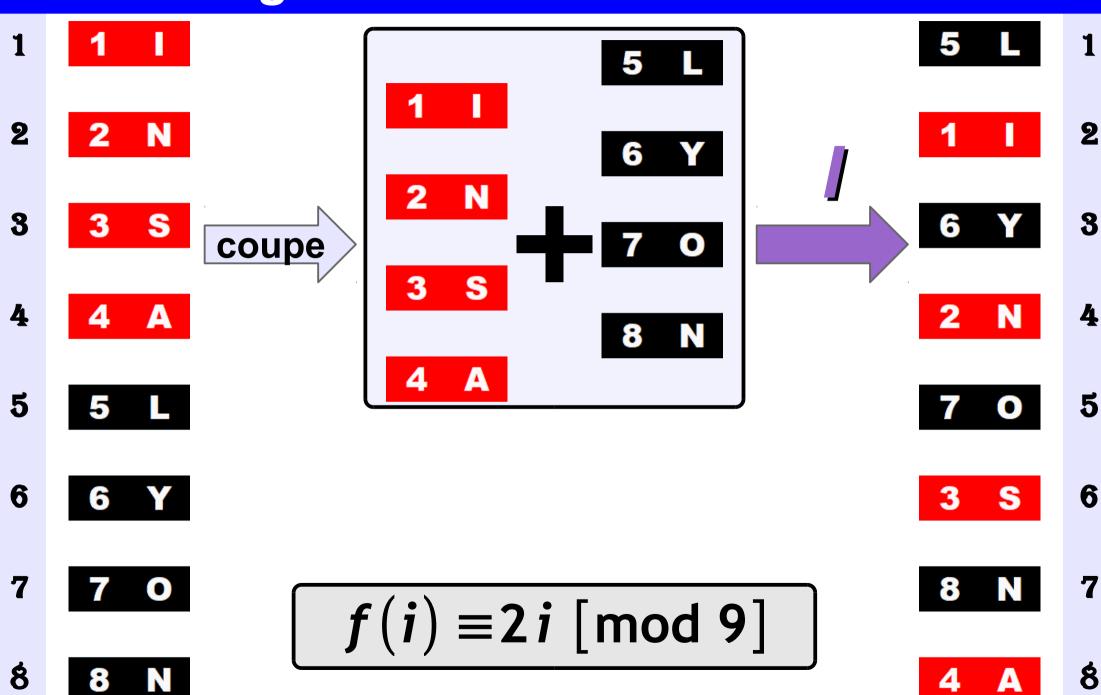
Comparaison: « Faro-in » et « Faro-out »



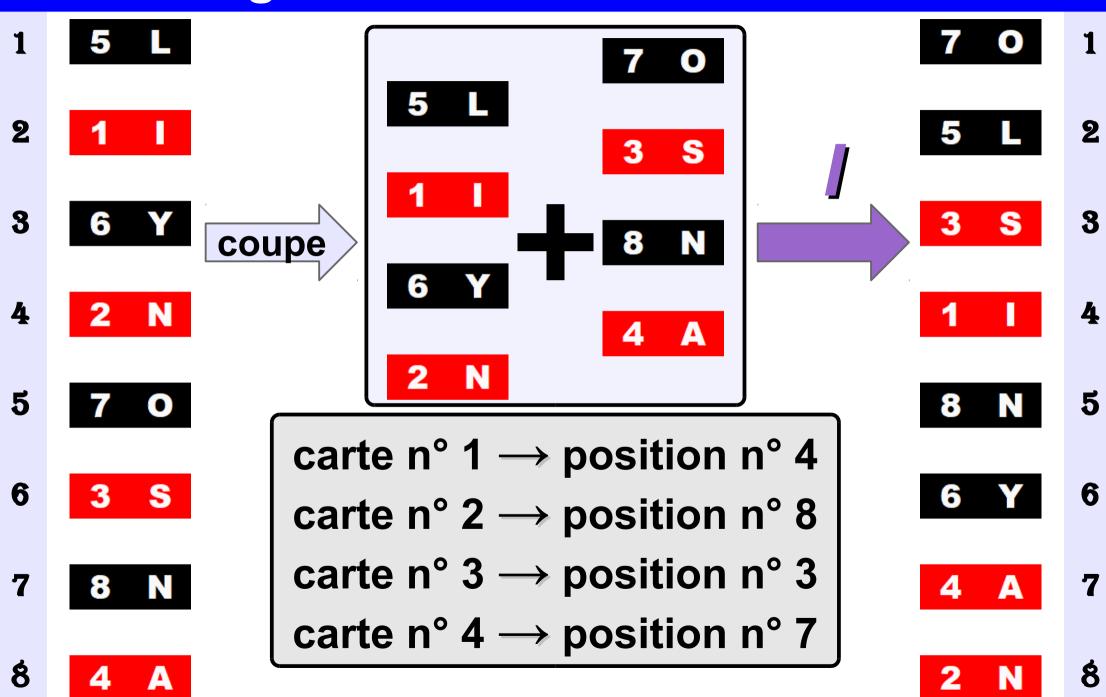
ITÉRATIONS SUCCESSIVES

FAROS-IN

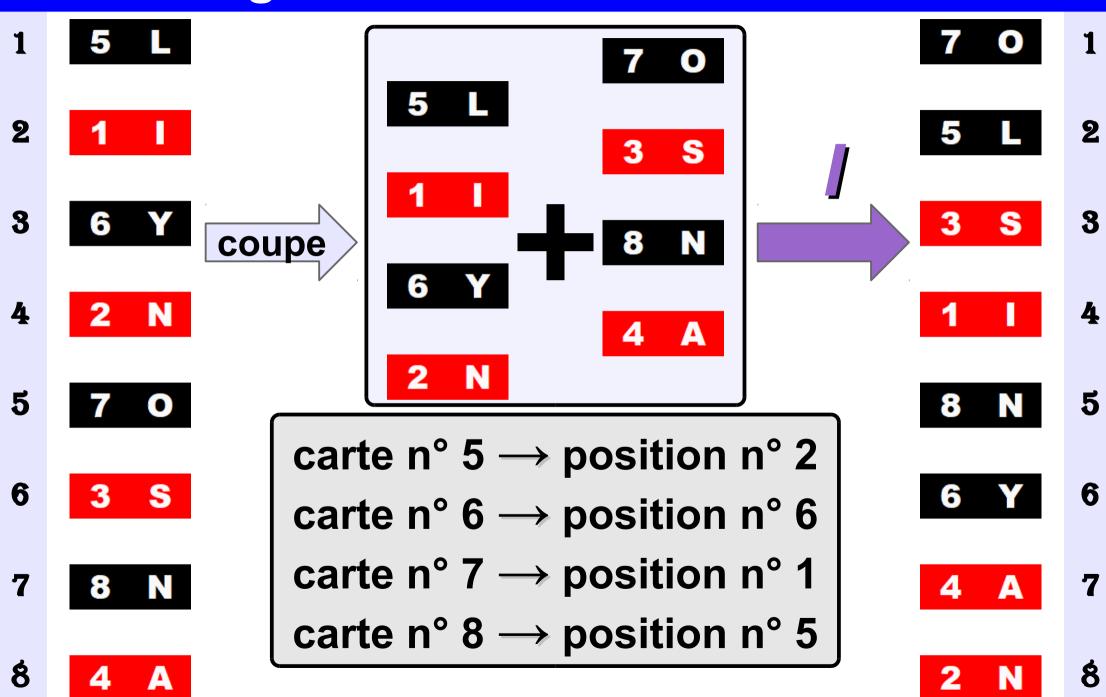
1^{er} mélange « Faro-in »



2º mélange « Faro-in »



2º mélange « Faro-in »



Modélisation: composition

Notation:
$$f^2 = f \circ f$$

$$\begin{cases}
f^{2}(1) = 4 \\
f^{2}(2) = 8 \\
f^{2}(3) = 3 \\
f^{2}(4) = 7
\end{cases}$$

$$f^{2}(5) = 2$$

$$f^{2}(6) = 6$$

$$f^{2}(7) = 1$$

$$f^{2}(8) = 5$$

$$f^{2}(i) = f(f(i))$$

Modélisation: composition

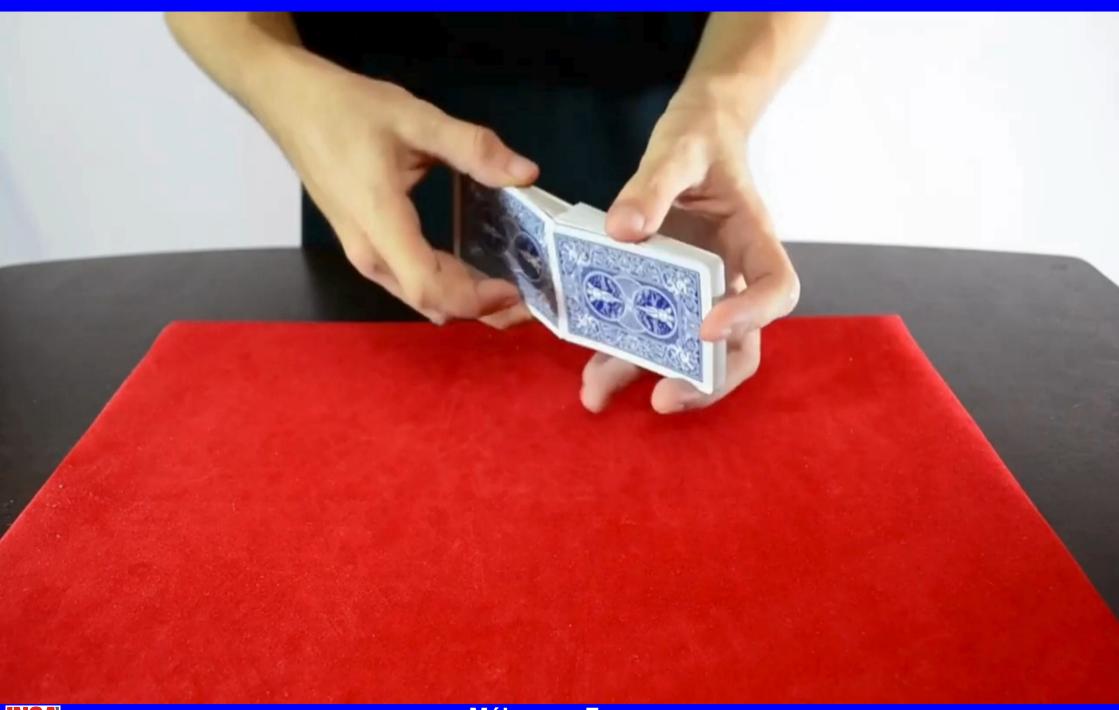
Notation :
$$f^2 = f \circ f$$

$$\begin{cases} f^{2}(1) = 4 \equiv 4 & [9] \\ f^{2}(2) = 8 \equiv 8 & [9] \\ f^{2}(3) = 3 \equiv 12 & [9] \\ f^{2}(4) = 7 \equiv 16 & [9] \end{cases} \qquad \begin{cases} f^{2}(5) = 2 \equiv 20 & [9] \\ f^{2}(6) = 6 \equiv 24 & [9] \\ f^{2}(7) = 1 \equiv 28 & [9] \\ f^{2}(8) = 5 \equiv 32 & [9] \end{cases}$$

$$f^{2}(i) = f(f(i)) \equiv 4i \text{ [mod 9]}$$

Préparation d'un carré d'As

2 mélanges Faros-in

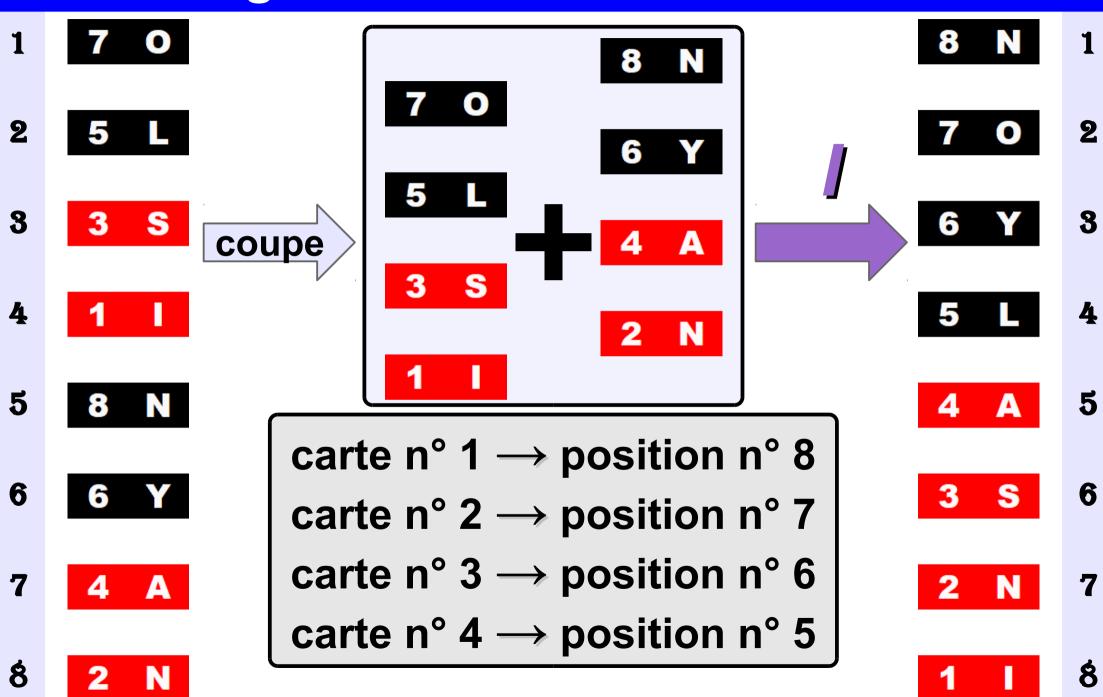


Donne équitable à 4 joueurs

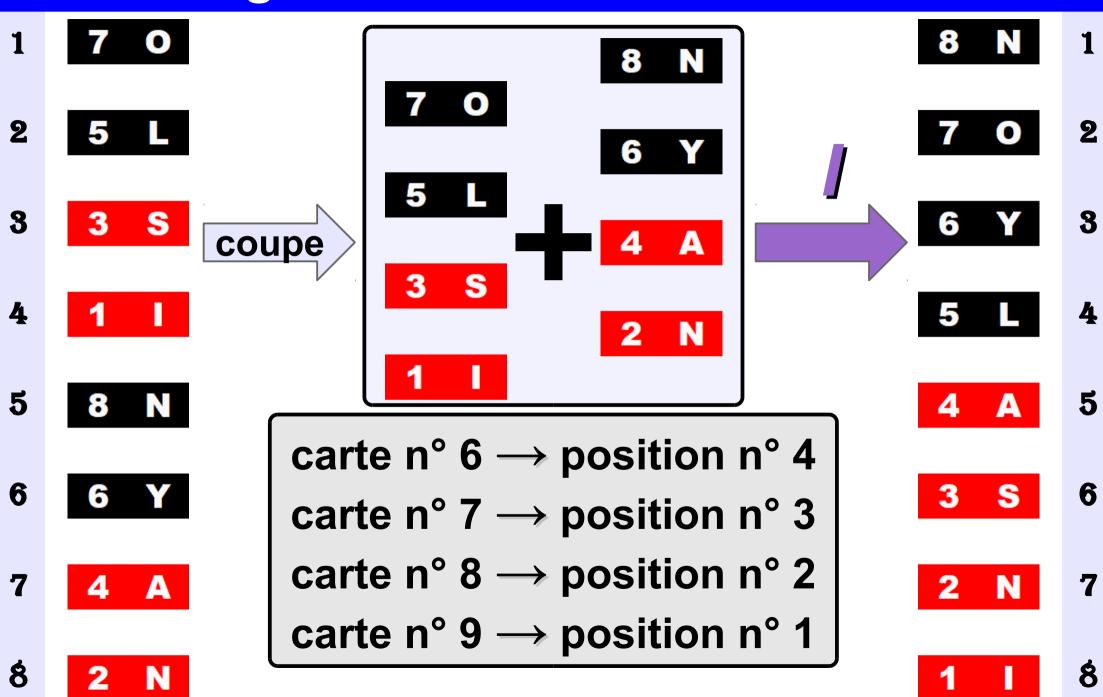
<u>INSA</u>

Interlude: Une main de poker: « five-card stud »

3º mélange « Faro-in »



3º mélange « Faro-in »



Modélisation: composition et symétrie

Notation: $f^3 = f \circ f \circ f$

$$f^{3}(1) = 8$$
 $f^{3}(2) = 7$
 $f^{3}(3) = 6$
 $f^{3}(4) = 5$

$$f^{3}(5) = 4$$

$$f^{3}(6) = 3$$

$$f^{3}(7) = 2$$

$$f^{3}(8) = 1$$

$$f^{3}(i) = f(f(f(i))) = 9-i$$

Au bout de 3 mélanges, le jeu est inversé...

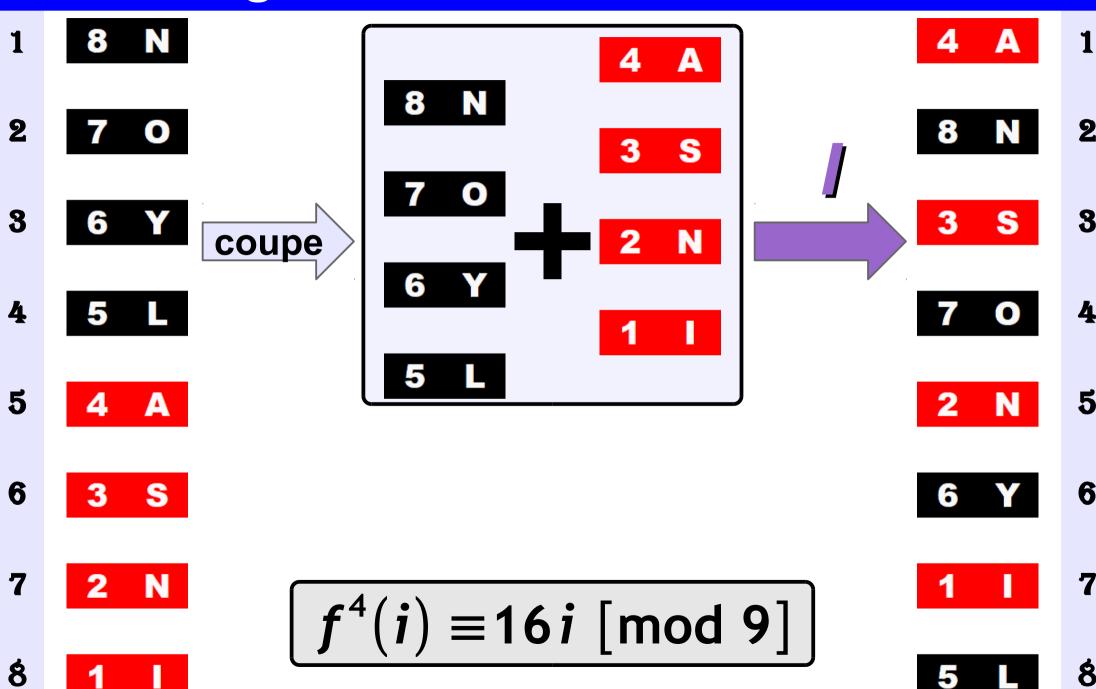
Modélisation: composition et symétrie

Notation: $f^3 = f \circ f \circ f$

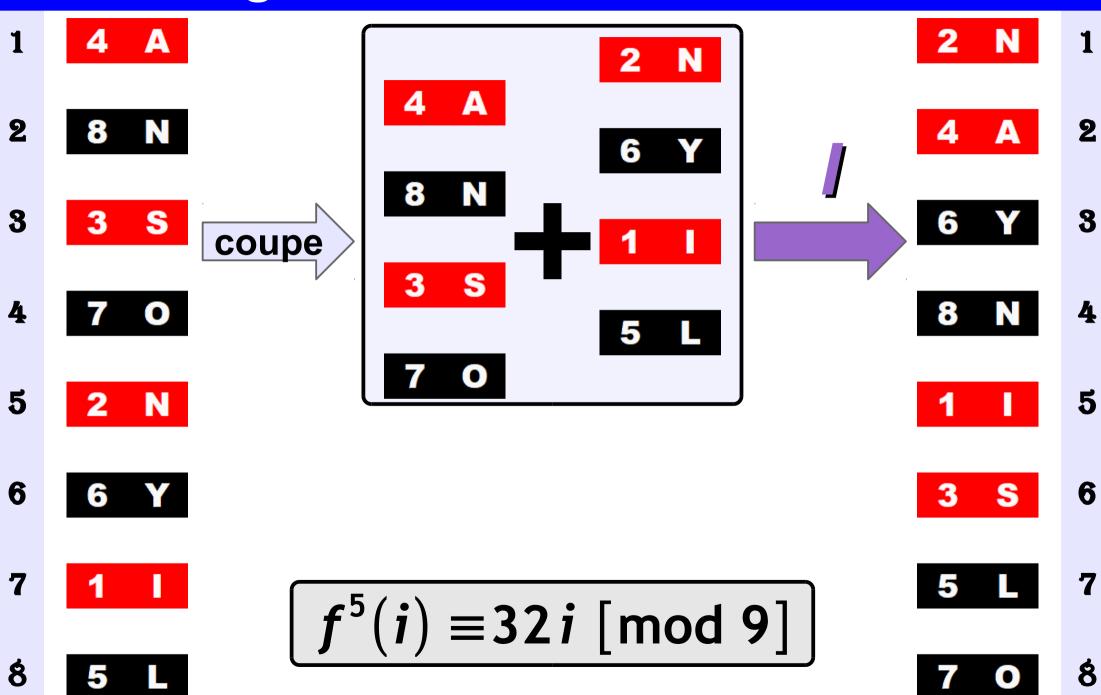
$$f^{3}(i) = f(f(f(i))) = 9 - i \equiv 8i \text{ [mod 9]}$$

Au bout de 3 mélanges, le jeu est inversé...

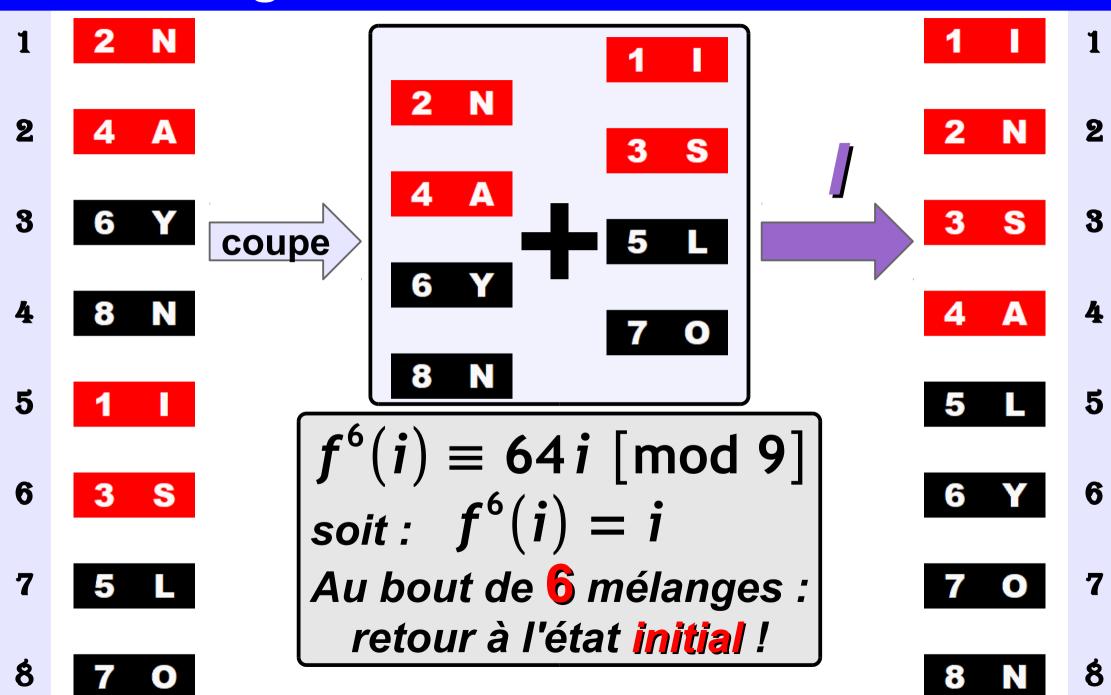
4º mélange « Faro-in »



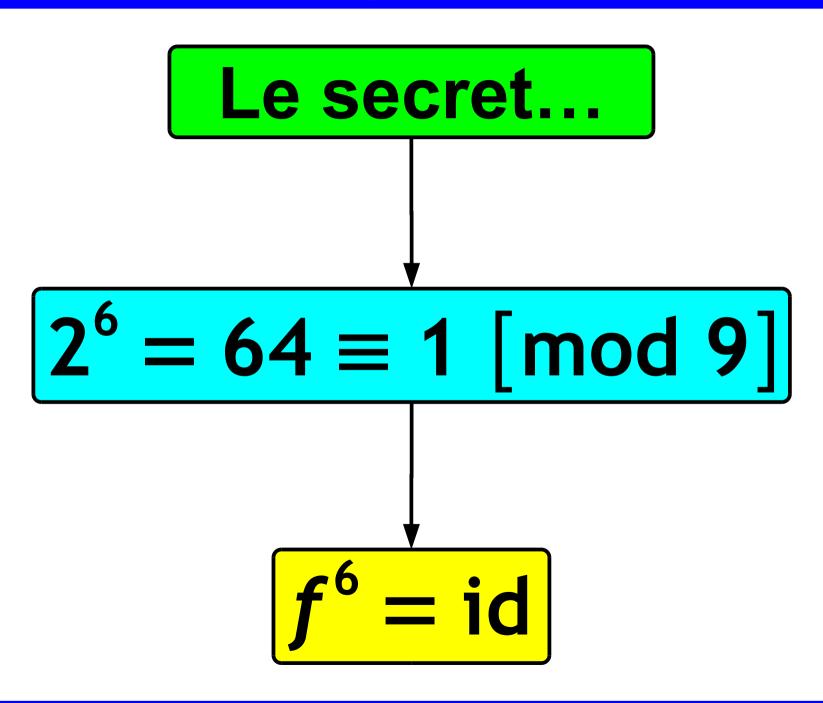
5º mélange « Faro-in »



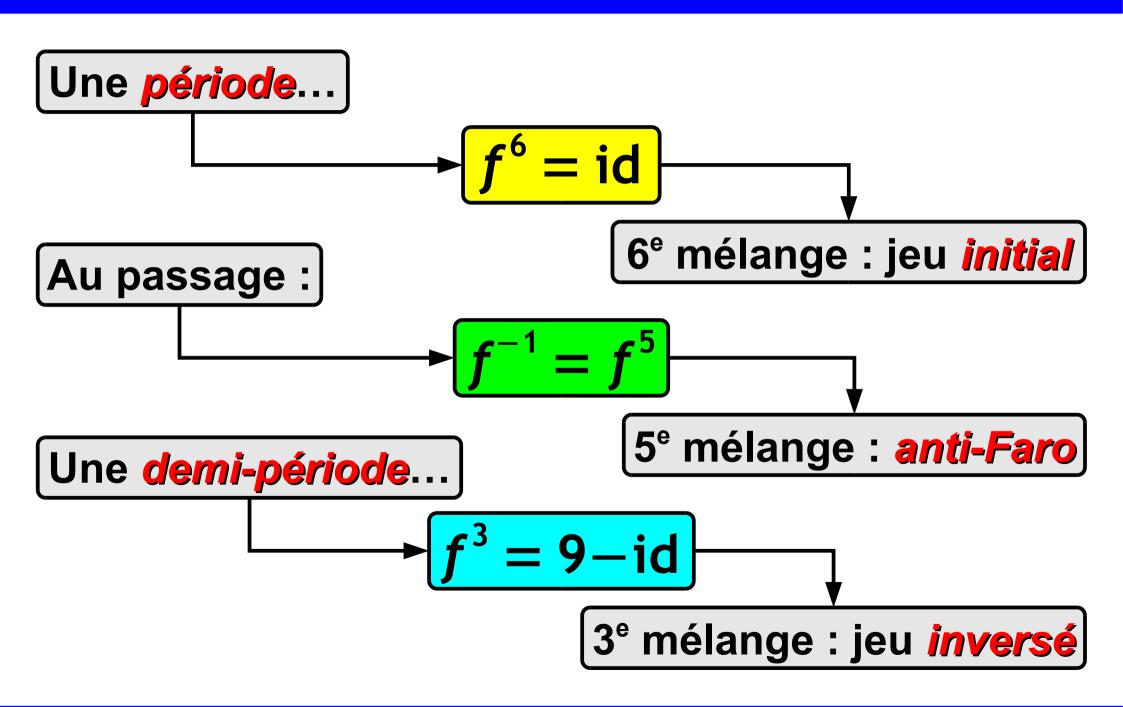
6e mélange « Faro-in »



Modélisation : une période



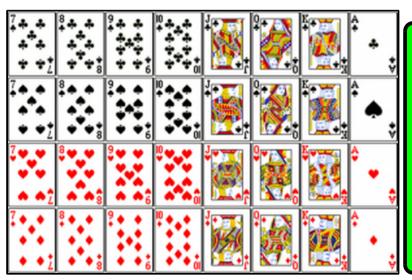
En résumé



Périodicité: généralisation

<u>Théorème</u>: pour un jeu de **2**^p cartes,

- 2p mélanges Faros-in ramènent le jeu à son ordre initial
- p mélanges Faros-in emmènent le jeu dans un ordre inversé



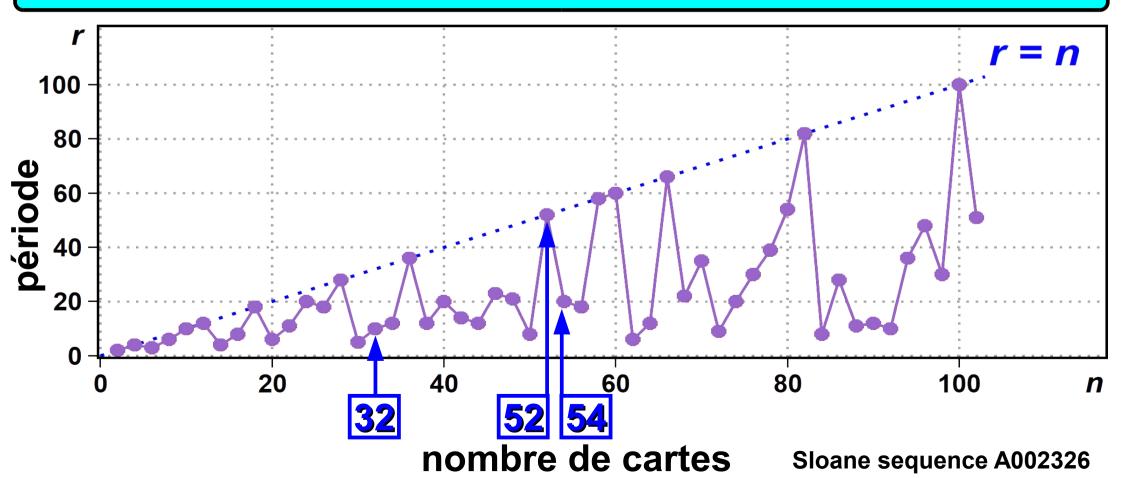
Exemple:

pour un jeu de 32 cartes,

10 mélanges Faros-in
ramènent le jeu à son ordre initial

Périodicité : généralisation

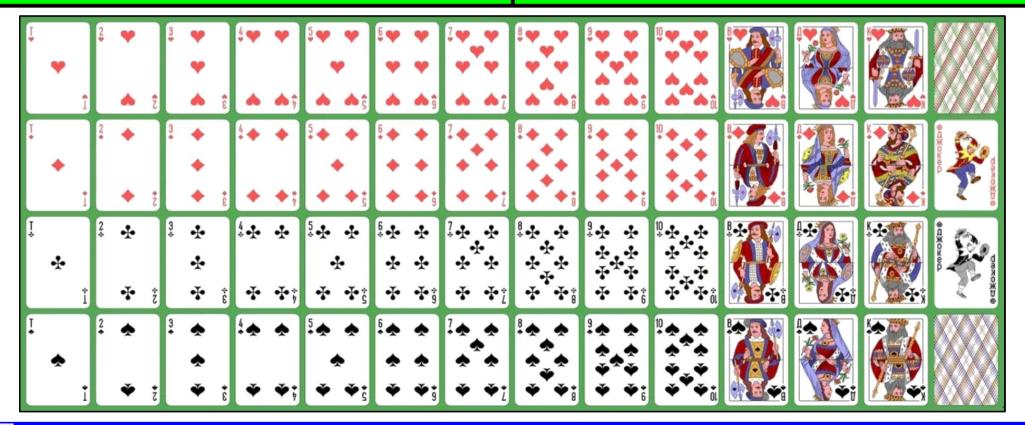
Théorème : pour tout entier pair *N*, un jeu de *N cartes revient à sa configuration <mark>initiale</mark> après r mélanges Faros-in avec 2^r ≡ 1 [mod (n+1)]*



Périodicité: généralisation

Exemples:

- 52 mélanges Faros-in ramènent le jeu à son ordre initial
- pour un jeu de 52 cartes, pour un jeu de 54 cartes, 20 mélanges Faros-in ramènent le jeu à son ordre initial



Périodicité : généralisation

Complément : pour tout entier pair *n*, la période *r* d'un mélange de *n* cartes

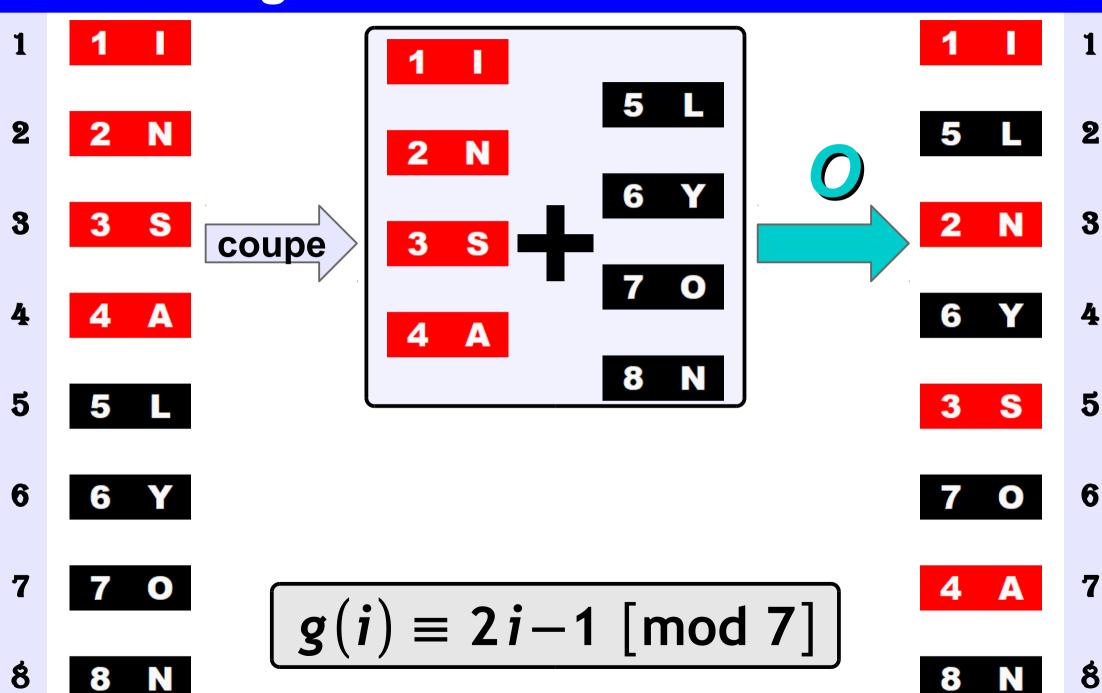
- est un diviseur de l'indicatrice d'Euler φ(n+1)
 [φ(N)) est le nombre de nombres premiers avec N compris entre 1 et N]
- est un diviseur de N lorsque n+1 est premier

Exem	n	es	•
		<u> </u>	

n	32	34	52	54	78
φ(n+1)	20	2 4	52	40	78
"	10	12	52	20	39

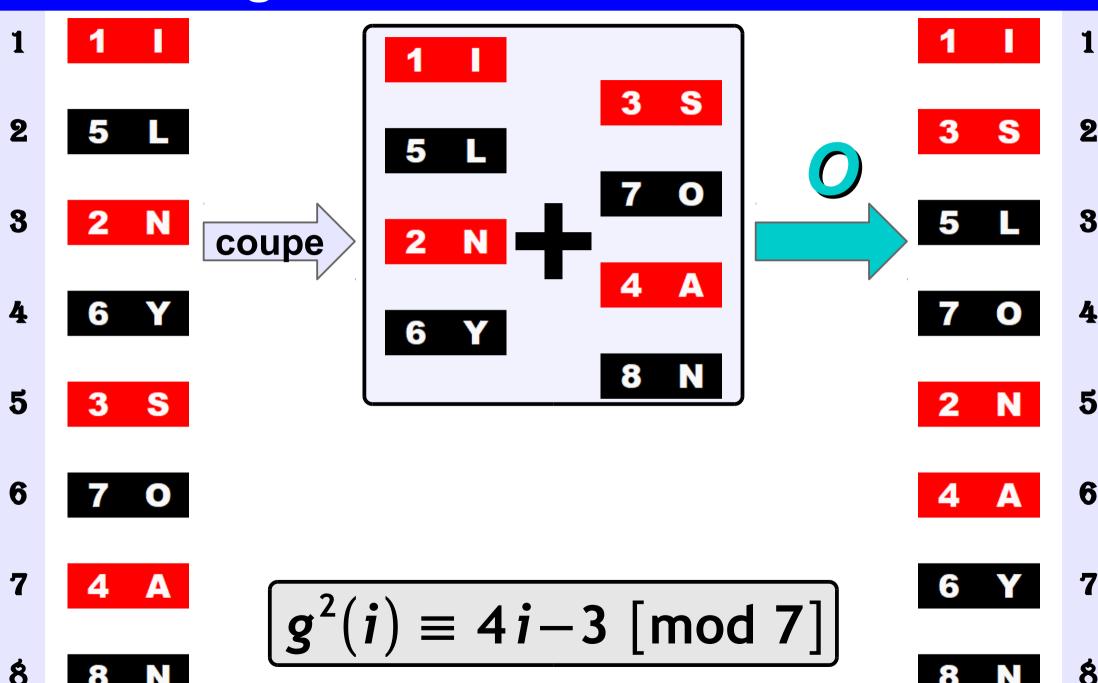
FAROS-OUT

1^{er} mélange « Faro-out »



2º mélange « Faro-out »

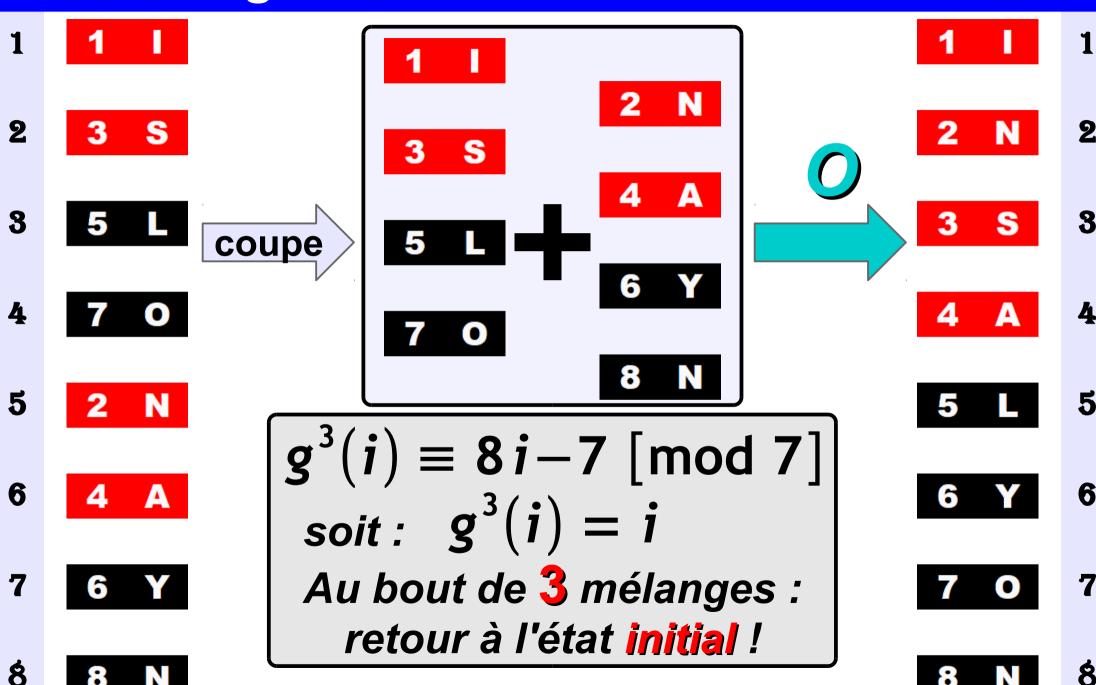
INSA



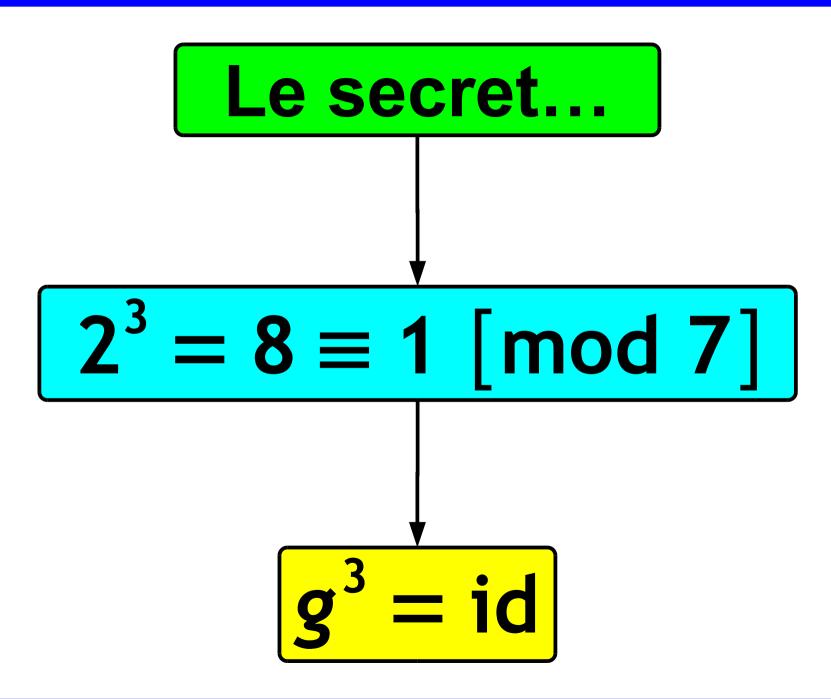
Mélanges Faros

Aimé Lachal

3º mélange « Faro-out »



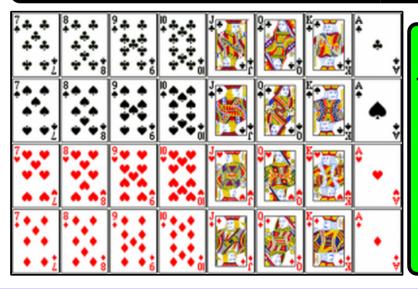
Modélisation : une période



Périodicité: généralisation

Théorème:

- pour un jeu de 2^p cartes :
 - p mélanges Faros-out ramènent le jeu à son ordre initial
- pour un jeu de $2^p 2$ cartes :
 - p mélanges Faros-in ramènent le jeu à son ordre initial



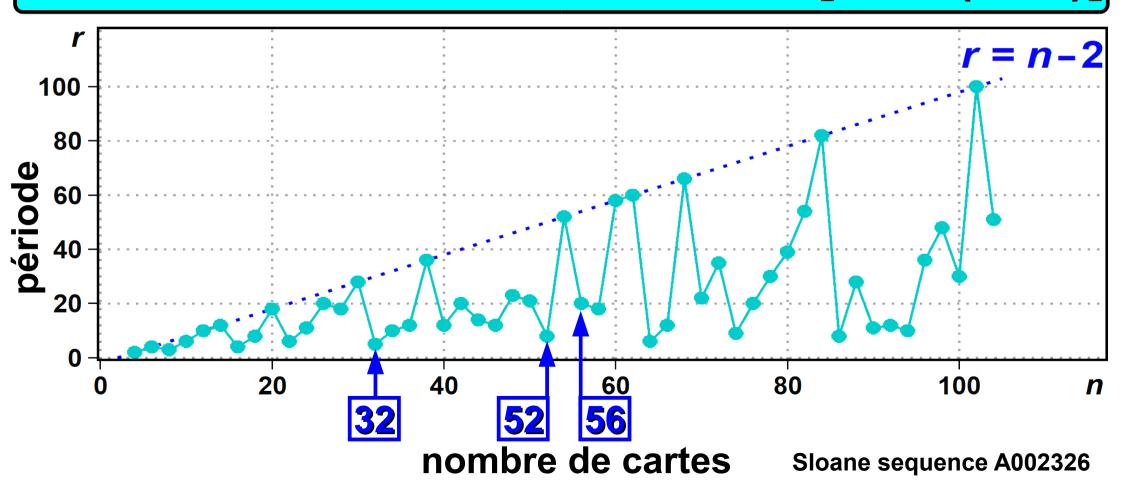
Exemple:

pour un jeu de 32 cartes,

5 mélanges Faros-out ramènent le jeu à son ordre initial

Périodicité : généralisation

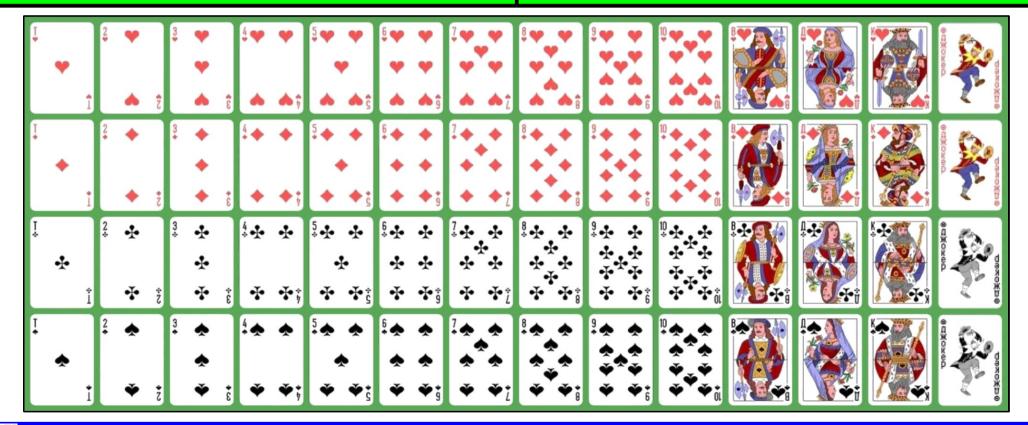
Théorème : pour tout entier pair *N*, un jeu de *N* cartes revient à sa configuration initiale après r mélanges Faros-out avec 2^r ≡1[mod (n−1)]



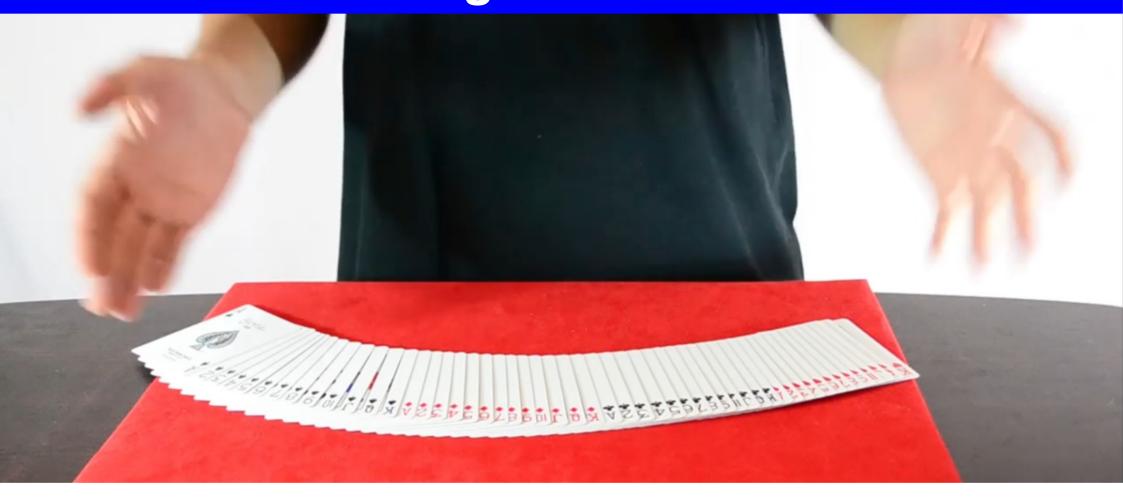
Périodicité: généralisation

Exemples:

- - 8 mélanges Faros-லயர் ramènent le jeu à son ordre initial
- pour un jeu de 52 cartes, pour un jeu de 56 cartes, 20 mélanges Faros-லயர் ramènent le jeu à son ordre initial



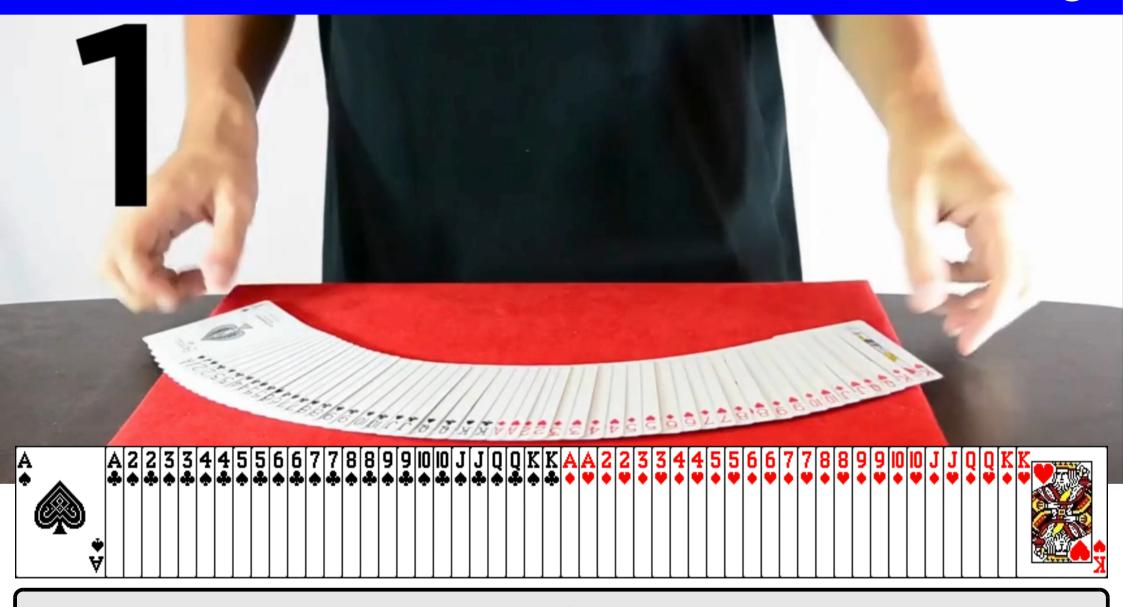
Interlude : mélanges Faro-out de 52 cartes



Jeu initial ordonné par familles de As à Roi

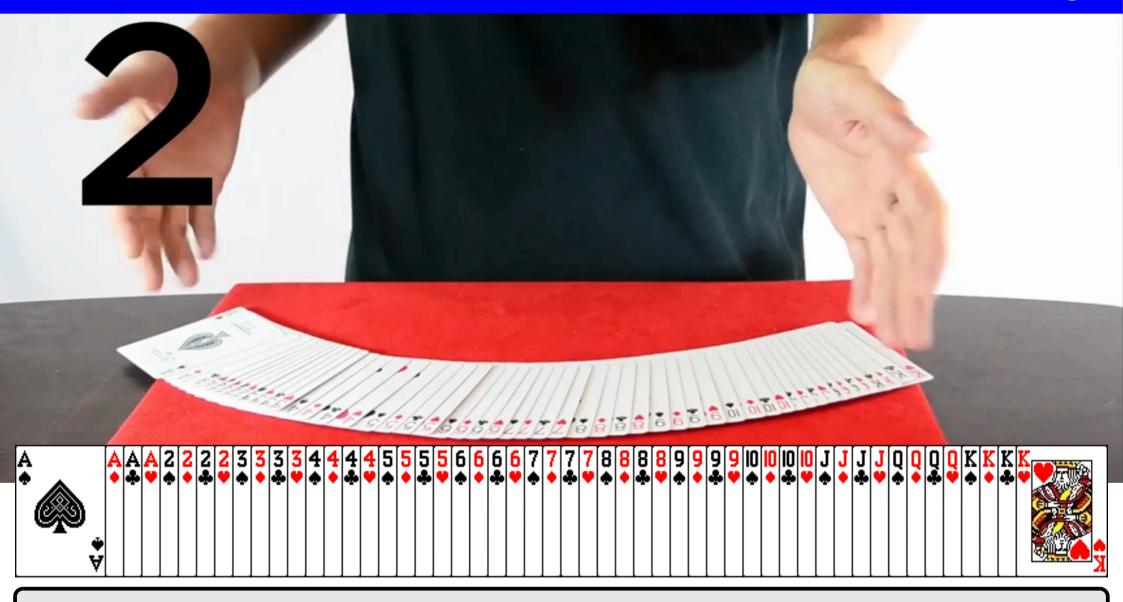
🌲 puis 🦫 puis 💚

1^{er} mélange



Jeu ordonné par paires 📤 en alternance puis 🔷 💗 en alternance

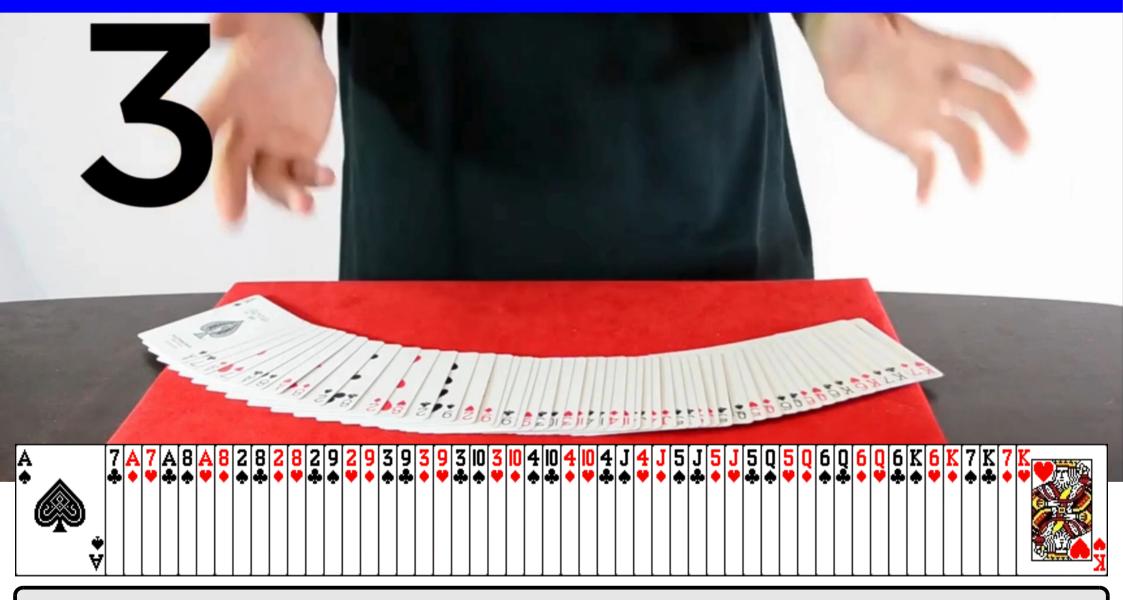
2^e mélange



Jeu ordonné par carrés

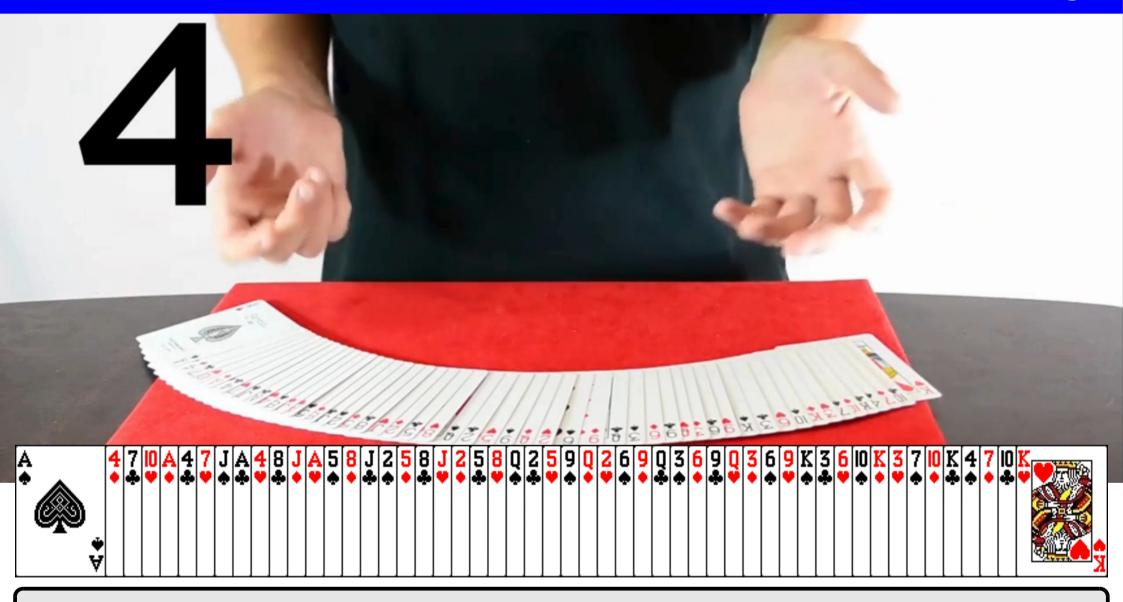
🍬 🦀 💗 en alternance

3^e mélange



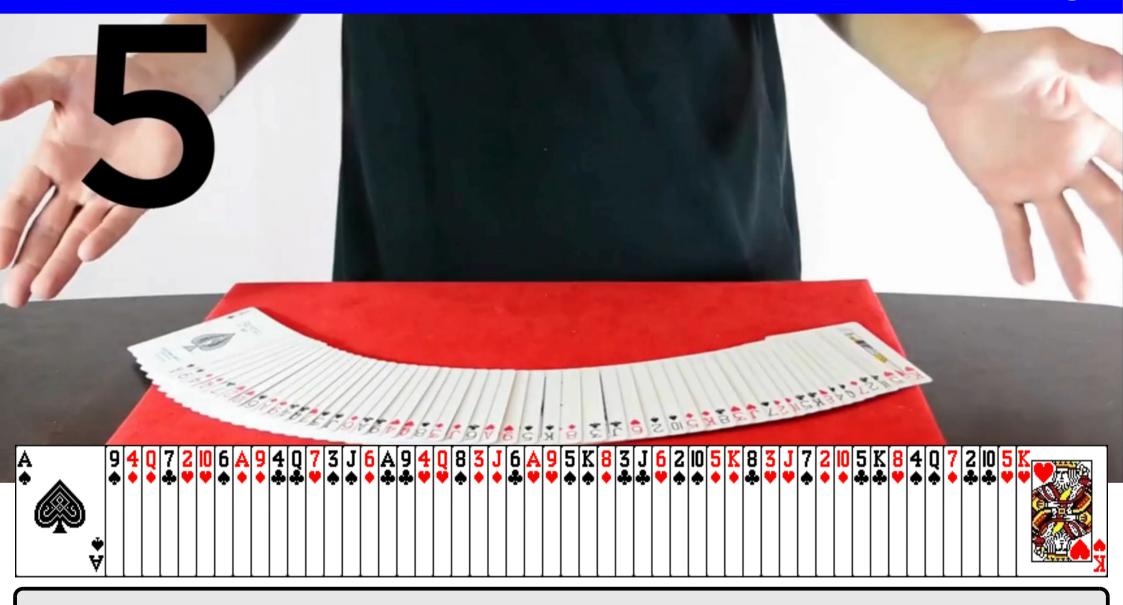
Jeu rangé par *paires de même couleur* rouge/noire en alternance

4^e mélange



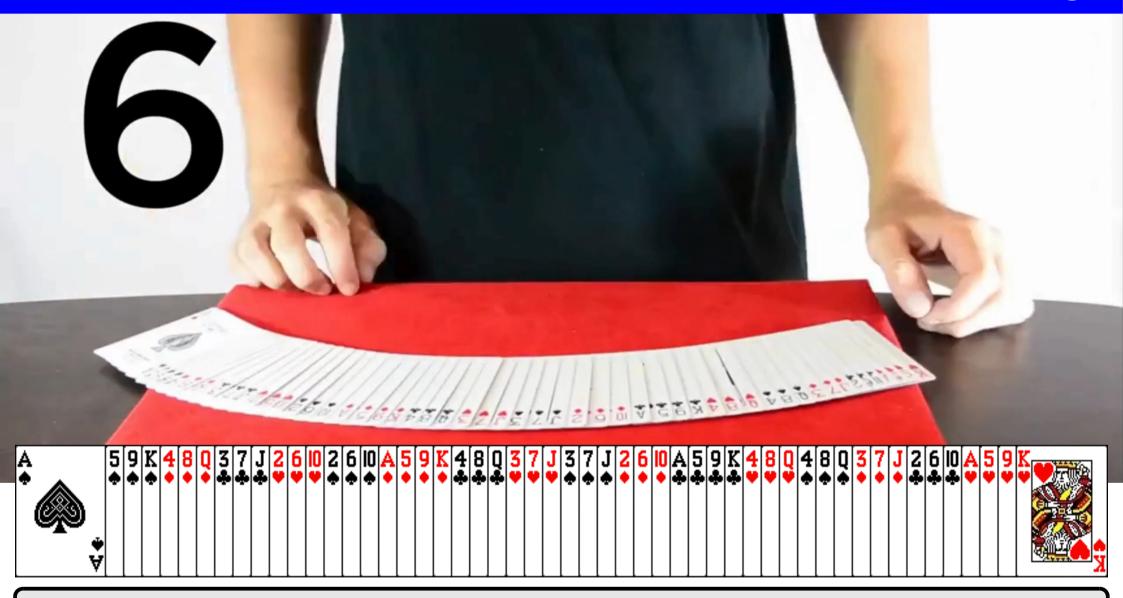
Jeu plus complexe!

5^e mélange



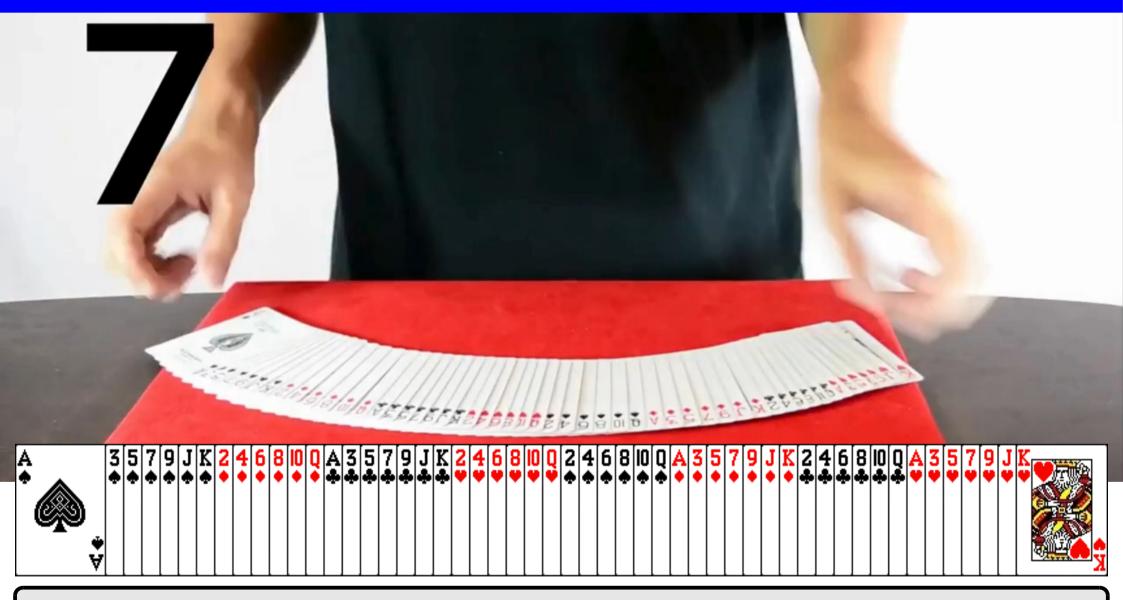
Jeu encore plus complexe!!

6^e mélange



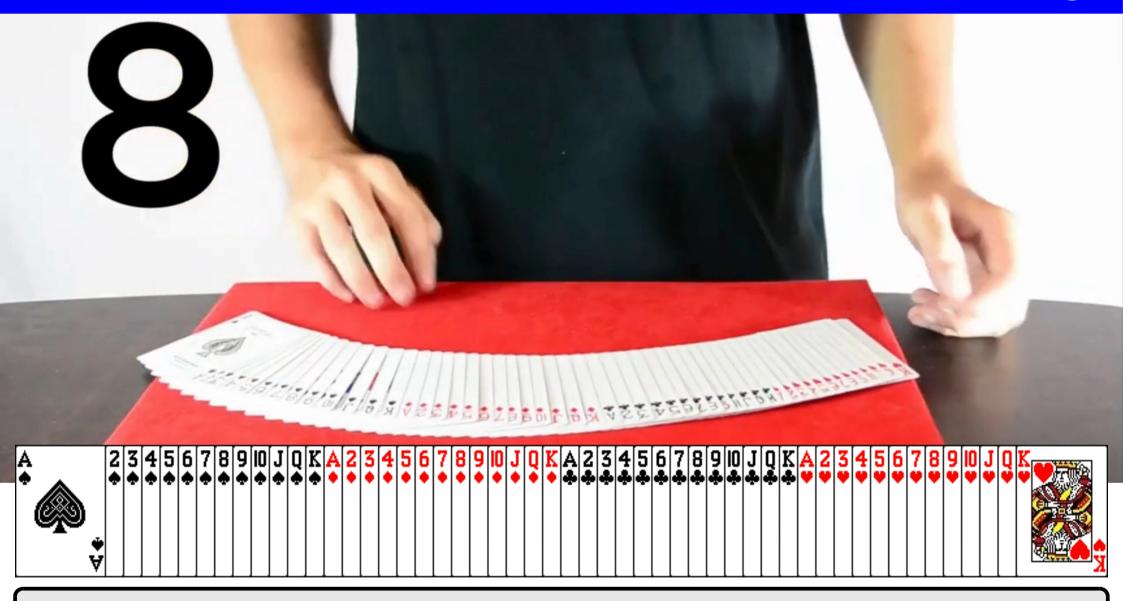
Jeu rangé par *triplets/quadruplets de même couleur*

7^e mélange



Jeu ordonné par séquences *paires/impaires* en alternance puis puis puis puis etc.

8^e mélange



Retour au jeu initial !!!

Aimé Lachal

APPROCHE BINAIRE

FARO-IN

Approche binaire : Faro-in

$$f:\{1,2,3,4,5,6,7,8\} \rightarrow \{1,2,3,4,5,6,7,8\}$$

 $i:$ position avant mélange $\leftrightarrow j=f(i):$ position après mélange

$$\begin{cases}
f(1) = 2 \\
f(2) = 4 \\
f(3) = 6 \\
f(4) = 8
\end{cases}$$

$$\begin{cases}
f(5) = 1 \\
f(6) = 3 \\
f(7) = 5 \\
f(8) = 7
\end{cases}$$

$$f(i) = \begin{cases} 2i & \text{si } i \leq 4 \\ 2i - 9 & \text{si } i \geq 5 \end{cases} \equiv 2i \text{ [mod 9]}$$

Approche binaire : Faro-in Renumérotation

$$f:\{0,1,2,3,4,5,6,7\} \rightarrow \{0,1,2,3,4,5,6,7\}$$

 $i:$ position avant mélange $\leftrightarrow j = f(i):$ position après mélange

$$\begin{cases}
f(0) = 1 \\
f(1) = 3 \\
f(2) = 5 \\
f(3) = 7
\end{cases}$$

$$\begin{cases}
f(4) = 0 \\
f(5) = 2 \\
f(6) = 4 \\
f(7) = 6
\end{cases}$$

$$f(i) = \begin{cases} 2i+1 & \text{si } i \leq 3 \\ 2i-8 & \text{si } i \geq 4 \end{cases} \equiv 2i+1 \text{ [mod 9]}$$

Approche binaire: Faro-in Renumérotation

$$f:\{0,1,2,3,4,5,6,7\} \rightarrow \{0,1,2,3,4,5,6,7\}$$

 $i:$ position avant mélange $\leftrightarrow j=f(i):$ position après mélange

$$f(000) = 001$$
 $f(001) = 011$
 $f(010) = 101$
 $f(011) = 111$

$$f(100) = 000$$

$$f(101) = 010$$

$$f(110) = 100$$

$$f(1111) = 110$$

Pour
$$i = (abc)_2 = 2^2a + 2b + c$$
:
 $f(i) = f((abc)_2) = (bc\bar{a})_2$ avec $\bar{a} = 1-a$

$$f((abc)_2) = (bc\bar{a})_2$$

$$f^2((abc)_2) = (c\bar{a}\bar{b})_2$$

$$f^3((abc)_2) = (\bar{a}\bar{b}\bar{c})_2$$

$$f^{4}((abc)_{2}) = (\overline{b}\overline{c}a)_{2}$$

$$f^{5}((abc)_{2}) = (\overline{c}ab)_{2}$$

$$f^{6}((abc)_{2}) = (abc)_{2}$$

$$f^3 = 7 - id$$

 $f^6 = id$

 $\left[f^{3}\left((abc)_{2}\right)=\left(\bar{a}\bar{b}\bar{c}\right)_{2}\ et\ f^{6}\left((abc)_{2}\right)=\left(abc\right)_{2}\right]$

FARO-OUT

Approche binaire : Faro-out

 $g:\{1,2,3,4,5,6,7,8\} \rightarrow \{1,2,3,4,5,6,7,8\}$ i: position avant mélange $\leftrightarrow j=g(i):$ position après mélange

$$g(i) = \begin{cases} 2i - 1 & \text{si } i \leq 4 \\ 2i - 8 & \text{si } i \geq 5 \end{cases} \equiv 2i - 1 \text{ [mod 7]}$$

Approche binaire: Faro-out Renumérotation

$$g:\{0,1,2,3,4,5,6,7\} \rightarrow \{0,1,2,3,4,5,6,7\}$$

 $i: position avant mélange $\leftrightarrow j = g(i): position après mélange$$

$$\begin{cases}
g(0) = 0 & g(4) = 1 \\
g(1) = 2 & g(5) = 3 \\
g(2) = 4 & g(6) = 5 \\
g(3) = 6 & g(7) = 7
\end{cases}$$

$$g(i) = \begin{cases} 2i & \text{si } i \leq 3 \\ 2i - 7 & \text{si } i \geq 4 \end{cases} \equiv 2i \text{ [mod 7]}$$

Approche binaire: Faro-out Renumérotation

$$g:\{0,1,2,3,4,5,6,7\} \rightarrow \{0,1,2,3,4,5,6,7\}$$

 $i:$ position avant mélange $\leftrightarrow j=g(i):$ position après mélange

$$g(000) = 000$$

 $g(001) = 010$
 $g(010) = 100$
 $g(011) = 110$

$$g(100) = 001$$

 $g(101) = 011$
 $g(110) = 101$
 $g(111) = 111$

Pour
$$i = (abc)_2 = 2^2a + 2b + c$$
:
 $g(i) = g((abc)_2) = (bca)_2$

$$g((abc)_2) = (bca)_2$$

$$g^2((abc)_2) = (cab)_2$$

$$g^3((abc)_2) = (abc)_2$$

$$g^{3}((abc)_{2}) = (abc)_{2}$$

$$g^{3} = id$$

FARO-INIOUT

Approche binaire: Faro-in/out Composition

$$f((abc)_2) = (bc\bar{a})_2$$
$$g((abc)_2) = (bca)_2$$

$$f \circ g((abc)_2) = (cab)_2$$

$$g \circ f((abc)_2) = (c\bar{a}b)_2$$

$$f \circ g \neq g \circ f$$

Approche binaire : généralisation

Théorème: pour un jeu de 2º cartes,

pour
$$i = (i_{p-1} i_{p-2} \dots i_1 i_0)_2$$

$$= 2^{p-1} i_{p-1} + 2^{p-2} i_{p-2} + \dots + 2 i_1 + i_0$$
avec $i_0, i_1, \dots, i_{p-2}, i_{p-1} \in \{0, 1\}$, et en posant $\overline{i}_q = 1 - i_q$:
$$f((i_1 i_2 i_3 i_4)) - (i_1 i_2 i_4 i_5 i_4)$$

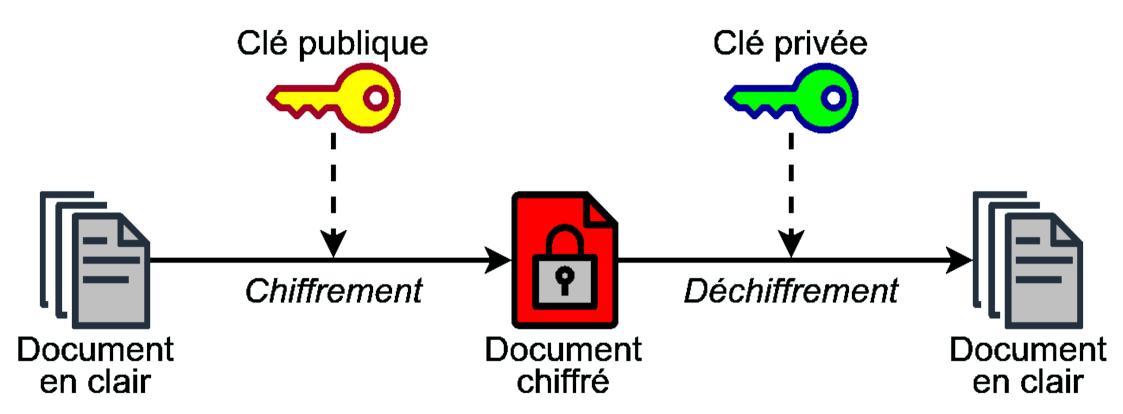
$$f\left((\mathbf{i}_{p-1}\,\mathbf{i}_{p-2}\,...\,\,\mathbf{i}_{1}\,\mathbf{i}_{0})_{2}\right) = (\mathbf{i}_{p-2}\,...\,\,\mathbf{i}_{1}\,\mathbf{i}_{0}\,\mathbf{\bar{i}}_{p-1})_{2}$$

$$g\left((\mathbf{i}_{p-1}\,\mathbf{i}_{p-2}\,...\,\,\mathbf{i}_{1}\,\mathbf{i}_{0})_{2}\right) = (\mathbf{i}_{p-2}\,...\,\,\mathbf{i}_{1}\,\mathbf{i}_{0}\,\mathbf{\bar{i}}_{p-1})_{2}$$

$$f^{2p} = id$$



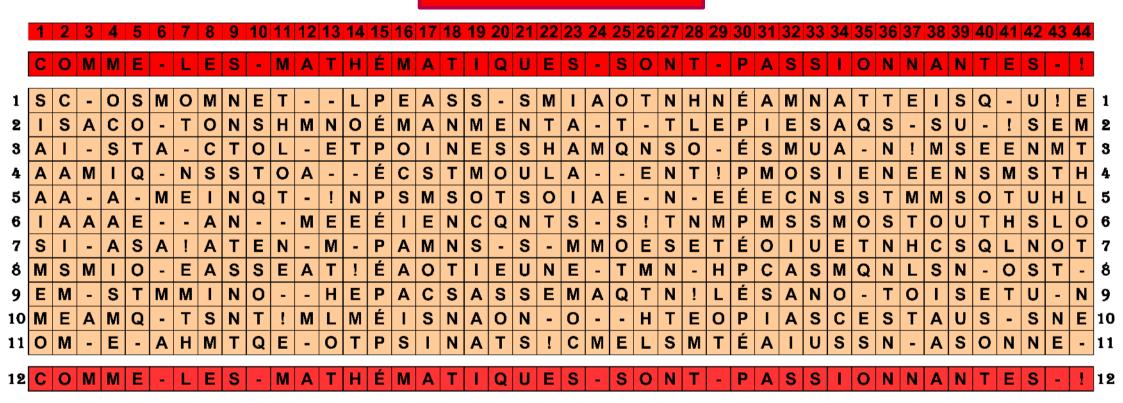
APPLICATION EN CRYPTOGRAPHIE



C O M M E - L E S - M A T H É M A T I Q U E S - S O N T - P A S S I O N N A N T E S - !

Les mélanges

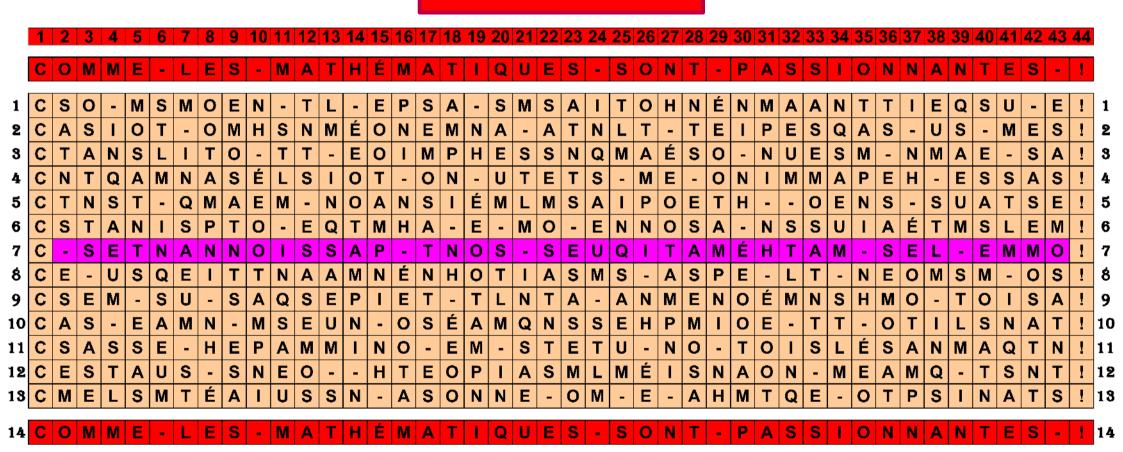
paquet entier N = 44 cartes



FARO-IN période 12

Les mélanges

paquet entier N = 44 cartes



FARO-*OUT* période *14*

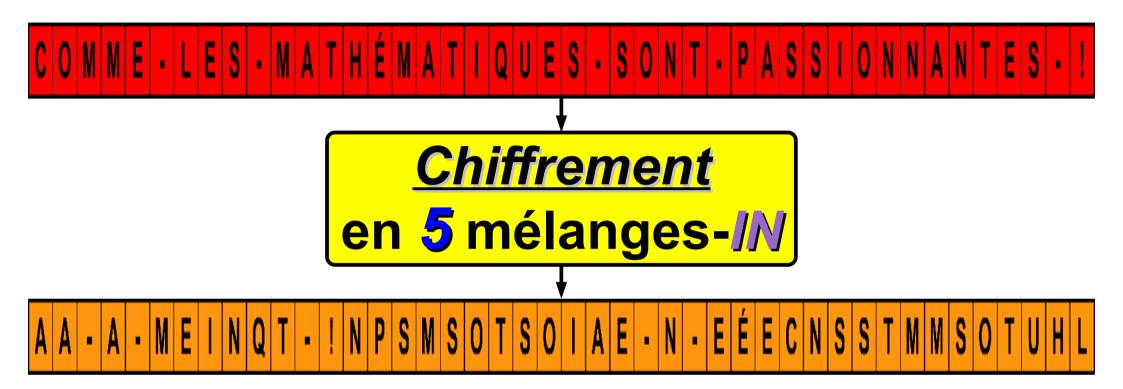
Chiffrement

paquet entier N = 44 cartes

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	I
	С	O	М	M	E	-	L	E	S	-	M	Α	T	Н	É	M	Α	T	1	Q	U	Ε	S	-	S	0	N	T	-	P	Α	S	S	1	0	N	N	Α	N	Т	Ε	S	-	Ţ	
1	S	С	-	0	S	М	0	М	N	Е	Т	-	-	L	Р	Ε	Α	S	S	-	S	М	ı	Α	0	Т	N	Н	N	É	Α	М	N	Α	Т	Т	Ε	ı	S	Q	-	U	!	E	1
2	Τ	S	Α	С	0	-	Т	0	N	S	Н	М	N	0	É	М	Α	N	М	Ε	N	Т	Α	-	Т	-	Т	L	E	Р	1	Е	S	Α	Q	S	-	S	U	-	!	S	Е	М	2
3	Α	T	-	S	Т	Α	-	С	Т	0	L	-	Е	Т	Р	0	I	N	Е	S	S	Н	Α	М	Q	N	S	0	-	É	S	М	U	Α	-	N	!	М	S	E	Е	N	М	Т	3
4	Α	Α	М	T	Q	-	N	S	S	Т	0	Α	-	-	É	С	S	Т	М	0	U	L	Α	-	-	Е	N	Т	!	Р	М	0	S	I	Е	N	Е	Ε	N	S	М	S	Т	Н	4
5	Α	Α	-	Α	-	М	Ε	I	N	Q	Т	-	!	N	Р	S	М	S	0	Т	S	0	ı	Α	Ε	-	N	-	Ε	É	Ε	С	N	S	S	Т	М	М	S	0	Т	U	Н	L	5

FARO-IN
5 mélanges

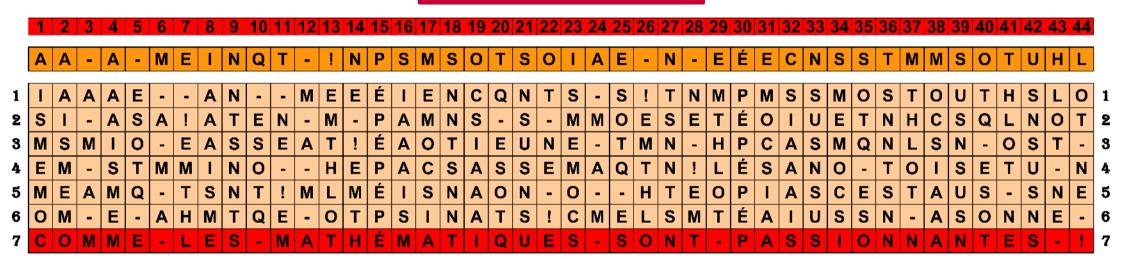
Le message chiffré



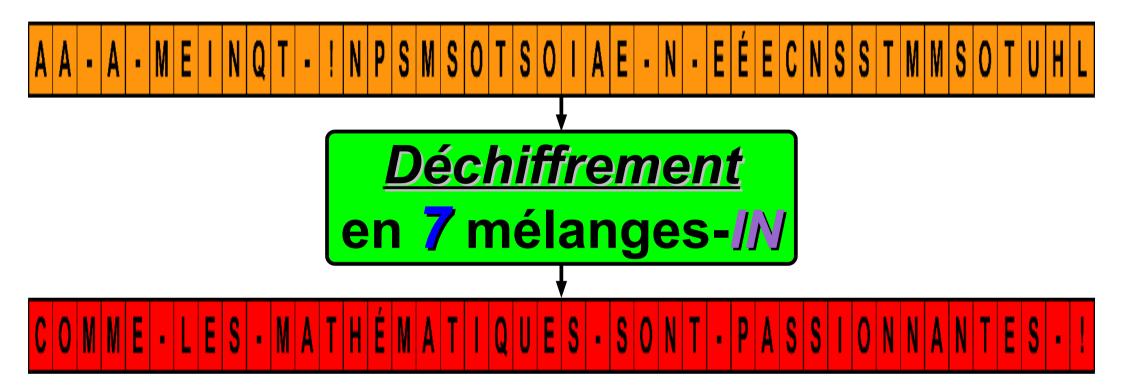
A A - A - M E I N Q T - ! N P S M S O T S O I A E - N - E É E C N S S T M M S O T U H L

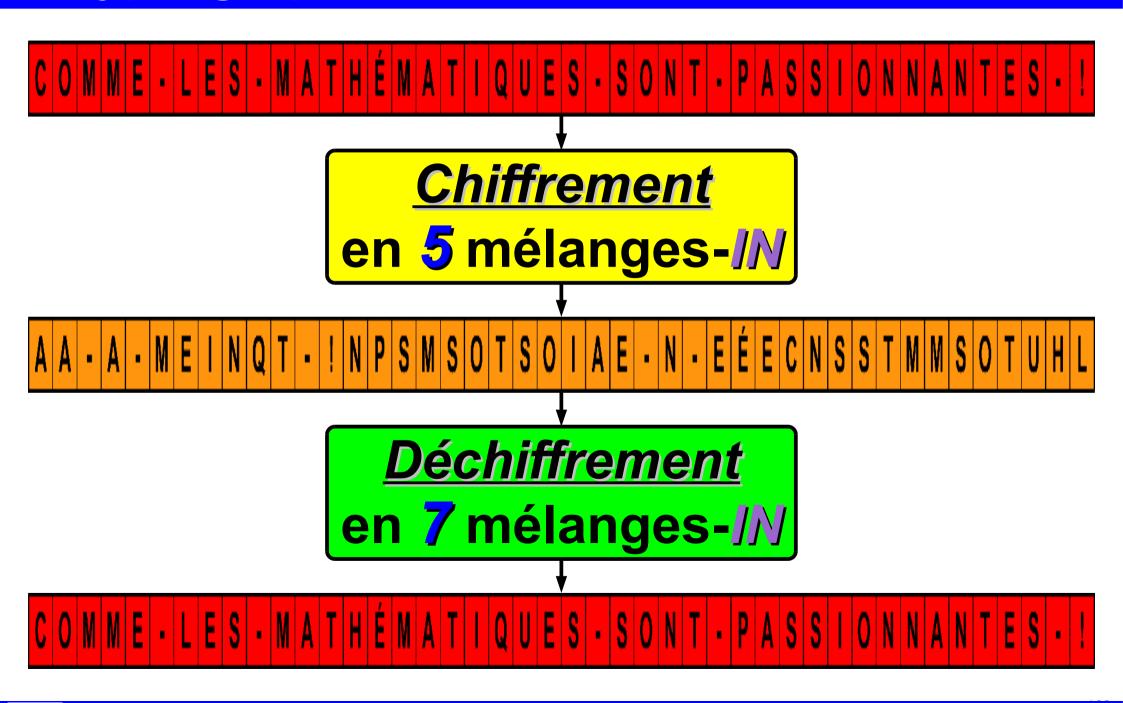
Déchiffrement

paquet entier N = 44 cartes



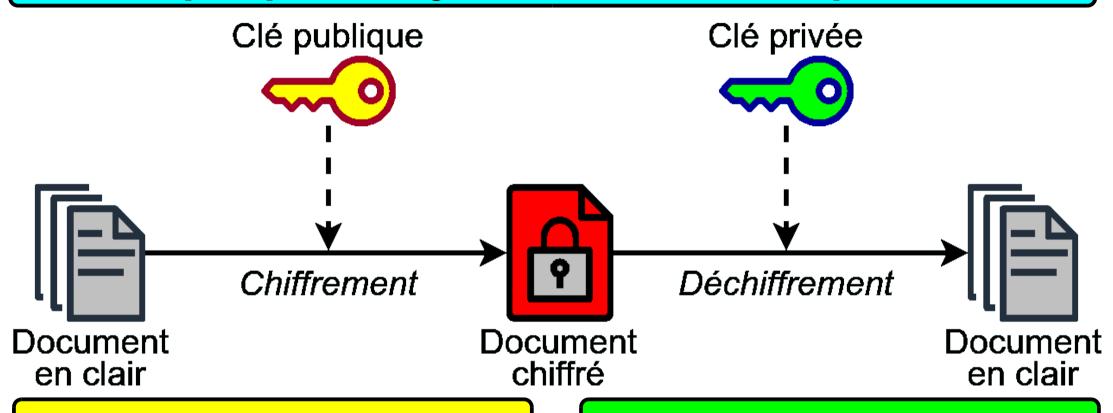
FARO-IN 7 mélanges





Le concept général

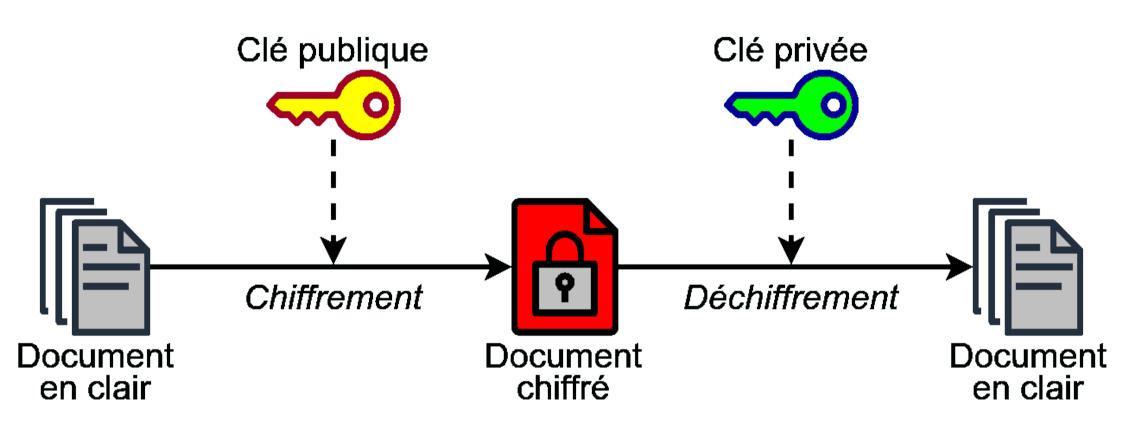
Concept: pour un jeu de N cartes, de période r:



Chiffrement

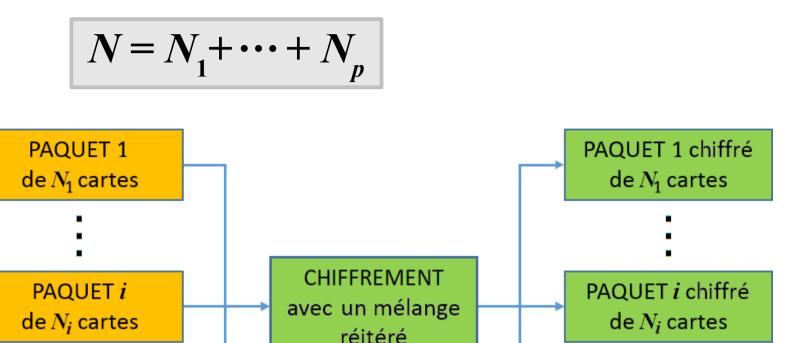
On *chiffre*avec pmélanges

<u>Déchiffrement</u> On déchiffre vec **0 = r - p** mélanges



La sécurité du chiffrement ne repose que sur le secret de l'algorithme. Autant dire qu'elle est (quasi) nulle!

Chiffrement par blocs



Pour augmenter la sécurité, on pourrait partager une clé secrète entre l'émetteur et le récepteur (*clé privée partagée*) qui définit le nombre de sous-paquets qui seront chiffrés puis réassemblés

PAQUET p

 $de N_p$ cartes

JEU INITIAL

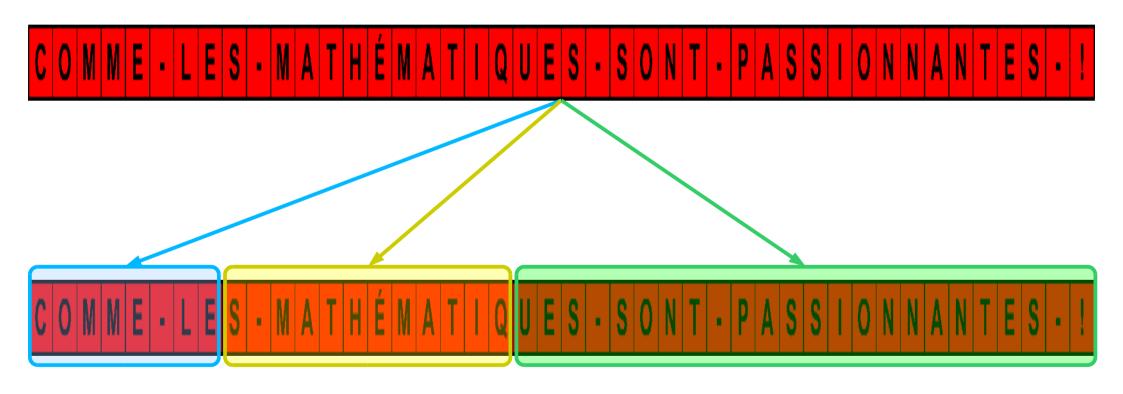
de N cartes

 $N = N_1 + \cdots + N_p$

PAQUET *p* chiffré

 $de N_p$ cartes

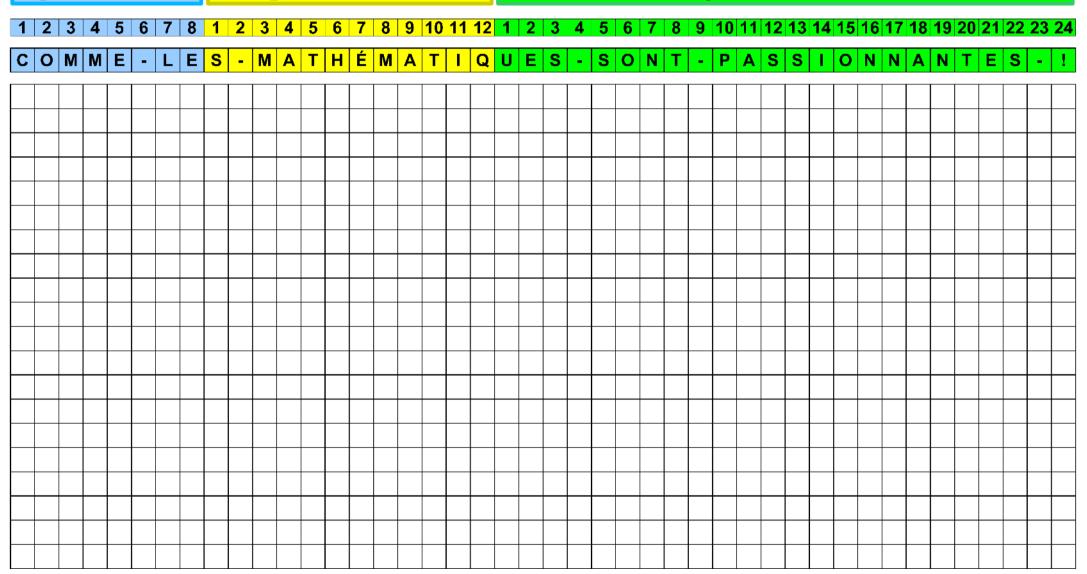
Le message à chiffrer



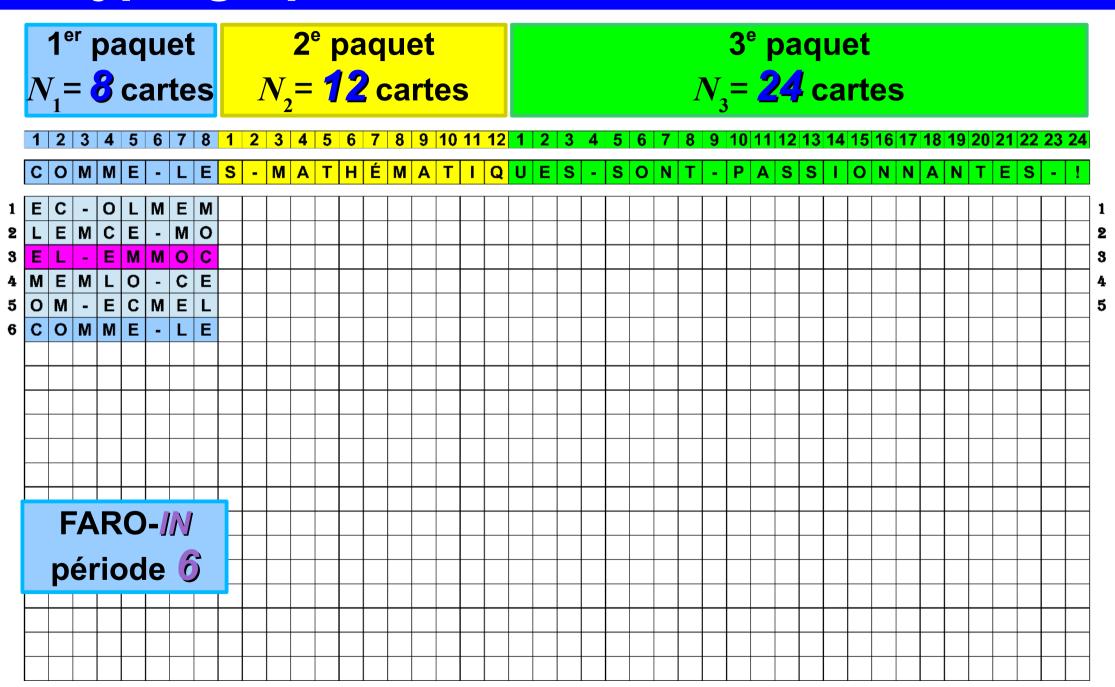
Le message à chiffrer

1^{er} paquet $N_1 = 8$ cartes $N_2 = 12$ cartes

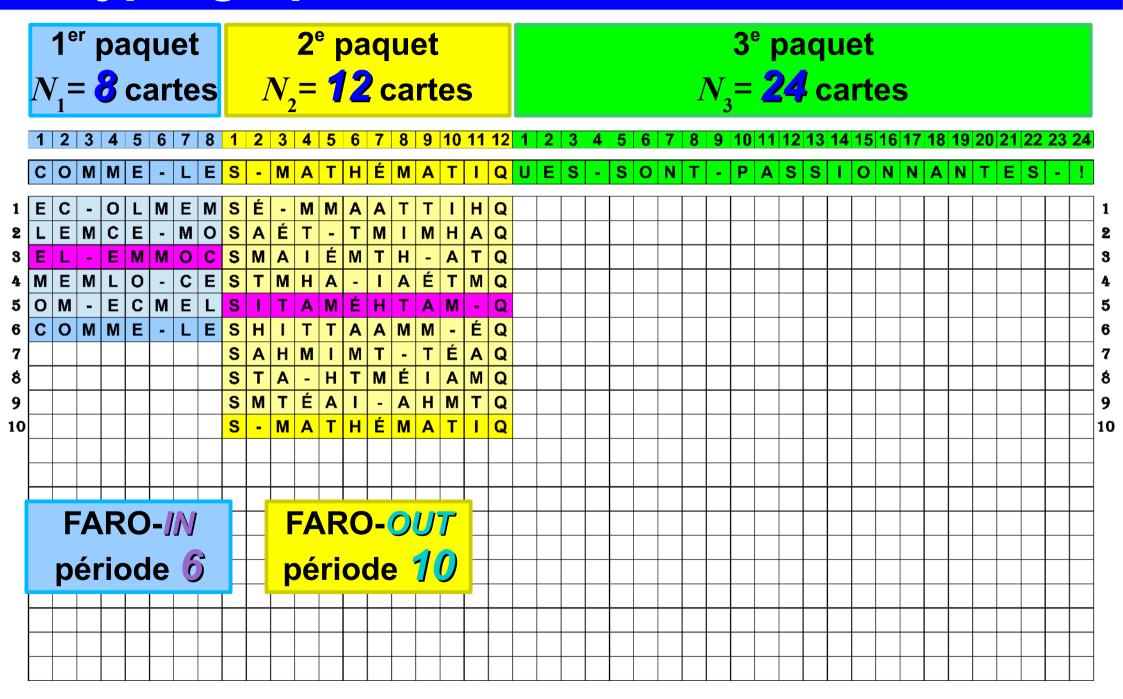
3^e paquet $N_3 = 24$ cartes



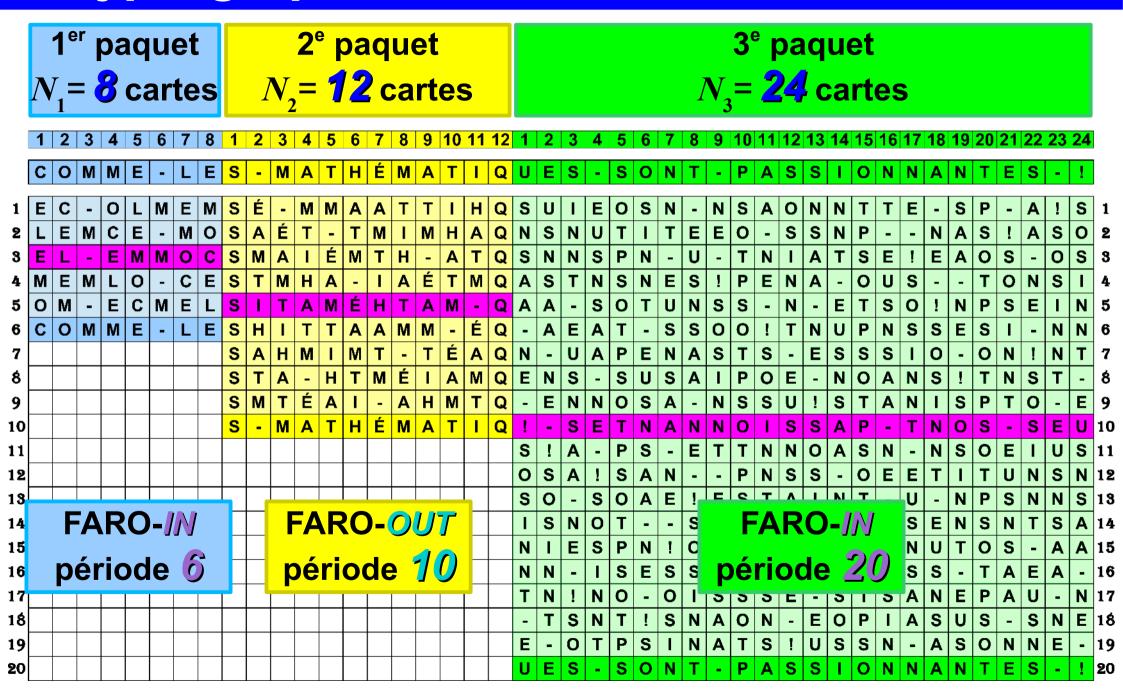
Les mélanges par blocs



Les mélanges par blocs



Les mélanges par blocs



Chiffrement par blocs

1^{er} paquet $N_1 = 8$ cartes $N_2 = 12$ cartes 3^e paquet $N_3 = 24$ cartes 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 E S - M A T H É M A T I Q U E S - S O N T - P A S S I O N N A N T E S - ! FARO-IN 2 mélanges

Chiffrement par blocs

1^{er} paquet 2^e paquet 3^e paquet $N_1 = 8$ cartes $N_2 = 12$ cartes $N_3 = 24$ cartes SON PASSIONNANTES S FARO-OUT FARO-IN 2 mélanges 7 mélanges

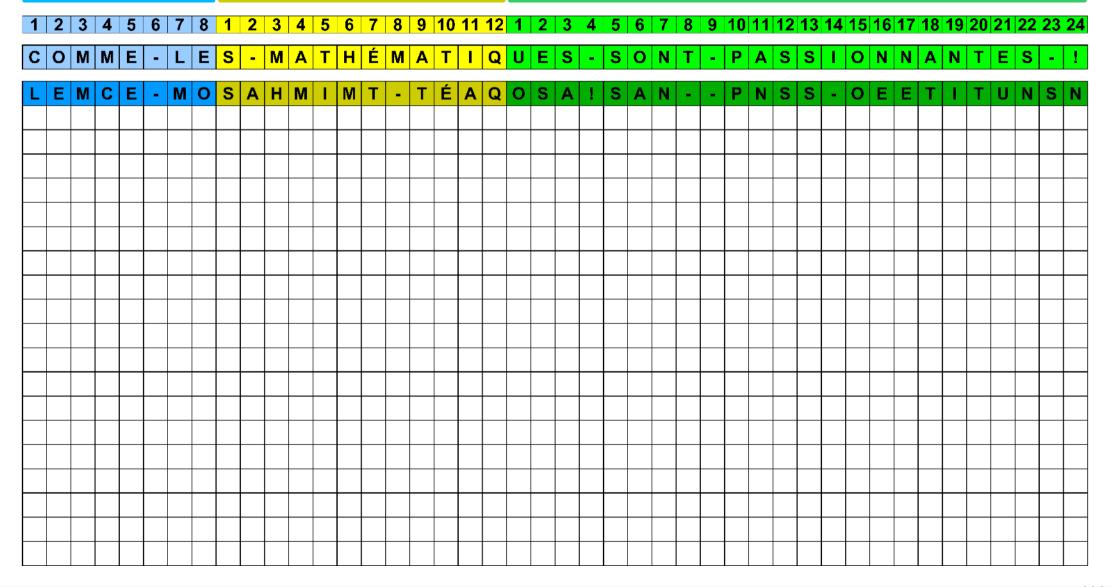
Chiffrement par blocs

1^{er} paquet 2^e paquet 3° paquet $N_1 = 8$ cartes $N_{2} = 12$ cartes $N_3 = 24$ cartes S Ε S É Ε S Ε Ν S S U S S É S S Q Ε Q Ε 0 0 S S S 11 11 12 FARO-IN FARO-OUT FARO-JN **12** mélanges 2 mélanges 7 mélanges

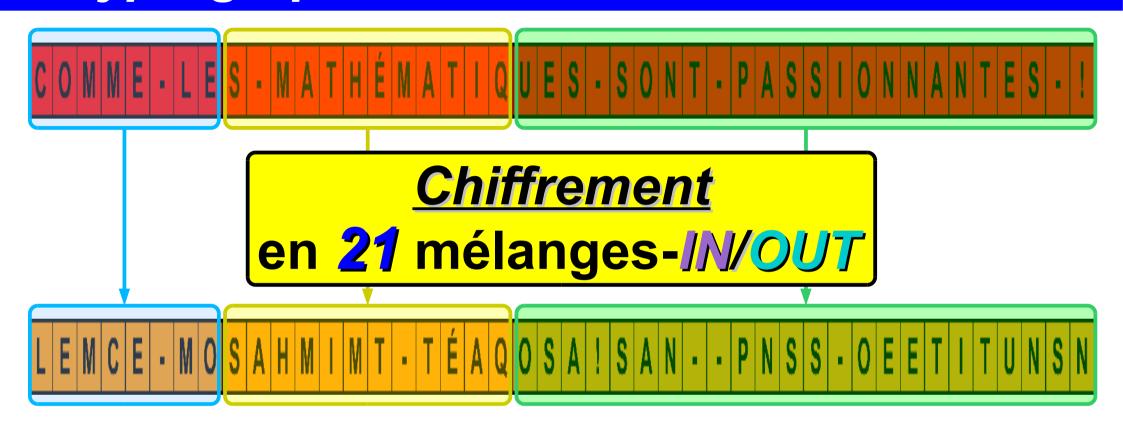
Le message chiffré

1^{er} paquet $N_1 = 8$ cartes $N_2 = 12$ cartes

3^e paquet $N_3 = 24$ cartes



Le message chiffré

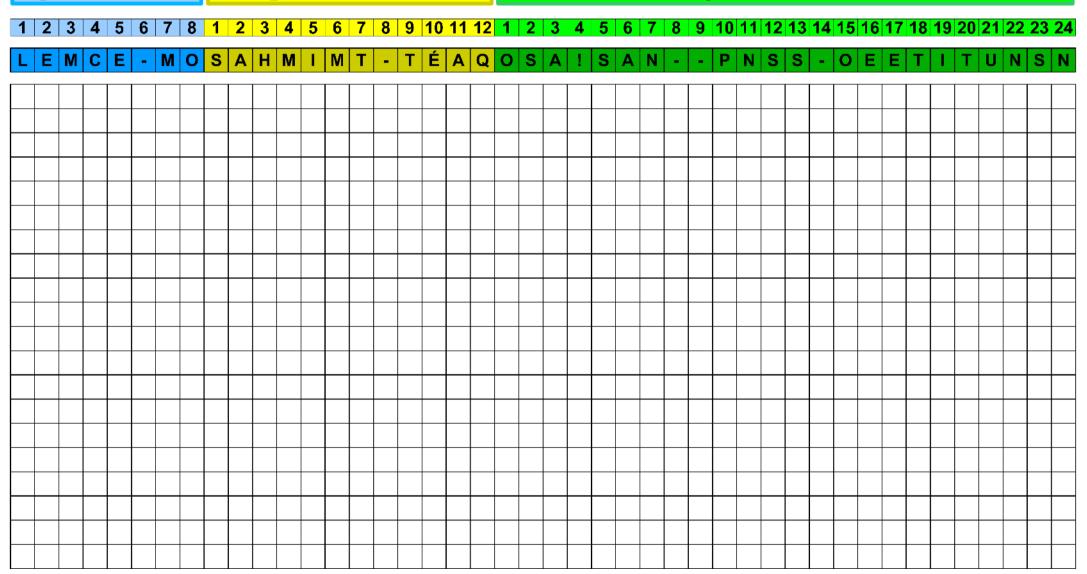


LEMCE-MOSAHMIMT-TÉAQOSA!SAN--PNSS-OEETITUNSN

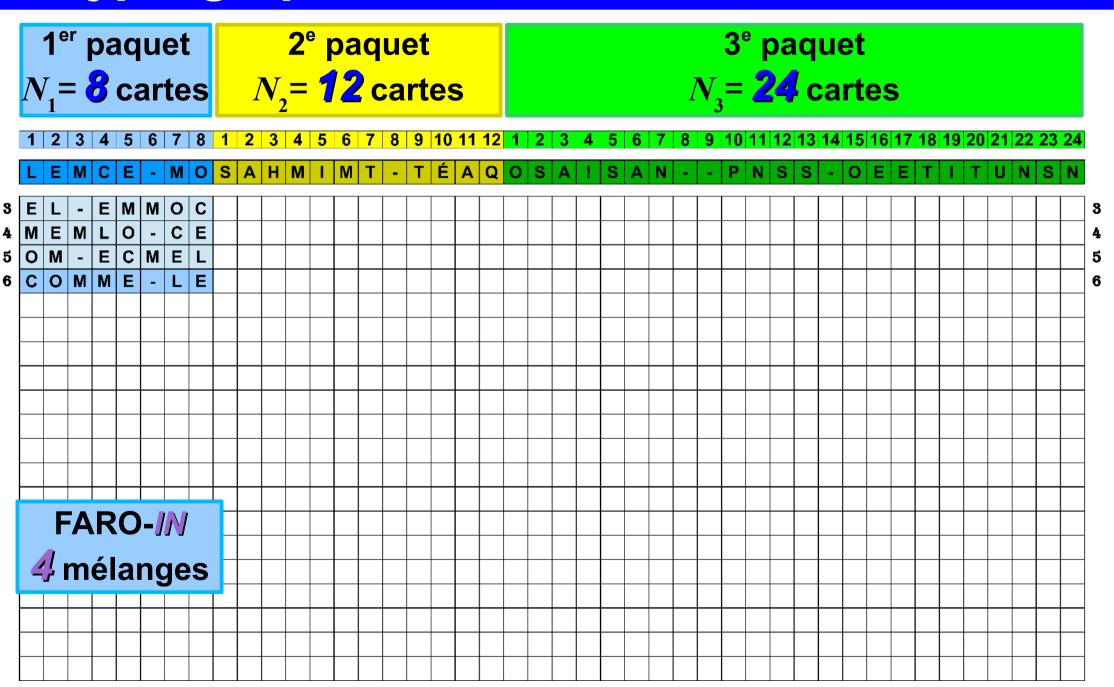
Le message à déchiffrer

1^{er} paquet $N_1 = 8$ cartes $N_2 = 12$ cartes

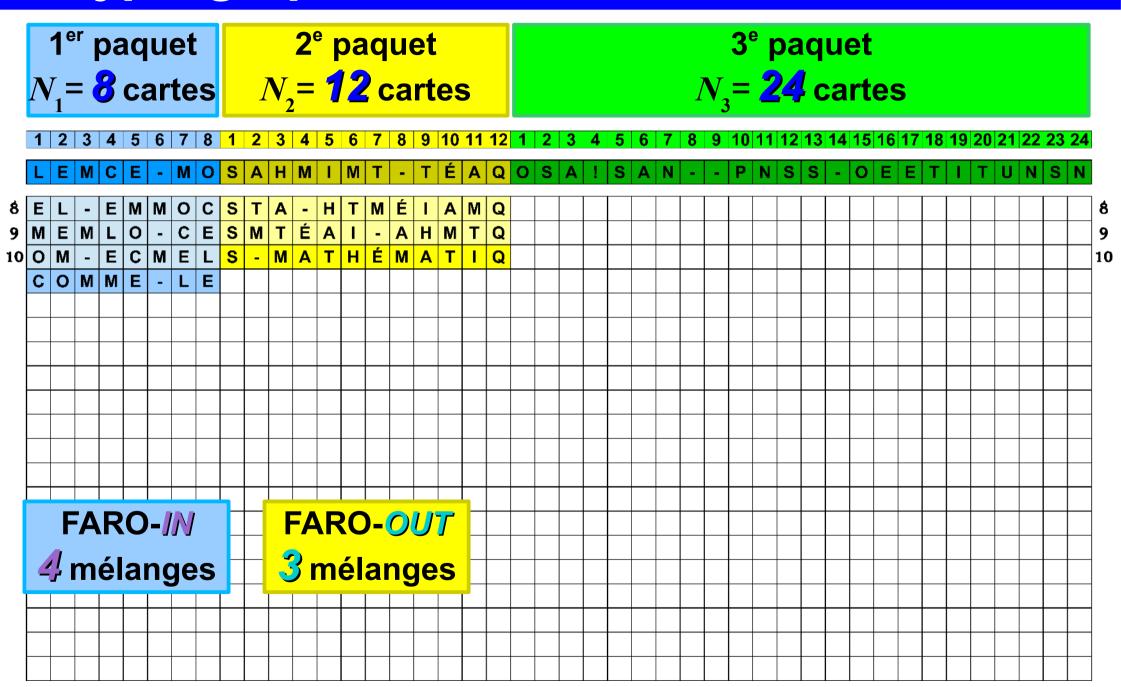
3^e paquet $N_3 = 24$ cartes



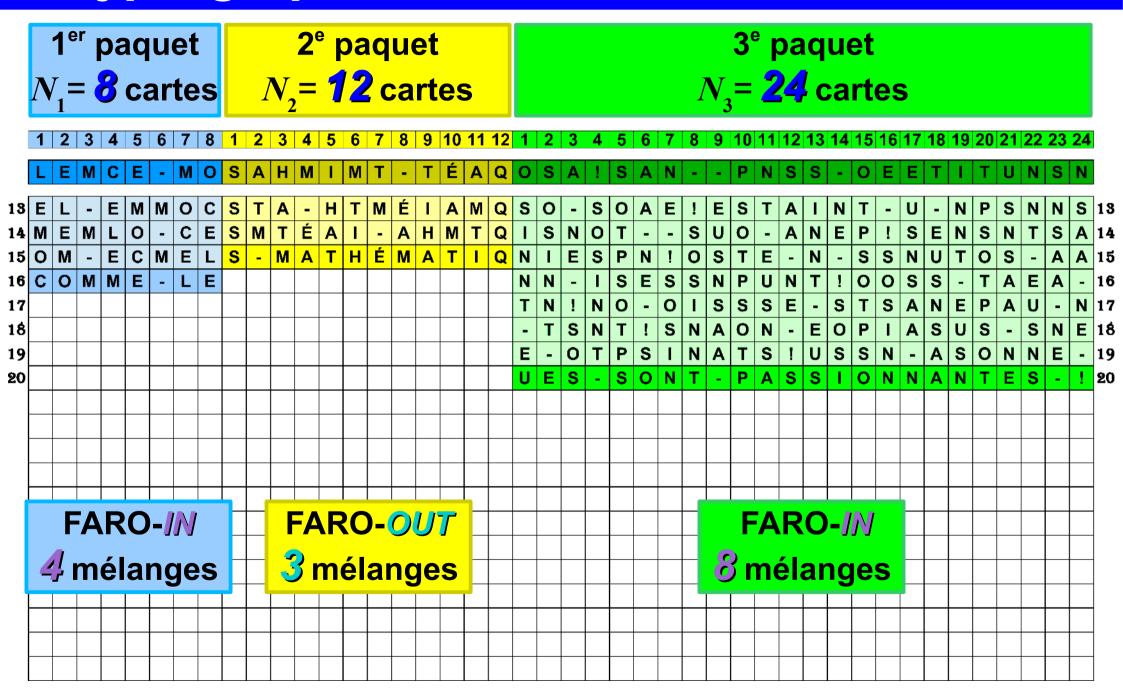
Déchiffrement par blocs



Déchiffrement par blocs



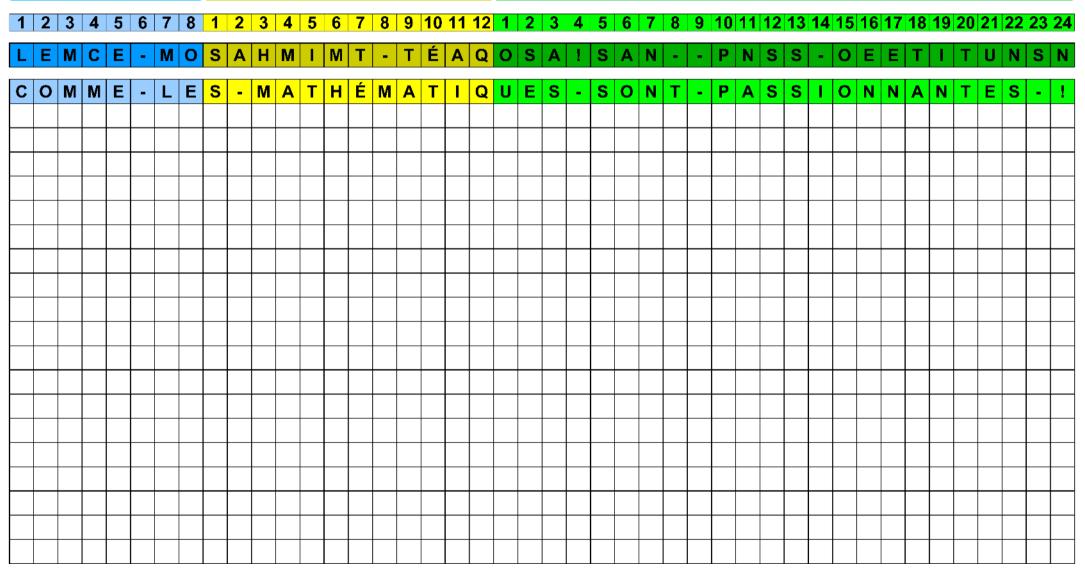
Déchiffrement par blocs



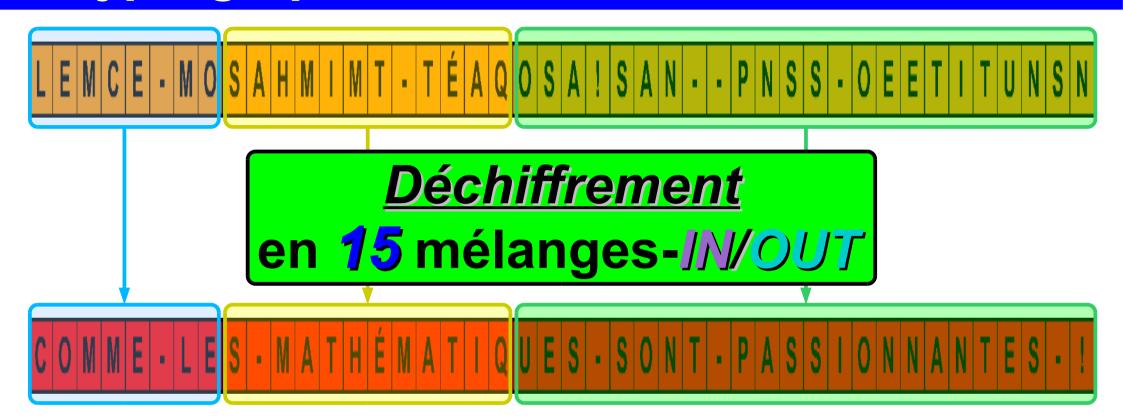
Le message déchiffré

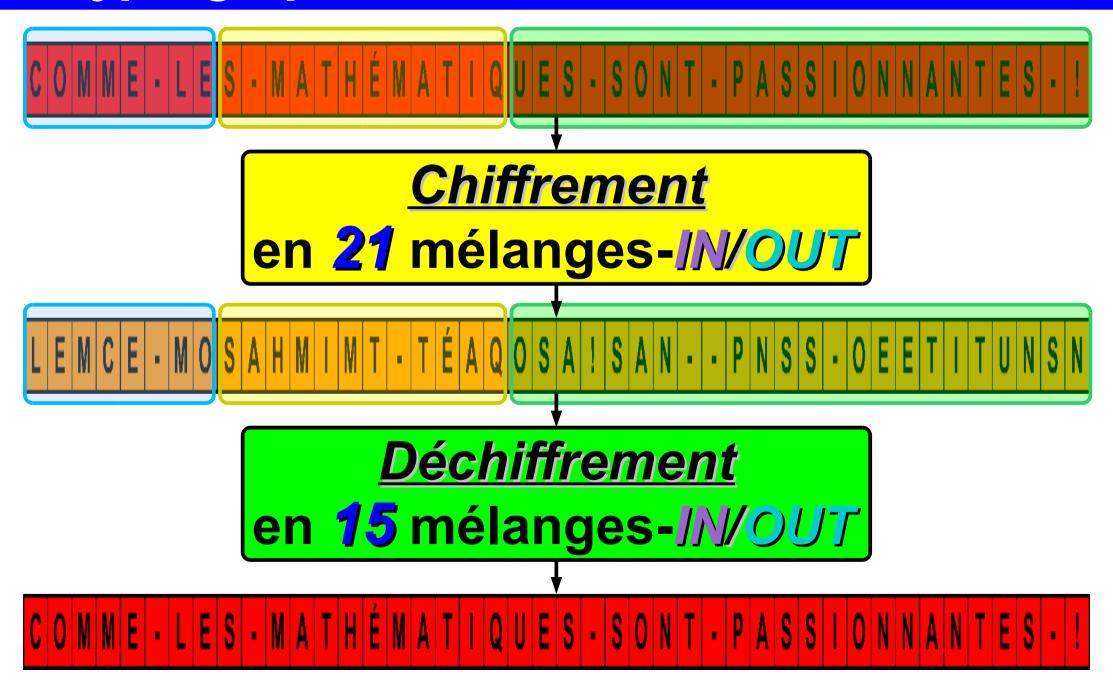
1^{er} paquet $N_1 = 8$ cartes $N_2 = 12$ cartes

3^e paquet $N_3 = 24$ cartes

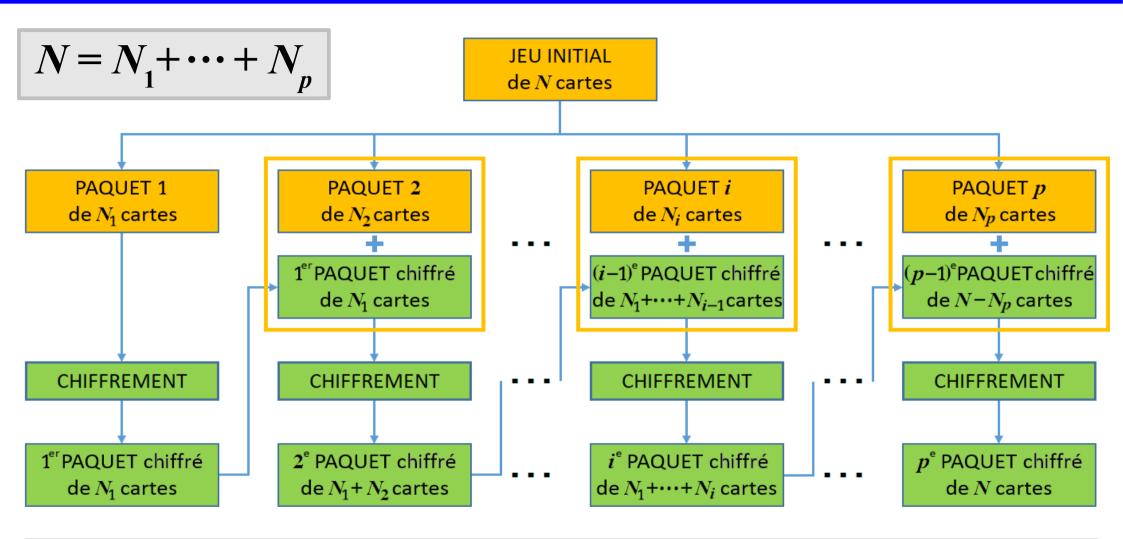


Le message déchiffré



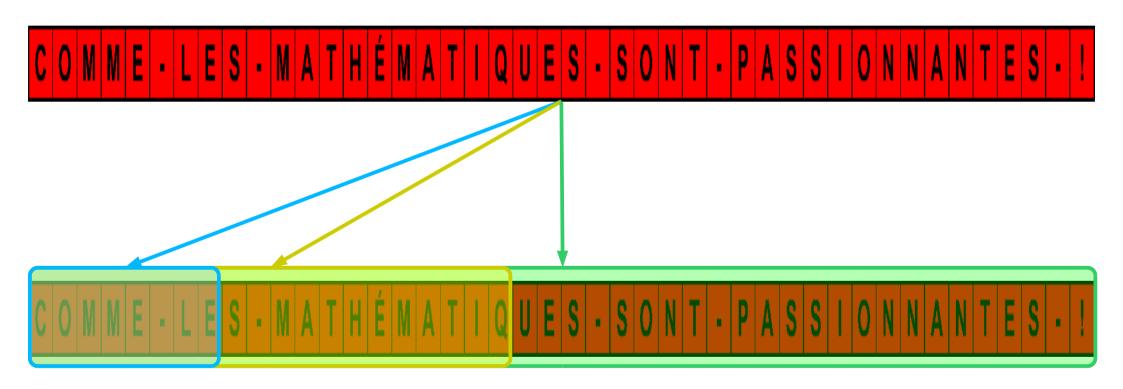


Cryptographie Chiffrement par blocs : amélioration



Pour augmenter la sécurité, on pourrait partager une clé secrète entre l'émetteur et le récepteur (*clé privée partagée*) qui définit le nombre de sous-paquets qui seront chiffrés puis réassemblés

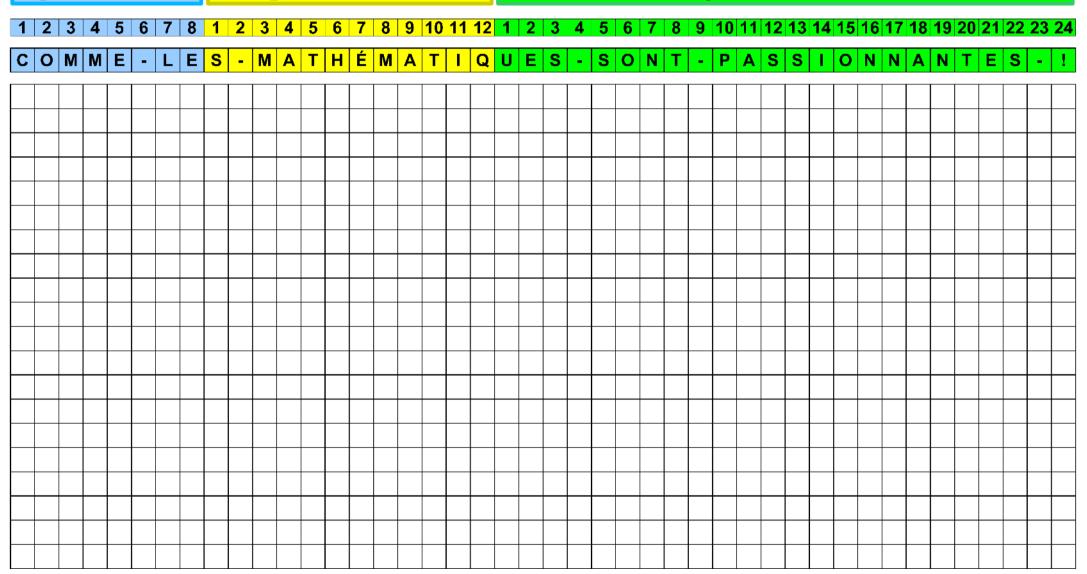
Le message à chiffrer



1^{er} message à chiffrer

1^{er} paquet $N_1 = 8$ cartes $N_2 = 12$ cartes

3^e paquet $N_3 = 24$ cartes



Les mélanges

1^{er} paquet $N_1 = 8$ cartes $N_2 = 12$ cartes 3^e paquet $N_3 = 24$ cartes 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 MATHÉMATIQUES-SONT-P A S S I O N N A N T E S - ! - E M M O C M E M L O - C E
O M - E C M E L
C O M M E - L E FARO-IN période 6

Chiffrement

1^{er} paquet $N_1 = 8$ cartes $N_2 = 12$ cartes 3^e paquet $N_3 = 24$ cartes 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 MATHÉMATIQUES-SONT-P A S S I O N N A N T E S - ! 1 E C - O L M E M 2 L E M C E - M O 3 E L - E M M O C FARO-// 4 mélanges

Cryptographie 2^e message regroupé à chiffrer

 $1^{er} + 2^{e}$ paquets $N_{I} + N_{2} = 20$ cartes

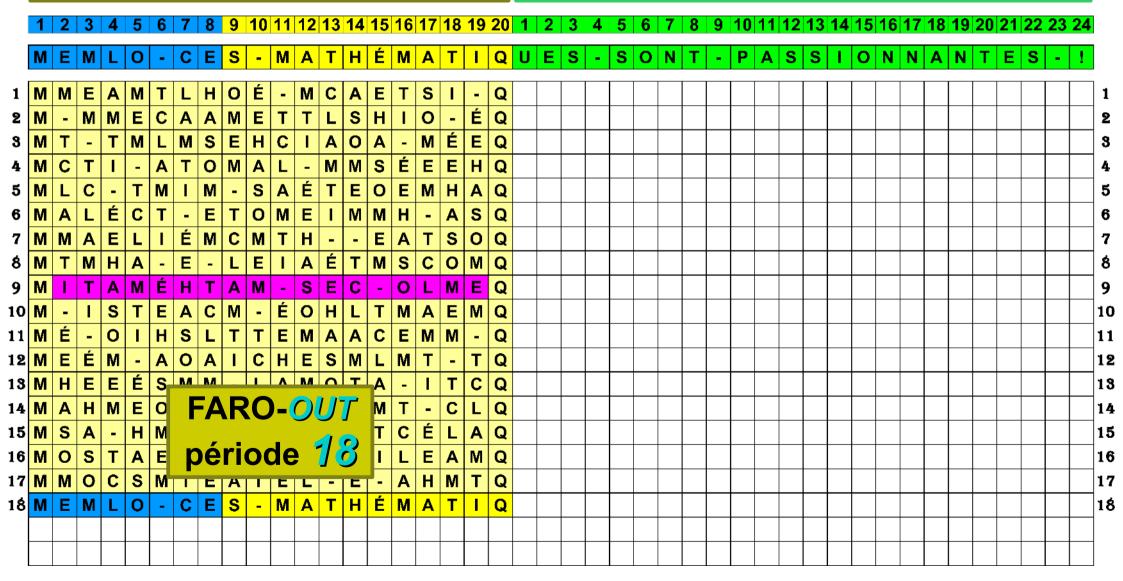
 N_3 paquet N_3 cartes

9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 - C E S - M A T H É M A T I Q U E S - S O N T - P A S S I O N N A N T E S - !

Les mélanges

$$1^{er} + 2^{e}$$
 paquets $N_1 + N_2 = 20$ cartes

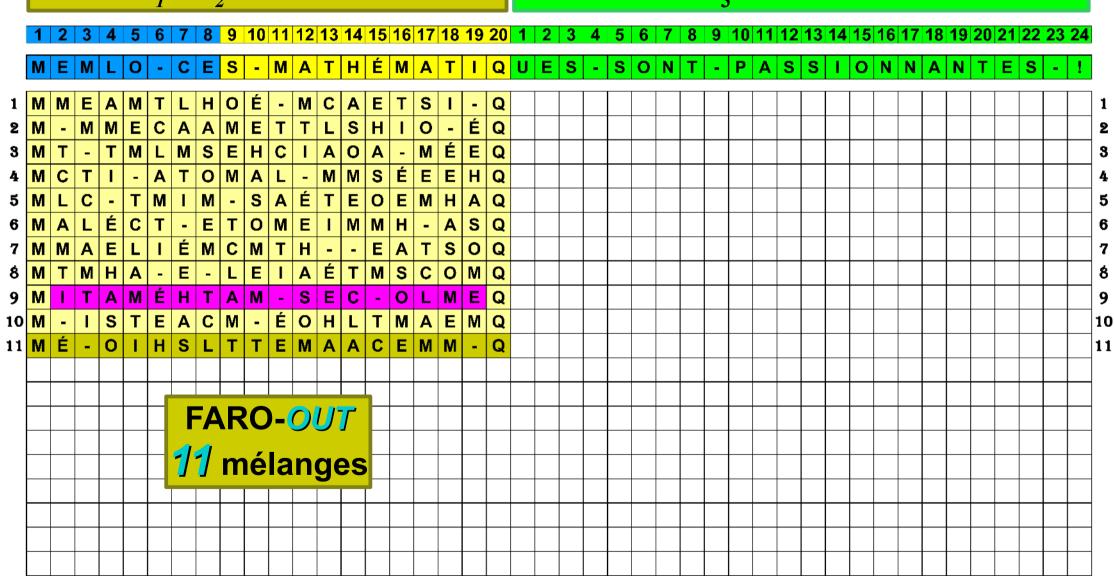
$$3^{\text{e}}$$
 paquet $N_3 = 24$ cartes



Chiffrement

$$1^{er} + 2^{e}$$
 paquets $N_1 + N_2 = 20$ cartes

$$3^{\rm e}$$
 paquet $N_3 = 24$ cartes



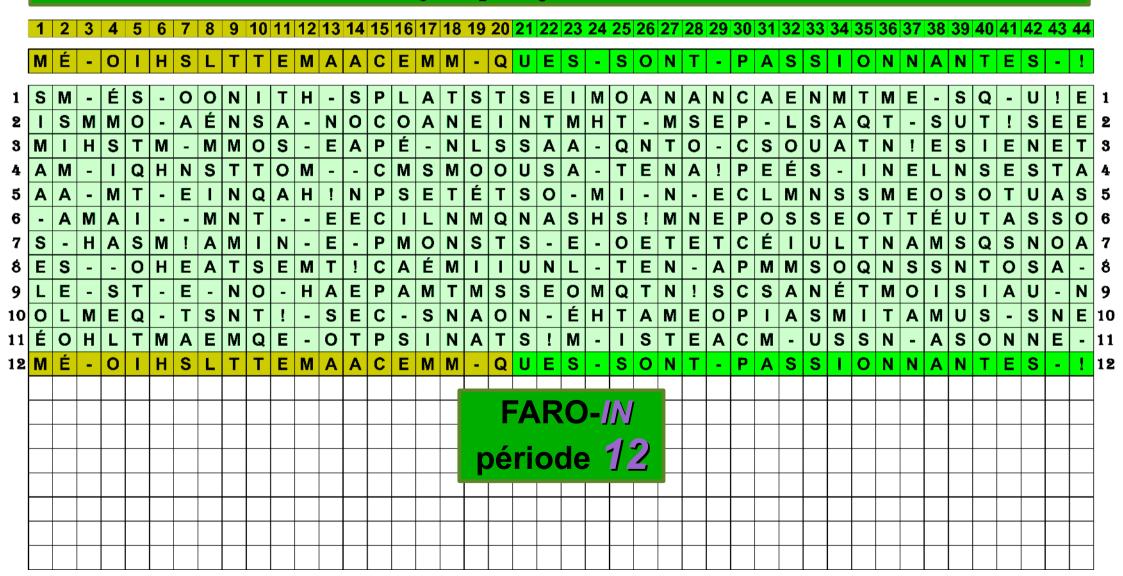
Cryptographie 3^e message regroupé à chiffrer

$$1^{er} + 2^{e} + 3^{e}$$
 paquets $N_{1} + N_{2} + N_{3} = 444$ cartes

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 M É - O I H S L T T E M A A C E M M - Q U E S - S O N T - P A S S I O N N A N T E S - !

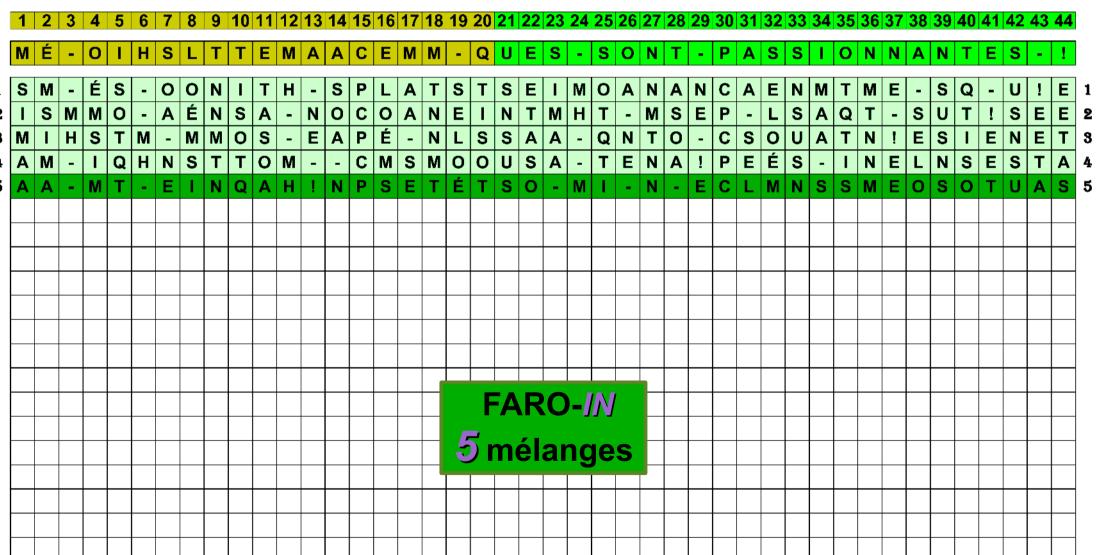
Les mélanges

$$1^{er} + 2^e + 3^e$$
 paquets $N_1 + N_2 + N_3 = 44$ cartes



Chiffrement

$$1^{er} + 2^e + 3^e$$
 paquets $N_1 + N_2 + N_3 = 44$ cartes

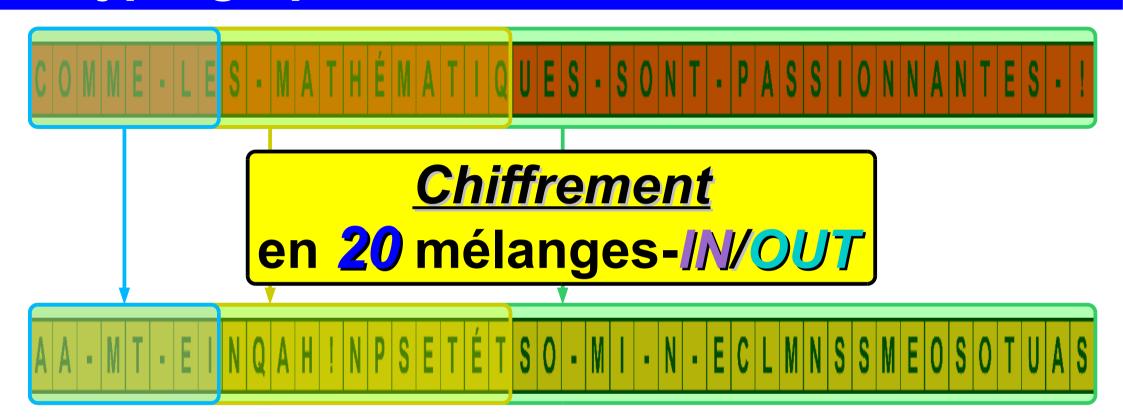


Le message chiffré

$$1^{er} + 2^{e} + 3^{e}$$
 paquets $N_{1} + N_{2} + N_{3} = 44$ cartes

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 T E M A A C E M M - Q U E S - S O N T - P A S S I O N N A N T E S - ! | N | P | S | E | T | É | T | S | O | - | M | I | - | N | - | E | C | L | M | N | S | S | M | E | O | S | O | T | U | A | S

Le message chiffré

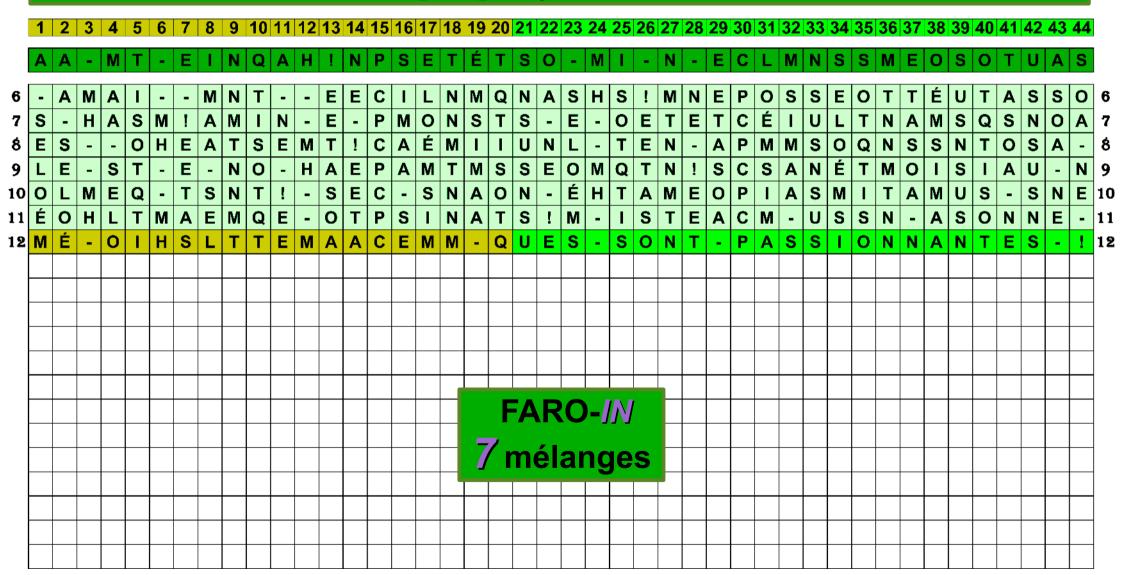


A A - M T - E I N Q A H ! N P S E T É T S O - M I - N - E C L M N S S M E O S O T U A S

$$1^{er} + 2^{e} + 3^{e}$$
 paquets $N_{1} + N_{2} + N_{3} = 44$ cartes

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 A A - M T - E I N Q A H ! N P S E T É T S O - M I - N - E C L M N S S M E O S O T U A S

1^{er} + 2^e + 3^e paquets
$$N_1 + N_2 + N_3 = 44$$
 cartes



2^e déchiffrement

$$1^{er} + 2^{e}$$
 paquets $N_1 + N_2 = 20$ cartes

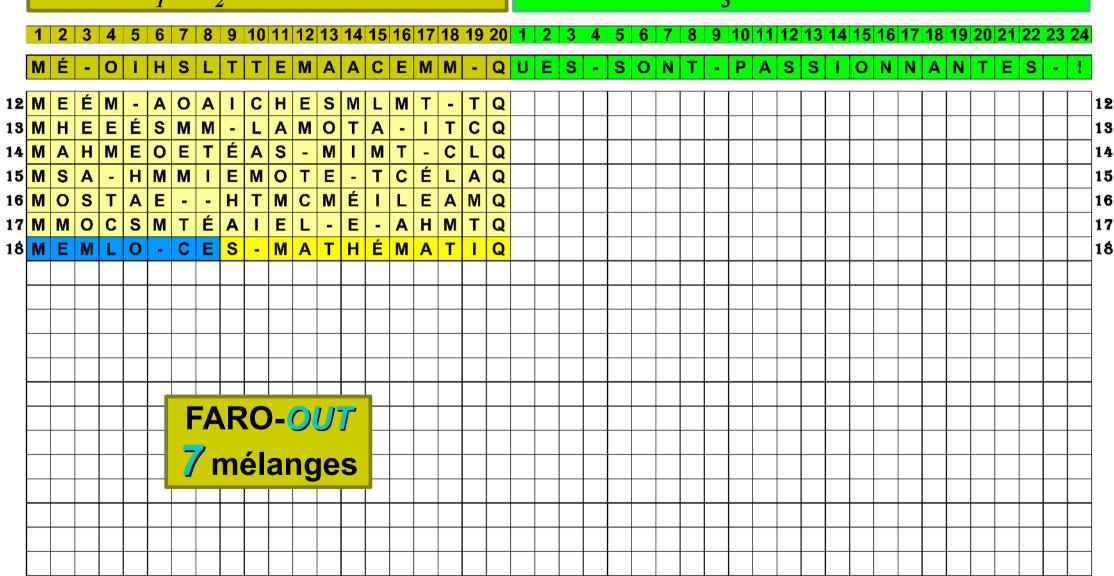
$$3^{\rm e}$$
 paquet $N_3 = 24$ cartes

10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 M É - O I H S L T T E M A A C E M M - Q U E S - S O N T - P A S S I O N N A N T E S - !

2^e déchiffrement

$$1^{er} + 2^{e}$$
 paquets $N_1 + N_2 = 20$ cartes

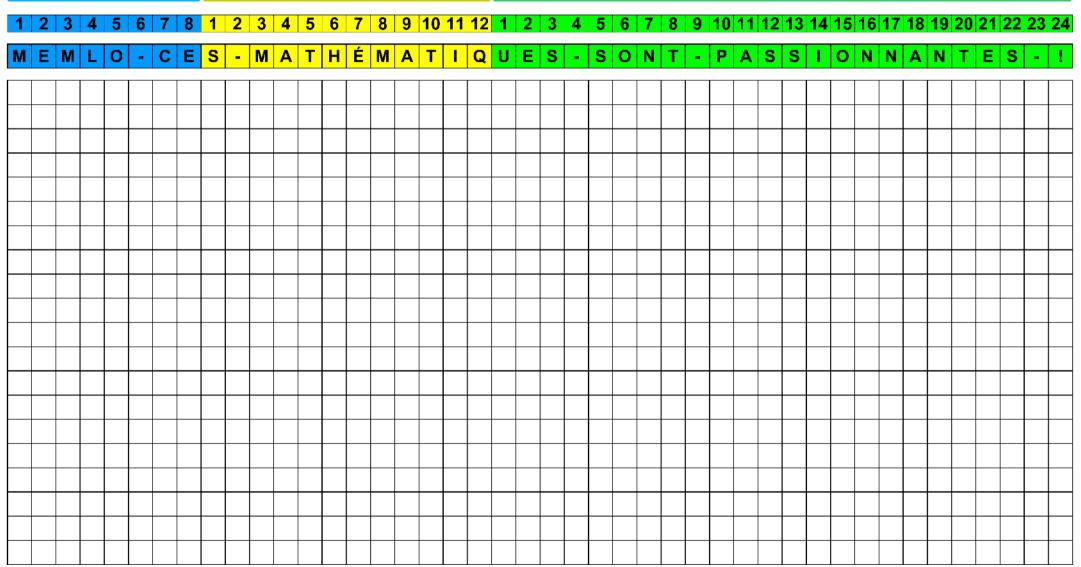
$$3^{\rm e}$$
 paquet $N_3 = 24$ cartes



3^e déchiffrement

1^{er} paquet $N_1 = 8$ cartes $N_2 = 12$ cartes

3^e paquet $N_3 = 24$ cartes



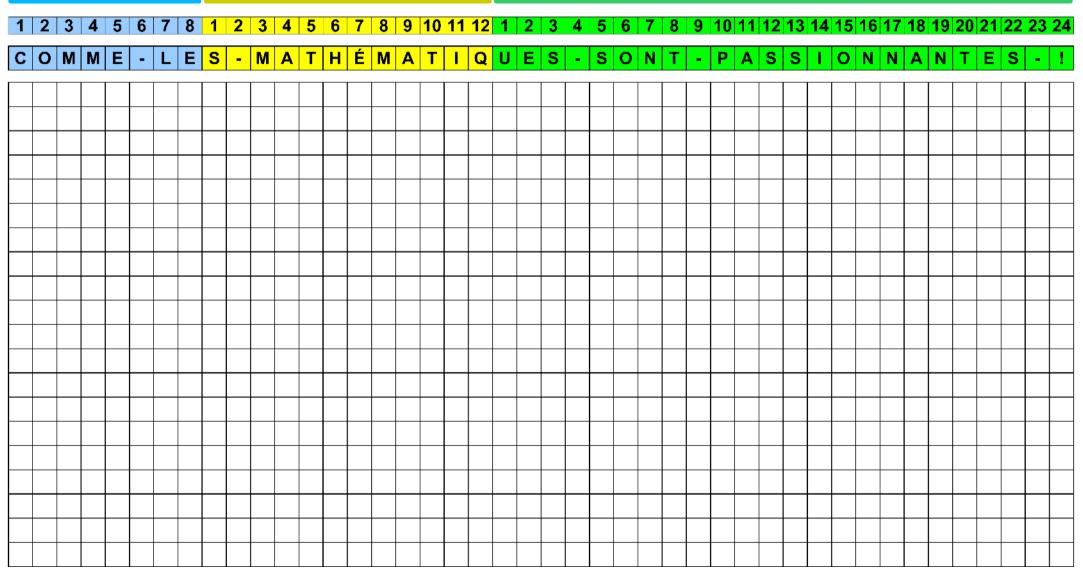
3^e déchiffrement

1^{er} paquet $N_1 = 8$ cartes $N_2 = 12$ cartes 3^e paquet $N_3 = 24$ cartes 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 H É M A T I Q U E S - S O N T P A S S I O N N A N T E S - ! FARO-IN 2 mélanges

Le message déchiffré

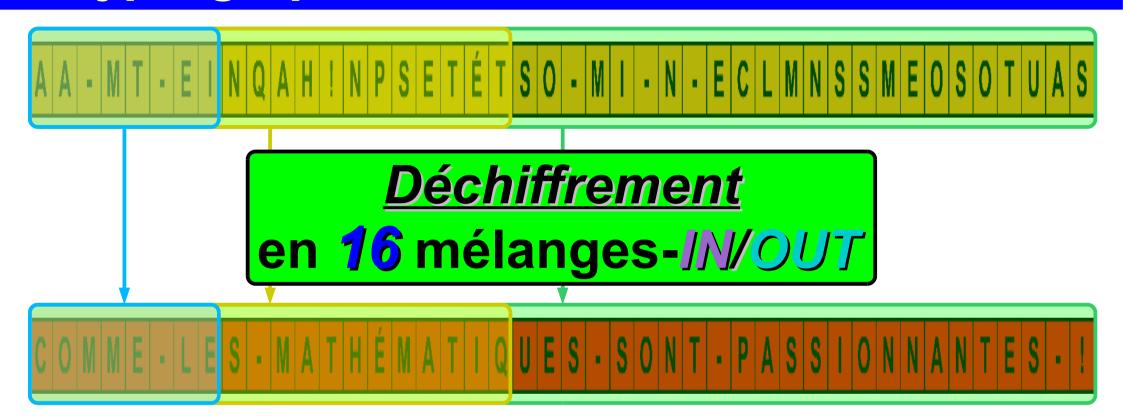
1^{er} paquet $N_1 = 8$ cartes $N_2 = 12$ cartes

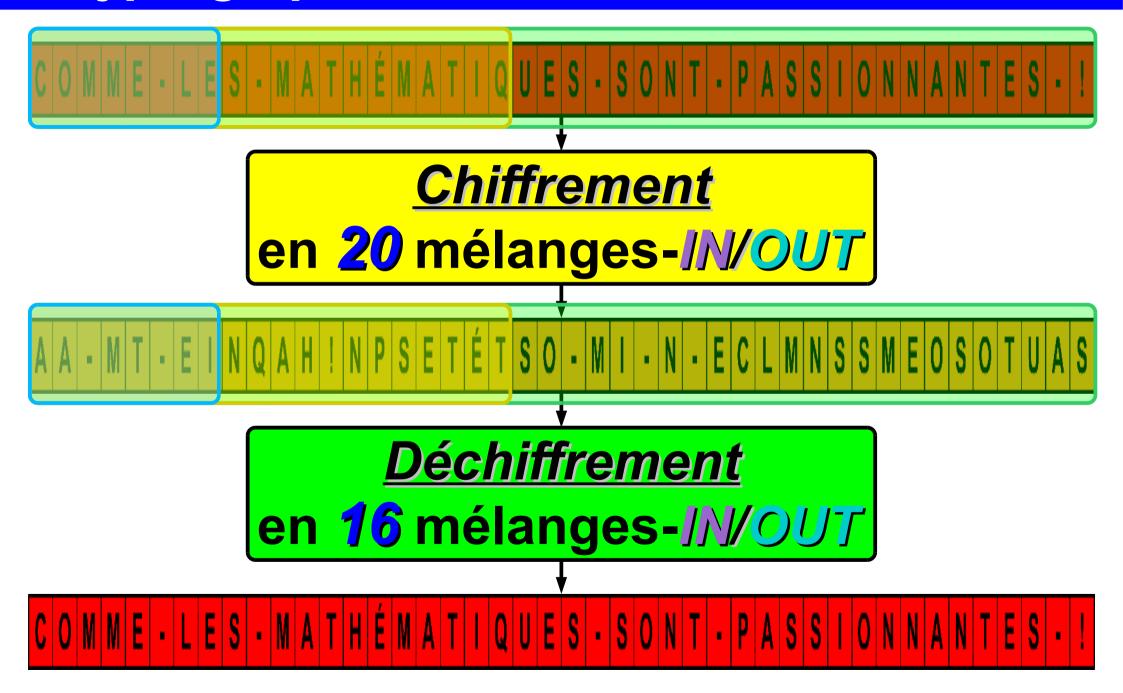
3^e paquet $N_3 = 24$ cartes



Cryptographie

Le message déchiffré



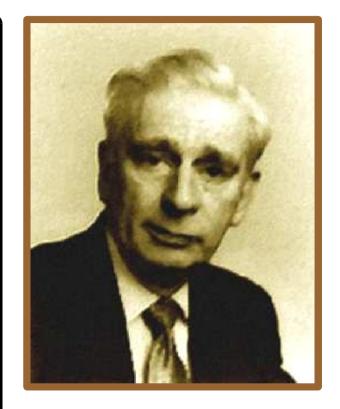


LE PROBLÈME D'ELMSLEY

Déplacement d'une carte vers une position

LE PROBLEME D'ELWSLEY

Comment déplacer une carte vers une position fixée par une suite de Faros-in ou/et de Faros-out?

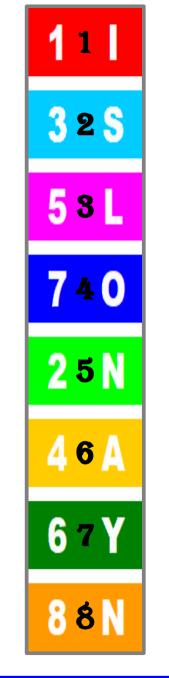


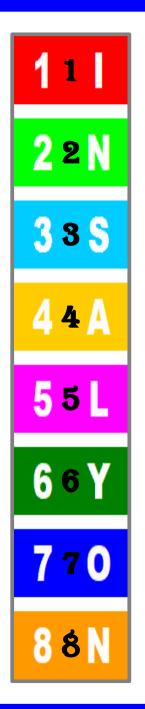
Alex Elmsley (1929–2006)

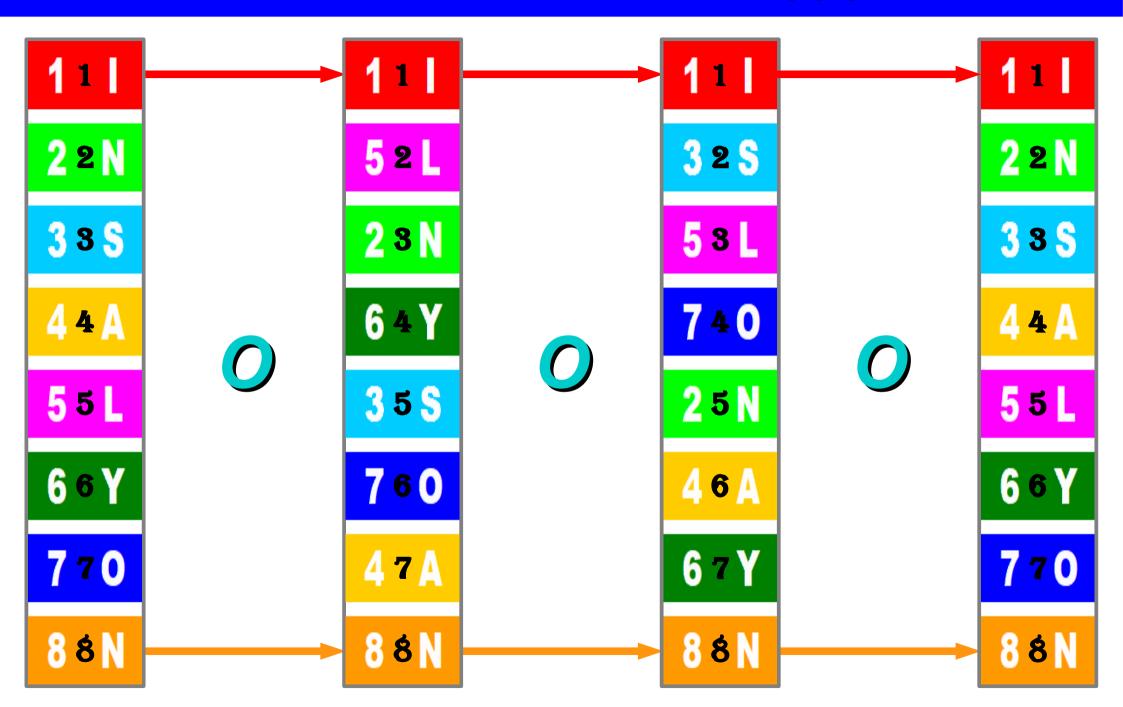
Magicien et informaticien écossais

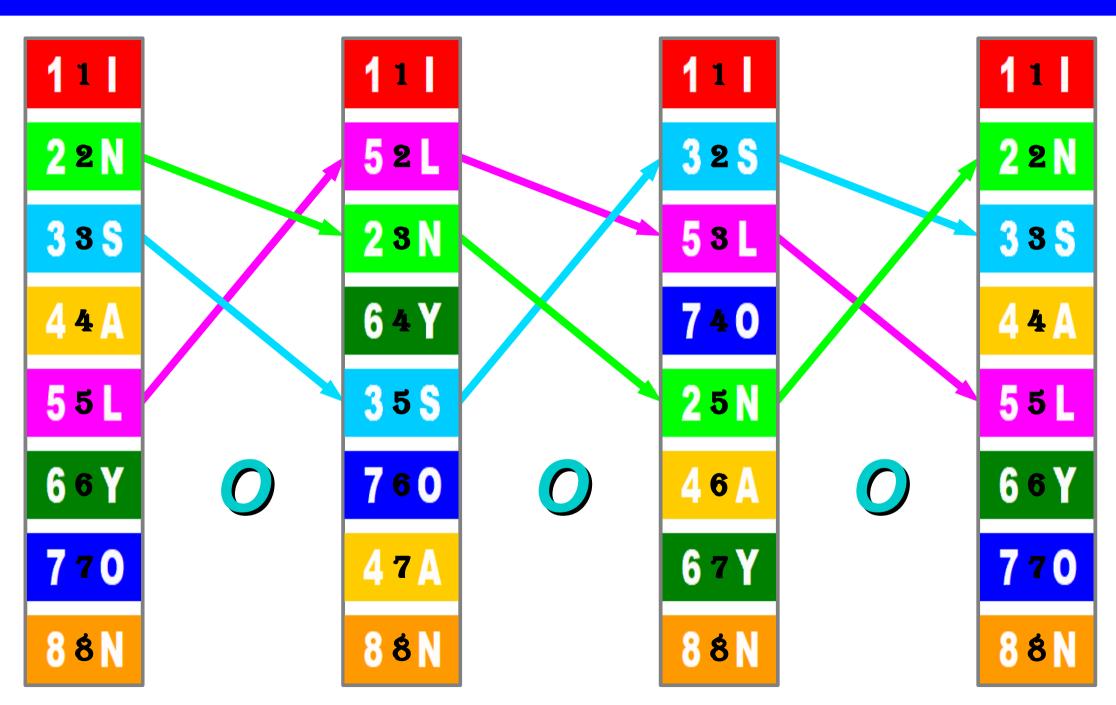
FAROS-OUT

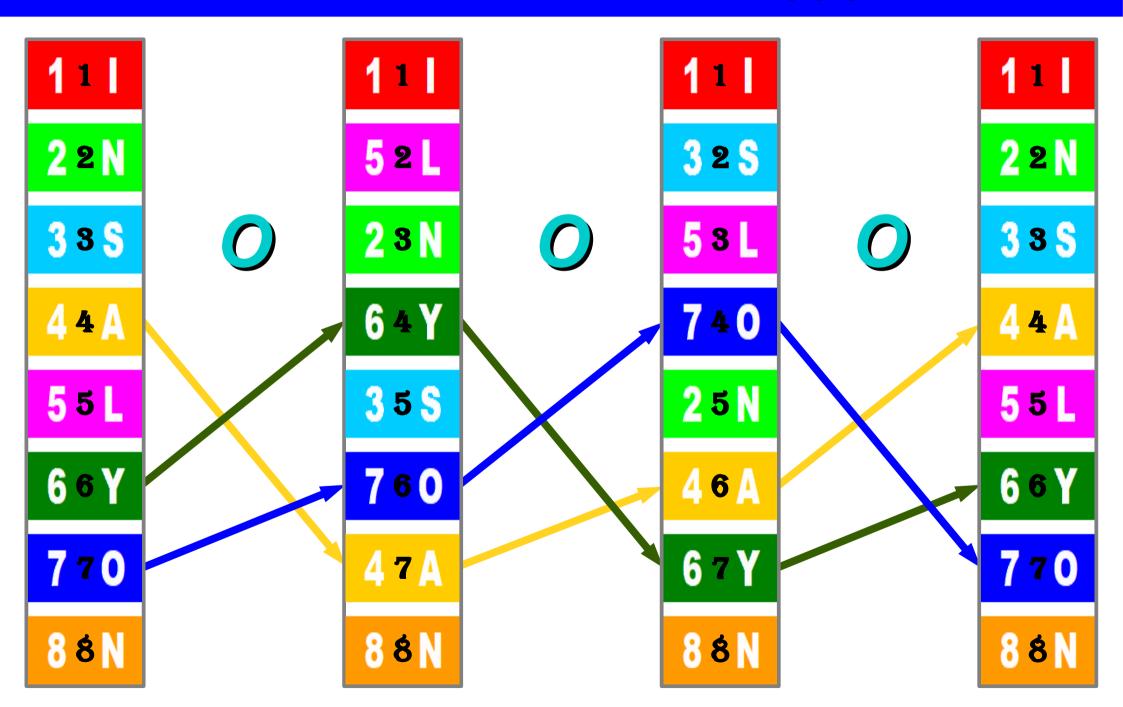
111 22N 335 44 🗚 55L 66Y 770 8 8 N











Constat:

• Une carte située en position 2, 3 ou 5 visite ces mêmes positions au cours d'une suite de Faros-out.

De même pour les positions 4, 6 ou 7.

• Il est donc impossible de déplacer une carte initialement située en position 2, 3 ou 5 vers l'une des positions 4, 6 ou 7 par une suite de Faros-out (et inversement).

FAROS-IN

111	5 1 L	710	81 N	4 1 A	2 1 N	111
2 2 N	121	5 2 L	720	8 2 N	4 2 A	2 2 N
335	6 s Y	335	63 Y	335	6 3 Y	335
4 4 A	2 4 N	141	54 L	740	8 4 N	4 4 A
5 5 L	750	8 5 N	45 A	25N	151	5 5 L
6 6 Y	365	6 6 Y	36 S	6 6 Y	3 6 S	6 6 Y
770	87N	47A	27 N	171	57L	770
8 8 N	48A	2 8 N	181	5 8 L	780	8 8 N

111	5 1 L	710	81 N	4 1 A	2 1 N	111
2 2 N	121	5 2 L	720	8 2 N	4 2 A	2 2 N
335	6 3 Y	335	63 Y	335	6 3 Y	38\$
4 4 A	2 4 N	141	54 L	7 4 0	8 4 N	4 4 A
5 5 L	750	8 5 N	45 A	25N	151	5 5 L
6 6 Y	3 6 S	6 6 Y	36 S	6 6 Y	3 6 S	6 6 Y
770	87N	47A	27 N	171	5 7 L	770
8 8 N	48A	28N	181	5 8 L	780	8 8 N

111	5 1 L	710	81 N	4 1 A	2 1 N	111
2 2 N	121	5 2 L	720	8 2 N	4 2 A	2 2 N
388	6 3 Y	335	63 Y	335	6 3 Y	388
4 4 A	2 4 N	141	54 L	740	8 4 N	4 4 A
5 5 L	750	8 5 N	45 A	25N	151	5 5 L
6 6 Y	365	6 6 Y	36 S	6 6 Y	36S	6 6 Y
770	87N	47A	27 N	171	57L	770
8 8 N	48A	28N	181	5 8 L	780	8 8 N

Constat:

• Une carte située en position 1, 2, 4, 5, 7 ou 8 visite ces mêmes positions au cours d'une suite de Faros-in.

De même pour les positions 3 et 6.

• Il est donc impossible de déplacer une carte initialement située en position 1, 2, 4, 5, 7 ou 8 vers l'une des positions 3 ou 6 par une suite de Faros-in (et inversement).

FAROS-IN & FAROS-OUT

Déplacement d'une carte vers une position

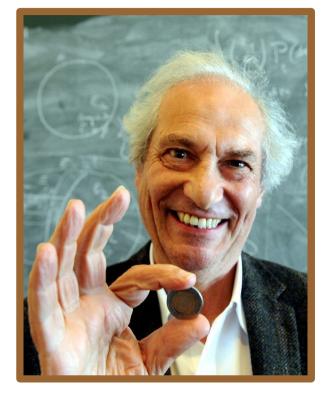
RÉSOLUTION

Un algorithme en binaire avec de Faros-in et -out

Référence:

P. Diaconis and R. Graham:

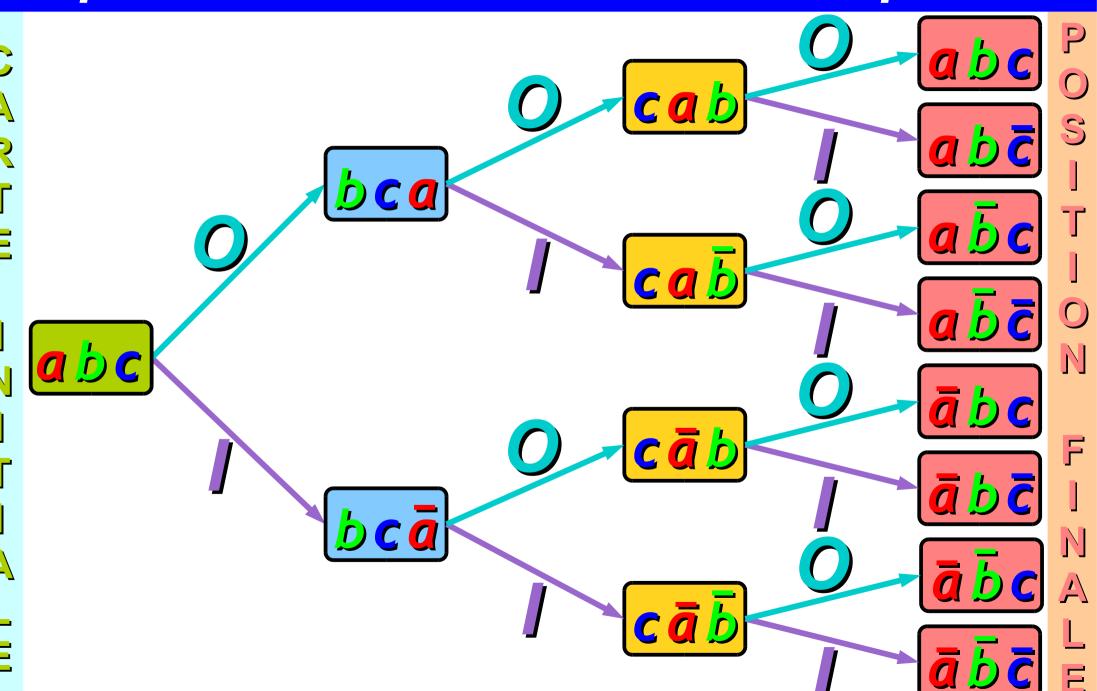
The solutions to Elmsley's Problem, Math Horizons 14 (2007), p. 22–27



Persi Diaconis (1945–)

Magicien et mathématicien américain

Déplacement d'une carte vers une position

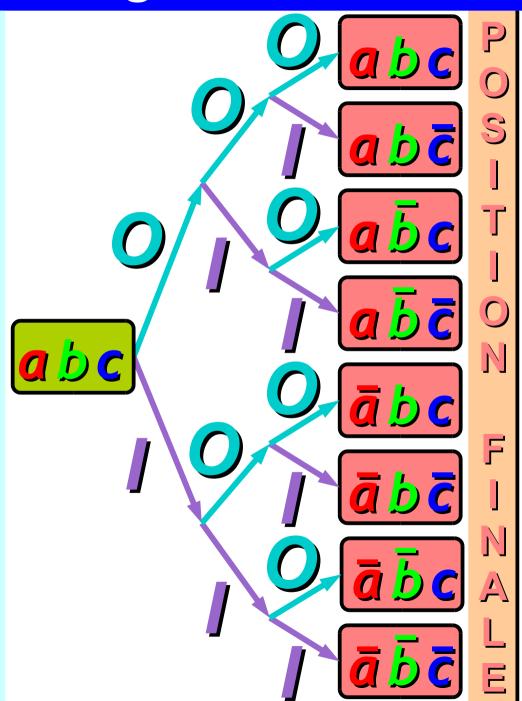


INSA

Mélanges Faros

Aimé Lachal

Un algorithme



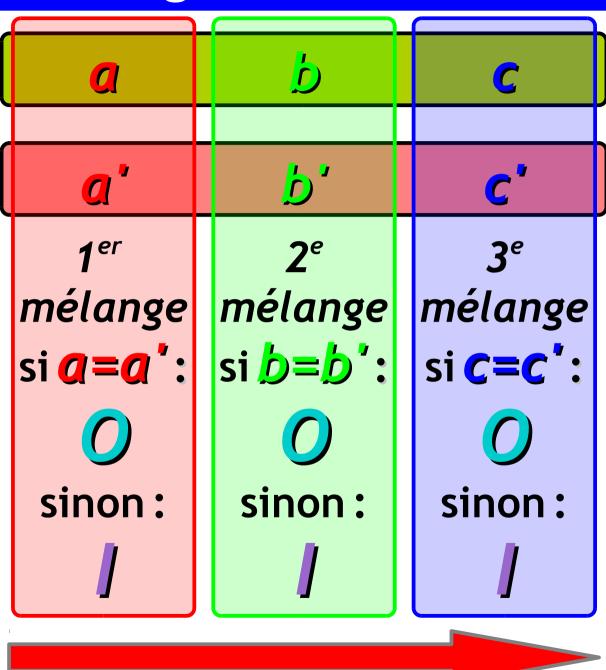
Déplacement d'une carte

vers une position finale

si
$$a' = \begin{cases} a \rightarrow 1^{er} \text{ mélange OUT} \\ \bar{a} \rightarrow 1^{er} \text{ mélange IN} \end{cases}$$

si
$$b' = \begin{cases} b \rightarrow 2^e \text{ mélange OUT} \\ b \rightarrow 2^e \text{ mélange IN} \end{cases}$$

Un algorithme



Exemple: pour un jeu de 8 cartes numérotées 1 à 8 : amener la 4º carte

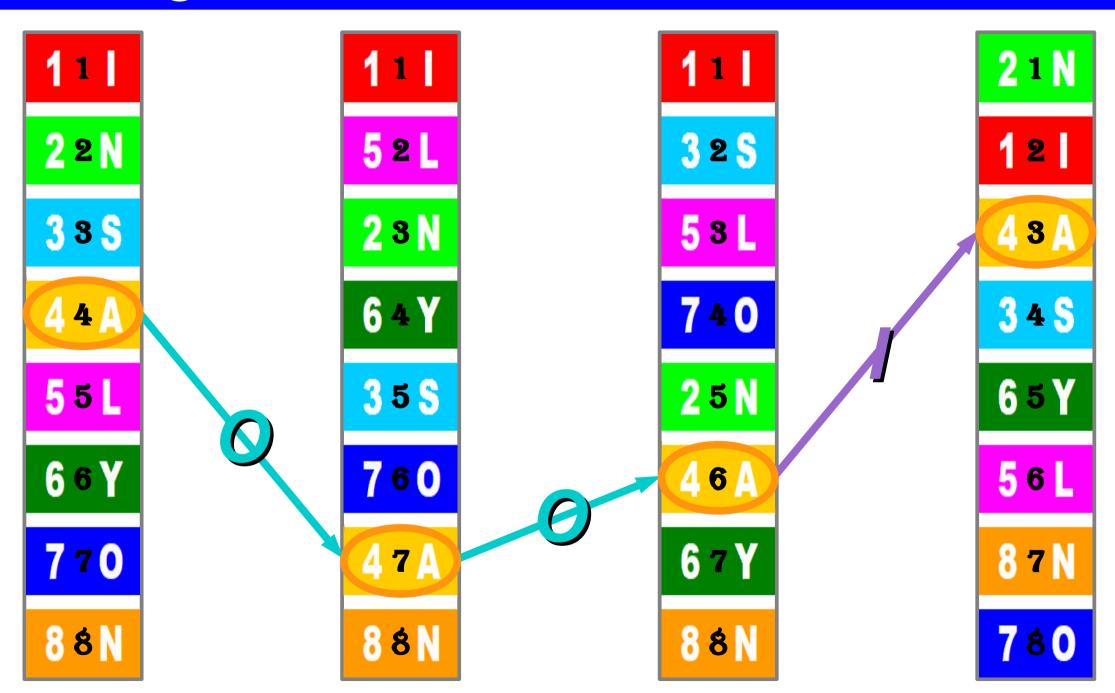
à la 3º position

En renumérotant de 0 à 7:

4° carte
$$\rightarrow$$
 n° 3 = (011)₂
3° position \rightarrow n° 2 = (010)₂
(0 1 1)₂

→ on réalisera 2 Faros-out suivis d'un Faro-in

Un algorithme



Un algorithme : généralisation

<u>Théorème</u>: pour un jeu de **2**^p cartes, pour amener une carte d'une position *i* vers une position *j*, on compare les bits de *i* et *j*:

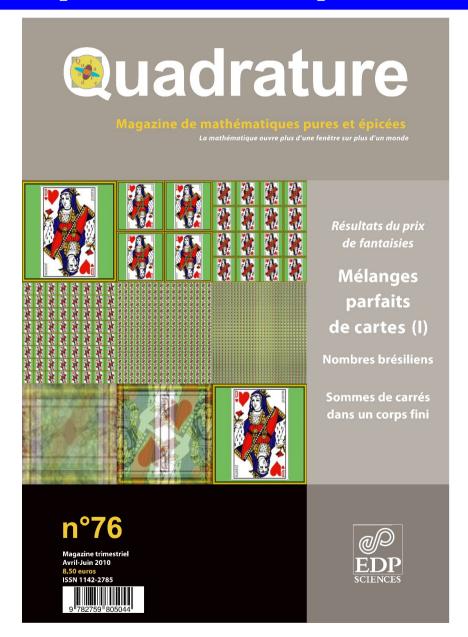
$$i = (\begin{bmatrix} i_{p-1} \\ j_{p-1} \end{bmatrix} \begin{bmatrix} i_{p-2} \\ j_{p-2} \end{bmatrix} \dots \begin{bmatrix} i_1 \\ j_1 \end{bmatrix} \begin{bmatrix} i_0 \\ j_0 \end{bmatrix})_2$$

$$= (\begin{bmatrix} j_{p-1} \\ j_{p-2} \end{bmatrix} = (\begin{bmatrix} j_{p-2} \\ j_{p-2} \end{bmatrix} = (\begin{bmatrix} j_{p-2} \\ j_1 \end{bmatrix} = (\begin{bmatrix} j_{p-2} \\ j_1 \end{bmatrix} = (\begin{bmatrix} j_{p-2} \\ j_1 \end{bmatrix} = (\begin{bmatrix} j_{p-2} \\ j_2 \end{bmatrix} = (\begin{bmatrix} j_{p-2} \\ j_1 \end{bmatrix} = (\begin{bmatrix} j_{p-2} \\ j_2 \end{bmatrix}$$

À chaque coincidence est associé un Faro-out et à chaque différence est associé un Faro-in. On effectuera alors la suite de Faros correspondante de la gauche vers la droite.

CONCLUSION

Et pour aller plus loin...



Réf.: A.L., Mélanges parfaits de cartes — (I) et (II), Quadrature 76 et 77 (2010) https://hal.archives-ouvertes.fr/hal-00864428/document https://hal.archives-ouvertes.fr/hal-00864433/document

Et pour aller plus loin...

Conférences MATH & MAGIE — INSA

MATH & MAGIE

Les M&THÉM&TIQUES au service de la M&GIE ? ou

La MAGIE au service des MATHÉMATIQUES ?

Aimé Lachal & Pierre Schott

INSA de Lyon - 4 avril 2016

https://math.univ-lyon1.fr/~alachal/exposes/mathemagie_2012.pdf https://math.univ-lyon1.fr/~alachal/exposes/mathemagie_2016.pdf https://math.univ-lyon1.fr/~alachal/exposes/mathemagie_2018.pdf

Moralité

MERCI!

MERCI DE VOTRE ATTENTION!

MERCI!

https://math.univ-lyon1.fr/~alachal/diaporamas/diaporama_melanges_faros.pdf

MERCI!

THANK YOU.