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Quelques problèmes de temps de

passage pour certains processus

non nécessairement markoviens

Aimé LACHAL

Laboratoire de Mathématiques Appliquées de Lyon

INSA de Lyon
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processus de Langevin

αẌt + βẊt + γXt = BB
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MB 1D

processus de Langevin

αẌt + βẊt + γXt = BB

primitive du MB∫ t

0

Bs ds

primitives itérées
du MB∫ t

0

(t− s)n

n!
dBs

fonctionnelles
additives du MB∫ t

0

sgn(Bs)|Bs|α ds

pseudo-processus
∂u

∂t
= ±∂Nu

∂xN

?
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Des problèmes

• Barrière simple : τa = inf{t > 0 : Xt > a}

X0 = x

a

tτa0

Xt

-

6
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Des problèmes

• Barrière simple : τa = inf{t > 0 : Xt > a}

X0 = x

a

tτa0

Xt

-

6

−→ Problème associé : loi de sup
06s6t

Xs ?

P{ sup
06s6t

Xs < a} = P{τa > t}
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• Barrière double : τab = inf{t > 0 : Xt /∈ ]a, b[}

X0 = x

b

tτab

a

0

Xt

-

6
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• Barrière double : τab = inf{t > 0 : Xt /∈ ]a, b[}

X0 = x

b

tτab

a

0

Xt

-

6

−→ Problème associé : loi conjointe de inf
06s6t

Xs et sup
06s6t

Xs ?

P{a < inf
06s6t

Xs 6 sup
06s6t

Xs < b} = P{τab > t}
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• Barrière double : τab = inf{t > 0 : Xt /∈ ]a, b[}

X0 = x

b

tτab

a

0

Xt

-

6

−→ Problème associé : loi conjointe de inf
06s6t

Xs et sup
06s6t

Xs ?

P{a < inf
06s6t

Xs 6 sup
06s6t

Xs < b} = P{τab > t}

• Barrière mobile : τf = inf{t > 0 : Xt > f(t)}
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• Barrière double : τab = inf{t > 0 : Xt /∈ ]a, b[}

X0 = x

b

tτab

a

0

Xt

-

6

−→ Problème associé : loi conjointe de inf
06s6t

Xs et sup
06s6t

Xs ?

P{a < inf
06s6t

Xs 6 sup
06s6t

Xs < b} = P{τab > t}

• Barrière mobile : τf = inf{t > 0 : Xt > f(t)}

• Passages successifs, excursions...
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Des techniques

• Équations di�érentielles, EDP, équations intégrales

(Kolmogorov, Fokker-Planck, Feynman-Kac)

5



'

&

$

%

Des techniques

• Équations di�érentielles, EDP, équations intégrales

(Kolmogorov, Fokker-Planck, Feynman-Kac)

• Martingales

(formule d'Itô, théorème d'arrêt de Doob)

5



'

&

$

%

Des techniques

• Équations di�érentielles, EDP, équations intégrales

(Kolmogorov, Fokker-Planck, Feynman-Kac)

• Martingales

(formule d'Itô, théorème d'arrêt de Doob)

• Approximation par échantillonage

(lemme de Spitzer)

5



'

&

$

%

Des techniques

• Équations di�érentielles, EDP, équations intégrales

(Kolmogorov, Fokker-Planck, Feynman-Kac)

• Martingales

(formule d'Itô, théorème d'arrêt de Doob)

• Approximation par échantillonage

(lemme de Spitzer)

• Formule de Cameron-Martin-Girsanov

5



'

&

$

%

Des techniques

• Équations di�érentielles, EDP, équations intégrales

(Kolmogorov, Fokker-Planck, Feynman-Kac)

• Martingales

(formule d'Itô, théorème d'arrêt de Doob)

• Approximation par échantillonage

(lemme de Spitzer)

• Formule de Cameron-Martin-Girsanov

• Décomposition �nes des trajectoires

(excursions)...
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1 Processus de Langevin

Soit le processus régi par αẌt + βẊt + γXt = bruit blanc.
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Soit le processus régi par αẌt + βẊt + γXt = bruit blanc.

• Loi du couple (τa, Ẋτa) : problème ouvert excepté quelques cas.

• Di�culté : (Xt)t>0 est un processus non-markovien en général.

−→ Introduction du couple markovien (Xt, Ẋt) (di�usion 2D).
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Soit le processus régi par αẌt + βẊt + γXt = bruit blanc.
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• Di�culté : (Xt)t>0 est un processus non-markovien en général.
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Loi horaire t 7−→ Xt
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Position et vitesse initiales : (X0, Ẋ0) = (x, y)
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1 Processus de Langevin

Soit le processus régi par αẌt + βẊt + γXt = bruit blanc.

• Loi du couple (τa, Ẋτa) : problème ouvert excepté quelques cas.

• Di�culté : (Xt)t>0 est un processus non-markovien en général.

−→ Introduction du couple markovien (Xt, Ẋt) (di�usion 2D).

0

x

y
a

t

�

*Ẋτa

τa

Xt

Loi horaire t 7−→ Xt

-

6

(x, y)

a

(a, Ẋτa)
Ẋt

Xt

	

Courbe t 7−→ (Xt, Ẋt)

-

6

Position et vitesse initiales : (X0, Ẋ0) = (x, y)
6
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La primitive du mouvement brownien (β = γ = 0)

Soient Xt =

∫ t

0

Bs ds et U(x, y) = E(x,y)[e
−λτa+iµBτa ].
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La primitive du mouvement brownien (β = γ = 0)

Soient Xt =

∫ t

0

Bs ds et U(x, y) = E(x,y)[e
−λτa+iµBτa ].

• La fonction U véri�e
1

2

∂2U

∂y2
(x, y) + y

∂U

∂x
(x, y) = λU(x, y) pour x < a

U(a−, y) = eiµy pour y > 0
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La primitive du mouvement brownien (β = γ = 0)

Soient Xt =

∫ t

0

Bs ds et U(x, y) = E(x,y)[e
−λτa+iµBτa ].

• La fonction U véri�e
1

2

∂2U

∂y2
(x, y) + y

∂U

∂x
(x, y) = λU(x, y) pour x < a

U(a−, y) = eiµy pour y > 0

• Résolution à l'aide de la transformation de Kontorovich-Lebedev :

f̂(ζ) =

∫ ∞

0

Kiζ(z) f(z) dz, f(z) =
2

πz2

∫ ∞

0

Kiζ(z) f̂(ζ) ζ sinh(πζ) dζ
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La primitive du mouvement brownien (β = γ = 0)

Soient Xt =

∫ t

0

Bs ds et U(x, y) = E(x,y)[e
−λτa+iµBτa ].

• La fonction U véri�e
1

2

∂2U

∂y2
(x, y) + y

∂U

∂x
(x, y) = λU(x, y) pour x < a

U(a−, y) = eiµy pour y > 0

• Résolution à l'aide de la transformation de Kontorovich-Lebedev :

f̂(ζ) =

∫ ∞

0

Kiζ(z) f(z) dz, f(z) =
2

πz2

∫ ∞

0

Kiζ(z) f̂(ζ) ζ sinh(πζ) dζ

• Résultat partiel (McKean, 1963) ; pour yz < 0 :

P(a,y){τa∈dt,Bτa∈dz}/dt dz =
3|z|

π
√
2 t2

e−2(y2−|yz|+z2)/t

∫ 4|yz|/t

0

e−3θ/2 dθ√
πθ

−→ Problème entièrement résolu.
Réf. : McKean (1963), Lachal(1990�...)
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2 Les primitives itérées du MB

Soit X
(n)
t =

∫ t

0

(t− s)n

n!
dBs où n ∈ N.
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Soit X
(n)
t =

∫ t

0

(t− s)n

n!
dBs où n ∈ N.

• Loi de τa : problème ouvert pour n > 2.
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2 Les primitives itérées du MB

Soit X
(n)
t =

∫ t

0

(t− s)n

n!
dBs où n ∈ N.

• Loi de τa : problème ouvert pour n > 2.

Application : statistiques de Kolmogorov-Smirnov intégrées

Soit U1, . . . , UN un échantillon de la loi uniforme sur [0, 1].
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2 Les primitives itérées du MB

Soit X
(n)
t =

∫ t

0

(t− s)n

n!
dBs où n ∈ N.

• Loi de τa : problème ouvert pour n > 2.

Application : statistiques de Kolmogorov-Smirnov intégrées

Soit U1, . . . , UN un échantillon de la loi uniforme sur [0, 1].

• On a la convergence de processus(
√
N

[
1

N

N∑
k=1

1l{Uk6t} − t

])
t∈[0,1]

loi−→
N→+∞

pont brownien

puis

processus empiriques intégrés
loi−→

N→+∞


primitives du pont brownien
ou
pont des primitives du MB
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Exemple : pont de la primitive itérée du MB

Y
(n)
t =

(
X

(n)
t

∣∣∣∣ X
(n−1)
0 = X

(n−2)
0 = · · · = X

(1)
0 = B0 = 0

X
(n−1)
1 = X

(n−2)
1 = · · · = X

(1)
1 = B1 = 0

)
, t ∈ [0, 1].
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Exemple : pont de la primitive itérée du MB

Y
(n)
t =

(
X

(n)
t

∣∣∣∣ X
(n−1)
0 = X

(n−2)
0 = · · · = X

(1)
0 = B0 = 0

X
(n−1)
1 = X

(n−2)
1 = · · · = X

(1)
1 = B1 = 0

)
, t ∈ [0, 1].

• On a l'identité Y
(n)
t

loi
= t2n+1 X

(n)
1/t−1. On a besoin de

P{ sup
06t61

Y
(n)
t < x} = P{sup

t>0
[X

(n)
t − x(t+ 1)2n+1] < 0}

−→ Problème de frontière mobile pour (X(n))t>0.
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(n)
t

loi
= t2n+1 X

(n)
1/t−1. On a besoin de

P{ sup
06t61

Y
(n)
t < x} = P{sup

t>0
[X

(n)
t − x(t+ 1)2n+1] < 0}

−→ Problème de frontière mobile pour (X(n))t>0.

• On a
P{ sup

06t61
Y

(n)
t < x} = Qx{sup

t>0
X

(n)
t < 0} = Qx{τ0 = +∞}

où Qx est une densité de Cameron-Martin-Girsanov.
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Exemple : pont de la primitive itérée du MB

Y
(n)
t =

(
X

(n)
t

∣∣∣∣ X
(n−1)
0 = X

(n−2)
0 = · · · = X

(1)
0 = B0 = 0

X
(n−1)
1 = X

(n−2)
1 = · · · = X

(1)
1 = B1 = 0

)
, t ∈ [0, 1].

• On a l'identité Y
(n)
t

loi
= t2n+1 X

(n)
1/t−1. On a besoin de

P{ sup
06t61

Y
(n)
t < x} = P{sup

t>0
[X

(n)
t − x(t+ 1)2n+1] < 0}

−→ Problème de frontière mobile pour (X(n))t>0.

• On a
P{ sup

06t61
Y

(n)
t < x} = Qx{sup

t>0
X

(n)
t < 0} = Qx{τ0 = +∞}

où Qx est une densité de Cameron-Martin-Girsanov.

• Cas n = 1 (primitive du mouvement brownien) :

Qx{τ0 = +∞} = 1− e−6x2

E(−3x,x)

[
e−6x2(τ0+1)3−6x(τ0+1)Bτ0

]
Réf. : Henze & Nikitin (2000), Lachal (2001)
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3 Fonctionnelles additives du MB

Soit Xt =

∫ t

0

V (Bs) ds où V (y) =

 yγ si y > 0

−K |y|γ si y 6 0
et K, γ > 0.
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3 Fonctionnelles additives du MB

Soit Xt =

∫ t

0

V (Bs) ds où V (y) =

 yγ si y > 0

−K |y|γ si y 6 0
et K, γ > 0.

• Problème : loi de (τab, Bτab
) ?

0

x

a

b
V (y)
�

*
V (Bτab

)

τab t

Xt

(X0, B0) = (x, y)

-

6
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3 Fonctionnelles additives du MB

Soit Xt =

∫ t

0

V (Bs) ds où V (y) =

 yγ si y > 0

−K |y|γ si y 6 0
et K, γ > 0.

• Problème : loi de (τab, Bτab
) ?

0

x

a

b
V (y)
�

*
V (Bτab

)

τab t

Xt

(X0, B0) = (x, y)

-

6

• Résolution : EDP+excursions+équation d'Abel généralisée.
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• Résultats partiels (Lachal, 2000) ; pour x ∈]a, b[ :

P(x,0){Bτab
∈ dz}/dz =



constante×
(x− a

b− a

)−α zγ−α(γ+2)

(b− x)1−α−1/(γ+2)

×e−zγ+2/A(b−x) M
(
− α; 1− α;

x− a

b− x

zγ+2

A(b− a)

)
pour z > 0

expression similaire pour z < 0

où α = − 1

π
arccot

[
K−1/(γ+2) + cos π

γ+2

sin π
γ+2

]
.

11
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• Résultats partiels (Lachal, 2000) ; pour x ∈]a, b[ :

P(x,0){Bτab
∈ dz}/dz =



constante×
(x− a

b− a

)−α zγ−α(γ+2)

(b− x)1−α−1/(γ+2)

×e−zγ+2/A(b−x) M
(
− α; 1− α;

x− a

b− x

zγ+2

A(b− a)

)
pour z > 0

expression similaire pour z < 0

où α = − 1

π
arccot

[
K−1/(γ+2) + cos π

γ+2

sin π
γ+2

]
.

P(x,0){τb < τa} = constante×
(x− a

b− a

)−α

2F1

(
− α,

γ + 1

γ + 2
− α; 1− α;

x− a

b− a

)

Réf. : Franklin & Rodemich (1968), Masoliver & Porrà (1995), Lachal (2000)
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4 Pseudo-processus browniens

Considérons l'équation de la chaleur d'ordre N > 2 :
∂u

∂t
= ±∂Nu

∂xN
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Considérons l'équation de la chaleur d'ordre N > 2 :
∂u

∂t
= ±∂Nu

∂xN

• La solution fondamentale p(t, x) est caractérisée par∫ +∞

−∞
eiuxp(t, x) dx = e±t(iu)N .
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4 Pseudo-processus browniens

Considérons l'équation de la chaleur d'ordre N > 2 :
∂u

∂t
= ±∂Nu

∂xN

• La solution fondamentale p(t, x) est caractérisée par∫ +∞

−∞
eiuxp(t, x) dx = e±t(iu)N .

• Dé�nition d'un processus (Xt)t>0 selon

Px(Xt ∈ dy) = pt(x, y) dy = p(t, x− y) dy

et pour 0 = t0 < t1 < . . . < tn, x0 = x,

Px(Xt1 ∈ dx1, . . . , Xtn ∈ dxn) =
n∏

i=1

pti−ti−1(xi−1, xi) dxi.

12
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4 Pseudo-processus browniens

Considérons l'équation de la chaleur d'ordre N > 2 :
∂u

∂t
= ±∂Nu

∂xN

• La solution fondamentale p(t, x) est caractérisée par∫ +∞

−∞
eiuxp(t, x) dx = e±t(iu)N .

• Dé�nition d'un processus (Xt)t>0 selon

Px(Xt ∈ dy) = pt(x, y) dy = p(t, x− y) dy

et pour 0 = t0 < t1 < . . . < tn, x0 = x,

Px(Xt1 ∈ dx1, . . . , Xtn ∈ dxn) =
n∏

i=1

pti−ti−1(xi−1, xi) dxi.

• Di�culté : pseudo-processus markovien gouverné par une mesure signée

de variation totale in�nie (qui n'est pas une probabilité)

−→ Dé�nition � correcte � pour les distributions �ni-dimensionnelles.
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Dé�nition par discrétisation du temps

Processus échantillonné X
(n)
t =

∞∑
k=0

Xk/2n 1l[k/2n,(k+1)/2n[(t).

13
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Dé�nition par discrétisation du temps

Processus échantillonné X
(n)
t =

∞∑
k=0

Xk/2n 1l[k/2n,(k+1)/2n[(t).

• Formule de Spitzer (en temps continu) :∫ ∞

0

e−λt Ex[e
−µ sup06s6t Xs+iνXt ] dt

=
e(−µ+iν)x

λ
exp

[
−
∫ ∞

0

[1− E0[e
−µX+

t +iνXt ]
e−λt

t
dt

]

13
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Dé�nition par discrétisation du temps

Processus échantillonné X
(n)
t =

∞∑
k=0

Xk/2n 1l[k/2n,(k+1)/2n[(t).

• Formule de Spitzer (en temps continu) :∫ ∞

0

e−λt Ex[e
−µ sup06s6t Xs+iνXt ] dt

=
e(−µ+iν)x

λ
exp

[
−
∫ ∞

0

[1− E0[e
−µX+

t +iνXt ]
e−λt

t
dt

]

• Inversion de la transformée de Laplace-Fourier en µ et ν ; pour x, z 6 y :∫ ∞

0

e−λt dtPx{ sup
06s6t

Xs ∈ dy,Xt ∈ dz}/dy dz =
∑

ℜ(θk)>0

ℜ(θl)<0

cke
θkλ

1/N (x−y)+θkλ
1/N (y−z)

où θNk = θNl = ±1 et les ck sont des constantes.

−→ � loi � conjointe du couple ( sup
06s6t

Xs, Xt).

13
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• Puis relation entre les couples (τa, Xτa) et ( sup
06s6t

Xs, Xt) :

Ex(e
−λτa+iµXτa ) = eiµx−[λ±(iµ)N ]

∫ ∞

0

e−λt Ex

[
eiµXt1l{sup06s6t Xs6a}

]
dt

14
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• Puis relation entre les couples (τa, Xτa) et ( sup
06s6t

Xs, Xt) :

Ex(e
−λτa+iµXτa ) = eiµx−[λ±(iµ)N ]

∫ ∞

0

e−λt Ex

[
eiµXt1l{sup06s6t Xs6a}

]
dt

• Inversion de la transformée de Fourier en µ (Lachal, 2004) ; pour x > a :

Ex(e
−λτa , Xτa ∈ dy)/dy =

∑
06j6N/2

[ ∑
ℜ(θk)<0

eθkλ
1/N (x−a)

] δ(j)a (dy)

λj/N

−→ � loi � conjointe � distributionnelle � du couple (τa, Xτa).
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∫ ∞

0

e−λt Ex

[
eiµXt1l{sup06s6t Xs6a}
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• Inversion de la transformée de Fourier en µ (Lachal, 2004) ; pour x > a :

Ex(e
−λτa , Xτa ∈ dy)/dy =

∑
06j6N/2

[ ∑
ℜ(θk)<0

eθkλ
1/N (x−a)

] δ(j)a (dy)

λj/N

−→ � loi � conjointe � distributionnelle � du couple (τa, Xτa).

• Pour λ = 0 : Px{Xτa ∈ dy}/dy =
∑

06j6N/2

(−1)j
(x− a)j

j!
δ(j)a (dy)

Remarque : beaucoup de calculs formels...

Réf. : Hochberg (1978), Orsingher et al. (1991�...), Nishioka (1997�...), Lachal (2002�...)
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