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/ Des problémes

e Barriére simple : |7, =inf{t > 0: X; > a}
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e Barriére simple : |7, =inf{t > 0: X; > a}

Des problémes

ly
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— Probléme associé : loi de sup X7
0<s<t

P{ sup X <a} =P{r, >t}

0<s<t
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/oBarriére double :

Tap = inf{t > 0: X; ¢]a,b|}
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/oBarriére double : | 74 = inf{t > 0: X; ¢ ]a, b[}

XtA
b A]\'/\/\\
XO =X :
: :
0 T(;b 7

— Probléme associé : loi conjointe de inf X et sup X7
0<s<t 0<s<t

P{a < inf X, < sup X <b} =P{r, >t}

0<s<t 0<s<t




/oBarriére double : | 74 = inf{t > 0: X; ¢ ]a, b[}

XtA
b IA'A/\
XO =X :
: :
0 T(;b 7

— Probléme associé : loi conjointe de inf X, et sup X7
0<s<t 0<s<t

P{a < inf X, < sup Xs < b} =P{r, >t}
Oss<t 0<s<t

e Barriére mobile : |7f =inf{t > 0: X; > f(1)}

.




/oBarriére double : | 74 = inf{t > 0: X; ¢ ]a, b[}

XtA
b A'\'/\/\\
XO =X :
: :
0 T(;b 7

— Probléme associé : loi conjointe de inf X, et sup X7
0<s<t 0<s<t

P{a < inf X, < sup Xs < b} =P{r, >t}
Oss<t 0<s<t

e Barriére mobile : |7y =inf{t > 0: X; > f(?)}

k Passages successifs, excursions...
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/ Des techniques

o Equations différentielles, EDP, équations intégrales
(Kolmogorov, Fokker-Planck, Feynman-Kac)

e Martingales

(formule d’It6, théoréme d’arrét de Doob)

e Approximation par échantillonage
(lemme de Spitzer)

e Formule de Cameron-Martin-Girsanov

e Décomposition fines des trajectoires

(excursions)...

.




Soit le processus régi par

/1 Processus de Langevin

oth + BXt + vX; = bruit blanc.




/1 Processus de Langevin
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/1 Processus de Langevin

Soit le processus régi par aX, + 8X; + vX; = bruit blanc.

e Loi du couple (74, X, ) : probléme ouvert excepté quelques cas.

e Difficulté : (X;)i>0 est un processus non-markovien en général.

— Introduction du couple markovien (X¢, X;) (diffusion 2D).

Xt“ X
U \/ :Ta >t

Loi horaire t — X,
\ Position et vitesse initiales : (X, Xo) = (7, y)
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/1 Processus de Langevin \

Soit le processus régi par aX, + 8X; + vX; = bruit blanc.

e Loi du couple (74, X, ) : probléme ouvert excepté quelques cas.

e Difficulté : (X;)i>0 est un processus non-markovien en général.

— Introduction du couple markovien (X¢, X;) (diffusion 2D).

XA < X (a, X, )
a Y | \/A\ %
X %‘\/\ i V\/\/W\/\ a >Xt
0 \/ ITa >t
(z,9)
Loi horaire t —— X4 Courbe t — (X4, Xt)
\ Position et vitesse initiales : (X, Xo) = (z,¥) /
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/ La primitive du mouvement brownien (5 = v = 0) \

t
Soient | X; = / Bds | et Uz, y) = B, e Aot #Er ],
0

e La fonction U vérifie

(1 0%°U oU
5 a—yz(way) —I—y%(w,y) — )\U(ﬂj,y) pour x < a

N\

\ Ula™,y) = e pour y > 0

e Résolution a l'aide de la transformation de Kontorovich-Lebedev :

:/ ch(Z) f(Z) dZ, — 2/ ch CSlnh(ﬂ-C) C
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/ La primitive du mouvement brownien (5 = v = 0) \

t
Soient | X; = / Bds | et Uz, y) = B, e Aot #Er ],
0

e La fonction U vérifie

( 182(]( " oU
2 92 Y T Y e

Ula™,y) = e pour y > 0

(x,y) = AU(x,y) pour z < a

N\

\

e Résolution a l'aide de la transformation de Kontorovich-Lebedev :

_ / K@) () dz, f(2) = / Ki¢(2) F(¢) ¢ sinh(r¢) d¢

e Résultat partiel (McKean, 1963) ; pour yz < 0 :

—— Probléme entiérement résolu.
Qéf. : McKean (1963), Lachal(1990-...)
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e Loi de 7, : probléeme ouvert pour n > 2.




/2 Les primitives itérées du MB
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e Loi de 7, : probléeme ouvert pour n > 2.

Application : statistiques de Kolmogorov-Smirnov intégrées

Soit Uy, ...,Un un échantillon de la loi uniforme sur [0, 1].




/2 Les primitives itérées du MB \

t
n t— "

Soit Xt( ):/ %dBS ou n € N.

0 n!

e Loi de 7, : probléeme ouvert pour n > 2.

Application : statistiques de Kolmogorov-Smirnov intégrées
Soit Uy, ...,Upn un échantillon de la loi uniforme sur [0, 1].

e On a la convergence de processus

N
1 loi .
(\/N [N ;_1 L, <ty — t] ) — pont brownien

N ——+o00
t€[0,1]

puis

)
- primitives du pont brownien
Ol

processus empiriques intégrés — < ou

N —~+o00 o
\ \ pont des primitives du MB /
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Exemple : pont de la primitive itérée du MB

y " _ < X

X(gn—l) _ X(()n—Q) L X(()l) — By =0
Xl(n—l) _ an—2) L Xl(l) — B, =0

), t € 0,1].
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/ Exemple : pont de la primitive itérée du MB \

X(gn—l) _ X(()n—Z) o X(()l) — By =0

v _ (X<n>
t t an_n _ an—z) L Xfl) — B, =0

), t €|0,1].

e On a lidentite V"V o yont1 X(n>_ . On a besoin de
¢ 1/t—1

P{ sup Yt(n) <z}= P{sup[Xt(n) —z(t+1)""T <0}

0<t<1 >0

— Probléme de frontiére mobile pour (X™);>q.




/ Exemple : pont de la primitive itérée du MB \

X(gn—l) _ X(()n—Z) o X(()l) — By =0

v _ (X<n>
t t an_n _ an—z) L Xfl) — B, =0

), t €|0,1].

e On a lidentite Y™ 2 ¢2n+1 Xf;"g_l. On a besoin de

P{ sup Y;(n) <x}= IP’{sup[Xt(n) —z(t+ 1) < 0}
0<t<1 t=0

— Probléme de frontiére mobile pour (X (™).

==
e On a

P{ sup V" <z} =Q"{sup X;" <0} = Q"{ry = +00}
0<t<1 >0

ou Q% est une densité de Cameron-Martin-Girsanov.

N /




/ Exemple : pont de la primitive itérée du MB

X(gn—l) _ X(()n—Z) o X(()l) — By =0

v _ (X<n>
t t an_n _ an—z) L Xfl) — B, =0

e On a l'identité Yt<n> of y2n+1 Xf;"g_l. On a besoin de

P{ sup Y;(n) <x}= IP’{sup[Xt(n) —z(t+ 1) < 0}
0<t<1 t=0

— Probléme de frontiére mobile pour (X (™).

=

e On a
P{ sup V" <z} =Q"{sup X;" <0} = Q"{ro = +00}
0<t<1 £>0
ou Q% est une densité de Cameron-Martin-Girsanov.

e Cas n =1 (primitive du mouvement, brownien) :

QZB{TO — —|_OO} =1 — 6_6$2 E(_?)x,x) 6—6$2(To+1)3—6$(’7'0—|—1)37.0]

\ Réf. : Henze & Nikitin (2000), Lachal (2001)

), t €|0,1].

~
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/3 Fonctionnelles additives du MB

Soit

t
Xt = / V(Bs) ds
0

ou V(y) = {

y' siy =0

—Ky|" siy <0

et K,v > 0.

~
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/3 Fonctionnelles additives du MB

t y' siy =0
Soit | X; = / V(Bs)ds|ou V(y) = et K,~v > 0.
0 —Ky|" siy <0
e Probléme : loi de (74p, B-,,) ?
Xt“ V(BTab)
; _
V .
(X07 BO) — (ZC, y) (y) |
xr |
a :
0 Tlab Tt

~
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/3 Fonctionnelles additives du MB

t
Soit | X; = / V(B,) ds
0

(Xo, Bo) = (z,y)

.

XtA

b

e Probléme : loi de (74p, B-,,) ?

y! siy=>0
ou V(y) = et K,~v > 0.
—Ky|" siy <0
/‘Y/(BTab)
V(y) .
Tlab i’

e Résolution : EDP--excursions+équation d’Abel généralisée.
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KRésultats partiels (Lachal, 2000) ; pour = €|a, b] : \

p

T — Q — ZV_CV(’Y—*_Q)
b — a) (b — x)l_a_l/(’H—Q)
+2
—27T2 /A(b—=x) M(— 1 — o r—a 2z’ )
]P)(CB,O){BTab € dz}/dz = 4 e & & b—nx A(b — a)

constante X <

pour z > 0

expression similaire pour z < 0
\

1 K_l/(7+2) —+ cos ﬁ
ol @ = —— arccot — .
70 S111 m
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/ORésultats partiels (Lachal, 2000) ; pour = €|a, b] :

.

~

( r—a\ ¢ SY—a(y+2)
constante X (b — a,) (b — x>1—a—1/(7+2)
+2
— 272/ A(b—2) M(— 1 — o r—a 2V )
P(,0){Br,, € dz}/dz = { *° ol = T A —a)
pour z > 0
\expression similaire pour z < 0
1 K=10+2) 4 cos -7
oﬂa:——arccot[ — 7+2].
d sin
—a\T“ 1 _
P(z.001™ < Ta} = constante x(fz_ Z) o Fy (_ Q, ziz a1l — o zg_ Z)

Réf. : Franklin & Rodemich (1968), Masoliver & Porra (1995), Lachal (2000)
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/4 Pseudo-processus browniens

ou oNu

Considérons I’équation de la chaleur d’ordre N > 2 :| — = +——
ot oxN
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/4 Pseudo-processus browniens

Considérons 1’équation de la chaleur d’ordre N > 2 :

ou

5 =

ONu
oxN

e La solution fondamentale p(t, x) est caractérisée par

+o0 N
/ ezua:p@,x) dr = 6:I:t(zu) .

— 00

12




/4 Pseudo-processus browniens

. , . ou ONu
Considérons I’équation de la chaleur d’ordre N > 2 ;| — = +——
ot OxN

e La solution fondamentale p(t, x) est caractérisée par

00 . . \N
/ e"“Up(t,x)dr = ett(iw)™

— 00

e Définition d’un processus (X¢):>o selon

IP)CU(Xt S dy) :pt(way) dy :p(t,ﬂf o y) dy
et pour 0 =1ty <t < ... <tp, 9 =,

Px(th e dry,... ,th < diEn) — Hpti—ti—l(x’i—bwi) dx;.
=1

.

12



/4 Pseudo-processus browniens \
ou oN

Considérons I'équation de la chaleur d’ordre N > 2 : | = = +——
onsideroIns ' equation de la Chaleur orare ot &cN

e La solution fondamentale p(t, x) est caractérisée par

00 . . \N
/ ezua:p(tyx) dr — €:|:t(zu) .

— 00

e Définition d’un processus (X;)¢>0 selon

Pw(Xt S dy) :pt(xay) dy :p(taaj o y) dy
et pour 0 =15 <t;1 < ... <tp, 9 =,

n
P.(X¢, € dxy, ..., X;, €dx,) = Hpti—ti_l(il?i—l,%) dx;.
i=1
e Difficulté : pseudo-processus markovien gouverné par une mesure signée
de variation totale infinie (qui n’est pas une probabilité)

\ —— Définition « correcte » pour les distributions fini-dimensionnelles. /
12




/ Définition par discrétisation du temps \

Processus échantillonné Xt(n) = Z X}, jon ]l[k/gn,(kJrl)/Qn[(t).
k=0

13



/ Définition par discrétisation du temps \

Processus échantillonné Xt(n) = Z X}, jon ]l[k/Qn,(k_|_1)/2n[(t).
k=0

e Formule de Spitzer (en temps continu) :

00
/ 6—)\75 Ew [B_NSUPogsgt XS+ZVXt] dt
0

(—ptiv)z 00 . —At
_C exp [— / 11— Eq [e_“XtJ”rWXt] C at
A 0 t

13



/ Définition par discrétisation du temps \

Processus échantillonné Xt(n) = Z X}, jon ]l[k/gn,(kJrl)/Qn[(t).
k=0

e Formule de Spitzer (en temps continu) :

00
/ 6—)\15 Ew [e_NSUPogsgt XS+ZVXt] dt
0

e(_lu'_i_'i"/)x

00 L G—At
= exp [— / [1 — Eg[e #e twie] — dt]
A 0 t

e Inversion de la transformée de Laplace-Fourier en i et v; pour z,2 < y :

©.@)

/ e M dt P.{ sup X € dy, X; € dz}/dydz :Z ckee’“kl/N(x_y)JrQ’“)‘l/N(y_Z)
0 Oss<t R(0f)>0

R(6;)<0

ot 0 = 0 = +1 et les ¢x sont des constantes.

\ — « loi » conjointe du couple ( sup X, X¢). /

0<s<t
13




K Puis relation entre les couples (7., X, ) et ( sup Xg, X¢) : \

0<s<t

Em(e—)\m—i—wXTa) — ei’ux—[)\:l:(’i,u)N]/ e—At E., |:6’iMXt ]l{sup0< X <a}} dt
0 <s<t ERS
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K Puis relation entre les couples (7., X, ) et ( sup Xg, X¢) : \

0<s<t

Ew(e_ATa+iMX7a) — GZ'LLCE—[)\ZIZ(Z/L)N]/ e—)xt ECB [ei,LLXt ]l{sup0< _ Xs<a}i| dt
0 <s<kt ~

e Inversion de la transformée de Fourier en p (Lachal, 2004) ; pour x > a :

1/N 5&” d
Ea:(e_ATaaXTa S dy)/dy = Z { Z 691")\ / (x—a)} )\](/Ny)
0<JSN/2 R(0k)<0

— « loi » conjointe « distributionnelle » du couple (1,, X, ).
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/o Puis relation entre les couples (7., X, ) et ( sup Xg, X¢) : \

0<s<t

Ew<e—ATa+iuXTa) — ew"”—[Ai(zﬂ)N]/ e—At E., [eiuXt ]l{sup0< X <a}} dt
0 <s<t S

e Inversion de la transformée de Fourier en p (Lachal, 2004) ; pour x > a :

E.(e ™, X, €dy)/dy = Z

0<G<N/2  R(6;)<0

Z eekkl/N(x—a)] 5C(Lj)(dy)

M /N

e Pour A =0 :

— « loi » conjointe « distributionnelle » du couple (74, X, ).

P.A{X, €dy}/dy=

> (1)

0<i<N/2

_ J )
=9V 56 (ay)
].

Remarque : beaucoup de calculs formels...

Qéf. : Hochberg (1978), Orsingher et al. (1991-...), Nishioka (1997-...), Lachal (2002..y
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