

Intégration |

Exercice 1 En utilisant des sommes de Riemann, déterminer la limite de chacune des suites $(u_n)_{n\in\mathbb{N}^*}$ définies ci-dessous :

$$u_n = \sum_{k=1}^n \frac{n+k}{n^2+k^2}; \quad u_n = \frac{1}{n^2} \sum_{k=1}^n \frac{k^2}{\sqrt[3]{n^3+k^3}}; \quad u_n = \frac{1}{n} \left[\frac{(2n)!}{n!} \right]^{1/n}$$
(calculer $\ln(u_n)$).

Exercice 2

- 1. Montrer à l'aide de la formule de Taylor-Lagrange que pour tout $x \in [-1/2, 1/2]$, $|\ln(1+x) - x| \leqslant 2x^2.$
- 2. Soit $f:[0,1] \longrightarrow \mathbb{R}$ une application continue. Déduire de la question précédente la valeur de la limite de la suite $(u_n)_{n\in\mathbb{N}^*}$ où $u_n=\prod_{i=1}^n\left[1+\frac{1}{n}f\left(\frac{i}{n}\right)\right]$. On considérera $\ln(u_n)$ et l'on calculera $\lim_{n\to+\infty}\frac{1}{n^2}\sum_{i=1}^n f\left(\frac{i}{n}\right)^2$.

Exercice 3 Soit F la fonction définie sur \mathbb{R} par $F(x) = \int_{a}^{x} E(u) du$ pour tout $x \in \mathbb{R}$.

- 1. Par des considérations géométriques, calculer F(x) pour tout $x \in \mathbb{R}$. On distinguera les cas $x \ge 0$ et $x \le 0$; on pourra introduire n = E(x).
- 2. Étudier la continuité et la dérivabilité de la fonction F sur \mathbb{R} .
- 3. Montrer que F(1-x)=F(x) pour tout $x\in\mathbb{R}$; on distinguera les cas $x\in\mathbb{Z}$ et $x \in \mathbb{R} \setminus \mathbb{Z}$. En déduire que la courbe représentative de F présente une symétrie que l'on précisera.

Exercice 4 Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction continue. Pour tout $n \in \mathbb{N}^*$, on définit la fonction $F_n : \mathbb{R} \longrightarrow \mathbb{R}$ par $F_n(x) = \int_0^x \frac{(x-t)^{n-1}}{(n-1)!} f(t) dt$. On pose $F_0 = f$.

- 1. Calculer $F_1', F_2', F_2'', F_3', F_3''$ et F_3''' .
- 2. À l'aide de la formule du binôme, montrer que $F'_n = F_{n-1}$, puis que $F_n^{(k)} = F_{n-k}$ pour tout $k \in \{0, 1, ..., n\}$.
- 3. Montrer que F_n est l'unique primitive n^e de f s'annulant en 0 ainsi que ses dérivées successives jusqu'à l'ordre (n-1). Déterminer enfin toutes les primitives n^e de f.

Exercice 5 On considère la fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ définie par

$$f(x) = \int_0^{\cos^2(x)} \arccos\left(\sqrt{t}\right) dt + \int_0^{\sin^2(x)} \arcsin\left(\sqrt{t}\right) dt.$$

- 1. Vérifier que la fonction f est bien définie sur \mathbb{R} . Calculer $f(\pi/4)$.
- 2. Exprimer $f(x+\pi)$ et f(-x) en fonction de f(x). En déduire un intervalle d'étude pour f.

- 3. Montrer que la fonction f est de classe \mathcal{C}^1 sur \mathbb{R} puis calculer f'(x) pour tout $x \in [0, \pi/2]$. En déduire une expression simple de f.
- 4. Retrouver directement le résultat précédent à l'aide des changements de variables respectifs $t = \cos^2(\theta)$ et $t = \sin^2(\theta)$ puis d'une intégration par parties dans chacune des deux intégrales apparaissant dans f(x).

Exercice 6 On pose $F(x) = \int_0^x e^{at} \cos(bt) dt$.

- 1. À l'aide de deux intégrations par parties successives, obtenir une équation vérifiée par F(x). En déduire l'expression explicite de F(x).
- 2. À l'aide de la relation $\cos(bt) = \Re e(e^{ibt})$, retrouver le résultat précédent.

Exercice 7 Soit f la fonction définie sur \mathbb{R}^* par $f(x) = \int_{-\pi}^{4x} \frac{\cos(t)}{t} dt$.

- 1. Montrer que f est paire et de classe \mathcal{C}^1 sur \mathbb{R}^* . Calculer f'(x) pour tout $x \in \mathbb{R}^*$. On pourra introduire une primitive de la fonction $t \mapsto \frac{\cos(t)}{t}$.
- 2. À l'aide d'une formule de la moyenne, montrer que $\lim_{x\to 0} f(x) = \ln(4)$.
- 3. On prolonge f en 0 en posant $f(0) = \ln(4)$. Montrer que f ainsi prolongée est de classe C^1 sur \mathbb{R} et calculer f'(0).
- 4. Montrer que f est deux fois dérivable en 0 et calculer f''(0).
- 5. À l'aide d'une intégration par parties, montrer que $\lim_{x\to +\infty} f(x) = 0$.

Exercice 8

- 1. Déterminer une primitive de $t\mapsto \sin(at)\sin(bt)$ où $a,b\in]0,+\infty[$ sont fixés. On distinguera les cas $a \neq b$ et a = b.
- 2. Soit $n \in \mathbb{N}^*$ et $a_1, \ldots, a_n \in \mathbb{R}$. On définit pour tout $t \in \mathbb{R}$, $\varphi(t) = \sum_{k=1}^n a_k \sin(kt)$. Calculer $\int_0^{2\pi} \varphi(t) \sin(\ell t) dt$ pour tout $\ell \in \mathbb{N}^*$.

Exercice 9 Pour chacune des fonctions f définies ci-dessous, déterminer une primitive.

1. Fonctions élémentaires :

$$f(x) = (x^3 + 1) e^{-x}$$
; $f(x) = x^2 \ln|x + 1|$; $f(x) = \cos(x) \sin(2x)$; $f(x) = \sin(x) \sin(x)$.

2. Fonctions rationnelles:

Foretions irrationnelles:
$$f(x) = \frac{x}{x^3 - 3x + 2}; \quad f(x) = \frac{5x^5 + 10}{(x+1)^5 - x^5 - 1} \qquad \begin{array}{l} \text{(poser j} = \frac{-1 + \mathrm{i}\sqrt{3}}{2} = \mathrm{e}^{\mathrm{i}2\pi/3} \\ \text{et remarquer que j}^3 = 1 \text{ et j}^2 + \mathrm{j} + 1 = 0). \end{array}$$

3. Fonctions irrationnelles:

$$f(x) = \sqrt{(x-1)(5-x)} \quad \text{à l'aide du changement de variable } x = 2\sin(t) + 3;$$

$$f(x) = \frac{x}{(x^2 + 2x + 8)^{3/2}} \quad \text{à l'aide du changement de variable } x = \sqrt{7}\sin(t) - 1.$$

Exercice 10 (Intégrale de Gauss)

On pose $W_n = \int_0^{\pi/2} \cos^n(\theta) d\theta$ (intégrale de Wallis). On admet que $W_n \underset{n \to +\infty}{\sim} \sqrt{\frac{\pi}{2n}}$.

1. Partant de l'inégalité $e^t \ge 1 + t$ valable pour tout $t \in \mathbb{R}$, montrer que pour tout $t \in \mathbb{R}^+$, $1 - t \le e^{-t} \le \frac{1}{1 + t}$ puis que

$$\forall n \in \mathbb{N}^*, \forall t \in [0, n], \left(1 - \frac{t}{n}\right)^n \leqslant e^{-t} \leqslant \left(1 + \frac{t}{n}\right)^{-n}.$$

2. En déduire pour tout $n \in \mathbb{N}^*$ et tout $A \in [\sqrt{n}, +\infty[$ l'encadrement

$$\int_0^{\sqrt{n}} \left(1 - \frac{x^2}{n} \right)^n dx \le \int_0^A e^{-x^2} dx \le \int_0^A \left(1 + \frac{x^2}{n} \right)^{-n} dx.$$

- 3. À l'aide des changements de variables respectifs $x = \sqrt{n}\sin(\theta)$ et $x = \sqrt{n}\tan(\theta)$, exprimer $\int_0^{\sqrt{n}} \left(1 \frac{x^2}{n}\right)^n \mathrm{d}x$ en fonction d'une intégrale de Wallis et majorer $\int_0^A \left(1 + \frac{x^2}{n}\right)^{-n} \mathrm{d}x$ par une autre intégrale de Wallis.
- 4. En déduire la valeur de la limite $\lim_{A\to+\infty}\int_0^A \mathrm{e}^{-x^2}\,\mathrm{d}x$ ci-dessous, appelée intégrale de Gauss (Carl Friedrich Gauss, 1777–1855):

$$\int_0^{+\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}.$$

Exercice 11 (Intégrale de Wallis)

Pour tout $n \in \mathbb{N}$, on définit l'intégrale de Wallis (John Wallis, 1655)

$$W_n = \int_0^{\pi/2} \cos^n(x) \, \mathrm{d}x = \int_0^{\pi/2} \sin^n(x) \, \mathrm{d}x, \quad n \in \mathbb{N}.$$

- 1. Calculer W_0 , W_1 , W_2 et W_3 .
- 2. À l'aide d'une intégration par parties, obtenir une relation de récurrence entre W_n et W_{n-2} .
- 3. On pose $I_p = W_{2p}$ et $J_p = W_{2p+1}$. Écrire une relation de récurrence entre I_p et I_{p-1} ainsi qu'entre J_p et J_{p-1} , puis entre I_pJ_p et $I_{p-1}J_{p-1}$. En déduire des écritures explicites de I_p et J_p au moyen de factorielles.
- 4. Montrer que la suite $(W_n)_{n\in\mathbb{N}}$ est décroissante. En déduire que $W_{n+1} \underset{n\to+\infty}{\sim} W_n$ à l'aide de la question 2.
- 5. On admet l'équivalence asymptotique $n! \sim \lambda n^{n+1/2} e^{-n}$ où λ est un réel positif que l'on va déterminer.
 - (a) Obtenir pour I_p et J_p des équivalents de la forme $\frac{\alpha}{\sqrt{p}}$ et $\frac{\beta}{\sqrt{p}}$ où α et β sont des réels que l'on exprimera en fonction de λ .
 - (b) Déduire de l'équivalence $I_p \underset{p \to +\infty}{\sim} J_p$ la valeur de λ . On obtient la célèbre formule de Stirling (James Stirling, 1692–1770) :

$$n! \underset{n \to +\infty}{\sim} \sqrt{2\pi} \, n^{n+1/2} e^{-n}.$$

Exercice 12 Soit $p \in \mathbb{N}$. On considère l'équation différentielle $(E): t \dot{u}(t) - p u(t) = t^{p+2} \sin t$.

- 1. Déterminer la solution générale de (E) sur $]0, +\infty[$ ainsi que celle sur $]-\infty, 0[$.
- 2. On examine les cas p=1 et p=2. L'équation (E) admet-elle des solutions définies sur \mathbb{R} tout entier? Déterminer les solutions sur \mathbb{R} vérifiant l'une des conditions $u(1)=2, \ u(0)=0, \ u(0)=1.$

Exercice 13

- 1. Calculer une primitive de $\frac{1}{(1-t^2)^{3/2}}$ sur]-1, 1[à l'aide du changement de variables $t = \sin(\theta), \ \theta \in]-\pi/2, \pi/2[$.
- 2. Calculer une primitive de $\frac{1}{(t^2-1)^{3/2}}$ sur $]-\infty, -1[$ et sur $]1, +\infty[$ à l'aide des changements de variables respectifs $t=-\operatorname{ch}(\theta)$ et $t=\operatorname{ch}(\theta), \theta>0$.
- 3. Déterminer la solution générale de l'équation différentielle $(t^2 1)\dot{u}(t) = t u(t) 1$ sur chacun des intervalles $]-\infty, -1[,]-1, 1[$ et $]1, +\infty[$. Cette équation admet-elle des solutions définies sur $]-\infty, 1[$? Sur $]-1, +\infty[$? Sur] tout entier?

Exercice 14

- 1. Calculer une primitive de $\frac{1}{x^2-x}$ ainsi qu'une primitive de $\frac{1}{e^t-1}$ à l'aide du changement de variables $v=e^t$.
- 2. Déterminer la solution générale de l'équation différentielle $(e^t 1)\dot{u}(t) + u(t) = t + 1$ sur chacun des intervalles $] \infty, 0[$ et $]0, +\infty[$. Cette équation admet-elle des solutions définies sur \mathbb{R} tout entier?
- 3. Déterminer la solution générale de l'équation différentielle $(t^2-t)\dot{u}(t)+u(t)=t+1$ sur chacun des intervalles $]-\infty,0[$,]0,1[et $]1,+\infty[$. Cette équation admet-elle des solutions définies sur $]-\infty,1[$? Sur $]0,+\infty[$? Sur $\mathbb R$ tout entier?

Exercice 15

- 1. Pour tout $\varepsilon > 0$, résoudre l'équation différentielle $(t^2 + \varepsilon^2) \dot{u}(t) + u(t) = 1$ sur $]0, +\infty[$. (On pourra remarquer qu'elle admet une solution particulière très simple.) Déterminer la solution u_{ε} vérifiant $u_{\varepsilon}(1) = 0$. Calculer, pour tout t > 0, la limite $\lim_{\varepsilon \to 0^+} u_{\varepsilon}(t)$ que l'on notera u(t). Cela définit une application $u:]0, +\infty[\longrightarrow \mathbb{R}$.
- 2. Déterminer la solution v de l'équation différentielle $t^2 \dot{v}(t) + v(t) = 1$ sur $]0, +\infty[$ vérifiant v(1) = 0.
- 3. Comparer les fonctions u et v.

Exercice 16 Soit a et b des fonctions définies et continues sur un intervalle I de \mathbb{R} à valeurs réelles ainsi que $t_0 \in I$. On considère l'équation différentielle (E): $\dot{u}(t) + a(t) u(t) = b(t)$. On note $\{u_{\lambda}, \lambda \in \mathbb{R}\}$ l'ensemble des solutions de (E) et l'on appelle, pour tout $\lambda \in \mathbb{R}$, \mathcal{C}_{λ} la courbe représentative de u_{λ} .

- 1. Pour chaque $\lambda \in \mathbb{R}$, écrire une équation de la tangente \mathcal{T}_{λ} à la courbe \mathcal{C}_{λ} au point de coordonnées $(t_0, u_{\lambda}(t_0))$.
- 2. On suppose que $a(t_0) \neq 0$. Montrer que les droites \mathcal{T}_{λ} , $\lambda \in \mathbb{R}$, sont concourantes. On suppose que $a(t_0) = 0$. Que peut-on dire des droites \mathcal{T}_{λ} , $\lambda \in \mathbb{R}$?
- 3. Examiner l'exemple où a(t) = b(t) = t et $t_0 \in \{0, 1\}$.

Pour les insatiables...

Exercice 17 Intégration par parties successives

Soit $n \in \mathbb{N}^*$ et f, g deux applications de classe C^n sur [a, b]

- 1. Montrer que $\left(\sum_{i=0}^{n-1} (-1)^i f^{(i)} g^{(n-1-i)}\right)'(x) = f(x) g^{(n)}(x) + (-1)^{n-1} f^{(n)}(x) g(x).$
- 2. En déduire la formule d'intégration par parties répétées :

$$\int_{a}^{b} f(x) g^{(n)}(x) dx = \left[\sum_{i=0}^{n-1} (-1)^{i} f^{(i)}(x) g^{(n-1-i)}(x) \right]_{a}^{b} + (-1)^{n} \int_{a}^{b} f(x)^{(n)} g(x) dx.$$

3. Application. — Soit $\alpha \in \mathbb{R}^*$ et P une fonction polynôme. Montrer que la fonction $x \longmapsto P(x) e^{\alpha x}$ admet une primitive de la forme $x \longmapsto Q(x) e^{\alpha x}$ où Q une fonction polynôme de même degré que P.

Exprimer, lorsque $\alpha > 0$, $\lim_{A \to +\infty} \int_0^A P(x) e^{-\alpha x} dx = \int_0^{+\infty} P(x) e^{-\alpha x} dx$ en fonction de α , P et n.

Exercice 18 (Fonction de Green)

Soit $\omega \in \mathbb{R}^*$ et $f:[0,1] \longrightarrow \mathbb{R}$ une fonction continue. On considère l'équation différentielle

$$(E): \ddot{u}(t) - \omega^2 u(t) = -f(t).$$

- 1. On introduit la fonction v définie par $v(t) = [\dot{u}(t) \omega u(t)]e^{\omega t}$. Exprimer \dot{v} puis v en fonction de f et ω . On pourra poser $F(t) = \int_0^t f(s) e^{\omega s} ds$.
- 2. On obtient une équation différentielle du premier ordre satisfaite par u. La résoudre puis déterminer la solution générale de (E).
- 3. Montrer que la solution de (E) vérifiant les conditions aux limites u(0) = u(1) = 0 est donnée par

$$u(t) = \int_0^1 G(s, t) f(s) ds$$

où $G:[0,1]\times[0,1]\to\mathbb{R}$ est la fonction de Green (George Green, 1793–1841) définie par

$$G(s,t) = \begin{cases} \frac{\sinh(\omega(1-t)) \sinh(\omega s)}{\omega \sinh \omega} & \text{si } 0 \leqslant s \leqslant t \leqslant 1, \\ \frac{\sinh(\omega t) \sinh(\omega(1-s))}{\omega \sinh \omega} & \text{si } 0 \leqslant t \leqslant s \leqslant 1. \end{cases}$$

Indication : écrire $\int_0^1 = \int_0^t + \int_t^1$.

Exercice 19 (Inégalités de Hölder et de Minkowski)

Soit p, q > 1 tels que $\frac{1}{p} + \frac{1}{q} = 1$. Que vaut q? Soit $f, g : [a, b] \longrightarrow \mathbb{C}$ deux applications continues. On pose $N_f = \left(\int_a^b |f(x)|^p dx\right)^{1/p}$ et $N_g = \left(\int_a^b |g(x)|^q dx\right)^{1/q}$.

- 1. On introduit pour tous $\alpha, \beta, t > 0$, $\varphi_{\alpha,\beta}(t) = \frac{\alpha^p}{p} t^p + \frac{\beta^q}{q} \frac{1}{t^q}$.
 - (a) Étudier les variations de $\varphi_{\alpha,\beta}$ sur $]0,+\infty[$.
 - (b) Calculer la borne inférieure $\inf_{t>0} \varphi_{\alpha,\beta}(t)$.
- 2. Montrer alors que pour tout t > 0, $\int_a^b |f(x)g(x)| dx \leqslant \varphi_{N_f,N_g}(t)$.
- 3. En déduire l'inégalité de Hölder (Otto Hölder, 1859–1937) :

$$\int_{a}^{b} |f(x)g(x)| \, \mathrm{d}x \le \left(\int_{a}^{b} |f(x)|^{p} \, \mathrm{d}x \right)^{1/p} \left(\int_{a}^{b} |g(x)|^{q} \, \mathrm{d}x \right)^{1/q}.$$

Cas particulier : lorsque p=2, alors q=2 et on obtient l'inégalité de Cauchy-Schwarz

$$\int_a^b |f(x)g(x)| \, \mathrm{d}x \leqslant \sqrt{\int_a^b |f(x)|^2 \, \mathrm{d}x} \sqrt{\int_a^b |g(x)|^2 \, \mathrm{d}x}.$$

4. En écrivant $[f(x) + g(x)]^p = [f(x) + g(x)][f(x) + g(x)]^{p-1}$, prouver l'inégalité de Minkowski (Hermann Minkowski, 1864–1909) :

$$\left(\int_{a}^{b} |f(x) + g(x)|^{p} dx \right)^{1/p} \le \left(\int_{a}^{b} |f(x)|^{p} dx \right)^{1/p} + \left(\int_{a}^{b} |g(x)|^{p} dx \right)^{1/p}.$$

Exercice 20 (Lemme de Grönwall)

Soit $f, \varphi, \psi : [a, b] \longrightarrow \mathbb{R}$ trois applications continues; on suppose ψ positive et que $f(x) \le \varphi(x) + \int_a^x \psi(y) \, f(y) \, \mathrm{d}y$ pour tout $x \in [a, b]$. On pose $g(x) = \int_a^x \psi(y) \, f(y) \, \mathrm{d}y \times \mathrm{e}^{-\int_a^x \psi(z) \, \mathrm{d}z}$.

- 1. Calculer g'(x). Montrer que $g'(x) \leqslant \varphi(x) \psi(x) e^{-\int_a^x \psi(z) dz}$.
- 2. À l'aide de la relation $g(x) = g(a) + \int_a^x g'(y) dy$, Montrer le lemme de Grönwall (Thomas Grönwall, 1877–1932):

$$f(x) \leqslant \varphi(x) + \int_{a}^{x} \varphi(y) \, \psi(y) \, e^{\int_{y}^{x} \psi(z) \, dz} \, dy.$$

3. Cas particulier: lorsque $\varphi(x) = \alpha$, montrer que $f(x) \leqslant \alpha \left(1 + e^{\int_a^x \psi(z) dz}\right)$.