Analyse

Primitives, intégrale de Riemann

Exercice 1 Pour chacune des fonctions f définies ci-dessous, déterminer une primitive.

1. Fonctions élémentaires :

a)
$$f(x) = (x^3 + 1)e^{-x}$$
 b) $f(x) = x^4 \ln|x|$ c) $f(x) = \ln(x^2 + 4x + 5)$

d)
$$f(x) = \cos^5 x \sin^4 x$$
 e) $f(x) = \sin x \sin x$ f) $f(x) = (\arcsin x)^2$

2. Fonctions rationnelles:

a)
$$f(x) = \frac{x}{x^3 - 3x + 2}$$
 b) $f(x) = \frac{x^8 + 1}{x^3(x+1)^4}$

c)
$$f(x) = \frac{7}{(x+1)^7 - x^7 - 1}$$
 d) $f(x) = \frac{2x^5 + 1}{(x^2 + 1)^3}$

3. Fonctions rationnelles trigonométriques et hyperboliques :

a)
$$f(x) = \frac{\tan x}{\sin(3x) + 1}$$
 b) $f(x) = \frac{1}{\cos^4 x + \sin^4 x}$

b)
$$f(x) = \frac{1}{\cos^4 x + \sin^4 x}$$

c)
$$f(x) = \frac{\operatorname{ch}(2x)}{5\operatorname{ch} x + 3\operatorname{sh} x + 4}$$
 d) $f(x) = \frac{\operatorname{ch}(\frac{x}{3}) - 1}{\operatorname{sh}(\frac{x}{2})}$

4. Fonctions irrationnelles:

a)
$$f(x) = \frac{\sqrt{x^{10} + 1}}{x}$$
 b) $f(x) = \frac{1}{x} \sqrt{\frac{x - 1}{x + 1}}$

b)
$$f(x) = \frac{1}{x} \sqrt{\frac{x-1}{x+1}}$$

c)
$$f(x) = x\sqrt{-x^2 + 3x - 2}$$
 d) $f(x) = \frac{x}{(x^2 + x + 2)^{3/2}}$

d)
$$f(x) = \frac{x}{(x^2 + x + 2)^{3/2}}$$

e)
$$f(x) = \frac{x^2}{\sqrt{x^2 - 5x}}$$

e)
$$f(x) = \frac{x^2}{\sqrt{x^2 - 5x + 6}}$$
 f) $f(x) = \frac{1}{\sqrt{(x - a)(b - x)}}$ avec $a < b$

Exercice 2 On considère la fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ définie par

$$f(x) = \int_0^{\cos^2 x} \arccos(\sqrt{t}) dt + \int_0^{\sin^2 x} \arcsin(\sqrt{t}) dt.$$

- 1. Vérifier que la fonction f est bien définie sur \mathbb{R} .
- 2. Exprimer $f(x+\pi)$ et f(-x) en fonction de f(x). En déduire un intervalle d'étude pour f.
- 3. Montrer que l'application f est continue, puis dérivable sur \mathbb{R} .
- 4. Calculer f'(x) pour tout $x \in [0, \frac{\pi}{2}]$
- 5. En déduire une expression simple de f.
- 6. Retrouver directement le résultat précédent en intégrant par parties l'expression initiale de f(x).

Exercice 3 Soient a, b deux nombres réels tels que a < b et $\varphi : \mathbb{R} \longrightarrow \mathbb{R}$ une application continue. On considère la fonction $f: \mathbb{R} \longmapsto \mathbb{R}$ définie par

$$f(x) = \int_{a}^{b} \varphi(x+t) \cos t \, dt.$$

- 1. En effectuant le changement de variable y = x + t avec x fixé, montrer que l'application f est dérivable sur \mathbb{R} et calculer sa dérivée.
- 2. On suppose maintenant que φ est de classe C^1 sur $\mathbb R$. Montrer à l'aide d'une intégration par parties que $f'(x) = \int_{-\infty}^{b} \varphi'(x+t) \cos t \, dt$.

Exercice 4 On considère la fonction $f:]0, +\infty[\mapsto \mathbb{R}$ définie par

$$f(x) = \int_0^1 \frac{e^t}{t+x} dt.$$

- 1. Vérifier que la fonction f est décroissante sur $]0, +\infty[$.
- 2. En effectuant le changement de variable y = x + t avec x fixé, montrer que l'application f est dérivable sur $]0, +\infty[$ et calculer sa dérivée.
- 3. (a) Montrer l'inégalité $\forall x > 0, \ f(x) \leqslant \frac{e}{r}$. En déduire la valeur de la limite $\lim_{x \to +\infty} f(x)$.
 - (b) En écrivant $\frac{1}{t+x} = \frac{1}{x} \left(1 + \frac{t}{x}\right)^{-1}$ et en cherchant un développement limité de f(x) lorsque $x \to +\infty$, montrer plus précisément que $f(x) \sim \frac{e-1}{x}$
- 4. (a) Justifier l'existence de l'intégrale $\int_{-t}^{1} \frac{e^{t}-1}{t} dt$.
 - (b) Calculer l'intégrale $\int_{0}^{1} \frac{dt}{t+r}$ puis montrer que

$$f(x) + \ln x = \int_0^1 \frac{e^t - 1}{t + x} dt + \ln(x + 1).$$

(c) Justifier l'existence d'une constante positive A telle que

$$\forall t \in]0,1], \ \forall x \in]0,+\infty[, \ 0 \leqslant \frac{e^t - 1}{t} - \frac{e^t - 1}{t + x} \leqslant \frac{A}{t + x}]$$

et en déduire la limite $\lim_{x\to 0^+} \int_0^1 \frac{e^t - 1}{t + x} dt$.

(d) Donner enfin la valeur de $\lim_{x\to 0^+} [f(x) + \ln x]$ puis celle de $\lim_{x\to 0^+} f(x)$.

Exercice 5 En utilisant des sommes de Riemann, déterminer la limite de chacune des suites $(u_n)_{n\in\mathbb{N}^*}$ définies ci-dessous :

a)
$$u_n = \sum_{k=1}^n \frac{n+k}{n^2+k^2}$$
 b) $u_n = \sum_{k=1}^n \frac{k^2}{n^2 \sqrt[3]{n^3+k^3}}$ c) $u_n = \frac{1}{n} \left[\frac{(2n)!}{n!} \right]^{1/n}$