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?Instituto Superior Técnico, Dep. Eng. Civil and ICIST
Av. Rovisco Pais, 1049-001 Lisboa, Portugal

e-mail: martins@civil.ist.utl.pt, petrov@civil.ist.utl.pt
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Abstract. In this communication we re-formulate the finite dimensional dynamic friction
problem with unilateral contact as a standard L1 differential inclusion when the data is
chosen such that contact persistently holds. Existence of solution to the problem is re-
established by using standard theoretical results for differential inclusions and for algebraic
inclusions. The most relevant results in the literature on the same problem are due to Jean
and Pratt [0].
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1 Introduction

The work presented in this communication is part of a long-term research effort ded-
icated to understanding instability phenomena in frictional contact problems. Various
results involving the normal compliance model were presented, in e.g. Martins, Oden and
Simões [0]. Other results using the perfect unilateral contact conditions, either in the
finite dimensional or the continuum cases, can be found in Martins, Pinto da Costa and
Simões [0] and the references therein. The relation between dynamic and quasi-static evo-
lutions in frictional contact systems and some sort of ”dynamic instability” of the latter
were addressed in Martins, Simões, Gastaldi and Marques [0]; later this was identified in
a related context (Loret, Simões, Martins [0]) as a singular perturbation problem.

Our purpose in this communication is to set the stage for the application to finite
dimensional problems with perfect unilateral contact and Coulomb friction of some math-
ematical results in the literature on stability or singular perturbation issues in some non-
smooth evolution problems. We do this in a framework that is less non-smooth than the
one needed to deal with collisions or ”frictional catastrophes” (Monteiro Marques [0]).

This communication summarizes recent results (Martins, Marques, Petrov [0]) that
show that, with appropriate conditions on the data, the finite dimensional dynamic prob-
lem with unilateral but persistent contact can be formulated as a standard L1 differential
inclusion, to which standard theoretical results (Aubin and Celina [0]) can be applied to
establish existence of solution.

The re-formulation and study of this problem in the framework of the L1 differential
inclusions has the purpose of preparing the application to frictional contact problems of
some mathematical results on instability and singular perturbation issues that have been
recently developed for some classes of non-smooth evolution problems.

2 Governing dynamic equations

We start by considering a three-dimensional holonomic and scleronomic finite dimen-
sional mechanical system whose configuration at each time t ≥ 0 is described by the values
Xi(t), 1 ≤ i ≤ N , of the independent generalized coordinates; the corresponding column
vector of the values at time t of those generalized coordinates is denoted by X(t) ∈ RN .
A finite number of particles of that mechanical system is subjected to unilateral contact
constraints with fixed curved obstacles. The set PC ⊂ N groups the labels of the particles
(p) of those Contact candidate particles (see Fig. 1).

Each point in the plane of the system is identified by the column vector x of the
components xk, k = 1, 2, 3, of its position vector in some fixed orthonormal reference
frame (O, e1, e2, e3). For each contact candidate particle p, the corresponding obstacle is
identified by the set of vectors x ∈ R3 such that

φp(x) = 0, (2.1)

where the function φp : R3 → R is twice continuously differentiable, and ∂φp/∂x 6= 0 at
the points on or sufficiently close to the obstacle. On each point of these obstacles, unit
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normal and tangent vectors are defined such that

np(x) =
∂φp/∂x

∂φp/∂x
(x) = tp

1(x)× tp
2(x). (2.2)

In view of the assumptions above, the orthogonal basis (tp
1(x), tp

2(x), np(x)) may be ex-
tended to all points of the space that are sufficiently close to the obstacle p.

The position of each particle p ∈ PC at each time t ≥ 0 is identified by the column
vector xp(t) = xp(X(t)) ∈ R3, and the column vector of the normal and tangential
components of the particle velocity is given by

vp(t) =


vp

t1(t)
vp

t2(t)
vp

n(t)

 =

{
vp

t (t)
vp

n(t)

}
=

[
Gp

t (X(t))
Gp

n(X(t))

]
Ẋ(t) = Gp(X(t))Ẋ(t) (2.3)

where the (2×N) and (1×N) row matrices Gp
t (X) and Gp

n(X), respectively, have the
components

Gp
tki(X) = tp

k

(
xp(X)

)
·∂xp

∂Xi

(X), Gp
ni(X) = np

(
xp(X)

)
·∂xp

∂Xi

(X), k = 1, 2, i = 1, . . . , N.

(2.4)
As usual, the notation (˙) denotes the time derivative d(·)/dt. The velocities () of the
contact particles p are grouped in a single column vector v(t) of dimension 3nC (nC =
#PC) and, accordingly, the (3nC ×N) matrix G(X) is constructed such that

v(t) = G(X(t))Ẋ(t). (2.5)

We denote by

rp(t) =

{
rp

t (t)
rp
n(t)

}
=


rp
t1(t)

rp
t2(t)

rp
n(t)

 (2.6)

the column vector of the tangential and normal components of the reaction force that
acts at some time t ≥ 0 on the contact particle p. The column vector (of dimension 3nC)
that groups all the reaction vectors rp(t) is denoted by r(t). For some contact reaction
r(t) ∈ R3nC at some configuration X(t) of the system, the vector of generalized reactions
R(t) ∈ RN is given by

R(t) = GT (X(t))r(t). (2.7)

In the following it will be always assumed that

the lines of the (3nC ×N) matrix G(X) are linearly independent. (2.8)

The classical unilateral contact conditions

φp
(
xp(t)

)
≤ 0, rp

n(t) ≤ 0, φp
(
xp(t)

)
rp
n(t) = 0, (2.9)
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and the friction law of Coulomb

rp
t (t) ∈ µrp

n(t)d(vp
t (t)) (2.10)

are satisfied at all contact particles p ∈ PC ; µ ≥ 0 is the coefficient of friction, d(·) denotes
the multi-valued application such that, for each y ∈ R2,

d(y) =


y/y, if y 6= 0,{{

z1

z2

}
: z2

1 + z2
2 ≤ 1

}
, if y = 0.

(2.11)

The mechanical system is assumed to be acted by external time dependent forces, and
by internal elastic or viscous forces such that Qi = Qi(X, Ẋ, t), i = 1, . . . , N , are the
corresponding generalized forces. We denote by T (X, Ẋ) = (1/2)Ẋ ·M(X)Ẋ the kinetic
energy of the system, where M(X) is the symetric, positive definite mass matrix.

Along portions of the system trajectory where X(t) is twice continuously differentiable
and r(t) is continuous, the motion of the system is governed by the N Lagrange equations

M(X(t))Ẍ(t) = F (X(t), Ẋ(t), t) + GT (X(t))r(t), (2.12)

where

F (X, Ẋ, t) = Q(X, Ẋ, t)−D(X, Ẋ),

Di(X, Ẋ) =
N∑

j=1

N∑
k=1

[
∂Mij

∂Xk

(X)− 1

2

∂Mjk

∂Xi

(X)

]
ẊjẊk, i = 1, . . . , N.

(2.13)

Note that the vector D(X, Ẋ) groups inertia terms quadratically dependent on the gen-
eralized velocities.

3 THE CASE OF PERSISTENT CONTACT

In the case of persistent contact we wish to solve the dynamic equations (3.12) together
with the Coulomb friction law (3.10) and the persistent contact conditions

Φp(X(t)) = φp(xp(X(t))) = 0, rp
n ≤ 0, for all t ≥ 0 and all p ∈ PC . (3.14)

Then, observing that, for each contact candidate particle, an equality of the type

d

dt

(
φp(xp(X(t)))

)
=
∣∣∣∂φp

∂x
(xp(t))

∣∣∣vp
n(t) =

∣∣∣∂φp

∂x
(xp(t))

∣∣∣Gp
n(X(t))Ẋ(t). (3.15)

holds, we conclude that, for persistent contact,

Gn(X(t))Ẋ(t) = 0. (3.16)
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The set of admissible reactions for some admissible configuration X and velocity V is

Kr(X, V ) =
{
r ∈ R3nC : rp

n ≤ 0, rp
t ∈ µrp

nd(Gp
t (X)V ), for all p ∈ PC

}
. (3.17)

Let X0, V 0 be the given vectors of RN that represent the initial configuration and velocity
of the system, which satisfy Φp(X0) = 0 for all p ∈ PC and Gn(X0)V 0 = 0, and let ã be
the vector of dimension 3nC that contains the contributions to the contact accelerations
that depend quadratically on the generalized velocities,

ã = ã(X, V ) =

(
∂G(X)

∂X
V

)
V ∈ R3nC . (3.18)

Then the dynamic problem that we wish to solve has the following differential inclusion
fomulation:

Find (X(t), V (t)) ∈ R2N such that for almost every t ∈ [0, T ],

d

dt

{
X

V

}
∈ F(X, V , t),

and X(0) = X0, V (0) = V 0,

(3.19)

where

F(X, V , t) =

{
V

M−1
[
F (X, V , t) + GTKr(X, V )

] } ∩ T (X, V ) (3.20)

T (X, V ) =

{{
Y
A

}
∈ R2N : Gn(X)Y = 0, Gn(X)A + ãn(X, V ) = 0

}
. (3.21)

In the present note, we shall use the theory of differential inclusions to establish exis-
tence of a solution to (3.19). Sufficient conditions for existence of solution are (cf. Aubin
and Cellina [0]: Theorem 4, page 98) that F is upper semi-continuous, closed, convex,

F(X, V , t) 6= ∅ on R2N × [0, T ], (3.22)

and (X, V , t) → m(F(X, V , t)) is locally bounded, where m is the minimal norm defined
as follows:

m(F(X, V , t)) = inf
{
‖(Y , A)‖ : (Y , A) ∈ F(X, V , t)

}
.

The non-emptiness condition (3.22) reduces, at each (X, V , t) ∈ R2N × [0, T ], to finding
solutions to the auxiliary problem:

Find A ∈ RN and r ∈ R3nC such that [cf. (3.19), (3.20), (3.21)],

A = M−1[F + GT r], (3.23)

r ∈ Kr, (3.24)

an = GnA + ãn = 0, (3.25)
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where, for simplicity, the dependence on X, V , and t has been omitted.
In order to solve the auxiliary problem (3.23)-(3.25), we substitute (3.23) in (3.25) and

we decompose GT r into its normal and tangential contributions

0 = an = GnM
−1(F + GT

t rt + GT
nrn) + ãn

= (GnM
−1F + ãn) + (GnM

−1GT
t )rt + (GnM

−1GT
n )rn.

(3.26)

Premultiplying then by (GnM
−1GT

n )−1 and using the friction law (3.10) we get

−(GnM
−1GT

n )−1(GnM
−1F + ãn) ∈

[
I + µ(GnM

−1GT
n )−1(GnM

−1GT
t )D

]
rn (3.27)

where D is the (2nC × nC) block-diagonal multivalued matrix, whose p diagonal blocks
are the (2× 1) multivalued vector applications defined by (3.11):

D = D(X, V ) =
(
diag d(Gp

t (X)V ), p ∈ PC

)
. (3.28)

The inclusion (3.27) becomes thus

ρn ∈ [I + µMD]rn, (3.29)

where the (nC × 1) vector ρn is defined by

ρn = ρn(X, V , t)

= −
[
Gn(X)M−1(X)GT

n (X)
]−1[

Gn(X)M−1(X)F (X, V , t) + ãn(X, V )
] (3.30)

and the (nC × 2nC) coupling matrix M is

M = M(X) =
[
Gn(X)M−1(X)GT

n (X)
]−1[

Gn(X)M−1(X)Gt(X)
]
. (3.31)

If the coefficient of friction µ or the coupling matrix M vanish, it is clear that the algebraic
inclusion (3.29) can always be solved in RN × [0, T ], with actually rn = ρn. When µ > 0
and the coupling matrix M does not vanish, it can be shown by continuity that the
algebraic inclusion (3.29) can also be solved for rn with

rn = [I + µMD]−1ρn, (3.32)

D = D(X, V ) being one of the matrices in the set of matrices D(X, V ) (see (3.28)). For
that purpose we start by assuming that there exists M > 0 such that

∀X ∈ RN , ∀i = 1, . . . , nC and ∀j = 1, . . . , 2nC , |Mij(X)| ≤ M. (3.33)

A sufficient condition for invertibility of every [I + µMD] is that [I + µMD] is positive
definite for all D belonging to D(X, V ) which means

s · [I + µMD]s > 0, ∀s ∈ RnC , s 6= 0. (3.34)
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Thanks to (3.33) and Hölder’s inequality, and since |d| ≤ 1, we may establish the inequal-
ity

s · [I + µMD]s ≥
(
1− µMn2

C

)
s · s, ∀s ∈ RnC , s 6= 0, (3.35)

so that (3.34) is satisfied if the right hand side of (3.35) is strictly positive, i.e. if

µ <
1

Mn2
C

. (3.36)

Assume now that ρp
n(X0, V 0, 0) is strictly negative and that ρp

n is continuous with respect
to X, V and t for all p ∈ PC . Then in a neighbourhood N (X0)×N (V 0)× [0, T ] of the
initial conditions (X0, V 0, 0), there exists a strictly positive real number ρ̄ such that

ρ ≤ −ρp
n(X, V , t) ≤ ρ̄, ∀p ∈ PC and ∀(X, V , t) ∈ N (X0)×N (V 0)× [0, T ] (3.37)

where ρ is a strictly positive real number. We infer from (3.32) and from the identity:

[I + µMD]−1 = I − [I + µMD]−1µMD, ∀p ∈ PC

that
rp
n = ρp

n −
∑
q,k

(
[I + µMD]−1

)
pk

(µMD)kqρ
q
n, ∀p ∈ PC . (3.38)

Using the inequalities (3.37) and the identity (3.38), we get

−rp
n ≥ ρ− ρ̄ max

d
(κ) (3.39)

where the maximum is taken with respect to all D given by (3.28) and (3.11) and

κ = max
p

∑
q,k

∣∣∣([I + µMD]−1
)

pk
(µMD)kq

∣∣∣. (3.40)

For any matrix N , we denote

‖N‖∞ = max
i

∑
j

|N ij|.

Therefore with this notation, it is easy to deduce the following inequality:

κ ≤ ‖µMD‖∞‖[I + µMD]−1‖∞. (3.41)

Since ‖I‖∞ = 1, we obtain the estimate

κ ≤ ‖µMD‖∞
(
1− ‖µMD‖∞

)−1
. (3.42)

7



J.A.C Martins, M.D.P Monteiro Marques and A. Petrov

Introducing (3.42) in (3.39) it is possible to deduce, using Hölder’s inequality, (3.33) and
the fact that |d| ≤ 1, that

−rp
n ≥ ρ− (µMnC)(1− µMnC)−1ρ̄. (3.43)

Therefore we choose

µ <
1(

1 + ρ̄/ρ
)
MnC

(3.44)

which garantees that
rp
n < 0, ∀p ∈ PC . (3.45)

To complete the solution of the auxiliary problem (3.23)-(3.25) it suffices to let

rt = µDrn,

where D is the matrix in (3.32), and compute A by (3.23).
Next we remark that m(F(X, V , t)) is locally bounded iff m(F (X, V , t)+GT (X)Kr(

X, V )) is locally bounded. Therefore it is sufficient to prove that Kr(X, V ) is locally
bounded, which holds due to (3.17), (3.32), and (3.37). Finally, since it is quite routine
to prove that F is upper semi-continuous, closed and convex, we leave the verification to
the reader.

Remark 3.1 Jean and Pratt in [0] have obtained conditions that are quite similar to
(3.36) and (3.44). In their work some constant in the interval (0, 1) plays the role of 1/nC

in (3.36) and (3.44), but the dependency of such constant on nC is not made explicit.

The application of Aubin-Cellina’s result yields only a local solution. However, a priori
estimates may be available as in the following lemma:

Lemma 3.2 Assume that Q(X, V , t) is Lipschitzian with respect to X, V and continu-
ous with respect to t, G(X) is Lipschitzian with respect to X. Then T (X, Ẋ) is bounded
and Ẋ is bounded in L2(0, T ).

Proof. This estimate is simply an application of Gronwall’s lemma to the energy estimate.
Let us enter into details. We multiply (3.12) by Ẋ and we integrate over (0, τ), τ ∈ [0, T ]
then we get∫ τ

0

dT

dt
(X, Ẋ) dt =

∫ τ

0

Ẋ ·Q(X, Ẋ, t) dt +

∫ τ

0

Ẋ ·
(
GT (X)r

)
dt. (3.46)

We observe that∣∣∣ ∫ τ

0

Ẋ ·Q(X, Ẋ, t) dt
∣∣∣ ≤ 1

2
‖Q(X, Ẋ, t)‖2

L2(0,τ) +
1

2
‖Ẋ‖2

L2(0,τ). (3.47)
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On the other hand, we have∫ τ

0

Ẋ ·
(
GT (X)r

)
dt =

∫ τ

0

Ẋ ·
(
GT

n (X)rn

)
dt +

∫ τ

0

Ẋ ·
(
GT

t (X)rt

)
. (3.48)

Since the first integral on the right hand side of (3.48) vanishes, the friction law of Coulomb
gives the following inequality: ∫ τ

0

Ẋ ·
(
GT (X)r

)
dt ≤ 0. (3.49)

Carrying (3.47) and (3.49) into (3.46) and since there exists c1 > 0 for all V such that

c1

∫ τ

0

T (X, V ) dt ≥ ‖V ‖2
L2(0,τ), (3.50)

we obtain the following inequality:

T (X(τ), Ẋ(τ)) ≤T (X0, V 0) +
1

2
‖Q(X, Ẋ, t)‖2

L2(0,τ) +
c1

2

∫ τ

0

T (X, Ẋ) dt.

A classical Gronwall’s lemma enables us to deduce that T (X, Ẋ) is bounded and, by
(3.50), Ẋ is bounded in L2(0, T ). �

Then we are able to extend the previous local solution to a maximal interval [0, T ∗]
where T ∗ is only limited by loss of contact and we deduce the following proposition:

Proposition 3.3 (Existence) Let the assumptions of Lemma 3.2 hold on [0, T ∗], assume
that ρp

n(X0, V 0, 0) is strictly negative and ρp
n is continuous with respect to X, V and t

for all p ∈ PC, (3.33) and (3.37) are satisfied and

µ <
1

MnC

inf

(
1

nC

,
1(

1 + ρ̄/ρ
)) . (3.51)

Then there exists an absolutely continuous (X, V ) solution to (3.19) defined on [0, T ∗].
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