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Abstract. In this paper we prove the stability of quasi-static paths of
finite dimensional mechanical systems that have an elastic-plastic be-
havior with linear hardening. The concept of stability of quasi-static
paths used here is essentially a continuity property relatively to the size
of the initial perturbations (as in Lyapunov stability) and to the small-
ness of the rate of application of the external forces (which plays here
the role of the small parameter in singular perturbation problems). The
discussion of stability is preceded by the presentation of mathematical
formulations (plus existence and uniqueness results) for those dynamic
and quasi-static problems, in a form that is convenient for the subse-
quent discussion of stability.
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1. Introduction

The Newton law, force equals mass times acceleration, determines the gov-
erning equation for the dynamic evolution of mechanical systems. A classical
approximation for the equations that govern the slow evolution of mechan-
ical systems is to neglect inertia effects and take the balance equations as
static equilibrium equations, i.e. force equals zero. The slow evolutions
made up of the successive equilibrium configurations are called quasi-static
evolutions.

Martins et al. [7] have established the relation that exists between dy-
namic and quasi-static evolutions and theory of singular perturbations. For
this purpose a change of variables is performed that consists of replacing
the physical time t by a (slow) load parameter λ, whose rate of change with
respect to time, ε = dλ/dt, is eventually decreased to zero. This leads to a
system of dynamic (ordinary or partial) differential equations that defines
(in finite or infinite dimensions) a singular perturbation problem, i.e. a
problem governed by a system of equations where, in some equations, the
highest order derivative with respect to λ appears multiplied by the small
parameter ε.
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An issue that is relevant in the study of quasi-static trajectories is their
”stability”. The concept of Lyapunov stability has been used for long to
study the stability of dynamic trajectories of mechanical systems, namely
the zero acceleration trajectories of the equilibrium configurations under
constant applied loads. But the application of that concept to quasi-static
paths with slowly varying loads faces the difficulty that such paths are not,
in general, true dynamic solutions [7].

In order to overcome the limitations of some criteria or procedures used
earlier in the literature to study the stability of quasi-static paths (cf. [4],
[7], and the references therein), a mathematical definition of stability of
quasi-static paths was recently proposed by Martins et al. ([4], [3]). That
proposal (i) takes inertia into account, (ii) recognizes the distinction between
quasi-static and dynamic governing equations and time scales, (iii) consid-
ers a finite interval of the load parameter, which, for vanishing load rates,
corresponds to infinitely large intervals of physical time, and (iv) selects the
quasi-static paths close to which the dynamic evolutions will remain when:
(a) the dynamic evolutions initiate sufficiently close to the quasi-static path,
and (b) the load is applied sufficiently slowly.

After the study of some finite dimensional smooth cases in [3], the present
paper applies the same definition to a class of problems that has a not very
severe non-smoothness: the finite dimensional elastic-plastic problems with
linear hardening.

The structure of the article is the following. In Section 2, the mathemat-
ical formulations for dynamic and quasi-static elastic-plastic systems with
hardening are presented, and in Section 3, existence and uniqueness results
are recalled, which use the theory of m-accretive operators (see [1], [2], [5],
[6], [8]). In Section 4.2, a priori estimates are obtained which enable us
to prove the stability of the quasi-static path in the sense of the definition
proposed in ([4], [3]).

2. Governing equations

We consider a finite dimensional elastic-plastic system with linear kine-
matic hardening and we assume geometrical linearity. The governing dy-
namic equations can be non-dimensionalized by using the non-dimensional
time (τ) and load paramater (λ, λ = λ1 + ετ), yielding

(1) ε2Mu′′ = f ext(λ) + f int(u, r),

where M is the non-dimensional (constant, symmetric, positive definite)
mass matrix, and u, f ext and f int are the non-dimensional vectors of gen-
eralized displacements, external forces and internal forces, respectively; the
latter are related to the forces σi, i = 1, . . . , n, that act on each of the
elastic-plastic elements of the system and are grouped in the vector σ

(2) f int = f int(u, r) = −LT σ(u, r).

We assume that the (n×N) matrix L has linearly independent rows. The
forces ri, i = 1, . . . , n, in the plastic elements are grouped in the vector
r. The non-dimensional elongations ei, i = 1, . . . , n, of the system elastic-
plastic elements are grouped in the vector e, and can be related to the non-
dimensional generalized displacements u by means of the constant matrix L.
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In view of the presence of the elastic-plastic elements, it can be decomposed
into elastic, ee, and plastic, ep, parts:

(3) e = Lu = ee + ep.

The forces σ are related to the elastic parts of the non-dimensional elonga-
tions by means of Hooke’s law,

(4) σ = r + Hep = Eee = E(Lu− ep),

where E and H are diagonal positive definite (n × n) matrices. Therefore
using (4) in (2), we get

(5) f int = −LT σ(u, r) = −LT D
(
Lu + H−1r

)
,

where D =
(
E−1 + H−1

)−1. Carrying (5) into (1), we obtain

(6) ε2Mu′′ + LT D
(
Lu + H−1r

)
= f ext.

The behavior of the plastic elements is characterized by the non-dimensional
inequalities and flow rule:

(7) |ri| ≤ 1,
dep

i

dλ


≥ 0 if ri = +1,

= 0 if − 1 < ri < +1,

≤ 0 if ri = −1,

∀i = 1, . . . , n.

The governing dynamic equations (6), together with the conditions (7) that
characterize the behavior of the plastic elements, can be put in the form
of a singular perturbation system of first order differential equations and
inclusions. For that purpose, let C denote the following closed convex set in
Rn

(8) C = {r ∈ Rn : |ri| ≤ 1,∀i = 1, . . . , n},
and let sign−1(r) be the normal cone to C at r ∈ Rn defined by

if r /∈ C then sign−1(r) = ∅,
if r ∈ C then sign−1(r) = {x ∈ Rn : xi ≥ 0, if ri = +1; xi = 0,

if − 1 < ri < +1;xi ≤ 0, if ri = −1,∀i = 1, . . . , n}.
Then we observe that (7) can be written in the differential inclusion form:

(9) (ep)′ ∈ sign−1(r).

Relations (4) lead to

(10) D̃(ep)′ = ELu′ − r′ where D̃ = E + H.

Substituting (10) in (9), we get

(11) ELu′ − r′ ∈ D̃sign−1(r).

From (6) and (11) we finally obtain the governing dynamic system

(12)


εu′ − v = 0,

εMv′ + LT DLu + LT DH−1r = f ext,

ELu′ − r′ ∈ D̃sign−1(r),

which must be satisfied together with some initial conditions

(13)
(
u(λ1),v(λ1), r(λ1)

)
= (u1,v1, r1) ∈ RN × RN × C.
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The corresponding quasi-static system is then (let ε = 0 in (12))

(14)

{
LT DLū + LT DH−1r̄ = f ext,

ELū′ − r̄′ ∈ D̃sign−1
(
r̄
)
,

with initial conditions

(15) r̄(λ1) = r̄1 ∈ C.

Note that, consistently with the above, the quasi-static displacement rate
with respect to the physical time vanishes (v̄ ≡ 0). Besides, if X is a space
of scalar functions, the bold-face notation Xd will denote the space Xd and
NT will denote the transpose of a matrix N .

3. Existence and uniqueness of solution for the dynamic and
the quasi-static systems

We observe that the dynamic and the quasi-static systems introduced in
Section 2 can be rewritten in a form that may be studied with the theory
of m-accretive operators. The definition and some properties of m-accretive
operators are recalled in Section 3.1. Existence and uniqueness results for
the systems of Section 2 are presented in Section 3.2.

3.1. Reminder about m-accretive operators. We recall now the defi-
nition of m-accretive operators which is contained in many text books, see,
e.g., [1] or [8].

Definition 3.1. A mapping A : D(A) = {x ∈ Rp : Ax 6= ∅} ⊂ Rp → Rp is
called m-accretive operator, if it is monotone,

(Ax1 −Ax2) · (x1 − x2) ≥ 0, ∀x1,x2 ∈ D(A),

and if it is maximal in the set of monotone operators, i.e. for all [x,y] ∈
Rp × Rp such that

(y −Aζ) · (x− ζ) ≥ 0, ∀ζ ∈ D(A) then y ∈ Ax.

If ϕ =
∑p

i=1 ϕ(xi) is a convex proper and lower semi-continuous function
from Rp to (−∞,+∞], we can define its sub-differential ∂ϕ : D(∂ϕ) = {x ∈
Rp : ∂ϕ(x) 6= ∅} → Rp × Rp by

y ∈ ∂ϕ(x) ⇔ ∀h ∈ Rp, ϕ(x + h)−ϕ(x) ≥ y · h.

Notice that ∂ϕ is an m-accretive operator. On the other hand, the m-
accretive operator ∂ϕ(x) = sign−1(x) is a sub-differential of a convex proper
and lower semi-continuous function defined by

(16) ∀x ∈ R, ϕ(x) =

{
0 ifx ∈ [−1, 1],
+∞ ifx /∈ [−1, 1].

For more details, the reader can see the example 2.3.4, p.25 of [1].
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3.2. Existence and uniqueness of solution. Recall that existence and
uniqueness of solution to the differential inclusion problem

x′ + Ax 3 g a.e. on (λ1, λ2),(17a)

x(λ1) = x1,(17b)

follows from the following Proposition (cf. [1], [5] and Appendix):

Proposition 3.2. Assume that A : D(A) ⊂ Rp → Rp is an m-accretive
operator, g belongs to W 1,∞

p (λ1, λ2) and x1 ∈ D(A). Then there exists a
unique solution x of (17) belonging to W 1,∞

p (λ1, λ2).

By applying Proposition 3.2, we prove existence and uniqueness of solu-
tion for the dynamic system (12)-(13) and for the corresponding quasi-static
system (14)-(15). We introduce the following notations:

(18) ũ =
(
LT DL

)1/2
u, ṽ = M1/2v, r̃ = D̃

−1/2
r.

Carrying (18) into (12) and denoting x = (ũ, ṽ, r̃), we get (17a) where
Ax = Ax + Bx with

Ax =

 0
0

D̃
1/2

sign−1
(
D̃

1/2
r̃
)

 =

 0
0

D̃
1/2

∂ϕ
(
D̃

1/2
r̃
)

 ,

and

Bx =
1
ε

 −
(
LT DL

)1/2
M−1/2ṽ

M−1/2
(
LT DL

)1/2
ũ + M−1/2LT ED̃

−1/2
r̃

−D̃
−1/2

ELM−1/2ṽ

 ,

and

g =
1
ε

 0
M−1/2f ext

0

 .

A is m-accretive since E and H are diagonal positive definite matrices and
ϕ( · ) is a convex proper and lower semi-continuous function. Moreover B
is a monotone and Lipschitzian operator. Then A is a m-accretive operator
(cf. [1]) and Proposition 3.2 yields the following Corollary:

Corollary 3.3. Assume that f ext belongs to W 1,∞
N (λ1, λ2) and that (13)

holds. Then there exists a unique solution (u,v, r) of (12)–(13) belonging
to

(
W 1,∞

N (λ1, λ2)
)2 ×W 1,∞

n (λ1, λ2).

On the other hand, we deduce from the identity in (14) that

(19) ū =
(
LT DL

)−1
f ext −

(
LT DL

)−1
LT DH−1r̄.

Carrying (19) into (14) and using the injectivity of LT , we get

(20) r̄′ + Hsign−1(r̄) 3 DL
(
LT DL

)−1
f ′ext.

As for the dynamic system, the sub-differential ∂ϕ(r̄) = Hsign−1(r̄) is an
m-accretive operator since H is a diagonal positive definite matrix and ϕ(r̄)
is a proper convex and lower semi-continuous function. Denoting x = r̄,
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A = Hsign−1, g = D
(
LT DL

)−1
f ′ext with p = n in (17), then we apply

Proposition 3.2 and we obtain the following Corollary:

Corollary 3.4. Assume that f ext belongs to W 1,∞
N (λ1, λ2) and r̄1 ∈ C.

Then there exists a unique solution r̄ of (20) belonging to W 1,∞
n (λ1, λ2),

with initial conditions r̄1 ∈ C.

Remark 3.5. According to Corollary 3.4 and identity (19), ū belongs to
W 1,∞

N (λ1, λ2).

4. Stability of quasi-static paths of elastic-plastic systems

In Section 4.1 we adapt the definition of stability of a quasi-static path
([4],[3]) to the present elastic-plastic problem, and in Section 4.2 we prove
a priori estimates that show that, in order to guarantee that those two
solutions remain close to each other in some finite interval of load, it suffices
that the dynamic solution of (12) is initially close to the quasi-static solution
of (14) and the loading rate ε is sufficiently small.

4.1. Definition of stability of a quasi-static path. The mathematical
definition of stability of a quasi-static path at an equilibrium point is pre-
sented in the context of the governing dynamic system (12)-(13) and the
quasi-static system (14)-(15).

Definition 4.1. The quasi-static path (ū(λ), r̄(λ)) is said to be stable at
λ1 if there exists 0 < ∆λ ≤ λ2 − λ1, such that, for all δ > 0 there exists
ρ̄(δ) > 0 and ε̄(δ) > 0 such that for all initial conditions u1, v1, r1 and r̄1

(r1 ∈ C, r̄1 ∈ C) and all ε > 0 such that

|v1|2 + |u1 − ū(λ1)|2 + |r1 − r̄1|2 ≤ ρ̄(δ) and ε ≤ ε̄(δ),

the solution (u(λ),v(λ), r(λ)) of the dynamic system (12)-(13) satisfies

|v(λ)|2 + |u(λ)− ū(λ)|2 + |r(λ)− r̄(λ)|2 ≤ δ, ∀λ ∈ [λ1, λ1 + ∆λ].

For more details, the reader is referred to [4].

4.2. A priori estimates and stability. Let us introduce the regularized
problem:

(21)


ε2Mu′′

µ + LT DLuµ + LT DH−1rµ = f ext,

ELu′
µ − r′µ =

D̃

µ

(
rµ − projCrµ

)
,

with initial conditions

(22)
(
uµ(λ1),vµ(λ1), rµ(λ1)

)
= (u1,v1, r1) ∈ RN × RN × C.

Here projC denotes the projection on the convex C, i.e.

projC =

 projC1
...

projCn

 where Ci = {ri ∈ R : |ri| ≤ 1}, ∀i = 1, . . . , n,

and vµ = εu′
µ. We introduce the following notations:

(23) ũµ =
(
LT DL

)1/2
uµ, ṽµ = M1/2vµ, r̃ = D̃

−1/2
rµ.
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Carrying (48) into (21) and denoting xµ = (ũµ, ṽµ, r̃µ), we get

(24) x′µ + Aµxµ + Bxµ = g,

where

Aµxµ =


0
0

D̃
1/2

µ

(
D̃

1/2
r̃µ + projC

(
D̃

1/2
r̃µ

))
 .

Since Aµ is Lipschitzian with constant 1/µ and m-accretive operator (see
Proposition 2.6. p.28 of [1]) and B is monotone and Lipschitzian operator,
then Aµ + B is an m-accretive operator (cf. [1]) and Proposition 3.2 yields
the following Corollary:

Corollary 4.1. Assume that f ext belongs to W 1,∞
N (λ1, λ2) and that (22)

holds. Then there exists a unique solution (uµ,vµ, rµ) of (21)-(22) be-
longing to

(
W 1,∞

N (λ1, λ2)
)2 ×W 1,∞

n (λ1, λ2). Moreover, as µ tends to zero,
(uµ,vµ, rµ) converges strongly to the solution of (12)-(13).

Lemma 4.2. Assume that (13) holds and f ext belongs to W 2,∞
N (λ1, λ2).

Then there exists a positive constant c(λ1, λ2) that depends on the interval
of λ and such that

(25)
|εv′(λ)|2 ≤ c(λ1, λ2)

(
|v1|2 + |u1 − ū(λ1)|2 + |r1 − r̄1|2

+ ε2|f ′ext(λ1)|2 + ε2‖f ′ext‖2
L∞(λ1,λ2) + ε2‖f ′′ext‖2

L2(λ1,λ2)

)
.

Proof. This estimate results from the application of Gronwall’s lemma to
energy estimates that are obtained by differentiating the governing system
(21) with respect to λ and multiplying the result by ε2u′′

µ. Integrating the
resulting expression over (λ1, λ), we get

(26)

∫ λ

λ1

ε4(Mu′′′
µ ) · u′′

µ dξ +
∫ λ

λ1

ε2
(
LT DLu′µ

)
· u′′

µ dξ

+
∫ λ

λ1

ε2
(
LT DH−1r′µ

)
· u′′

µ dξ =
∫ λ

λ1

ε2f ′ext · u′′
µ dξ.

We shall pass to the limit in (26) when µ tends to zero. Denoting vµ = εu′
µ

and integrating (26) by parts (except the third integral on the left hand
side) and using Cauchy-Schwarz’s inequality, we obtain

(27)

[
ε2(Mv′µ) · v′µ +

(
LT DLvµ

)
· vµ

]λ

λ1

+ 2
∫ λ

λ1

ε
(
LT DH−1r′µ

)
· v′µ dξ

≤ 2ε(|(f ′ext · vµ)(λ)| + |f ′ext(λ1) · v1|) +
∫ λ

λ1

|εf ′′ext|2 dξ +
∫ λ

λ1

|vµ|2dξ.

On one hand, we subtract the first equation in (21) at λ1 to the first one
in (14) at λ1. From (22) and since M and D are respectively symmetric
positive definite and diagonal positive definite matrices, then there exists a
positive constant c1 such that

(28)
ε2

(
Mv′µ(λ1)

)
· v′µ(λ1) +

(
LT DLvµ(λ1)

)
· vµ(λ1)

≤ c1

(
|v1|2 + |u1 − ū(λ1)|2 + |r1 − r̄1|2

)
.
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On the other hand, the second identity in (21) leads to

(29)

∫ λ

λ1

ε
(
LT DH−1r′µ

)
· v′µ dξ

=
∫ λ

λ1

ε2
(
D̃

−1
r′µ

)
· r′′µ dξ +

∫ λ

λ1

ε2

µ
r′µ ·

(
rµ − projCrµ

)′
dξ,

which implies immediately, since the second integral on the right hand side
in (29) is nonnegative and D̃

−1
is a diagonal positive definite matrix, that

(30)
∫ λ

λ1

ε
(
LT DH−1r′µ

)
· v′µ dξ ≥ ε2

2

[(
D̃

−1
r′µ

)
· r′µ

]λ

λ1

.

Let us remark that the initial conditions (22) and the second identity in (21)
imply that there exists a positive constant c2 such that

(31) ε2
(
D̃

−1
r′µ(λ1)

)
· r′µ(λ1) ≤ c2|v1|2.

Carrying (31) into (30), we obtain

(32)
∫ λ

λ1

ε
(
LT DH−1r′µ

)
· v′µ dξ ≥ ε2

2
(
D̃

−1
r′µ(λ)

)
· r′µ(λ)− c2|v1|2.

Introducing (28) and (32) in (27), and using Cauchy-Schwarz inequality, we
get

(33)

(
ε2(Mv′µ) · v′µ +

(
LT DLvµ

)
· vµ + ε2

(
D̃

−1
r′µ

)
· r′µ

)
(λ)

≤ c(ε) + 2ε|f ′ext(λ) · vµ(λ)| + ε2

∫ λ

λ1

|f ′′ext|2 dξ +
∫ λ

λ1

|vµ|2 dξ,

where

c(ε) = (1 + c1 + c2)|v1|2 + c1

(
|u1 − ū(λ1)|2 + |r1 − r̄1|2

)
+ ε2|f ′ext(λ1)|2.

Since M , LT DL and D̃ are positive definite matrices, we deduce from (33)
that there exist strictly positive numbers γi, i = 1, 2, 3, such that

(34)
γ1|εv′µ(λ)|2 + γ2|vµ(λ)|2 + γ3|εr′µ(λ)|2

≤ c(ε) + 2|εf ′ext(λ) · vµ(λ)| + ε2

∫ λ

λ1

|f ′′ext|2 dξ +
∫ λ

λ1

|vµ|2 dξ.

We estimate the product |εf ′ext(λ) ·vµ(λ)| by ε2|f ′ext(λ)|2/γ2+γ2|vµ(λ)|2/4,
and then the inequality (34) leads to

γ2

2
|vµ(λ)|2 ≤ g(ε) +

∫ λ

λ1

|vµ|2 dξ,

where

g(ε) = c(ε) +
2ε2

γ2
‖f ′ext‖2

L∞(λ1,λ2) + ε2‖f ′′ext‖2
L2(λ1,λ2).

By classical Gronwall’s lemma, it is clear that

(35) |vµ(λ)|2 ≤ 2g(ε)
γ2

exp
(

2(λ2 − λ1)
γ2

)
.
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Therefore the last term on the right hand side of (34) can be estimated by
using Hölder’s inequality and (35):

(36)
γ1|εv′µ(λ)|2 +

γ2

2
|vµ(λ)|2 + γ3|εr′µ(λ)|2

≤ g(ε)
(

1 +
2(λ2 − λ1)

γ2
exp

(
2(λ2 − λ1)

γ2

))
.

Differentiating the first identity in the system (21) and integrating the result
over (η1, η2), η1 and η2 belonging to (λ1, λ2), we get, since vµ = εu′

µ,

εMv′µ(η2)− εMv′µ(η1) =
∫ η2

η1

(
f ′ext −LT DLu′µ −LT DH−1r′µ

)
dξ,

which implies, thanks to (36) and Cauchy-Schwarz’s inequality, that for fixed
ε > 0 there exists a positive constant c3 such that for every positive µ,

(37) |εv′µ(η2)− εv′µ(η1)| ≤ c3|η2 − η1|.

As a consequence, (36) and (37) show that the sequence εv′µ is equicontin-
uous and bounded in C0

N (λ1, λ2). Therefore, thanks to Ascoli’s theorem,
there exists z belonging to C0

N (λ1, λ2) and a subsequence, still denoted by
εv′µ, such that

(38) εv′µ → z in C0
N (λ1, λ2) as µ tends to 0.

By uniqueness of the limit, z = εv′ and thanks to (36), we obtain the result
in the Lemma. �

Remark 4.3. The inclusions in (12) and (14) can be written in slightly dif-
ferent but equivalent forms: for all r∗ belonging to C and for all λ belonging
to [λ1, λ2], we have

(39)
∫ λ

λ1

(
D̃

−1
(ELu′ − r′)

)
· (r − r∗) dξ ≥ 0,

and

(40)
∫ λ

λ1

(
D̃

−1
(ELū′ − r̄′)

)
· (r̄ − r∗) dξ ≥ 0.

Proposition 4.4. (Stability). Assume that (13) and (15) hold and that f ext

belongs to W 2,∞
N (λ1, λ2). Then there exist γi > 0, i = 1, 2, such that

(41)
|v(λ)|2 + |u(λ)− ū(λ)|2 + |r(λ)− r̄(λ)|2

≤ γ1

(
|v1|2 + |u1 − ū(λ1)|2 + |r1 − r̄1|2

)
+ εγ2.

Proof. We subtract the equality in the quasi-static system (14) to (6), then
we multiply the resulting expression by (u′ − ū′) and we integrate over
(λ1, λ), λ belonging to (λ1, λ2). On the other hand, we choose r∗ = r̄ in
(39) and r∗ = r in (40), and we add (39) to (40). We get the following
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system:

(42)



∫ λ

λ1

ε2(Mu′′) · u′ dξ +
∫ λ

λ1

(
LT DL(u− ū)

)
· (u′ − ū′) dξ

+
∫ λ

λ1

(
LT DH−1(r − r̄)

)
· (u′ − ū′) dξ =

∫ λ

λ1

ε2(Mu′′) · ū′ dξ,∫ λ

λ1

(
D̃

−1(
EL(u′ − ū′)− (r′ − r̄′)

))
· (r − r̄) dξ ≥ 0.

Since M is a symmetric positive definite matrix, D is a diagonal positive
definite matrix, and v = εu′, we have

(43)

∫ λ

λ1

ε2(Mu′′) · u′ dλ +
∫ λ

λ1

(
LT DL(u− ū)

)
· (u′ − ū′) dξ

=
1
2

[
(Mv) · v +

(
LT DL(u− ū)

)
· (u− ū)

]λ

λ1

.

Notice that DH−1 = D̃
−1

E, so that the inequality in the system (42) leads
to ∫ λ

λ1

(
D̃

−1
(r′ − r̄′)

)
· (r − r̄) dξ ≤

∫ λ

λ1

(
LT DH−1(r − r̄)

)
· (u′ − ū′) dξ,

which immediately implies

(44)
1
2

[(
D̃

−1
(r − r̄)

)
· (r − r̄)

]λ

λ1

≤
∫ λ

λ1

(
LT DH−1(r − r̄)

)
· (u′ − ū′) dξ.

Define now

(45)
h(ξ) =

(
(Mv) · v +

(
LT DL(u− ū)

)
· (u− ū)

)
(ξ)

+
((

D̃
−1

(r − r̄)
)
· (r − r̄)

)
(ξ).

Carrying (43) and (44) into the identity in (42) and using the Cauchy-
Schwarz inequality, the notation (45) and denoting ‖M‖∞ = maxi

∑
j |Mij |,

we obtain the following inequality

(46) h(λ) ≤ h(λ1) + ‖M‖∞
(∫ λ

λ1

|εv′|2 dξ

)1/2 (∫ λ

λ1

|ū′|2 dξ

)1/2

.

Observing that M , LT DL and D̃
−1

are symmetric positive definite matri-
ces, we conclude from (46) that there exists α > 0 such that

|v(λ)|2 + |u(λ)− ū(λ)|2 + |r(λ)− r̄(λ)|2

≤ αh(λ1) + α

(∫ λ

λ1

|εv′|2 dξ

)1/2 (∫ λ

λ1

|ū′|2 dξ

)1/2

.

The conclusion follows then from Lemma 4.2. �
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Appendix

We prove existence and uniqueness of solution to the differential inclusion
problem (17) with g depending on λ and on x and not only on λ, λ ∈ (λ1, λ2).

Proposition A.1. Let g( · ,x) be a function from [λ1, λ2]× Rp to Rp such
that, for some ω > 0, the following assumptions are satisfied

∀λ ∈ [λ1, λ2], ∀(x,y) ∈ R2p, |g( · ,x)− g( · ,y)| ≤ ω|x− y|,(47a)

∀x ∈ Rp, g( · ,x) ∈ L∞
p (λ1, λ2).(47b)

Assume that A : Rp → Rp is an m-accretive operator. Then there exists a
unique solution x of (17) belonging to W 1,∞

p (λ1, λ2).

Proof. Let Jµ and Aµ be the resolvent and the Yosida regularization of the
m-accretive operator A, respectively,

(48) Jµ = (1 + µA)−1 and Aµ =
1
µ

(1− Jµ).

The proof has two steps: first, using the Carathéodory’s theorem, we prove
that for all µ > 0, there exists a unique solution xµ ∈ W 1,∞

p (λ1, λ2) of the
regularized problem

x′µ + Aµxµ = g( · ,xµ) a.e. on (λ1, λ2),(49a)

xµ(λ1) = x1;(49b)

next, passing to the limit, in the regularized problem, as µ → 0, we prove the
existence of a solution to (17). Uniqueness is obtained thanks to a classical
Gronwall lemma.

Let µ > 0 be fixed. Define

(50) hµ( · ,xµ) = −Aµxµ + g( · ,xµ).

Recall that Aµ is Lipschitzian with constant 1/µ and is an m-accretive op-
erator (see Proposition 2.6, p.28 of [1]). Therefore (50) and (47) yield

∀λ ∈ [λ1, λ2], ∀(xµ,yµ) ∈ R2p,(51a)

|hµ( · ,xµ)− hµ( · ,yµ)| ≤
(
ω + 1/µ

)
|xµ − yµ|,

∀xµ ∈ Rp, hµ( · ,xµ) ∈ L∞
p (λ1, λ2).(51b)

We conclude from (49a) that

(52) |hµ( · ,xµ)| ≤ |hµ( · , 0)| +
(
ω + 1/µ

)
|xµ|,∀λ ∈ [λ1, λ2],∀xµ ∈ Rp.

Thanks to the Carathéodory theorem, (51) and (52) imply that for all λ ∈
(λ1, λ2), there exists a solution xµ ∈ W 1,∞

p (λ1, λ) to (49). By a standard
reasoning, we are able to extend the previous local solution to an interval
[λ1, λ2]. Let xµ be a solution of (49) on [λ1, λ]. We integrate (17) over
(λ1, λ), and we obtain

(53) xµ(λ)− x1 =
∫ λ

λ1

hµ( · ,xµ) dξ.
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Using (51), we show that

|xµ(λ)− x1| ≤(λ2 − λ1)‖hµ( · ,x1)‖L∞
p (λ1,λ2)

+
(
ω + 1/µ

) ∫ λ2

λ1

|xµ − x1| dξ.

A classical Gronwall lemma leads then to

|xµ(λ)| ≤ |x1| + (λ2 − λ1)‖hµ( · ,x1)‖L∞
p (λ1,λ2) exp

(
(λ2 − λ1)(ω + 1/µ)

)
.

Since the previous estimate is uniform in λ, we conclude that xµ is a global
solution of (49).

We show now that xµ is unique. Let xµ and yµ be two solutions of
(49) belonging to W 1,∞

p (λ1, λ2). We subtract (49a) applied to yµ and (49a)
applied to xµ, we multiply the resulting expression by xµ − yµ and we
integrate over (λ1, λ). Since Aµ is m-accretive, we get for all λ ∈ [λ1, λ2],

(54) |xµ(λ)− yµ(λ)|2 ≤ 2
∫ λ

λ1

|(hµ( · ,xµ)− hµ( · ,yµ))(xµ − yµ)| dξ.

Introducing (51a) in (54), we see that, for all λ ∈ [λ1, λ2],

|xµ(λ)− yµ(λ)|2 ≤ 2ω

∫ λ

λ1

|xµ − yµ|2 dξ

which implies, according to Gronwall’s lemma, that xµ = yµ.
Let A0x be the element of Ax having the minimal norm. The proposition

2.6, p.28 of [1], yields

(55) |Aµxµ| ≤ |A0xµ| ≤ p.

Applying (53) to the global solution xµ of the regularized problem (49),
using (55) and Gronwall’s lemma, it is possible to show that there exists a
positive constant c1 such that

(56) |xµ(λ)| ≤ c1, ∀µ > 0, ∀λ ∈ [λ1, λ2].

We apply once again (53) to the global solution xµ of (49); we subtract (53)
applied to η1 and (53) applied to η2, we get, for all µ > 0 and for all η1, η2

belonging to [λ1, λ2],

|xµ(η1)− xµ(η2)| ≤
∫ η2

η1

(
|Aµxµ| + |g( · ,xµ)|

)
dξ.

Therefore (47), (56) imply that there exists a positive constant c2 such that

(57) |xµ(η1)− xµ(η2)| ≤ c2|η1 − η2|, ∀µ > 0, ∀η1, η2 ∈ [λ1, λ2].

As a consequence, (56) and (57) show that the sequence xµ is equicontinuous
and bounded in C0

p(λ1, λ2). Therefore, according to Ascoli’s theorem, there
exists z belonging to C0

p(λ1, λ2) and a subsequence, still denoted by xµ,
such that

(58) xµ → z in C0
p(λ1, λ2).

Moreover we deduce from (49a) that for all µ > 0,

(59) |x′µ| ≤ |Aµxµ| + |g( · ,xµ)|.
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Substituting (47a), (56) in (59), we immediately see that there exists a
positive constant c3 such that

‖x′µ‖L∞
p (λ1,λ2) ≤ c3, ∀µ > 0.

Then there exists z̄ belonging to L∞
p (λ1, λ2) and a subsequence, still denoted

by x′µ, such that

(60) x′µ ⇀ z̄ weakly ? in L∞
p (λ1, λ2).

By uniqueness of the limit, z belongs to W 1,∞
p (λ1, λ2) and

(61) x′µ ⇀ z′ weakly ? in L∞
p (λ1, λ2).

With the help of (48), (49a) can be written now

∀µ > 0,
1
µ

(1− Jµ)xµ = g( · ,xµ)− x′µ a.e. on (λ1, λ2)

where 1 is the identity matrix. It is easy to see that

∀µ > 0, −µ
(
g( · ,xµ)− x′µ

)
+ xµ = Jµ a.e. on (λ1, λ2)

which implies, using the definition of the resolvent Jµ, that for all µ > 0,

(62) A
(
xµ − µ(g( · ,xµ)− x′µ)

)
3 g( · ,xµ)− x′µ a.e. on (λ1, λ2).

Observe that (61) implies, thanks to (47a), (58), that

(63) g( · ,xµ)− x′ ⇀ g( · ,z)− z′ weakly in L2
p(λ1, λ2),

and thus there exists a positive constant c4 such that

(64) ‖g( · ,xµ)− x′‖L2
p(λ1,λ2)

≤ c4, ∀µ > 0.

It follows from (58) and (64) that

(65) xµ − µ
(
g( · ,xµ)− x′µ

)
→ z in L2

p(λ1, λ2).

Let A be a m-accretive operator on L2
p(λ1, λ2) (see examples 2.1.3, p.21,

and 2.3.3, p.25, of [1]) such that for all xµ,yµ belonging to L2
p(λ1, λ2), we

get

(66) xµ ∈ Ayµ ⇔ xµ ∈ Ayµ a.e. on (λ1, λ2).

Thanks to (66), (62) is equivalent to

(67) A
(
xµ − µ(g( · ,xµ)− x′µ)

)
3 g( · ,xµ)− x′µ, ∀µ > 0.

In view of Proposition 2.5, p.27 of [1], and (63), (65), (67), we may conclude
that

Az 3 g( · ,z)− z′,

in other words, we get

z′ + Az 3 g( · ,z) a.e. on (λ1, λ2).

We also see, by (49b) and (58), that

z(λ1) = x1.

�
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