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Abstract

This paper discusses the stability of quasi-static paths for a continuous
elastic-plastic system with hardening in a one-dimensional (bar) domain.
Mathematical formulations, as well as existence and uniqueness results for
dynamic and quasi-static problems involving elastic-plastic systems with lin-
ear kinematic hardening are recalled in the paper. The concept of stability of
quasi-static paths used here is essentially a continuity property of the system
dynamic solutions relatively to the quasi-static ones, when (as in Lyapunov
stability) the size of initial perturbations is decreased and the rate of appli-
cation of the forces (which plays the role of the small parameter in singular
perturbation problems) is also decreased to zero. The stability of the quasi-
static paths of these elastic-plastic systems is the main result proved in the

paper.

1 Introduction

The relation that exists between, on one hand, dynamic and quasi-static problems
in mechanics and, on the other hand, the theory of singular perturbations was first
discussed by Martins et al. in |11|. Those authors recognized the distinct time scales
involved in dynamic and quasi-static problems, and performed a change of variables
in the governing system of dynamic equations that consists of replacing the physical
time by a loading parameter. This leads to a system of equations where, in some
of them, the highest order derivative with respect to the loading parameter appears
multiplied by the time rate of that loading parameter. The quasi-static problem
and solution are expected to be approached when the time rate of change of that
loading parameter is decreased to zero.

The variational formulation of plasticity problems with hardening was developed by
Johnson [4, 5]. Existence of a strong solution was proved and, under some additional
assumptions, a regularity result for the velocity field was obtained. The variational
formulation and some existence results for elastic-perfect-plastic and elastic-visco-
plastic systems had already been obtained by Duvaut and Lions [3|. In what concerns
the dynamic problems in elasto-plasticity with hardening, we address the reader to
the works of Krej¢i [7], Showalter and Shi [13, 14|, Visintin [15], and the references
therein.

After the study of finite dimensional elastic-plastic systems with hardening in [9],
we prove here that also in the continuum case the dynamic evolutions remain close
to a quasi-static path when the dynamic evolutions start sufficiently close to that



quasi-static path and the load is applied sufficiently slowly. In the present paper,
the definition of stability given in [11] is adapted to the continuum case.

The structure of the article is the following. In Section 2, the mathematical for-
mulations for dynamic and quasi-static elastic-plastic systems with hardening are
presented, and in Section 3, existence and uniqueness results are recalled, which use
the theory of m-accretive operators (see |1, 3, 13, 14, 16]). The final goal of Section
4 is to prove the main stability result of this paper: Proposition 4.8 in Section 4.4.
The definition of stability of a quasi-static path is adapted from [9, 10, 11] in Section
4.1. The relevant distance between a dynamic and a quasi-static path at each value
of the (time-like) load parameter involves the H' (semi-)norm of the displacements
and the L? norms of the stresses in the plastic element and of the time rate of change
of the displacements. In order to estimate that distance, an auxiliary special dy-
namic solution is considered in Section 4.4, which has initial conditions that coincide
with the quasi-static solution at the initial time. The distance between the dynamic
and the quasi-static solutions at any value of the load parameter is then estimated
by the sum of the distance between the dynamic and the special dynamic solutions
with the distance between the special dynamic and the quasi-static solutions. In
Section 4.3, a priori estimates are obtained that are a little more general than those
needed for the distance between the special dynamic and the quasi-static solutions.
We observe that: (i) the estimate of the distance between the quasi-static solution
and the auxiliary special dynamic solution is used in the proof of the main stability
result, instead of a direct estimate of the distance between the quasi-static solution
and a dynamic solution with arbitrary initial conditions, because (cf. Proposition
4.6) the latter would involve, on the right hand side, norms of the displacements and
the stresses in the plastic element that are stronger than those used for the same
quantities on the left hand side; (ii) in order to estimate a term that involves the
second derivative of the dynamic displacements with respect to the load parameter,
the governing system was differentiated with respect to the load parameter (Lemma
4.4); (iii) this in turn required the use of a classical Yosida regularization of the
original elastic-problem, i.e. the elasto-visco-plastic approximation introduced in
Section 4.2 together with its finite dimensional (Galerkin) approximation.

Finally note that this is the first mathematical discussion of quasi-static stability
in smooth or non-smooth continuum problems involving the relation between dy-
namic and quasi-static solutions and an appropriate functional setting. In fact most
related discussions in the mechanical literature are based on definitions of stabil-
ity involving an energetic (power rate) criterion that has an unclear relationship
with dynamics, and excludes from the analysis cases with non-symmetric stiffness
operators; moreover at some point of those discussions, finite dimensional approxi-
mations are often adopted and some of the arguments used may break down in an
infinite dimensional context [12]. On the other hand, some related mathematical
results on the convergence of dynamic solutions to quasi-static ones were obtained
by Duvaut and Lions [3| by making the mass tend to zero; since the different time
scales involved in dynamic and quasi-static problems are not brought into play and
since perturbations to the initial quasi-static configuration are not considered, the



physical relevance of those results and their relationship with the present study are
limited.

2 Governing equations

We consider an elastic-plastic bar with linear kinematic hardening that has the
length L along the x axis. Geometrical linearity is assumed. The governing dynamic
equation can be non-dimensionalized by using the non-dimensional time (7) and load
parameter (A, A = \; + e7), yielding

2" — oy(u,r) = f(x, N, (1)

where u, r, f are the non-dimensional axial displacement, stress in the plastic el-
ement, and applied force per unit length along the bar respectively; o is the non-
dimensional stress in the elastic-plastic element, which depends on u and 7; and the
subscript x denotes a derivative with respect to x. The extension e is the derivative
in space of the non-dimensional generalized displacement u, and it can be decom-
posed into elastic, e, and plastic, e?, parts:

e=2u, = e+ e’ (2)

The stress o is related to the elastic part e® of the extension by means of Hooke’s
law, and is also related by the hardening law to the stress in the plastic element r
and the plastic extension eP,

o=2r+el =e°=2u, — €. (3)
Therefore (3) leads to
o(u,r) = uy + 7. (4)
Carrying (4) into (1), we obtain

U — Ugy — 1 = F. (5)

Note that, in order that the non-dimensional relation and equation (4), (5) have
simple forms, the factor 2 was introduced in several points of (2) and (3), and
unit stiffness moduli were considered in the Hooke and hardening laws in (3). The
behavior of the plastic element is characterized by the non-dimensional inequality
and flow rule:

> 0if r =41,
| <1, (eP)Y S =0if —1<r<+1, (6)
<0ifr=-1.

The governing dynamic equations (5), together with the conditions (6) can be put
in the form of a singular perturbation system of first order differential equation and
inclusion. For that purpose, let C denote the following closed convex set in L?(0, L)

C={reL*0,L):|rl <1}, (7)
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and let sign~'(r) be the normal cone to C at r € L?(0, L). Then we observe that (6)

can be written in the differential inclusion form:
(e?)" € sign™*(r).

Relations (3) lead to
(e?) =ul, — 1"

Substituting (9) in (8), we get

ul, — ' € sign(r). (10)
We now introduce the following spaces
H=1L*0,L), V=HY0,L), Vo = Hy(0, L),
and the set
W=A{(u,r) e Vo xC:0=u,+r eV}
We will denote the norm in H (resp. V) by |-| (resp. || -||) and the scalar product

in H by (-, -). From (5) and (10) we finally obtain the governing dynamic system

eu' —v =0,
/ —
5'U_u:c:c_rx_fa

u!, — 1" € sign™!(r),
together with the Dirichlet boundary conditions
u=v=0o0n{0,L} x (A1, \2),
and the initial conditions
(v()\l),u()\l),r()\l)) = (v, uq,7m1) € Vo x W.

The corresponding quasi-static system is then (let ¢ =0 in (11))

{—um — e =1,

u, — ' € sign” (),

with the Dirichlet boundary conditions
u=0o0n{0,L} x (A1, A\2),

and the initial conditions

(ﬂ()‘l)’f()\l)) = (ﬂl,fl) ew.

(11)

(12)

(13)

(14)

(15)

(16)

Note that, consistently with the above, the quasi-static displacement rate with re-
spect to the physical time vanishes (v = 0). Besides, if X is a space of scalar

functions, the bold-face notation X ; will denote the space X¢.
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3 Existence and uniqueness of solution for the dy-
namic and the quasi-static systems

We observe that the dynamic and the quasi-static systems introduced in Section
2 can be rewritten in a form that may be studied with the theory of m-accretive
operators. The definition and some properties of m-accretive operators are recalled
in Section 3.1. Existence and uniqueness results for the systems of Section 2 are
presented in Section 3.2.

3.1 Reminder about m-accretive operators

We recall now the definition of m-accretive operators which is contained in many
textbooks, see, e.g., [1] or [16]. Let (-, -)y denote the scalar product in Y. An
operator A in Y is a collection of related pairs (z,y) € Y x Y denoted by y € A(x);
the domain D(A) is the set of such z.

Definition 3.1 An operator A in'Y with domain D(A) is called m-accretive, if it
1S monotone,

‘v"vl, Vo € D(A), ‘v”wl S A’Ul,\V/’LUQ c A’Ug, ('wl — Wy, V1 — ’02)y > O,
and mazximal in the set of monotone operators, i.e. for all [v,w] € Y XY such that

(w—h,v—C_)y >0, V¢ € D(A), h € A then w € Av.

If ¢ is a convex proper and lower semi-continuous function from Y to (—oo,
+ oo|, we can define its sub-differential ¢ as the operator in Y such that, for any
pair (v,w) €Y x Y,

we dp(v) & VheY, p(v+h)—p(v) > (w,h)y.

Notice that 8¢ is an m-accretive operator. In particular, we remark that the indi-
cator function of interval [—1,1], ¢(r) = x-11)(r) for r € R, given by x[_1,1)(r) =0
if r € [—1,1] and x{_11)(r) = 400 otherwise, is a convex proper and lower semi-
continuous function and its sub-differential is dp(v) = sign~*(v). For more details,
the reader can see the example 2.3.4, p.25 of [1].

3.2 Existence and uniqueness of solution

The dynamic and the quasi-static systems introduced in Section 2 can be rewritten
in a form that may be studied with the theory of m-accretive operators. Consider the



differential inclusion problem that involves a multivalued operator A in the Hilbert
space Y, with domain D(A) = {x € Y : Az # (0}

S D(A), VA e [)\1, )\2], (17&)
' + Az > gae. on (A, ), (17Db)
x(\) = z1. (17¢c)

Recall that existence and uniqueness of solution to this problem can be obtained
from the following Proposition:

Proposition 3.2 Assume that A is an m-accretive operator in the Hilbert space Y,
g belongs to WH(A1, \y;Y) and &, € D(A). Then there exists a unique solution x
of (17) belonging to WH>(Ay, Ay; V).

By applying Proposition 3.2, we prove existence and uniqueness of solution for the
dynamic system (11) (13) and for the corresponding quasi-static system (14) (16).
Differentiating with respect to z the first equation in the system (11), performing a
change of unknown function by using e = 2u, and denoting & = (¢/2,v,r), we get
the inclusion (17b) with

L[ 0 —djou 0 [0
A=-| —0/0z 0 —0/0x andg=-1[ f |. (18)
c 0 —0/0x esign™'(-) “\o

First it can be checked that A is a monotone operator. Second, if (g1, f, 92) € H3 and
(v,e,r) € Hs, there exists h(r) € sign"'(r) € H for which the resolvent equation
(L4 A)(e,v,7)T > (g1, f/e,92)T is equivalent to solving the system

ce — 2u, = €9y,

1
v =€ =71 =/, (19)

er — v, + eh(r) = €go.

This is equivalent to solve for v € V' the following equation:

o= e ) - 00 e ) < L

The form is coercive, and existence of a solution follows. The components of (e,r) €
H are obtained directly from the first and third terms in (19) respectively. Hence,
we conclude that A is m-accretive. For more details, see [13] and [14]|. Then Propo-
sition 3.2, with Y = H3 and D(A) = {(e,v,r) € Y : v e Vy,e/2+1r € V,r € C}
yields the following Corollary:

Corollary 3.3 Assume that f belongs to W1°(\, A\y; H) and that (13) holds. Then
there exists a unique solution © = (v,e,r) belonging to W1°°(\1, A\o; H3) that solves
(17) with A and g given by (18), and with r(\) € C for all X € [A1, Xo], v and o(e, 1)
belong respectively to L (A1, Aa; Vo) and L (A, Ag; V).
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Remark 3.4 According to Corollary 3.3 and since e = 2u,, w = 0 on {0,L}, u
belongs to WH (A, Ao, Vp).

In what concerns the quasi-static problem, we differentiate the first identity in (14)
with respect to the load parameter A\ and we get

_a;cgc = f,m + .f,> (20)

together with the Dirichlet boundary conditions (15). Since this is an elliptic prob-
lem for @ we conclude that there exists a unique solution. For such solution @/, + 7/
depends linearly and continuously on f’, i.e.

u, +7 = Bf, (21)

where B is a continuous linear operator between the appropriate spaces. Inserting
this in the inclusion in (14) we finally get the differential inclusion

7 + sign™'(7) > Bf'. (22)

The sub-differential dp(7) = sign™'(7) is an m-accretive operator since p(7) is a
proper convex and lower semi-continuous function. For & = 7, A = sign™!, g = Bf’
and Y = H, we apply Proposition 3.2 and we obtain the following Corollary:

Corollary 3.5 Assume that f belongs to WH° (A, \o; H) and (16) holds. Then
there exists a unique solution (u,7) of (14)-(16) such that (u,7) and (@', 7") belong
both to L>®(A1, Ao; Vo X H) and 7(ty, T) belongs to L>®(Ay, Ag; V).

4 Stability of quasi-static paths of elastic-plastic sy-
stems

In Section 4.1, we adapt the definition of stability of a quasi-static path [9, 10,
11] to the present elastic-plastic problem with hardening, which appears as a limit
case of an elasto-visco-plastic problem. In Section 4.2 we introduce an elasto-visco-
plastic problem and we recall existence and uniqueness results for that problem.
The Galerkin approximation to that problem is also introduced. In Section 4.3, a
priori estimates on the elasto-visco-plastic system are obtained which, in Section
4.4, lead to the proof that those two solutions remain close to each other if the
dynamic solution of (11) is initially close to the quasi-static solution of (14) and the
loading rate ¢ is sufficiently small.

4.1 Definition of stability of a quasi-static path

The mathematical definition of stability of a quasi-static path at an equilibrium
point is presented in the context of the governing dynamic system (11) (13) and the
quasi-static system (14) (16).



Definition 4.1 The quasi-static path (a(\),7(\)) is said to be stable at Ay if there
exists 0 < AX < Ao — Ay, such that, for all § > 0 there exists p(0) > 0 and £(6) > 0
such that for all initial conditions uy, vy, r1 and uy, 71 and all € > 0 such that

|’01‘2 + |U1x — alx‘2 + |7’1 - 7:1|2 < ﬁ((S) and < 5(5),
the solution (u(X),v(\), (X)) of the dynamic system (11)—(13) satisfies
[P + e () = @ (NP +[r(X) = 7(V)]* < 6,

for all A € [\, A1 + AM].

For more details, the reader is referred to [11].

4.2 Existence and uniqueness of solution for the elasto-visco-
plastic systems

We introduce here the elasto-visco-plastic systems:

2u" — Uppy — Ty = f 1
poo R R where J(ry) = = (1, — projery), (23)
{u,,u:v - T:L = Ju(ru), e p g

with the Dirichlet boundary conditions
u, =0 on {0, L} x (A1, Ag), (24)
and the initial conditions
(v (A1), (M), mu (M) = (v1,w1,71) € Vo x W. (25)

Here p > 0 is the viscosity parameter and proj, denotes the projection on the convex

C.
The variational formulation of the problem (23) (25) is the following:

Find (u,,r,) € Vo x H such that V(u*,r*) € Vi x H,
(52uZa U*) + (uul‘?u;) + (7“#, u;) = (/, U*)’
(71;,1’71*) - (u:m,r*) + (Julrp), ™) =0,

(26)

with the initial conditions (25). Note that this elasto-visco-plastic problem is an
Yosida regularization of the original elastic-plastic problem. For a similar approxi-
mation in the corresponding finite-dimensional system see [9]. Whenever convenient
we shall use in the following the notation v, = euj,.

We consider now a finite dimensional approzimation of the above elastic-visco-plastic
problem, which is obtained in the following classical manner. Let {w;}32, be a
complete orthonormal sequence in H whose elements belong to H?(0, L). Let u,,, =
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S gin(MNwi(x) and 7, = >0 by (ANw;i(x) satisfying the following variational
formulation

For all u* = Y0, gh,(Mws(z) and 1 = Y0 b, (Nws(a),
(g, u*) + (U, uz) + (1, 03) = (f, ), (27)
(T:Lw T*) - (U;an’ ’l“*) + (ju(run)> ) = 07

with
Ezggn()\l = 1, ng )\1 wz = ur, thn )\l wz =T. (28)
1 1

The following results can be proved for the above approximations, when the dimen-
sion parameter n tends to oo, and the viscosity parameter p tends to 0.

Proposition 4.2 Assume that f belongs to W1>(\y, \o; H) and that (25) holds.
Then there exists a unique solution (v, w,,7,) of (23)~(25) such that (v, u,,r,)
and (v, ul r ) belong respectively to L™ (A1, Ao; Vo X Vo X H) and L™ (A, A\g; H3)

;,L? /j,?
and aﬂ(uw,m) belongs to L>(A1, Ao; V). Moreover, as p tends to zero, u, and

0, (s, 7,,) converge strongly to their limits.

The Galerkin approximation described above together with a prior: estimates based
on the variational formulations (26), (27) can be used to prove these results. The
reader can find detailed proofs in the Appendix or in |3|. This Proposition can also
be proved using the theory of m-accretive operators.

4.3 A priori estimates

Lemma 4.3 Assume that (25) holds and f belongs to WH(\y, A\o; H). Then in-
dependently of ;> 0, for all X belonging to (A1, A2), vu(X), uu(N) and r,(N) are
bounded in H.

Proof. This estimate results from the application of Gronwall’s lemma to energy
estimates. Choosing u* = v}, and 7* = r, in (26), and adding both identities, we
obtain

(52UZ, uu) + (Upsz U:m;) + (7’,,” ru) + (Ju(rp)sru) = (fru u) (29)
Let us remark that (J,(r,),r,) is non negative then we deduce from (29) that
d
S+ el + 1) < 280 (30

We integrate (30) over (A, A), A € [A1, Ag], and since v, = eu],, we get

A
A /
ol + la? + I3, <2 (700 (31)

9



Integrating by parts in time the right hand side of (31), we obtain

A
(ol + lgel? + 112 < 2[(Fr)]) =2 / (f' ) de.

We estimate the product (z,y) by |2|?/2v; + vily|?/2, and, choosing different values
for ~;, ¢ = 1,2, 3, in different terms, we have

1 1
[0 (M + e NP+ (V)P < er + — Ju, WP+ — [ Ju? dé, (32)
71 REIO
where ]
o =[vi]? + [ue + [m* + el + . |F(A)?
2

+ ’Yl||f||%oo(>\1,>\2;H) + 73||f/||2L2(,\1,,\2;H)-

On the other hand, the Poincaré inequality (see |2, 6]) shows that there exists a
strictly positive constant ¢ such that

[uu(&)1” < clua(§)?, VE € (A1, M) (33)

Using (33) in (32) and choosing 7, = 73 = 2c and 75 = 1 in (32), we may infer that
9, 1 2 2 LA

LN+ 5 e W IO s er 5 ] e e (34)

By classical Gronwall’s lemma, we get
[, (N))? < 2¢1 exp(Xg — Ay). (35)

As the last term on the right hand side of (34) is now easily estimated, we finally
obtain

[0 (V)P + e (NP + [ru (VP < e (T4 (1 + (A = M) exp(Az — 1)),

from which the desired result follows. O

Lemma 4.4 Assume that (25) holds and f belongs to W*>(A\y, A\y; H). Then there

exrists a subsequence, still denoted by U;/m’ such that

= o) weahly i (0 s ) 36

Moreover there ezists a positive constant c(A1, Ay) that depends on the interval of A
and such that

v, (M < e, X2) (JJon P + [(t1ee + m1a) — (tiize + T12)]?

(37)
+ 2 (M) + 52Hf/H%°°(>\1,>\2;H) + 52||f”’|%2(,\1,,\2;H))-

10



Proof. This estimate results from the energy estimate, Gronwall’s lemma and the
proof can be completed by a classical Galerkin method. We drop now the subscript

n. We start by differentiating the governing system (27) with respect to A, taking

ut = 52u” and r* = g2 7, and finally adding both identities, we get

(2 ) + (1 €20) + (7 £200) + (Tl )Y 200) = (FLe2). (39)
The monotonicity of r, — J,(r,) leads to

(Tulru(€))),m.(8))

1
Alg_,o (AE)? S (Tu(ru(€ + D)) = Tu(ru(6)), ru(€ + AE) — ru(€)) > 0.

Then we deduce from (38) that

d / /
dg(‘g2 unl? + lew, [ + ler,[?) < 2(f',€%up). (39)

We integrate (39) over (A1, A), A € [A1, Ag], and since v, = eu;,, we get

A
[|€v;|2 + [vue|® + \aruzi;\l < 2/A (ef',v,,) dE. (40)
1

On one hand, we subtract the first equation in (23) at A; to the first one in (14) at
A1. From (25), we deduce that

|5U/()‘1>|2 = |(Utee + T12) — (U1za + F1m>|2- (41)

Moreover the initial condition r,(A;) = r; € C implies that J,(r1) = 0 and then the
second identity in (23) leads to the following identity

ler, (M) = o[ (42)

On the other hand, we integrate by parts the right hand side of (40), and we estimate
the product (z,y) by |2|?/2v + vily|>/2, and, choosing different values for ;, i =
1,2,3, we get

A
1
2/ (ef' 0) d€ < 2l 7 a posrny + = [0a (V)]
" n (43)

1 1
+ —u]? 4+ ¥l ()P + 5273||f”||%2(,\1,,\2;11) + —/ v, |? dE.
Y2 Y3 S

Since v = eu’ then the Dirichlet boundary conditions and the Poincaré inequality
show that there exists a strictly positive constant ¢ such that

[0 ()F < clvua (), ¥ € (A1, Aa). (44)

11



Carrying (44) into (43) and choosing 71 = 73 = 2c and 7, = 1, we have

A

1

2 [ (60 d < 2621 Pmin i + 5 1V
1

Lo (45)
lor* + 21 Q) + 2621 £ 22y pgsrn) + §A [Vl * €.
1
Introducing (41), (42) and (45) in (40), we obtain
/ 2 1 2 / 2 1 2
e A+ 5 [0ue (NI + er, (NP < g(e) + 5 | ol dE, (46)
A1
where ) )
g(>\17€) = |U1| + 2‘U1x| + |(u1xw + Tlm) - (almm + le)‘
+ (1 (M) + 2C||f/’|%°°(>\1,>\2;H) + 20||f//||2L2()\1,)\2;H))‘
By classical Gronwall’s lemma, it is clear that
10, (A)]? < 29(A1, €) exp(Aa — Ap). (47)

Therefore the last term on the right hand side of (46) is now easily estimated. We
finally obtain

2O + 5 e+ ery ()2 < g0, 2) (14 (o = M) exp(ha = ),

which proves the Lemma. [

Let us remark that the differential inclusion system (11) can be written in a slightly
different but equivalent form:

Find (u,r) € Vi x C such that V(u*,7*) € Vi x C,
(e u*) + (ug, uy) + (rug) = (f, "), (48)
(r'sr—r*) — (ul,r—1r*) <0,

with the initial conditions (13).

Lemma 4.5 Assume that (25) holds and f belongs to WY>(\y, Ao; H). Then for
all X belonging to (A1, A2),

v (A) — v(A) strongly in H,
Uz (A) — ug(N) strongly in H,
ru(X) — 7(X) strongly in H,

as  tends to 0.
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Proof. These convergence properties are obtained by energy estimating the dif-
ference between the elastic-visco-plastic system and the elastic-plastic system with
hardening. Choosing uj, = u), — v’ and u* = u’ — u], respectively the first identities
in (52) and (48), and adding both identities, we get

(u), — e*u" ul, — u') + (Upp — Ug, W)y — uly) + (1 — 7], — ) = 0. (49)

Observing that the second identity in the system (23) implies that

(ru =, u;;,x —u,) = (T:L =1y =)+ (Tulr),rp = 1) + (7 =g,y — 7). (50)

Carrying (50) into (49), integrating over (A1, ), A € [A1, Ag], and using the initial
conditions (25) and (12) leads to the following identity

le(u, () = W/ ()P + [t (A) = ua (N + [ (A) = (V)

I
A A 51
2 [(Gurma—ryde+2 [ 07 =i, —r)dg =0, (1)

A1 A1

Since (J,.(ry.), 7, — r) is non negative, v, = eu), and v = eu/, then we may deduce
from (51) that

A
[0 (A) = 0N + [te(A) — ua(N)* + [ () = (V) < 2/ (r' =y, —7y) dE.

A1

The conclusion follows from Lemma 4.3. ]

On the other hand, the differential inclusion system (14) can be written in a slightly
different but equivalent form:

Find (@, 7) € Vi x C such that V(a*,7*) € Vi x C,
(g, ) + (7, u3) = (f, u*), (52)
(7, Fr—7) — (a,,7T—7) <0,

with the initial conditions (16).

Proposition 4.6 Assume that f belongs to W2>(\1, Ag; H) and that (13) and (16)
hold. Then there exist v; > 0, 1 = 1,2, such that

[W)* + [ua(A) = @a(A)* + [r(X) = 7N < 3 (fld])®

_ ~ _ , (53)

+ |ure — Uio|* + 11— F1* + [ (Wize + 712) — (G1gw + Tlx)|2) + €72.
Proof. This result follows from an energy estimate of the difference between the dy-
namic elastic-visco-plastic system and the quasi-static elastic-plastic system. Choos-
ing u* =, —u and r* = r, —7 in (26), u* = @' —u,, and 7" = 7 in (52), and adding
the resulting expressions, we obtain the following inequality:

(62u;1, u;) + (Upy — Uy, u;w — ) + (7’; -7, r,—T)

—/ —/ — 2.1 =1 (54)
+ (7 =y — 1)+ (Tulrp),r, —7) < ( Uy U ).
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Since 7 € C then J,(7) = 0, and due to the monotonicity of J,,, we get

(Tu(r)sry —7) = (Julry) — Ju(7),ry —7) > 0. (55)
Using (55) in (54) and since v, = eu},, we infer that
d 2 — 2 =12 —/ —/ ! =1
& (Joul* + e — ta|® + 1 — 7%) + 2(F — @, vy — 1) < 2(e0),, @'). (56)

We integrate (56) over (A, A), A € [A1, Ao] and we obtain

[0V + [ (X) = BN+ [ru(X) = FA) P
+ 2/ (7 —al,r, —r)dE < c(\) + 2/ (ev,, ') d€, (57)

)\1 )\1

where
C()\l) = |’01|2 + |U1x — ﬂ1x|2 + |7’1 — f1|2.

Let us observe that

%(IU(A)I2 +[ua(A) = @ (N)* + [r(A) = F(V)?) = gu(N)

(58)
< WP + e () = TN+ [ru(A) = 7V,
where
9u(A) = [0 (X) = v + e (A) = e (V)| + [ru(X) — (A%
Carrying (58) into (57) and using Cauchy-Schwarz’s inequality we have
1 _ _
5 [P+ [ua(N) = @V + r(X) = PN + fun (1, A)
(59)

A 1/2 A 1/2
<cn)+2( [ Jeuy, Pag) ([ lRag)
A1 A1

where

A A
hyn(A1, A) = 2/ (7' — aly,ry — 1) dE + 2/ (E(U:m — ’U:L),'ﬁ/> d§ — gu(N).
)\1 >\1

Introducing (37), the estimate obtained in Lemma 4.4, in (59), we deduce that there
exist v; > 0, 7 = 1,2, such that

1 _ _

5 (VP + [ua(X) = @V + [r(A) = 7(V)P) + B, A) < ((fon?

+ |uie — s + |1 = F1* + [(iss + 712) — (Gze + flx)|2) +&72.
The conclusion follows then from Lemma 4.5. 0

As observed in the Introduction, a direct estimation of the distance between the
quasi-static solution and an arbitrary dynamic solution of the elastic-plastic system,

14



leads (because of the required differentiation with respect to the load parameter and
the additional initial conditions) to an estimate (53) where, on the right hand side,
the initial conditions on u and r are affected by norms that are not the same as those
on the left hand side. This situation is overcome in the next section by decomposing
that distance into two parts: the distance between an arbitrary dynamic solution and
a special dynamic solution, and the distance between the special dynamic solution
and the quasi-static solution.

4.4 Stability of a quasi-static path

We start by estimating the distance between an arbitrary dynamic solution of the
elastic-plastic problem and a special dynamic solution (v, u,7) that solves (23) with
the the Dirichlet boundary conditions (12) and with initial conditions that coincide
with the quasi-static solution at the initial time:

(O(A\1),u(A1),7(\)) = (ety, ay,71) € Vo x W. (60)
Let us remark that the variational formulation of that problem is the following:
Find (u,7) € Vi x C such that V(u*,7*) € Vi x C,
(e2u", ") + (g, uy) + (7, 103) = (f, @), (61)
=7 — (u,r—7%) <0,

with the initial conditions (60).

Lemma 4.7 Assume that (13) and (60) hold and that f belongs to W12°(\q,
Xo; H). Then
[o(A) = TN + [ua(A) = TN + [r(X) = F(V)]?

~ _ _ 62
S |vl—v(>\1)|2+|u1x—u1x|2+|7’1—7’1|2. ( )

Proof. Once again we use energy techniques to compare two dynamic elastic-plastic
problems with hardening that have the same boundary conditions but different initial
conditions. Choosing v* = v — @ and u* = @ — «’ in (48) and (61), respectively,
we have

(W = "), u =) + (up — Uy, uly — U,) + (r — Ty, — U,) = 0. (63)
On the other hand, taking r* =7 and 7™ = r in (48) and (61), respectively, we get
(=7, =) < (= Foudy — ). (64

Carrying (64) into (63) and since v = eu’ and v = £, we obtain
d

(Jo =0 + Jugy — |* + |r = 7]%) < 0. (65)

3
Integrating (65) over (A1, A), A € [A1, Ao], and using the initial conditions (13) and
(60), leads to the result in the Lemma. O
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Proposition 4.8 (Stability). Assume that (13) and (16) hold and that f belongs
to W2°°(\1, \o; H). Then there exist v > 0 such that for 0 <e <1,

[P+ [uz(A) = T (A + [r(A) = F(V)?

< y(Joi]* + ure — @i + |11 = 71> +€).

Proof. The stability result follows from the estimates obtained in Proposition 4.6
and Lemma 4.7. Let us remark that (62) leads to the following inequality

(I + ua(X) = @V + [r(X) = F(A))
c(Ar) + [P + [ (A) = @ ()| + [F(A) = 7V,

|~

(66)

IN

where
c(A) = v — 50\1)‘2 + |1, — ﬂle +|r — f1|2-

On the other hand, choosing ©v = @, v = v and » = 7 in (53) and since u(\;) =
and 7(\;) = 71, we obtain

B + [ (A) = @(A)* + [F(N) = 7N < nllo)[* + 2. (67)
Introducing (67) in (66), we get
[P + [ua(A) = (V)P + [r(X) = F(N]* < nlTA)I® + 2¢(A1) + 7.

Since @/(A1) and @/ (\;) are bounded in H and v(A\;) = e} then the Proposition
follows. O

Appendix

Proof. (Proposition 4.2). We drop the subscript g in the proof and without loss of
generality, we may assume here that ¢ = 1 and using the fact that e = 2u,, then
(26) with the initial conditions (25) become

S e) + (0,e2) = 0,
(v, v*) + %(e,v;) + (r,vf) = (f,v"), (68)
(0, 7) = (1 7) + (), =0,

with the initial conditions

(Un()‘l)u 677()\1),7’77()\1» = (vl,ulm,rl) € ‘/0 x W. (69)
Let us first prove the uniqueness. Let (v, e, 7) and (v,, €., r) be two possible solutions
of (68).

V=v—u,, e=(e—e€)/2, T=r—r,
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Therefore we deduce from (68) and from the analogous equations for v,, e,, r,, that
(@, e) + (0,e;) + (@, 0") + (& 07) + (7, r7) + (Fulr) = Tulre),r7) = 0. (70)
Choosing v* =70, e* =€, r* =7 in (70), we obtain

1d

§d—€(|@|2 F 2+ 172 + (0,6) + (€,0) + (Tu(r) = Tu(r),r =) = 0. (71)

Since (v,e,) + (e,v,) = 0 and r — J,(r) is monotone then we infer from (71) that
(7 + 6P+ 77) <.
d¢ -

which, together with the fact that ¥(A\;) =e(A\;) =7(\) =0, leadstov=e=7=0
and the uniqueness follows.

We regularize (68) in the space variable. Let 1 be a strictly positive parameter,
which will tend toward zero. We consider now the regularized problem

1
5(6’;}’ ") + (vy, €;) + nlen, €;) =0,
1
(0, 0") 5 (e, v2) + (g, 02) + 1(vge, 03) = (f07), (72)

(T:w ) = (Vg 7°) + (Tu(ry) s %) + 0(rye, 73) = 0.
with the initial conditions
(Un()\l)a 677()\1),7’77()\1)) = (vl,ulx,rl) e Vo x W. (73)

Recall that for every n > 0, (72) (73) has a unique solution. This follows from the
general theory of monotone parabolic problems (cf. [8]). We establish now a priori
estimates and then we pass to the limit when 7 tends to zero.

First a priori estimate. Taking v* = v,, e* =e,/2, * = r,, we obtain
1d (1
2déEN2

1
(S lonel? + lensl? + Irnl?) + (Tulra) ) = (£o00).

1
[oaf? + leal? + Iraf?) + 5 (0 €ne) + (e, ) o
74

Since
(v, €na) + (€5, Upe) = 0 and (Ju(ry),75) 2 0,
then we deduce from (74) that

1d/1 1
§d—€(§|vn|2 leal? + 1ral?) 405 00el® + Lo + ral?) < (Frv). (75)
From (75), we may conclude, when 7 tends to zero, that
(vy, €y, y) is bounded in L5° (A1, Ao; H), (76a)
(n*%v,,n"%e,,n'/?r,) is bounded in LZ(A, Ag; V). (76b)
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Moreover, setting A = A; in (72), we conclude thanks to the initial conditions (73)

that 1
S5 (N), ) = (1e,¢") = nuter, €5),

(v (A1), 0%) = (f (M) + tiea + 712, 07) = 1(V12, 03),
(T%(A1>v T*) = (le, T*) - 77(7’190, T;)a

from which it follows, when 7 tends to zero, that

(v,(M), €, (M), 75, (M) is bounded in Hy. (77)

Second a priori estimate. Differentiating (72) with respect to A (this is legitimate if
(72) is approximated by Galerkin method), and replacing e*, v* and r* respectively
by ey, v, and r,, we get
1d/1 1
2 GQIP 16 +IrP) + 5 €4) + (¢ v3,)

1 (78)
(G105l el + 17ul?) + (Tilra), 1) = ().
Using the same argument already given in Lemma 4.4, it is clear that the last term on
the right hand side of (78) is non negative, on the other hand, (v;, e;,)+(ey, v;,) = 0,
then we deduce from (78) that
1d/1 1
5 g (I 167 + 1)+ n(Glenal? + Iehul? +1r7l) < (7 00),

from which it follows, taking into account of (77), when 7 tends to zero, that

v’ el 1) is bounded in L (A, \o; H), 79a
m Enr Ty 3
('), n'?e) n'/?r!) is bounded in L3(A1, Ag; V). (79b)

On the other hand, from the preceding estimates, we may deduce that
J,u(ry) is bounded in L™ (Ay, Ao; H). (80)

Then (76), (79) and (80) imply that we can extract from the sequence (v,, e,,
), a subsequence still denoted by (v,, €,,7,), when 7 tends to zero, such that

Up, €, Tn) — (v, e,7) weakly x in L3°(Aq, A\g; H), 81a
s Eny Ty 3
vloel )y — (Ve r") weakly x in L3°(\i, \g; H), 81b
UR/AR] 3

Tu(ry) = U, weakly * in L=(A\y, Ag; H). (81c)

By a monotonicity argument, we show that ¥, = J,(r) (cf. Chapter 2 of [§]).
Then we may pass to the limit in (72) using (76b), (79b), (81) and finally we obtain
(68). We have proved existence of (v,e,r) that satisfy (68)-(69) such that (v,e,r)
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and (v', €', r") belong respectively to L3°(A1, A\o; H) and L3°(Ay, Ag; H). On the other
hand, we infer from (55) that in the sense of distribution, we get

1
vy = —¢€,
2

—em—|-7’m:1)/— 5
5 f

vy = 1"+ Tu(r).

Since e = 2u, then the Proposition follows. O
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