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Abstra
tThis paper dis
usses the stability of quasi-stati
 paths for a 
ontinuouselasti
-plasti
 system with hardening in a one-dimensional (bar) domain.Mathemati
al formulations, as well as existen
e and uniqueness results fordynami
 and quasi-stati
 problems involving elasti
-plasti
 systems with lin-ear kinemati
 hardening are re
alled in the paper. The 
on
ept of stability ofquasi-stati
 paths used here is essentially a 
ontinuity property of the systemdynami
 solutions relatively to the quasi-stati
 ones, when (as in Lyapunovstability) the size of initial perturbations is de
reased and the rate of appli-
ation of the for
es (whi
h plays the role of the small parameter in singularperturbation problems) is also de
reased to zero. The stability of the quasi-stati
 paths of these elasti
-plasti
 systems is the main result proved in thepaper.1 Introdu
tionThe relation that exists between, on one hand, dynami
 and quasi-stati
 problemsin me
hani
s and, on the other hand, the theory of singular perturbations was �rstdis
ussed by Martins et al. in [11℄. Those authors re
ognized the distin
t time s
alesinvolved in dynami
 and quasi-stati
 problems, and performed a 
hange of variablesin the governing system of dynami
 equations that 
onsists of repla
ing the physi
altime by a loading parameter. This leads to a system of equations where, in someof them, the highest order derivative with respe
t to the loading parameter appearsmultiplied by the time rate of that loading parameter. The quasi-stati
 problemand solution are expe
ted to be approa
hed when the time rate of 
hange of thatloading parameter is de
reased to zero.The variational formulation of plasti
ity problems with hardening was developed byJohnson [4, 5℄. Existen
e of a strong solution was proved and, under some additionalassumptions, a regularity result for the velo
ity �eld was obtained. The variationalformulation and some existen
e results for elasti
-perfe
t-plasti
 and elasti
-vis
o-plasti
 systems had already been obtained by Duvaut and Lions [3℄. In what 
on
ernsthe dynami
 problems in elasto-plasti
ity with hardening, we address the reader tothe works of Krej£í [7℄, Showalter and Shi [13, 14℄, Visintin [15℄, and the referen
estherein.After the study of �nite dimensional elasti
-plasti
 systems with hardening in [9℄,we prove here that also in the 
ontinuum 
ase the dynami
 evolutions remain 
loseto a quasi-stati
 path when the dynami
 evolutions start su�
iently 
lose to that1



quasi-stati
 path and the load is applied su�
iently slowly. In the present paper,the de�nition of stability given in [11℄ is adapted to the 
ontinuum 
ase.The stru
ture of the arti
le is the following. In Se
tion 2, the mathemati
al for-mulations for dynami
 and quasi-stati
 elasti
-plasti
 systems with hardening arepresented, and in Se
tion 3, existen
e and uniqueness results are re
alled, whi
h usethe theory of m-a

retive operators (see [1, 3, 13, 14, 16℄). The �nal goal of Se
tion4 is to prove the main stability result of this paper: Proposition 4.8 in Se
tion 4.4.The de�nition of stability of a quasi-stati
 path is adapted from [9, 10, 11℄ in Se
tion4.1. The relevant distan
e between a dynami
 and a quasi-stati
 path at ea
h valueof the (time-like) load parameter involves the H1 (semi-)norm of the displa
ementsand the L2 norms of the stresses in the plasti
 element and of the time rate of 
hangeof the displa
ements. In order to estimate that distan
e, an auxiliary spe
ial dy-nami
 solution is 
onsidered in Se
tion 4.4, whi
h has initial 
onditions that 
oin
idewith the quasi-stati
 solution at the initial time. The distan
e between the dynami
and the quasi-stati
 solutions at any value of the load parameter is then estimatedby the sum of the distan
e between the dynami
 and the spe
ial dynami
 solutionswith the distan
e between the spe
ial dynami
 and the quasi-stati
 solutions. InSe
tion 4.3, a priori estimates are obtained that are a little more general than thoseneeded for the distan
e between the spe
ial dynami
 and the quasi-stati
 solutions.We observe that: (i) the estimate of the distan
e between the quasi-stati
 solutionand the auxiliary spe
ial dynami
 solution is used in the proof of the main stabilityresult, instead of a dire
t estimate of the distan
e between the quasi-stati
 solutionand a dynami
 solution with arbitrary initial 
onditions, be
ause (
f. Proposition4.6) the latter would involve, on the right hand side, norms of the displa
ements andthe stresses in the plasti
 element that are stronger than those used for the samequantities on the left hand side; (ii) in order to estimate a term that involves these
ond derivative of the dynami
 displa
ements with respe
t to the load parameter,the governing system was di�erentiated with respe
t to the load parameter (Lemma4.4); (iii) this in turn required the use of a 
lassi
al Yosida regularization of theoriginal elasti
-problem, i.e. the elasto-vis
o-plasti
 approximation introdu
ed inSe
tion 4.2 together with its �nite dimensional (Galerkin) approximation.Finally note that this is the �rst mathemati
al dis
ussion of quasi-stati
 stabilityin smooth or non-smooth 
ontinuum problems involving the relation between dy-nami
 and quasi-stati
 solutions and an appropriate fun
tional setting. In fa
t mostrelated dis
ussions in the me
hani
al literature are based on de�nitions of stabil-ity involving an energeti
 (power rate) 
riterion that has an un
lear relationshipwith dynami
s, and ex
ludes from the analysis 
ases with non-symmetri
 sti�nessoperators; moreover at some point of those dis
ussions, �nite dimensional approxi-mations are often adopted and some of the arguments used may break down in anin�nite dimensional 
ontext [12℄. On the other hand, some related mathemati
alresults on the 
onvergen
e of dynami
 solutions to quasi-stati
 ones were obtainedby Duvaut and Lions [3℄ by making the mass tend to zero; sin
e the di�erent times
ales involved in dynami
 and quasi-stati
 problems are not brought into play andsin
e perturbations to the initial quasi-stati
 
on�guration are not 
onsidered, the2



physi
al relevan
e of those results and their relationship with the present study arelimited.2 Governing equationsWe 
onsider an elasti
-plasti
 bar with linear kinemati
 hardening that has thelength L along the x axis. Geometri
al linearity is assumed. The governing dynami
equation 
an be non-dimensionalized by using the non-dimensional time (τ) and loadparameter (λ, λ = λ1 + ετ), yielding
ε2u′′ − σx(u, r) = f(x, λ), (1)where u, r, f are the non-dimensional axial displa
ement, stress in the plasti
 el-ement, and applied for
e per unit length along the bar respe
tively; σ is the non-dimensional stress in the elasti
-plasti
 element, whi
h depends on u and r; and thesubs
ript x denotes a derivative with respe
t to x. The extension e is the derivativein spa
e of the non-dimensional generalized displa
ement u, and it 
an be de
om-posed into elasti
, ee, and plasti
, ep, parts:

e = 2ux = ee + ep. (2)The stress σ is related to the elasti
 part ee of the extension by means of Hooke'slaw, and is also related by the hardening law to the stress in the plasti
 element rand the plasti
 extension ep,
σ = 2r + ep = ee = 2ux − ep. (3)Therefore (3) leads to

σ(u, r) = ux + r. (4)Carrying (4) into (1), we obtain
ε2u′′ − uxx − rx = f. (5)Note that, in order that the non-dimensional relation and equation (4), (5) havesimple forms, the fa
tor 2 was introdu
ed in several points of (2) and (3), andunit sti�ness moduli were 
onsidered in the Hooke and hardening laws in (3). Thebehavior of the plasti
 element is 
hara
terized by the non-dimensional inequalityand �ow rule:

|r| ≤ 1, (ep)′





≥ 0 if r = +1,

= 0 if − 1 < r < +1,

≤ 0 if r = −1.

(6)The governing dynami
 equations (5), together with the 
onditions (6) 
an be putin the form of a singular perturbation system of �rst order di�erential equation andin
lusion. For that purpose, let C denote the following 
losed 
onvex set in L2(0, L)

C = {r ∈ L2(0, L) : |r| ≤ 1}, (7)3



and let sign−1(r) be the normal 
one to C at r ∈ L2(0, L). Then we observe that (6)
an be written in the di�erential in
lusion form:
(ep)′ ∈ sign−1(r). (8)Relations (3) lead to
(ep)′ = u′

x − r′. (9)Substituting (9) in (8), we get
u′

x − r′ ∈ sign−1(r). (10)We now introdu
e the following spa
es
H = L2(0, L), V = H1(0, L), V0 = H1

0 (0, L),and the set
W = {(u, r) ∈ V0 × C : σ = ux + r ∈ V }.We will denote the norm in H (resp. V ) by | · | (resp. ‖ · ‖) and the s
alar produ
tin H by ( · , · ). From (5) and (10) we �nally obtain the governing dynami
 system





εu′ − v = 0,

εv′ − uxx − rx = f,

u′
x − r′ ∈ sign−1(r),

(11)together with the Diri
hlet boundary 
onditions
u = v = 0 on {0, L} × (λ1, λ2), (12)and the initial 
onditions

(
v(λ1), u(λ1), r(λ1)

)
= (v1, u1, r1) ∈ V0 × W. (13)The 
orresponding quasi-stati
 system is then (let ε = 0 in (11))

{
−ūxx − r̄x = f,

ū′

x − r̄′ ∈ sign−1(r̄),
(14)with the Diri
hlet boundary 
onditions

ū = 0 on {0, L} × (λ1, λ2), (15)and the initial 
onditions
(
ū(λ1), r̄(λ1)

)
= (ū1, r̄1) ∈ W. (16)Note that, 
onsistently with the above, the quasi-stati
 displa
ement rate with re-spe
t to the physi
al time vanishes (v̄ ≡ 0). Besides, if X is a spa
e of s
alarfun
tions, the bold-fa
e notation Xd will denote the spa
e Xd.4



3 Existen
e and uniqueness of solution for the dy-nami
 and the quasi-stati
 systemsWe observe that the dynami
 and the quasi-stati
 systems introdu
ed in Se
tion2 
an be rewritten in a form that may be studied with the theory of m-a

retiveoperators. The de�nition and some properties of m-a

retive operators are re
alledin Se
tion 3.1. Existen
e and uniqueness results for the systems of Se
tion 2 arepresented in Se
tion 3.2.3.1 Reminder about m-a

retive operatorsWe re
all now the de�nition of m-a

retive operators whi
h is 
ontained in manytextbooks, see, e.g., [1℄ or [16℄. Let ( · , · )Y denote the s
alar produ
t in Y . Anoperator A in Y is a 
olle
tion of related pairs (x, y) ∈ Y × Y denoted by y ∈ A(x);the domain D(A) is the set of su
h x.De�nition 3.1 An operator A in Y with domain D(A) is 
alled m-a

retive, if itis monotone,
∀v1, v2 ∈ D(A), ∀w1 ∈ Av1, ∀w2 ∈ Av2, (w1 − w2, v1 − v2)Y ≥ 0,and maximal in the set of monotone operators, i.e. for all [v, w] ∈ Y × Y su
h that

(w − h, v − ζ)Y ≥ 0, ∀ζ ∈ D(A), h ∈ Aζ then w ∈ Av.If ϕ is a 
onvex proper and lower semi-
ontinuous fun
tion from Y to (−∞,
+ ∞], we 
an de�ne its sub-di�erential ∂ϕ as the operator in Y su
h that, for anypair (v, w) ∈ Y × Y ,

w ∈ ∂ϕ(v) ⇔ ∀h ∈ Y, ϕ(v + h) − ϕ(v) ≥ (w, h)Y .Noti
e that ∂ϕ is an m-a

retive operator. In parti
ular, we remark that the indi-
ator fun
tion of interval [−1, 1], ϕ(r) = χ[−1,1](r) for r ∈ R, given by χ[−1,1](r) = 0if r ∈ [−1, 1] and χ[−1,1](r) = +∞ otherwise, is a 
onvex proper and lower semi-
ontinuous fun
tion and its sub-di�erential is ∂ϕ(v) = sign−1(v). For more details,the reader 
an see the example 2.3.4, p.25 of [1℄.3.2 Existen
e and uniqueness of solutionThe dynami
 and the quasi-stati
 systems introdu
ed in Se
tion 2 
an be rewrittenin a form that may be studied with the theory ofm-a

retive operators. Consider the5



di�erential in
lusion problem that involves a multivalued operator A in the Hilbertspa
e Y , with domain D(A) = {x ∈ Y : Ax 6= ∅}:
x ∈ D(A), ∀λ ∈ [λ1, λ2], (17a)
x′ + Ax ∋ g a.e. on (λ1, λ2), (17b)
x(λ1) = x1. (17
)Re
all that existen
e and uniqueness of solution to this problem 
an be obtainedfrom the following Proposition:Proposition 3.2 Assume that A is an m-a

retive operator in the Hilbert spa
e Y ,

g belongs to W 1,∞(λ1, λ2; Y ) and x1 ∈ D(A). Then there exists a unique solution xof (17) belonging to W 1,∞(λ1, λ2; Y ).By applying Proposition 3.2, we prove existen
e and uniqueness of solution for thedynami
 system (11)�(13) and for the 
orresponding quasi-stati
 system (14)�(16).Di�erentiating with respe
t to x the �rst equation in the system (11), performing a
hange of unknown fun
tion by using e = 2ux and denoting x = (e/2, v, r), we getthe in
lusion (17b) with
A =

1

ε




0 −∂/∂x 0
−∂/∂x 0 −∂/∂x

0 −∂/∂x ε sign−1( · )


 and g =

1

ε




0
f
0


 . (18)First it 
an be 
he
ked that A is a monotone operator. Se
ond, if (g1, f, g2) ∈ H3 and

(v, e, r) ∈ H3, there exists h(r) ∈ sign−1(r) ∈ H for whi
h the resolvent equation
(1 + A)(e, v, r)T ∋ (g1, f/ε, g2)

T is equivalent to solving the system





εe − 2vx = εg1,

εv −
1

2
ex − rx = f,

εr − vx + εh(r) = εg2.

(19)This is equivalent to solve for v ∈ V the following equation:
v −

∂

∂x

( 1

ε2
vx +

1

2ε
g1

)
−

∂

∂x

((
1 + h( · )

)−1
( 1

ε2
vx +

1

ε
g2

))
=

1

ε
f in V ′.The form is 
oer
ive, and existen
e of a solution follows. The 
omponents of (e, r) ∈

H2 are obtained dire
tly from the �rst and third terms in (19) respe
tively. Hen
e,we 
on
lude that A is m-a

retive. For more details, see [13℄ and [14℄. Then Propo-sition 3.2, with Y = H3 and D(A) = {(e, v, r) ∈ Y : v ∈ V0, e/2 + r ∈ V, r ∈ C}yields the following Corollary:Corollary 3.3 Assume that f belongs to W 1,∞(λ1, λ2; H) and that (13) holds. Thenthere exists a unique solution x = (v, e, r) belonging to W 1,∞(λ1, λ2; H3) that solves(17) with A and g given by (18), and with r(λ) ∈ C for all λ ∈ [λ1, λ2], v and σ(e, r)belong respe
tively to L∞(λ1, λ2; V0) and L∞(λ1, λ2; V ).6



Remark 3.4 A

ording to Corollary 3.3 and sin
e e = 2ux, u = 0 on {0, L}, ubelongs to W 1,∞(λ1, λ2, V0).In what 
on
erns the quasi-stati
 problem, we di�erentiate the �rst identity in (14)with respe
t to the load parameter λ and we get
−ū′

xx = r̄′x + f ′, (20)together with the Diri
hlet boundary 
onditions (15). Sin
e this is an ellipti
 prob-lem for ū′ we 
on
lude that there exists a unique solution. For su
h solution ū′

x + r̄′depends linearly and 
ontinuously on f ′, i.e.
ū′

x + r̄′ = Bf ′, (21)where B is a 
ontinuous linear operator between the appropriate spa
es. Insertingthis in the in
lusion in (14) we �nally get the di�erential in
lusion
r̄′ + sign−1(r̄) ∋ Bf ′. (22)The sub-di�erential ∂ϕ(r̄) = sign−1(r̄) is an m-a

retive operator sin
e ϕ(r̄) is aproper 
onvex and lower semi-
ontinuous fun
tion. For x = r̄, A = sign−1, g = Bf ′and Y = H , we apply Proposition 3.2 and we obtain the following Corollary:Corollary 3.5 Assume that f belongs to W 1,∞(λ1, λ2; H) and (16) holds. Thenthere exists a unique solution (ū, r̄) of (14)�(16) su
h that (ū, r̄) and (ū′, r̄′) belongboth to L∞(λ1, λ2; V0 × H) and σ̄(ūx, r̄) belongs to L∞(λ1, λ2; V ).4 Stability of quasi-stati
 paths of elasti
-plasti
 sy-stemsIn Se
tion 4.1, we adapt the de�nition of stability of a quasi-stati
 path [9, 10,11℄ to the present elasti
-plasti
 problem with hardening, whi
h appears as a limit
ase of an elasto-vis
o-plasti
 problem. In Se
tion 4.2 we introdu
e an elasto-vis
o-plasti
 problem and we re
all existen
e and uniqueness results for that problem.The Galerkin approximation to that problem is also introdu
ed. In Se
tion 4.3, apriori estimates on the elasto-vis
o-plasti
 system are obtained whi
h, in Se
tion4.4, lead to the proof that those two solutions remain 
lose to ea
h other if thedynami
 solution of (11) is initially 
lose to the quasi-stati
 solution of (14) and theloading rate ε is su�
iently small.4.1 De�nition of stability of a quasi-stati
 pathThe mathemati
al de�nition of stability of a quasi-stati
 path at an equilibriumpoint is presented in the 
ontext of the governing dynami
 system (11)�(13) and thequasi-stati
 system (14)�(16). 7



De�nition 4.1 The quasi-stati
 path (ū(λ), r̄(λ)) is said to be stable at λ1 if thereexists 0 < ∆λ ≤ λ2 − λ1, su
h that, for all δ > 0 there exists ρ̄(δ) > 0 and ε̄(δ) > 0su
h that for all initial 
onditions u1, v1, r1 and ū1, r̄1 and all ε > 0 su
h that
|v1|

2 + |u1x − ū1x|
2 + |r1 − r̄1|

2 ≤ ρ̄(δ) and ε ≤ ε̄(δ),the solution (u(λ), v(λ), r(λ)) of the dynami
 system (11)�(13) satis�es
|v(λ)|2 + |ux(λ) − ūx(λ)|2 + |r(λ) − r̄(λ)|2 ≤ δ,for all λ ∈ [λ1, λ1 + ∆λ].For more details, the reader is referred to [11℄.4.2 Existen
e and uniqueness of solution for the elasto-vis
o-plasti
 systemsWe introdu
e here the elasto-vis
o-plasti
 systems:

{
ε2u′′

µ − uµxx − rµx = f,

u′

µx − r′µ = Jµ(rµ),
where Jµ(rµ) =

1

µ

(
rµ − projCrµ

)
, (23)with the Diri
hlet boundary 
onditions

uµ = 0 on {0, L} × (λ1, λ2), (24)and the initial 
onditions
(
vµ(λ1), uµ(λ1), rµ(λ1)

)
= (v1, u1, r1) ∈ V0 × W. (25)Here µ > 0 is the vis
osity parameter and projC denotes the proje
tion on the 
onvex

C.The variational formulation of the problem (23)�(25) is the following:




Find (uµ, rµ) ∈ V0 × H su
h that ∀(u∗, r∗) ∈ V0 × H,

(ε2u′′

µ, u
∗) + (uµx, u

∗

x) + (rµ, u
∗

x) = (f, u∗),

(r′µ, r
∗) − (u′

µx, r
∗) + (Jµ(rµ), r

∗) = 0,

(26)with the initial 
onditions (25). Note that this elasto-vis
o-plasti
 problem is anYosida regularization of the original elasti
-plasti
 problem. For a similar approxi-mation in the 
orresponding �nite-dimensional system see [9℄. Whenever 
onvenientwe shall use in the following the notation vµ = εu′

µ.We 
onsider now a �nite dimensional approximation of the above elasti
-vis
o-plasti
problem, whi
h is obtained in the following 
lassi
al manner. Let {wj}
∞

j=1 be a
omplete orthonormal sequen
e in H whose elements belong to H2(0, L). Let uµn
=8



∑n
i=1 gin(λ)wi(x) and rµn

=
∑n

i=1 hin(λ)wi(x) satisfying the following variationalformulation




For all u∗ =
∑n

i=1 g∗
in(λ)wi(x) and r∗ =

∑n
i=1 h∗

in(λ)wi(x),

(ε2u′′

µn

, u∗) + (uµnx, u
∗

x) + (rµn
, u∗

x) = (f, u∗),

(r′µn

, r∗) − (u′

µnx, r
∗) + (Jµ(rµn

), r∗) = 0,

(27)with
ε

∞∑

1

g′

in(λ1)wi(x) = v1,
∞∑

1

gin(λ1)wi(x) = u1,
∞∑

1

hin(λ1)wi(x) = r1. (28)The following results 
an be proved for the above approximations, when the dimen-sion parameter n tends to ∞, and the vis
osity parameter µ tends to 0.Proposition 4.2 Assume that f belongs to W 1,∞(λ1, λ2;H) and that (25) holds.Then there exists a unique solution (vµ, uµ, rµ) of (23)�(25) su
h that (vµ, uµ, rµ)and (v′

µ, u′

µ, r
′

µ) belong respe
tively to L∞(λ1, λ2; V0 × V0 × H) and L∞(λ1, λ2; H3)and σµ(uµx, rµ) belongs to L∞(λ1, λ2; V ). Moreover, as µ tends to zero, uµ and
σµ(uµx, rµ) 
onverge strongly to their limits.The Galerkin approximation des
ribed above together with a priori estimates basedon the variational formulations (26), (27) 
an be used to prove these results. Thereader 
an �nd detailed proofs in the Appendix or in [3℄. This Proposition 
an alsobe proved using the theory of m-a

retive operators.4.3 A priori estimatesLemma 4.3 Assume that (25) holds and f belongs to W 1,∞(λ1, λ2; H). Then in-dependently of µ > 0, for all λ belonging to (λ1, λ2), vµ(λ), uµx(λ) and rµ(λ) arebounded in H.Proof. This estimate results from the appli
ation of Gronwall's lemma to energyestimates. Choosing u∗ = u′

µ and r∗ = rµ in (26), and adding both identities, weobtain
(ε2u′′

µ, u
′

µ) + (uµx, u
′

µx) + (r′µ, rµ) + (Jµ(rµ), rµ) = (f, u′

µ). (29)Let us remark that (Jµ(rµ), rµ) is non negative then we dedu
e from (29) that
d

dξ

(
|εu′

µ|
2 + |uµx|

2 + |rµ|
2
)
≤ 2(f, u′

µ). (30)We integrate (30) over (λ1, λ), λ ∈ [λ1, λ2], and sin
e vµ = εu′

µ, we get
[
|vµ|

2 + |uµx|
2 + |rµ|

2
]λ

λ1

≤ 2

∫ λ

λ1

(f, u′

µ) dξ. (31)9



Integrating by parts in time the right hand side of (31), we obtain
[
|vµ|

2 + |uµx|
2 + |rµ|

2
]λ

λ1

≤ 2
[
(f, uµ)

]λ

λ1

− 2

∫ λ

λ1

(f ′, uµ) dξ.We estimate the produ
t (z, y) by |z|2/2γi + γi|y|
2/2, and, 
hoosing di�erent valuesfor γi, i = 1, 2, 3, in di�erent terms, we have

|vµ(λ)|2 + |uµx(λ)|2 + |rµ(λ)|2 ≤ c1 +
1

γ1

|uµ(λ)|2 +
1

γ3

∫ λ

λ1

|uµ|
2 dξ, (32)where

c1 =|v1|
2 + |u1x|

2 + |r1|
2 + γ2|u1|

2 +
1

γ2
|f(λ1)|

2

+ γ1‖f‖
2
L∞(λ1,λ2;H) + γ3‖f

′‖2
L2(λ1,λ2;H).On the other hand, the Poin
aré inequality (see [2, 6℄) shows that there exists astri
tly positive 
onstant c su
h that

|uµ(ξ)|
2 ≤ c|uµx(ξ)|

2, ∀ξ ∈ (λ1, λ2). (33)Using (33) in (32) and 
hoosing γ1 = γ3 = 2c and γ2 = 1 in (32), we may infer that
|vµ(λ)|2 +

1

2
|uµx(λ)|2 + |rµ(λ)|2 ≤ c1 +

1

2

∫ λ

λ1

|uµx|
2dξ. (34)By 
lassi
al Gronwall's lemma, we get

|uµx(λ)|2 ≤ 2c1 exp(λ2 − λ1). (35)As the last term on the right hand side of (34) is now easily estimated, we �nallyobtain
|vµ(λ)|2 + |uµx(λ)|2 + |rµ(λ)|2 ≤ c1

(
1 + (1 + (λ2 − λ1)) exp(λ2 − λ1)

)
,from whi
h the desired result follows. �Lemma 4.4 Assume that (25) holds and f belongs to W 2,∞(λ1, λ2; H). Then thereexists a subsequen
e, still denoted by v′

µn

, su
h that
v′

µn

⇀ v′

µ weakly ∗ in L∞(λ1, λ2; H). (36)Moreover there exists a positive 
onstant c(λ1, λ2) that depends on the interval of λand su
h that
|εv′

µn

(λ)|2 ≤ c(λ1, λ2)
(
‖v1‖

2 + |(u1xx + r1x) − (ū1xx + r̄1x)|
2

+ ε2|f ′(λ1)|
2 + ε2‖f ′‖2

L∞(λ1,λ2;H) + ε2‖f ′′‖2
L2(λ1,λ2;H)

)
.

(37)10



Proof. This estimate results from the energy estimate, Gronwall's lemma and theproof 
an be 
ompleted by a 
lassi
al Galerkin method. We drop now the subs
ript
n. We start by di�erentiating the governing system (27) with respe
t to λ, taking
u∗ = ε2u′′

µ and r∗ = ε2r′µ and �nally adding both identities, we get
(ε2u′′′

µ , ε2u′′

µ) + (u′

µx, ε
2u′′

µx) + (r′′µ, ε
2r′µ) +

(
(Jµ(rµ))

′, ε2r′µ
)

= (f ′, ε2u′′

µ). (38)The monotoni
ity of rµ 7→ Jµ(rµ) leads to
(
(Jµ(rµ(ξ)))′, r′µ(ξ)

)

= lim
∆ξ→0

1

(∆ξ)2

(
Jµ(rµ(ξ + ∆ξ)) − Jµ(rµ(ξ)), rµ(ξ + ∆ξ) − rµ(ξ)

)
≥ 0.Then we dedu
e from (38) that

d

dξ

(
|ε2u′′

µ|
2 + |εu′

µx|
2 + |εr′µ|

2
)
≤ 2(f ′, ε2u′′

µ). (39)We integrate (39) over (λ1, λ), λ ∈ [λ1, λ2], and sin
e vµ = εu′

µ, we get
[
|εv′

µ|
2 + |vµx|

2 + |εr′µ|
2
]λ

λ1

≤ 2

∫ λ

λ1

(εf ′, v′

µ) dξ. (40)On one hand, we subtra
t the �rst equation in (23) at λ1 to the �rst one in (14) at
λ1. From (25), we dedu
e that

|εv′(λ1)|
2 = |(u1xx + r1x) − (ū1xx + r̄1x)|

2. (41)Moreover the initial 
ondition rµ(λ1) = r1 ∈ C implies that Jµ(r1) = 0 and then these
ond identity in (23) leads to the following identity
|εr′µ(λ1)|

2 = |v1x|
2. (42)On the other hand, we integrate by parts the right hand side of (40), and we estimatethe produ
t (z, y) by |z|2/2γi + γi|y|

2/2, and, 
hoosing di�erent values for γi, i =
1, 2, 3, we get

2

∫ λ

λ1

(εf ′, v′

µ) dξ ≤ ε2γ1‖f
′‖2

L∞(λ1,λ2;H) +
1

γ1
|vµ(λ)|2

+
1

γ2

|v1|
2 + ε2γ2|f

′(λ1)|
2 + ε2γ3‖f

′′‖2
L2(λ1,λ2;H) +

1

γ3

∫ λ

λ1

|vµ|
2 dξ.

(43)Sin
e v = εu′ then the Diri
hlet boundary 
onditions and the Poin
aré inequalityshow that there exists a stri
tly positive 
onstant c su
h that
|vµ(ξ)|

2 ≤ c|vµx(ξ)|
2, ∀ξ ∈ (λ1, λ2). (44)11



Carrying (44) into (43) and 
hoosing γ1 = γ3 = 2c and γ2 = 1, we have
2

∫ λ

λ1

(εf ′, v′

µ) dξ ≤ 2cε2‖f ′‖2
L∞(λ1,λ2;H) +

1

2
|vµx(λ)|2

+ |v1|
2 + ε2|f ′(λ1)|

2 + 2cε2‖f ′′‖2
L2(λ1,λ2;H) +

1

2

∫ λ

λ1

|vµx|
2 dξ.

(45)Introdu
ing (41), (42) and (45) in (40), we obtain
|εv′

µ(λ)|2 +
1

2
|vµx(λ)|2 + |εr′µ(λ)|2 ≤ g(ε) +

1

2

∫ λ

λ1

|vµx|
2 dξ, (46)where

g(λ1, ε) = |v1|
2 + 2|v1x| + |(u1xx + r1x) − (ū1xx + r̄1x)|

2

+ ε2
(
|f ′(λ1)|

2 + 2c‖f ′‖2
L∞(λ1,λ2;H) + 2c‖f ′′‖2

L2(λ1,λ2;H)

)
.By 
lassi
al Gronwall's lemma, it is 
lear that

|vµx(λ)|2 ≤ 2g(λ1, ε) exp(λ2 − λ1). (47)Therefore the last term on the right hand side of (46) is now easily estimated. We�nally obtain
|εv′

µ(λ)|2 +
1

2
|vµx(λ)|2 + |εr′µ(λ)|2 ≤ g(λ1, ε)

(
1 + (λ2 − λ1) exp(λ2 − λ1)

)
,whi
h proves the Lemma. �Let us remark that the di�erential in
lusion system (11) 
an be written in a slightlydi�erent but equivalent form:






Find (u, r) ∈ V0 × C su
h that ∀(u∗, r∗) ∈ V0 × C,

(ε2u′′, u∗) + (ux, u
∗

x) + (r, u∗

x) = (f, u∗),

(r′, r − r∗) − (u′

x, r − r∗) ≤ 0,

(48)with the initial 
onditions (13).Lemma 4.5 Assume that (25) holds and f belongs to W 1,∞(λ1, λ2; H). Then forall λ belonging to (λ1, λ2),
vµ(λ) → v(λ) strongly in H,

uµx(λ) → ux(λ) strongly in H,

rµ(λ) → r(λ) strongly in H,as µ tends to 0. 12



Proof. These 
onvergen
e properties are obtained by energy estimating the dif-feren
e between the elasti
-vis
o-plasti
 system and the elasti
-plasti
 system withhardening. Choosing u∗

µ = u′

µ − u′ and u∗ = u′ − u′

µ respe
tively the �rst identitiesin (52) and (48), and adding both identities, we get
(ε2u′′

µ − ε2u′′, u′

µ − u′) + (uµx − ux, u
′

µx − u′

x) + (rµ − r, u′

µx − u′

x) = 0. (49)Observing that the se
ond identity in the system (23) implies that
(rµ − r, u′

µx − u′

x) = (r′µ − r′, rµ − r) + (Jµ(rµ), rµ − r) + (r′ − u′

x, rµ − r). (50)Carrying (50) into (49), integrating over (λ1, λ), λ ∈ [λ1, λ2], and using the initial
onditions (25) and (12) leads to the following identity
|ε(u′

µ(λ) − u′(λ))|2 + |uµx(λ) − ux(λ)|2 + |rµ(λ) − r(λ)|2

+ 2

∫ λ

λ1

(Jµ(rµ), rµ − r) dξ + 2

∫ λ

λ1

(r′ − u′

x, rµ − r) dξ = 0.
(51)Sin
e (Jµ(rµ), rµ − r) is non negative, vµ = εu′

µ and v = εu′, then we may dedu
efrom (51) that
|vµ(λ) − v(λ)|2 + |uµx(λ) − ux(λ)|2 + |rµ(λ) − r(λ)|2 ≤ 2

∫ λ

λ1

(r′ − u′

x, r − rµ) dξ.The 
on
lusion follows from Lemma 4.3. �On the other hand, the di�erential in
lusion system (14) 
an be written in a slightlydi�erent but equivalent form:




Find (ū, r̄) ∈ V0 × C su
h that ∀(ū∗, r̄∗) ∈ V0 × C,

(ūx, ū
∗

x) + (r̄, ū∗

x) = (f, ū∗),

(r̄′, r̄ − r̄∗) − (ū′

x, r̄ − r̄∗) ≤ 0,

(52)with the initial 
onditions (16).Proposition 4.6 Assume that f belongs to W 2,∞(λ1, λ2; H) and that (13) and (16)hold. Then there exist γi > 0, i = 1, 2, su
h that
|v(λ)|2 + |ux(λ) − ūx(λ)|2 + |r(λ) − r̄(λ)|2 ≤ γ1

(
‖v1‖

2

+ |u1x − ū1x|
2 + |r1 − r̄1|

2 + |(u1xx + r1x) − (ū1xx + r̄1x)|
2
)

+ εγ2.
(53)Proof. This result follows from an energy estimate of the di�eren
e between the dy-nami
 elasti
-vis
o-plasti
 system and the quasi-stati
 elasti
-plasti
 system. Choos-ing u∗ = u′

µ− ū′ and r∗ = rµ− r̄ in (26), ū∗ = ū′−u′

µ and r̄∗ = r in (52), and addingthe resulting expressions, we obtain the following inequality:
(ε2u′′

µ, u
′

µ) + (uµx − ūx, u
′

µx − ū′

x) + (r′µ − r̄′, rµ − r̄)

+ (r̄′ − ū′

x, rµ − r) + (Jµ(rµ), rµ − r̄) ≤ (ε2u′′

µ, ū
′).

(54)13



Sin
e r̄ ∈ C then Jµ(r̄) = 0, and due to the monotoni
ity of Jµ, we get
(Jµ(rµ), rµ − r̄) = (Jµ(rµ) − Jµ(r̄), rµ − r̄) ≥ 0. (55)Using (55) in (54) and sin
e vµ = εu′

µ, we infer that
d

dξ

(
|vµ|

2 + |uµx − ūx|
2 + |rµ − r̄|2

)
+ 2(r̄′ − ū′

x, rµ − r) ≤ 2(εv′

µ, ū
′). (56)We integrate (56) over (λ1, λ), λ ∈ [λ1, λ2] and we obtain

|vµ(λ)|2 + |uµx(λ) − ūx(λ)|2 + |rµ(λ) − r̄(λ)|2

+ 2

∫ λ

λ1

(r̄′ − ū′

x, rµ − r) dξ ≤ c(λ1) + 2

∫ λ

λ1

(εv′

µ, ū
′) dξ,

(57)where
c(λ1) = |v1|

2 + |u1x − ū1x|
2 + |r1 − r̄1|

2.Let us observe that
1

2

(
|v(λ)|2 + |ux(λ) − ūx(λ)|2 + |r(λ) − r̄(λ)|2

)
− gµ(λ)

≤ |vµ(λ)|2 + |uµx(λ) − ūx(λ)|2 + |rµ(λ) − r̄(λ)|2,
(58)where

gµ(λ) = |vµ(λ) − v(λ)|2 + |uµx(λ) − ux(λ)|2 + |rµ(λ) − r(λ)|2.Carrying (58) into (57) and using Cau
hy-S
hwarz's inequality we have
1

2

(
|v(λ)|2 + |ux(λ) − ūx(λ)|2 + |r(λ) − r̄(λ)|2

)
+ hµ,n(λ1, λ)

≤ c(λ1) + 2
(∫ λ

λ1

|εv′

µn

|2 dξ
)1/2(∫ λ

λ1

|ū′|2 dξ
)1/2

,
(59)where

hµ,n(λ1, λ) = 2

∫ λ

λ1

(r̄′ − ū′

x, rµ − r) dξ + 2

∫ λ

λ1

(
ε(v′

µn

− v′

µ), ū′
)
dξ − gµ(λ).Introdu
ing (37), the estimate obtained in Lemma 4.4, in (59), we dedu
e that thereexist γi > 0, i = 1, 2, su
h that

1

2

(
|v(λ)|2 + |ux(λ) − ūx(λ)|2 + |r(λ) − r̄(λ)|2

)
+ hµ,n(λ1, λ) ≤ γ1

(
‖v1‖

2

+ |u1x − ū1x|
2 + |r1 − r̄1|

2 + |(u1xx + r1x) − (ū1xx + r̄1x)|
2
)

+ εγ2.The 
on
lusion follows then from Lemma 4.5. �As observed in the Introdu
tion, a dire
t estimation of the distan
e between thequasi-stati
 solution and an arbitrary dynami
 solution of the elasti
-plasti
 system,14



leads (be
ause of the required di�erentiation with respe
t to the load parameter andthe additional initial 
onditions) to an estimate (53) where, on the right hand side,the initial 
onditions on u and r are a�e
ted by norms that are not the same as thoseon the left hand side. This situation is over
ome in the next se
tion by de
omposingthat distan
e into two parts: the distan
e between an arbitrary dynami
 solution anda spe
ial dynami
 solution, and the distan
e between the spe
ial dynami
 solutionand the quasi-stati
 solution.4.4 Stability of a quasi-stati
 pathWe start by estimating the distan
e between an arbitrary dynami
 solution of theelasti
-plasti
 problem and a spe
ial dynami
 solution (ṽ, ũ, r̃) that solves (23) withthe the Diri
hlet boundary 
onditions (12) and with initial 
onditions that 
oin
idewith the quasi-stati
 solution at the initial time:
(
ṽ(λ1), ũ(λ1), r̃(λ1)

)
= (εū′

1, ū1, r̄1) ∈ V0 × W. (60)Let us remark that the variational formulation of that problem is the following:




Find (ũ, r̃) ∈ V0 × C su
h that ∀(ũ∗, r̃∗) ∈ V0 × C,

(ε2ũ′′, ũ∗) + (ũx, ũ
∗
x) + (r̃, ũ∗

x) = (f, ũ∗),

(r̃′, r̃ − r̃∗) − (ũ′

x, r̃ − r̃∗) ≤ 0,

(61)with the initial 
onditions (60).Lemma 4.7 Assume that (13) and (60) hold and that f belongs to W 1,∞(λ1,
λ2; H). Then

|v(λ) − ṽ(λ)|2 + |ux(λ) − ũx(λ)|2 + |r(λ) − r̃(λ)|2

≤ |v1 − ṽ(λ1)|
2 + |u1x − ū1x|

2 + |r1 − r̄1|
2.

(62)Proof. On
e again we use energy te
hniques to 
ompare two dynami
 elasti
-plasti
problems with hardening that have the same boundary 
onditions but di�erent initial
onditions. Choosing u∗ = u′ − ũ′ and ũ∗ = ũ′ − u′ in (48) and (61), respe
tively,we have
(
ε2(u′′ − ũ′′), u′ − ũ′

)
+ (ux − ũx, u

′

x − ũ′

x) + (r − r̃, u′

x − ũ′

x) = 0. (63)On the other hand, taking r∗ = r̃ and r̃∗ = r in (48) and (61), respe
tively, we get
(r′ − r̃′, r − r̃) ≤ (r − r̃, u′

x − ũ′

x). (64)Carrying (64) into (63) and sin
e v = εu′ and ṽ = εũ′, we obtain
d

dξ

(
|v − ṽ|2 + |ux − ũx|

2 + |r − r̃|2
)
≤ 0. (65)Integrating (65) over (λ1, λ), λ ∈ [λ1, λ2], and using the initial 
onditions (13) and(60), leads to the result in the Lemma. �15



Proposition 4.8 (Stability). Assume that (13) and (16) hold and that f belongsto W 2,∞(λ1, λ2; H). Then there exist γ > 0 su
h that for 0 < ε < 1,
|v(λ)|2 + |ux(λ) − ūx(λ)|2 + |r(λ) − r̄(λ)|2

≤ γ
(
|v1|

2 + |u1x − ū1x|
2 + |r1 − r̄1|

2 + ε
)
.Proof. The stability result follows from the estimates obtained in Proposition 4.6and Lemma 4.7. Let us remark that (62) leads to the following inequality

1

2

(
|v(λ)|2 + |ux(λ) − ūx(λ)|2 + |r(λ) − r̄(λ)|2

)

≤ c(λ1) + |ṽ(λ)|2 + |ũx(λ) − ūx(λ)|2 + |r̃(λ) − r̄(λ)|2,
(66)where

c(λ1) = |v1 − ṽ(λ1)|
2 + |u1x − ū1x|

2 + |r1 − r̄1|
2.On the other hand, 
hoosing u = ũ, v = ṽ and r = r̃ in (53) and sin
e ũ(λ1) = ū1and r̃(λ1) = r̄1, we obtain

|ṽ(λ)|2 + |ũx(λ) − ūx(λ)|2 + |r̃(λ) − r̄(λ)|2 ≤ γ1‖ṽ(λ1)‖
2 + εγ2. (67)Introdu
ing (67) in (66), we get

|v(λ)|2 + |ux(λ) − ūx(λ)|2 + |r(λ) − r̄(λ)|2 ≤ γ1‖ṽ(λ1)‖
2 + 2c(λ1) + εγ2.Sin
e ū′(λ1) and ū′

x(λ1) are bounded in H and ṽ(λ1) = εū′
1 then the Propositionfollows. �AppendixProof. (Proposition 4.2). We drop the subs
ript µ in the proof and without loss ofgenerality, we may assume here that ε = 1 and using the fa
t that e = 2ux, then(26) with the initial 
onditions (25) be
ome





1

2
(e′, e∗) + (v, e∗x) = 0,

(v′, v∗) +
1

2
(e, v∗

x) + (r, v∗

x) = (f, v∗),

(r′, r∗) − (vx, r
∗) + (Jµ(r), r

∗) = 0,

(68)with the initial 
onditions
(
vη(λ1), eη(λ1), rη(λ1)

)
= (v1, u1x, r1) ∈ V0 × W. (69)Let us �rst prove the uniqueness. Let (v, e, r) and (v∗, e∗, r∗) be two possible solutionsof (68).

v̂ = v − v∗, ê = (e − e∗)/2, r̂ = r − r∗.16



Therefore we dedu
e from (68) and from the analogous equations for v∗, e∗, r∗, that
(ê′, e∗) + (v̂, e∗x) + (v̂′, v∗) + (ê, v∗

x) + (r̂′, r∗) + (Jµ(r) − Jµ(r∗), r
∗) = 0. (70)Choosing v∗ = v̂, e∗ = ê, r∗ = r̂ in (70), we obtain

1

2

d

dξ

(
|v̂|2 + |ê|2 + |r̂|2

)
+ (v̂, êx) + (ê, v̂x) + (Jµ(r) −Jµ(r∗), r − r∗) = 0. (71)Sin
e (v̂, êx) + (ê, v̂x) = 0 and r 7→ Jµ(r) is monotone then we infer from (71) that

d

dξ

(
|v̂|2 + |ê|2 + |r̂|2

)
≤ 0,whi
h, together with the fa
t that v̂(λ1) = ê(λ1) = r̂(λ1) = 0, leads to v̂ = ê = r̂ = 0and the uniqueness follows.We regularize (68) in the spa
e variable. Let η be a stri
tly positive parameter,whi
h will tend toward zero. We 
onsider now the regularized problem





1

2
(e′η, e

∗) + (vη, e
∗

x) + η(eηx, e
∗

x) = 0,

(v′

η, v
∗) +

1

2
(eη, v

∗

x) + (rη, v
∗

x) + η(vηx, v
∗

x) = (f, v∗),

(r′η, r
∗) − (vηx, r

∗) + (Jµ(rη), r
∗) + η(rηx, r

∗

x) = 0.

(72)with the initial 
onditions
(
vη(λ1), eη(λ1), rη(λ1)

)
= (v1, u1x, r1) ∈ V0 × W. (73)Re
all that for every η > 0, (72)�(73) has a unique solution. This follows from thegeneral theory of monotone paraboli
 problems (
f. [8℄). We establish now a prioriestimates and then we pass to the limit when η tends to zero.First a priori estimate. Taking v∗ = vη, e∗ = eη/2, r∗ = rη, we obtain

1

2

d

dξ

(1

2
|vη|

2 + |eη|
2 + |rη|

2
)

+
1

2

(
(vη, eηx) + (eη, vηx)

)

+ η
(1

2
|vηx|

2 + |eηx|
2 + |rηx|

2
)

+ (Jµ(rη), rη) = (f, vη).

(74)Sin
e
(vη, eηx) + (eη, vηx) = 0 and (Jµ(rη), rη) ≥ 0,then we dedu
e from (74) that

1

2

d

dξ

(1

2
|vη|

2 + |eη|
2 + |rη|

2
)

+ η
(1

2
|vηx|

2 + |eηx|
2 + |rηx|

2
)
≤ (f, vη). (75)From (75), we may 
on
lude, when η tends to zero, that

(vη, eη, rη) is bounded in L∞

3 (λ1, λ2; H), (76a)
(η1/2vη, η

1/2eη, η
1/2rη) is bounded in L2

3(λ1, λ2; V ). (76b)17



Moreover, setting λ = λ1 in (72), we 
on
lude thanks to the initial 
onditions (73)that 



1

2
(e′η(λ1), e

∗) = (v1x, e
∗) − η(u1xx, e

∗
x),

(v′

η(λ1), v
∗) = (f(λ1) + u1xx + r1x, v

∗) − η(v1x, v
∗

x),

(r′η(λ1), r
∗) = (v1x, r

∗) − η(r1x, r
∗
x),from whi
h it follows, when η tends to zero, that

(
v′

η(λ1), e
′

η(λ1), r
′

η(λ1)
) is bounded in H3. (77)Se
ond a priori estimate. Di�erentiating (72) with respe
t to λ (this is legitimate if(72) is approximated by Galerkin method), and repla
ing e∗, v∗ and r∗ respe
tivelyby eη, vη and rη, we get

1

2

d

dξ

(1

2
|v′

η|
2 + |e′η|

2 + |r′η|
2
)

+
1

2

(
(v′

η, e
′

ηx) + (e′η, v
′

ηx)
)

+ η
(1

2
|v′

ηx|
2 + |e′ηx|

2 + |r′ηx|
2
)

+ (J ′

µ(rη), r
′

η) = (f ′, vη).

(78)Using the same argument already given in Lemma 4.4, it is 
lear that the last term onthe right hand side of (78) is non negative, on the other hand, (v′

η, e
′

ηx)+(e′η, v
′

ηx) = 0,then we dedu
e from (78) that
1

2

d

dξ

(1

2
|v′

η|
2 + |e′η|

2 + |r′η|
2
)

+ η
(1

2
|v′

ηx|
2 + |e′ηx|

2 + |r′ηx|
2
)
≤ (f ′, vη),from whi
h it follows, taking into a

ount of (77), when η tends to zero, that

(v′

η, e
′

η, r
′

η) is bounded in L∞

3 (λ1, λ2; H), (79a)
(η1/2v′

η, η
1/2e′η, η

1/2r′η) is bounded in L2
3(λ1, λ2; V ). (79b)On the other hand, from the pre
eding estimates, we may dedu
e that

Jµ(rη) is bounded in L∞(λ1, λ2; H). (80)Then (76), (79) and (80) imply that we 
an extra
t from the sequen
e (vη, eη,
rη), a subsequen
e still denoted by (vη, eη, rη), when η tends to zero, su
h that

(vη, eη, rη) ⇀ (v, e, r) weakly ∗ in L∞

3 (λ1, λ2; H), (81a)
(v′

η, e
′

η, r
′

η) ⇀ (v′, e′, r′) weakly ∗ in L∞

3 (λ1, λ2; H), (81b)
Jµ(rη) ⇀ Ψµ weakly ∗ in L∞(λ1, λ2; H). (81
)By a monotoni
ity argument, we show that Ψµ = Jµ(r) (
f. Chapter 2 of [8℄).Then we may pass to the limit in (72) using (76b), (79b), (81) and �nally we obtain(68). We have proved existen
e of (v, e, r) that satisfy (68)�(69) su
h that (v, e, r)18



and (v′, e′, r′) belong respe
tively to L∞

3 (λ1, λ2; H) and L∞

3 (λ1, λ2; H). On the otherhand, we infer from (55) that in the sense of distribution, we get





vx =
1

2
e′,

1

2
ex + rx = v′ − f,

vx = r′ + Jµ(r).Sin
e e = 2ux then the Proposition follows. �Referen
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