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AbstratThis paper disusses the stability of quasi-stati paths for a ontinuouselasti-plasti system with hardening in a one-dimensional (bar) domain.Mathematial formulations, as well as existene and uniqueness results fordynami and quasi-stati problems involving elasti-plasti systems with lin-ear kinemati hardening are realled in the paper. The onept of stability ofquasi-stati paths used here is essentially a ontinuity property of the systemdynami solutions relatively to the quasi-stati ones, when (as in Lyapunovstability) the size of initial perturbations is dereased and the rate of appli-ation of the fores (whih plays the role of the small parameter in singularperturbation problems) is also dereased to zero. The stability of the quasi-stati paths of these elasti-plasti systems is the main result proved in thepaper.1 IntrodutionThe relation that exists between, on one hand, dynami and quasi-stati problemsin mehanis and, on the other hand, the theory of singular perturbations was �rstdisussed by Martins et al. in [11℄. Those authors reognized the distint time salesinvolved in dynami and quasi-stati problems, and performed a hange of variablesin the governing system of dynami equations that onsists of replaing the physialtime by a loading parameter. This leads to a system of equations where, in someof them, the highest order derivative with respet to the loading parameter appearsmultiplied by the time rate of that loading parameter. The quasi-stati problemand solution are expeted to be approahed when the time rate of hange of thatloading parameter is dereased to zero.The variational formulation of plastiity problems with hardening was developed byJohnson [4, 5℄. Existene of a strong solution was proved and, under some additionalassumptions, a regularity result for the veloity �eld was obtained. The variationalformulation and some existene results for elasti-perfet-plasti and elasti-viso-plasti systems had already been obtained by Duvaut and Lions [3℄. In what onernsthe dynami problems in elasto-plastiity with hardening, we address the reader tothe works of Krej£í [7℄, Showalter and Shi [13, 14℄, Visintin [15℄, and the referenestherein.After the study of �nite dimensional elasti-plasti systems with hardening in [9℄,we prove here that also in the ontinuum ase the dynami evolutions remain loseto a quasi-stati path when the dynami evolutions start su�iently lose to that1



quasi-stati path and the load is applied su�iently slowly. In the present paper,the de�nition of stability given in [11℄ is adapted to the ontinuum ase.The struture of the artile is the following. In Setion 2, the mathematial for-mulations for dynami and quasi-stati elasti-plasti systems with hardening arepresented, and in Setion 3, existene and uniqueness results are realled, whih usethe theory of m-aretive operators (see [1, 3, 13, 14, 16℄). The �nal goal of Setion4 is to prove the main stability result of this paper: Proposition 4.8 in Setion 4.4.The de�nition of stability of a quasi-stati path is adapted from [9, 10, 11℄ in Setion4.1. The relevant distane between a dynami and a quasi-stati path at eah valueof the (time-like) load parameter involves the H1 (semi-)norm of the displaementsand the L2 norms of the stresses in the plasti element and of the time rate of hangeof the displaements. In order to estimate that distane, an auxiliary speial dy-nami solution is onsidered in Setion 4.4, whih has initial onditions that oinidewith the quasi-stati solution at the initial time. The distane between the dynamiand the quasi-stati solutions at any value of the load parameter is then estimatedby the sum of the distane between the dynami and the speial dynami solutionswith the distane between the speial dynami and the quasi-stati solutions. InSetion 4.3, a priori estimates are obtained that are a little more general than thoseneeded for the distane between the speial dynami and the quasi-stati solutions.We observe that: (i) the estimate of the distane between the quasi-stati solutionand the auxiliary speial dynami solution is used in the proof of the main stabilityresult, instead of a diret estimate of the distane between the quasi-stati solutionand a dynami solution with arbitrary initial onditions, beause (f. Proposition4.6) the latter would involve, on the right hand side, norms of the displaements andthe stresses in the plasti element that are stronger than those used for the samequantities on the left hand side; (ii) in order to estimate a term that involves theseond derivative of the dynami displaements with respet to the load parameter,the governing system was di�erentiated with respet to the load parameter (Lemma4.4); (iii) this in turn required the use of a lassial Yosida regularization of theoriginal elasti-problem, i.e. the elasto-viso-plasti approximation introdued inSetion 4.2 together with its �nite dimensional (Galerkin) approximation.Finally note that this is the �rst mathematial disussion of quasi-stati stabilityin smooth or non-smooth ontinuum problems involving the relation between dy-nami and quasi-stati solutions and an appropriate funtional setting. In fat mostrelated disussions in the mehanial literature are based on de�nitions of stabil-ity involving an energeti (power rate) riterion that has an unlear relationshipwith dynamis, and exludes from the analysis ases with non-symmetri sti�nessoperators; moreover at some point of those disussions, �nite dimensional approxi-mations are often adopted and some of the arguments used may break down in anin�nite dimensional ontext [12℄. On the other hand, some related mathematialresults on the onvergene of dynami solutions to quasi-stati ones were obtainedby Duvaut and Lions [3℄ by making the mass tend to zero; sine the di�erent timesales involved in dynami and quasi-stati problems are not brought into play andsine perturbations to the initial quasi-stati on�guration are not onsidered, the2



physial relevane of those results and their relationship with the present study arelimited.2 Governing equationsWe onsider an elasti-plasti bar with linear kinemati hardening that has thelength L along the x axis. Geometrial linearity is assumed. The governing dynamiequation an be non-dimensionalized by using the non-dimensional time (τ) and loadparameter (λ, λ = λ1 + ετ), yielding
ε2u′′ − σx(u, r) = f(x, λ), (1)where u, r, f are the non-dimensional axial displaement, stress in the plasti el-ement, and applied fore per unit length along the bar respetively; σ is the non-dimensional stress in the elasti-plasti element, whih depends on u and r; and thesubsript x denotes a derivative with respet to x. The extension e is the derivativein spae of the non-dimensional generalized displaement u, and it an be deom-posed into elasti, ee, and plasti, ep, parts:

e = 2ux = ee + ep. (2)The stress σ is related to the elasti part ee of the extension by means of Hooke'slaw, and is also related by the hardening law to the stress in the plasti element rand the plasti extension ep,
σ = 2r + ep = ee = 2ux − ep. (3)Therefore (3) leads to

σ(u, r) = ux + r. (4)Carrying (4) into (1), we obtain
ε2u′′ − uxx − rx = f. (5)Note that, in order that the non-dimensional relation and equation (4), (5) havesimple forms, the fator 2 was introdued in several points of (2) and (3), andunit sti�ness moduli were onsidered in the Hooke and hardening laws in (3). Thebehavior of the plasti element is haraterized by the non-dimensional inequalityand �ow rule:

|r| ≤ 1, (ep)′





≥ 0 if r = +1,

= 0 if − 1 < r < +1,

≤ 0 if r = −1.

(6)The governing dynami equations (5), together with the onditions (6) an be putin the form of a singular perturbation system of �rst order di�erential equation andinlusion. For that purpose, let C denote the following losed onvex set in L2(0, L)

C = {r ∈ L2(0, L) : |r| ≤ 1}, (7)3



and let sign−1(r) be the normal one to C at r ∈ L2(0, L). Then we observe that (6)an be written in the di�erential inlusion form:
(ep)′ ∈ sign−1(r). (8)Relations (3) lead to
(ep)′ = u′

x − r′. (9)Substituting (9) in (8), we get
u′

x − r′ ∈ sign−1(r). (10)We now introdue the following spaes
H = L2(0, L), V = H1(0, L), V0 = H1

0 (0, L),and the set
W = {(u, r) ∈ V0 × C : σ = ux + r ∈ V }.We will denote the norm in H (resp. V ) by | · | (resp. ‖ · ‖) and the salar produtin H by ( · , · ). From (5) and (10) we �nally obtain the governing dynami system





εu′ − v = 0,

εv′ − uxx − rx = f,

u′
x − r′ ∈ sign−1(r),

(11)together with the Dirihlet boundary onditions
u = v = 0 on {0, L} × (λ1, λ2), (12)and the initial onditions

(
v(λ1), u(λ1), r(λ1)

)
= (v1, u1, r1) ∈ V0 × W. (13)The orresponding quasi-stati system is then (let ε = 0 in (11))

{
−ūxx − r̄x = f,

ū′

x − r̄′ ∈ sign−1(r̄),
(14)with the Dirihlet boundary onditions

ū = 0 on {0, L} × (λ1, λ2), (15)and the initial onditions
(
ū(λ1), r̄(λ1)

)
= (ū1, r̄1) ∈ W. (16)Note that, onsistently with the above, the quasi-stati displaement rate with re-spet to the physial time vanishes (v̄ ≡ 0). Besides, if X is a spae of salarfuntions, the bold-fae notation Xd will denote the spae Xd.4



3 Existene and uniqueness of solution for the dy-nami and the quasi-stati systemsWe observe that the dynami and the quasi-stati systems introdued in Setion2 an be rewritten in a form that may be studied with the theory of m-aretiveoperators. The de�nition and some properties of m-aretive operators are realledin Setion 3.1. Existene and uniqueness results for the systems of Setion 2 arepresented in Setion 3.2.3.1 Reminder about m-aretive operatorsWe reall now the de�nition of m-aretive operators whih is ontained in manytextbooks, see, e.g., [1℄ or [16℄. Let ( · , · )Y denote the salar produt in Y . Anoperator A in Y is a olletion of related pairs (x, y) ∈ Y × Y denoted by y ∈ A(x);the domain D(A) is the set of suh x.De�nition 3.1 An operator A in Y with domain D(A) is alled m-aretive, if itis monotone,
∀v1, v2 ∈ D(A), ∀w1 ∈ Av1, ∀w2 ∈ Av2, (w1 − w2, v1 − v2)Y ≥ 0,and maximal in the set of monotone operators, i.e. for all [v, w] ∈ Y × Y suh that

(w − h, v − ζ)Y ≥ 0, ∀ζ ∈ D(A), h ∈ Aζ then w ∈ Av.If ϕ is a onvex proper and lower semi-ontinuous funtion from Y to (−∞,
+ ∞], we an de�ne its sub-di�erential ∂ϕ as the operator in Y suh that, for anypair (v, w) ∈ Y × Y ,

w ∈ ∂ϕ(v) ⇔ ∀h ∈ Y, ϕ(v + h) − ϕ(v) ≥ (w, h)Y .Notie that ∂ϕ is an m-aretive operator. In partiular, we remark that the indi-ator funtion of interval [−1, 1], ϕ(r) = χ[−1,1](r) for r ∈ R, given by χ[−1,1](r) = 0if r ∈ [−1, 1] and χ[−1,1](r) = +∞ otherwise, is a onvex proper and lower semi-ontinuous funtion and its sub-di�erential is ∂ϕ(v) = sign−1(v). For more details,the reader an see the example 2.3.4, p.25 of [1℄.3.2 Existene and uniqueness of solutionThe dynami and the quasi-stati systems introdued in Setion 2 an be rewrittenin a form that may be studied with the theory ofm-aretive operators. Consider the5



di�erential inlusion problem that involves a multivalued operator A in the Hilbertspae Y , with domain D(A) = {x ∈ Y : Ax 6= ∅}:
x ∈ D(A), ∀λ ∈ [λ1, λ2], (17a)
x′ + Ax ∋ g a.e. on (λ1, λ2), (17b)
x(λ1) = x1. (17)Reall that existene and uniqueness of solution to this problem an be obtainedfrom the following Proposition:Proposition 3.2 Assume that A is an m-aretive operator in the Hilbert spae Y ,

g belongs to W 1,∞(λ1, λ2; Y ) and x1 ∈ D(A). Then there exists a unique solution xof (17) belonging to W 1,∞(λ1, λ2; Y ).By applying Proposition 3.2, we prove existene and uniqueness of solution for thedynami system (11)�(13) and for the orresponding quasi-stati system (14)�(16).Di�erentiating with respet to x the �rst equation in the system (11), performing ahange of unknown funtion by using e = 2ux and denoting x = (e/2, v, r), we getthe inlusion (17b) with
A =

1

ε




0 −∂/∂x 0
−∂/∂x 0 −∂/∂x

0 −∂/∂x ε sign−1( · )


 and g =

1

ε




0
f
0


 . (18)First it an be heked that A is a monotone operator. Seond, if (g1, f, g2) ∈ H3 and

(v, e, r) ∈ H3, there exists h(r) ∈ sign−1(r) ∈ H for whih the resolvent equation
(1 + A)(e, v, r)T ∋ (g1, f/ε, g2)

T is equivalent to solving the system





εe − 2vx = εg1,

εv −
1

2
ex − rx = f,

εr − vx + εh(r) = εg2.

(19)This is equivalent to solve for v ∈ V the following equation:
v −

∂

∂x

( 1

ε2
vx +

1

2ε
g1

)
−

∂

∂x

((
1 + h( · )

)−1
( 1

ε2
vx +

1

ε
g2

))
=

1

ε
f in V ′.The form is oerive, and existene of a solution follows. The omponents of (e, r) ∈

H2 are obtained diretly from the �rst and third terms in (19) respetively. Hene,we onlude that A is m-aretive. For more details, see [13℄ and [14℄. Then Propo-sition 3.2, with Y = H3 and D(A) = {(e, v, r) ∈ Y : v ∈ V0, e/2 + r ∈ V, r ∈ C}yields the following Corollary:Corollary 3.3 Assume that f belongs to W 1,∞(λ1, λ2; H) and that (13) holds. Thenthere exists a unique solution x = (v, e, r) belonging to W 1,∞(λ1, λ2; H3) that solves(17) with A and g given by (18), and with r(λ) ∈ C for all λ ∈ [λ1, λ2], v and σ(e, r)belong respetively to L∞(λ1, λ2; V0) and L∞(λ1, λ2; V ).6



Remark 3.4 Aording to Corollary 3.3 and sine e = 2ux, u = 0 on {0, L}, ubelongs to W 1,∞(λ1, λ2, V0).In what onerns the quasi-stati problem, we di�erentiate the �rst identity in (14)with respet to the load parameter λ and we get
−ū′

xx = r̄′x + f ′, (20)together with the Dirihlet boundary onditions (15). Sine this is an ellipti prob-lem for ū′ we onlude that there exists a unique solution. For suh solution ū′

x + r̄′depends linearly and ontinuously on f ′, i.e.
ū′

x + r̄′ = Bf ′, (21)where B is a ontinuous linear operator between the appropriate spaes. Insertingthis in the inlusion in (14) we �nally get the di�erential inlusion
r̄′ + sign−1(r̄) ∋ Bf ′. (22)The sub-di�erential ∂ϕ(r̄) = sign−1(r̄) is an m-aretive operator sine ϕ(r̄) is aproper onvex and lower semi-ontinuous funtion. For x = r̄, A = sign−1, g = Bf ′and Y = H , we apply Proposition 3.2 and we obtain the following Corollary:Corollary 3.5 Assume that f belongs to W 1,∞(λ1, λ2; H) and (16) holds. Thenthere exists a unique solution (ū, r̄) of (14)�(16) suh that (ū, r̄) and (ū′, r̄′) belongboth to L∞(λ1, λ2; V0 × H) and σ̄(ūx, r̄) belongs to L∞(λ1, λ2; V ).4 Stability of quasi-stati paths of elasti-plasti sy-stemsIn Setion 4.1, we adapt the de�nition of stability of a quasi-stati path [9, 10,11℄ to the present elasti-plasti problem with hardening, whih appears as a limitase of an elasto-viso-plasti problem. In Setion 4.2 we introdue an elasto-viso-plasti problem and we reall existene and uniqueness results for that problem.The Galerkin approximation to that problem is also introdued. In Setion 4.3, apriori estimates on the elasto-viso-plasti system are obtained whih, in Setion4.4, lead to the proof that those two solutions remain lose to eah other if thedynami solution of (11) is initially lose to the quasi-stati solution of (14) and theloading rate ε is su�iently small.4.1 De�nition of stability of a quasi-stati pathThe mathematial de�nition of stability of a quasi-stati path at an equilibriumpoint is presented in the ontext of the governing dynami system (11)�(13) and thequasi-stati system (14)�(16). 7



De�nition 4.1 The quasi-stati path (ū(λ), r̄(λ)) is said to be stable at λ1 if thereexists 0 < ∆λ ≤ λ2 − λ1, suh that, for all δ > 0 there exists ρ̄(δ) > 0 and ε̄(δ) > 0suh that for all initial onditions u1, v1, r1 and ū1, r̄1 and all ε > 0 suh that
|v1|

2 + |u1x − ū1x|
2 + |r1 − r̄1|

2 ≤ ρ̄(δ) and ε ≤ ε̄(δ),the solution (u(λ), v(λ), r(λ)) of the dynami system (11)�(13) satis�es
|v(λ)|2 + |ux(λ) − ūx(λ)|2 + |r(λ) − r̄(λ)|2 ≤ δ,for all λ ∈ [λ1, λ1 + ∆λ].For more details, the reader is referred to [11℄.4.2 Existene and uniqueness of solution for the elasto-viso-plasti systemsWe introdue here the elasto-viso-plasti systems:

{
ε2u′′

µ − uµxx − rµx = f,

u′

µx − r′µ = Jµ(rµ),
where Jµ(rµ) =

1

µ

(
rµ − projCrµ

)
, (23)with the Dirihlet boundary onditions

uµ = 0 on {0, L} × (λ1, λ2), (24)and the initial onditions
(
vµ(λ1), uµ(λ1), rµ(λ1)

)
= (v1, u1, r1) ∈ V0 × W. (25)Here µ > 0 is the visosity parameter and projC denotes the projetion on the onvex

C.The variational formulation of the problem (23)�(25) is the following:




Find (uµ, rµ) ∈ V0 × H suh that ∀(u∗, r∗) ∈ V0 × H,

(ε2u′′

µ, u
∗) + (uµx, u

∗

x) + (rµ, u
∗

x) = (f, u∗),

(r′µ, r
∗) − (u′

µx, r
∗) + (Jµ(rµ), r

∗) = 0,

(26)with the initial onditions (25). Note that this elasto-viso-plasti problem is anYosida regularization of the original elasti-plasti problem. For a similar approxi-mation in the orresponding �nite-dimensional system see [9℄. Whenever onvenientwe shall use in the following the notation vµ = εu′

µ.We onsider now a �nite dimensional approximation of the above elasti-viso-plastiproblem, whih is obtained in the following lassial manner. Let {wj}
∞

j=1 be aomplete orthonormal sequene in H whose elements belong to H2(0, L). Let uµn
=8



∑n
i=1 gin(λ)wi(x) and rµn

=
∑n

i=1 hin(λ)wi(x) satisfying the following variationalformulation




For all u∗ =
∑n

i=1 g∗
in(λ)wi(x) and r∗ =

∑n
i=1 h∗

in(λ)wi(x),

(ε2u′′

µn

, u∗) + (uµnx, u
∗

x) + (rµn
, u∗

x) = (f, u∗),

(r′µn

, r∗) − (u′

µnx, r
∗) + (Jµ(rµn

), r∗) = 0,

(27)with
ε

∞∑

1

g′

in(λ1)wi(x) = v1,
∞∑

1

gin(λ1)wi(x) = u1,
∞∑

1

hin(λ1)wi(x) = r1. (28)The following results an be proved for the above approximations, when the dimen-sion parameter n tends to ∞, and the visosity parameter µ tends to 0.Proposition 4.2 Assume that f belongs to W 1,∞(λ1, λ2;H) and that (25) holds.Then there exists a unique solution (vµ, uµ, rµ) of (23)�(25) suh that (vµ, uµ, rµ)and (v′

µ, u′

µ, r
′

µ) belong respetively to L∞(λ1, λ2; V0 × V0 × H) and L∞(λ1, λ2; H3)and σµ(uµx, rµ) belongs to L∞(λ1, λ2; V ). Moreover, as µ tends to zero, uµ and
σµ(uµx, rµ) onverge strongly to their limits.The Galerkin approximation desribed above together with a priori estimates basedon the variational formulations (26), (27) an be used to prove these results. Thereader an �nd detailed proofs in the Appendix or in [3℄. This Proposition an alsobe proved using the theory of m-aretive operators.4.3 A priori estimatesLemma 4.3 Assume that (25) holds and f belongs to W 1,∞(λ1, λ2; H). Then in-dependently of µ > 0, for all λ belonging to (λ1, λ2), vµ(λ), uµx(λ) and rµ(λ) arebounded in H.Proof. This estimate results from the appliation of Gronwall's lemma to energyestimates. Choosing u∗ = u′

µ and r∗ = rµ in (26), and adding both identities, weobtain
(ε2u′′

µ, u
′

µ) + (uµx, u
′

µx) + (r′µ, rµ) + (Jµ(rµ), rµ) = (f, u′

µ). (29)Let us remark that (Jµ(rµ), rµ) is non negative then we dedue from (29) that
d

dξ

(
|εu′

µ|
2 + |uµx|

2 + |rµ|
2
)
≤ 2(f, u′

µ). (30)We integrate (30) over (λ1, λ), λ ∈ [λ1, λ2], and sine vµ = εu′

µ, we get
[
|vµ|

2 + |uµx|
2 + |rµ|

2
]λ

λ1

≤ 2

∫ λ

λ1

(f, u′

µ) dξ. (31)9



Integrating by parts in time the right hand side of (31), we obtain
[
|vµ|

2 + |uµx|
2 + |rµ|

2
]λ

λ1

≤ 2
[
(f, uµ)

]λ

λ1

− 2

∫ λ

λ1

(f ′, uµ) dξ.We estimate the produt (z, y) by |z|2/2γi + γi|y|
2/2, and, hoosing di�erent valuesfor γi, i = 1, 2, 3, in di�erent terms, we have

|vµ(λ)|2 + |uµx(λ)|2 + |rµ(λ)|2 ≤ c1 +
1

γ1

|uµ(λ)|2 +
1

γ3

∫ λ

λ1

|uµ|
2 dξ, (32)where

c1 =|v1|
2 + |u1x|

2 + |r1|
2 + γ2|u1|

2 +
1

γ2
|f(λ1)|

2

+ γ1‖f‖
2
L∞(λ1,λ2;H) + γ3‖f

′‖2
L2(λ1,λ2;H).On the other hand, the Poinaré inequality (see [2, 6℄) shows that there exists astritly positive onstant c suh that

|uµ(ξ)|
2 ≤ c|uµx(ξ)|

2, ∀ξ ∈ (λ1, λ2). (33)Using (33) in (32) and hoosing γ1 = γ3 = 2c and γ2 = 1 in (32), we may infer that
|vµ(λ)|2 +

1

2
|uµx(λ)|2 + |rµ(λ)|2 ≤ c1 +

1

2

∫ λ

λ1

|uµx|
2dξ. (34)By lassial Gronwall's lemma, we get

|uµx(λ)|2 ≤ 2c1 exp(λ2 − λ1). (35)As the last term on the right hand side of (34) is now easily estimated, we �nallyobtain
|vµ(λ)|2 + |uµx(λ)|2 + |rµ(λ)|2 ≤ c1

(
1 + (1 + (λ2 − λ1)) exp(λ2 − λ1)

)
,from whih the desired result follows. �Lemma 4.4 Assume that (25) holds and f belongs to W 2,∞(λ1, λ2; H). Then thereexists a subsequene, still denoted by v′

µn

, suh that
v′

µn

⇀ v′

µ weakly ∗ in L∞(λ1, λ2; H). (36)Moreover there exists a positive onstant c(λ1, λ2) that depends on the interval of λand suh that
|εv′

µn

(λ)|2 ≤ c(λ1, λ2)
(
‖v1‖

2 + |(u1xx + r1x) − (ū1xx + r̄1x)|
2

+ ε2|f ′(λ1)|
2 + ε2‖f ′‖2

L∞(λ1,λ2;H) + ε2‖f ′′‖2
L2(λ1,λ2;H)

)
.

(37)10



Proof. This estimate results from the energy estimate, Gronwall's lemma and theproof an be ompleted by a lassial Galerkin method. We drop now the subsript
n. We start by di�erentiating the governing system (27) with respet to λ, taking
u∗ = ε2u′′

µ and r∗ = ε2r′µ and �nally adding both identities, we get
(ε2u′′′

µ , ε2u′′

µ) + (u′

µx, ε
2u′′

µx) + (r′′µ, ε
2r′µ) +

(
(Jµ(rµ))

′, ε2r′µ
)

= (f ′, ε2u′′

µ). (38)The monotoniity of rµ 7→ Jµ(rµ) leads to
(
(Jµ(rµ(ξ)))′, r′µ(ξ)

)

= lim
∆ξ→0

1

(∆ξ)2

(
Jµ(rµ(ξ + ∆ξ)) − Jµ(rµ(ξ)), rµ(ξ + ∆ξ) − rµ(ξ)

)
≥ 0.Then we dedue from (38) that

d

dξ

(
|ε2u′′

µ|
2 + |εu′

µx|
2 + |εr′µ|

2
)
≤ 2(f ′, ε2u′′

µ). (39)We integrate (39) over (λ1, λ), λ ∈ [λ1, λ2], and sine vµ = εu′

µ, we get
[
|εv′

µ|
2 + |vµx|

2 + |εr′µ|
2
]λ

λ1

≤ 2

∫ λ

λ1

(εf ′, v′

µ) dξ. (40)On one hand, we subtrat the �rst equation in (23) at λ1 to the �rst one in (14) at
λ1. From (25), we dedue that

|εv′(λ1)|
2 = |(u1xx + r1x) − (ū1xx + r̄1x)|

2. (41)Moreover the initial ondition rµ(λ1) = r1 ∈ C implies that Jµ(r1) = 0 and then theseond identity in (23) leads to the following identity
|εr′µ(λ1)|

2 = |v1x|
2. (42)On the other hand, we integrate by parts the right hand side of (40), and we estimatethe produt (z, y) by |z|2/2γi + γi|y|

2/2, and, hoosing di�erent values for γi, i =
1, 2, 3, we get

2

∫ λ

λ1

(εf ′, v′

µ) dξ ≤ ε2γ1‖f
′‖2

L∞(λ1,λ2;H) +
1

γ1
|vµ(λ)|2

+
1

γ2

|v1|
2 + ε2γ2|f

′(λ1)|
2 + ε2γ3‖f

′′‖2
L2(λ1,λ2;H) +

1

γ3

∫ λ

λ1

|vµ|
2 dξ.

(43)Sine v = εu′ then the Dirihlet boundary onditions and the Poinaré inequalityshow that there exists a stritly positive onstant c suh that
|vµ(ξ)|

2 ≤ c|vµx(ξ)|
2, ∀ξ ∈ (λ1, λ2). (44)11



Carrying (44) into (43) and hoosing γ1 = γ3 = 2c and γ2 = 1, we have
2

∫ λ

λ1

(εf ′, v′

µ) dξ ≤ 2cε2‖f ′‖2
L∞(λ1,λ2;H) +

1

2
|vµx(λ)|2

+ |v1|
2 + ε2|f ′(λ1)|

2 + 2cε2‖f ′′‖2
L2(λ1,λ2;H) +

1

2

∫ λ

λ1

|vµx|
2 dξ.

(45)Introduing (41), (42) and (45) in (40), we obtain
|εv′

µ(λ)|2 +
1

2
|vµx(λ)|2 + |εr′µ(λ)|2 ≤ g(ε) +

1

2

∫ λ

λ1

|vµx|
2 dξ, (46)where

g(λ1, ε) = |v1|
2 + 2|v1x| + |(u1xx + r1x) − (ū1xx + r̄1x)|

2

+ ε2
(
|f ′(λ1)|

2 + 2c‖f ′‖2
L∞(λ1,λ2;H) + 2c‖f ′′‖2

L2(λ1,λ2;H)

)
.By lassial Gronwall's lemma, it is lear that

|vµx(λ)|2 ≤ 2g(λ1, ε) exp(λ2 − λ1). (47)Therefore the last term on the right hand side of (46) is now easily estimated. We�nally obtain
|εv′

µ(λ)|2 +
1

2
|vµx(λ)|2 + |εr′µ(λ)|2 ≤ g(λ1, ε)

(
1 + (λ2 − λ1) exp(λ2 − λ1)

)
,whih proves the Lemma. �Let us remark that the di�erential inlusion system (11) an be written in a slightlydi�erent but equivalent form:






Find (u, r) ∈ V0 × C suh that ∀(u∗, r∗) ∈ V0 × C,

(ε2u′′, u∗) + (ux, u
∗

x) + (r, u∗

x) = (f, u∗),

(r′, r − r∗) − (u′

x, r − r∗) ≤ 0,

(48)with the initial onditions (13).Lemma 4.5 Assume that (25) holds and f belongs to W 1,∞(λ1, λ2; H). Then forall λ belonging to (λ1, λ2),
vµ(λ) → v(λ) strongly in H,

uµx(λ) → ux(λ) strongly in H,

rµ(λ) → r(λ) strongly in H,as µ tends to 0. 12



Proof. These onvergene properties are obtained by energy estimating the dif-ferene between the elasti-viso-plasti system and the elasti-plasti system withhardening. Choosing u∗

µ = u′

µ − u′ and u∗ = u′ − u′

µ respetively the �rst identitiesin (52) and (48), and adding both identities, we get
(ε2u′′

µ − ε2u′′, u′

µ − u′) + (uµx − ux, u
′

µx − u′

x) + (rµ − r, u′

µx − u′

x) = 0. (49)Observing that the seond identity in the system (23) implies that
(rµ − r, u′

µx − u′

x) = (r′µ − r′, rµ − r) + (Jµ(rµ), rµ − r) + (r′ − u′

x, rµ − r). (50)Carrying (50) into (49), integrating over (λ1, λ), λ ∈ [λ1, λ2], and using the initialonditions (25) and (12) leads to the following identity
|ε(u′

µ(λ) − u′(λ))|2 + |uµx(λ) − ux(λ)|2 + |rµ(λ) − r(λ)|2

+ 2

∫ λ

λ1

(Jµ(rµ), rµ − r) dξ + 2

∫ λ

λ1

(r′ − u′

x, rµ − r) dξ = 0.
(51)Sine (Jµ(rµ), rµ − r) is non negative, vµ = εu′

µ and v = εu′, then we may deduefrom (51) that
|vµ(λ) − v(λ)|2 + |uµx(λ) − ux(λ)|2 + |rµ(λ) − r(λ)|2 ≤ 2

∫ λ

λ1

(r′ − u′

x, r − rµ) dξ.The onlusion follows from Lemma 4.3. �On the other hand, the di�erential inlusion system (14) an be written in a slightlydi�erent but equivalent form:




Find (ū, r̄) ∈ V0 × C suh that ∀(ū∗, r̄∗) ∈ V0 × C,

(ūx, ū
∗

x) + (r̄, ū∗

x) = (f, ū∗),

(r̄′, r̄ − r̄∗) − (ū′

x, r̄ − r̄∗) ≤ 0,

(52)with the initial onditions (16).Proposition 4.6 Assume that f belongs to W 2,∞(λ1, λ2; H) and that (13) and (16)hold. Then there exist γi > 0, i = 1, 2, suh that
|v(λ)|2 + |ux(λ) − ūx(λ)|2 + |r(λ) − r̄(λ)|2 ≤ γ1

(
‖v1‖

2

+ |u1x − ū1x|
2 + |r1 − r̄1|

2 + |(u1xx + r1x) − (ū1xx + r̄1x)|
2
)

+ εγ2.
(53)Proof. This result follows from an energy estimate of the di�erene between the dy-nami elasti-viso-plasti system and the quasi-stati elasti-plasti system. Choos-ing u∗ = u′

µ− ū′ and r∗ = rµ− r̄ in (26), ū∗ = ū′−u′

µ and r̄∗ = r in (52), and addingthe resulting expressions, we obtain the following inequality:
(ε2u′′

µ, u
′

µ) + (uµx − ūx, u
′

µx − ū′

x) + (r′µ − r̄′, rµ − r̄)

+ (r̄′ − ū′

x, rµ − r) + (Jµ(rµ), rµ − r̄) ≤ (ε2u′′

µ, ū
′).

(54)13



Sine r̄ ∈ C then Jµ(r̄) = 0, and due to the monotoniity of Jµ, we get
(Jµ(rµ), rµ − r̄) = (Jµ(rµ) − Jµ(r̄), rµ − r̄) ≥ 0. (55)Using (55) in (54) and sine vµ = εu′

µ, we infer that
d

dξ

(
|vµ|

2 + |uµx − ūx|
2 + |rµ − r̄|2

)
+ 2(r̄′ − ū′

x, rµ − r) ≤ 2(εv′

µ, ū
′). (56)We integrate (56) over (λ1, λ), λ ∈ [λ1, λ2] and we obtain

|vµ(λ)|2 + |uµx(λ) − ūx(λ)|2 + |rµ(λ) − r̄(λ)|2

+ 2

∫ λ

λ1

(r̄′ − ū′

x, rµ − r) dξ ≤ c(λ1) + 2

∫ λ

λ1

(εv′

µ, ū
′) dξ,

(57)where
c(λ1) = |v1|

2 + |u1x − ū1x|
2 + |r1 − r̄1|

2.Let us observe that
1

2

(
|v(λ)|2 + |ux(λ) − ūx(λ)|2 + |r(λ) − r̄(λ)|2

)
− gµ(λ)

≤ |vµ(λ)|2 + |uµx(λ) − ūx(λ)|2 + |rµ(λ) − r̄(λ)|2,
(58)where

gµ(λ) = |vµ(λ) − v(λ)|2 + |uµx(λ) − ux(λ)|2 + |rµ(λ) − r(λ)|2.Carrying (58) into (57) and using Cauhy-Shwarz's inequality we have
1

2

(
|v(λ)|2 + |ux(λ) − ūx(λ)|2 + |r(λ) − r̄(λ)|2

)
+ hµ,n(λ1, λ)

≤ c(λ1) + 2
(∫ λ

λ1

|εv′

µn

|2 dξ
)1/2(∫ λ

λ1

|ū′|2 dξ
)1/2

,
(59)where

hµ,n(λ1, λ) = 2

∫ λ

λ1

(r̄′ − ū′

x, rµ − r) dξ + 2

∫ λ

λ1

(
ε(v′

µn

− v′

µ), ū′
)
dξ − gµ(λ).Introduing (37), the estimate obtained in Lemma 4.4, in (59), we dedue that thereexist γi > 0, i = 1, 2, suh that

1

2

(
|v(λ)|2 + |ux(λ) − ūx(λ)|2 + |r(λ) − r̄(λ)|2

)
+ hµ,n(λ1, λ) ≤ γ1

(
‖v1‖

2

+ |u1x − ū1x|
2 + |r1 − r̄1|

2 + |(u1xx + r1x) − (ū1xx + r̄1x)|
2
)

+ εγ2.The onlusion follows then from Lemma 4.5. �As observed in the Introdution, a diret estimation of the distane between thequasi-stati solution and an arbitrary dynami solution of the elasti-plasti system,14



leads (beause of the required di�erentiation with respet to the load parameter andthe additional initial onditions) to an estimate (53) where, on the right hand side,the initial onditions on u and r are a�eted by norms that are not the same as thoseon the left hand side. This situation is overome in the next setion by deomposingthat distane into two parts: the distane between an arbitrary dynami solution anda speial dynami solution, and the distane between the speial dynami solutionand the quasi-stati solution.4.4 Stability of a quasi-stati pathWe start by estimating the distane between an arbitrary dynami solution of theelasti-plasti problem and a speial dynami solution (ṽ, ũ, r̃) that solves (23) withthe the Dirihlet boundary onditions (12) and with initial onditions that oinidewith the quasi-stati solution at the initial time:
(
ṽ(λ1), ũ(λ1), r̃(λ1)

)
= (εū′

1, ū1, r̄1) ∈ V0 × W. (60)Let us remark that the variational formulation of that problem is the following:




Find (ũ, r̃) ∈ V0 × C suh that ∀(ũ∗, r̃∗) ∈ V0 × C,

(ε2ũ′′, ũ∗) + (ũx, ũ
∗
x) + (r̃, ũ∗

x) = (f, ũ∗),

(r̃′, r̃ − r̃∗) − (ũ′

x, r̃ − r̃∗) ≤ 0,

(61)with the initial onditions (60).Lemma 4.7 Assume that (13) and (60) hold and that f belongs to W 1,∞(λ1,
λ2; H). Then

|v(λ) − ṽ(λ)|2 + |ux(λ) − ũx(λ)|2 + |r(λ) − r̃(λ)|2

≤ |v1 − ṽ(λ1)|
2 + |u1x − ū1x|

2 + |r1 − r̄1|
2.

(62)Proof. One again we use energy tehniques to ompare two dynami elasti-plastiproblems with hardening that have the same boundary onditions but di�erent initialonditions. Choosing u∗ = u′ − ũ′ and ũ∗ = ũ′ − u′ in (48) and (61), respetively,we have
(
ε2(u′′ − ũ′′), u′ − ũ′

)
+ (ux − ũx, u

′

x − ũ′

x) + (r − r̃, u′

x − ũ′

x) = 0. (63)On the other hand, taking r∗ = r̃ and r̃∗ = r in (48) and (61), respetively, we get
(r′ − r̃′, r − r̃) ≤ (r − r̃, u′

x − ũ′

x). (64)Carrying (64) into (63) and sine v = εu′ and ṽ = εũ′, we obtain
d

dξ

(
|v − ṽ|2 + |ux − ũx|

2 + |r − r̃|2
)
≤ 0. (65)Integrating (65) over (λ1, λ), λ ∈ [λ1, λ2], and using the initial onditions (13) and(60), leads to the result in the Lemma. �15



Proposition 4.8 (Stability). Assume that (13) and (16) hold and that f belongsto W 2,∞(λ1, λ2; H). Then there exist γ > 0 suh that for 0 < ε < 1,
|v(λ)|2 + |ux(λ) − ūx(λ)|2 + |r(λ) − r̄(λ)|2

≤ γ
(
|v1|

2 + |u1x − ū1x|
2 + |r1 − r̄1|

2 + ε
)
.Proof. The stability result follows from the estimates obtained in Proposition 4.6and Lemma 4.7. Let us remark that (62) leads to the following inequality

1

2

(
|v(λ)|2 + |ux(λ) − ūx(λ)|2 + |r(λ) − r̄(λ)|2

)

≤ c(λ1) + |ṽ(λ)|2 + |ũx(λ) − ūx(λ)|2 + |r̃(λ) − r̄(λ)|2,
(66)where

c(λ1) = |v1 − ṽ(λ1)|
2 + |u1x − ū1x|

2 + |r1 − r̄1|
2.On the other hand, hoosing u = ũ, v = ṽ and r = r̃ in (53) and sine ũ(λ1) = ū1and r̃(λ1) = r̄1, we obtain

|ṽ(λ)|2 + |ũx(λ) − ūx(λ)|2 + |r̃(λ) − r̄(λ)|2 ≤ γ1‖ṽ(λ1)‖
2 + εγ2. (67)Introduing (67) in (66), we get

|v(λ)|2 + |ux(λ) − ūx(λ)|2 + |r(λ) − r̄(λ)|2 ≤ γ1‖ṽ(λ1)‖
2 + 2c(λ1) + εγ2.Sine ū′(λ1) and ū′

x(λ1) are bounded in H and ṽ(λ1) = εū′
1 then the Propositionfollows. �AppendixProof. (Proposition 4.2). We drop the subsript µ in the proof and without loss ofgenerality, we may assume here that ε = 1 and using the fat that e = 2ux, then(26) with the initial onditions (25) beome





1

2
(e′, e∗) + (v, e∗x) = 0,

(v′, v∗) +
1

2
(e, v∗

x) + (r, v∗

x) = (f, v∗),

(r′, r∗) − (vx, r
∗) + (Jµ(r), r

∗) = 0,

(68)with the initial onditions
(
vη(λ1), eη(λ1), rη(λ1)

)
= (v1, u1x, r1) ∈ V0 × W. (69)Let us �rst prove the uniqueness. Let (v, e, r) and (v∗, e∗, r∗) be two possible solutionsof (68).

v̂ = v − v∗, ê = (e − e∗)/2, r̂ = r − r∗.16



Therefore we dedue from (68) and from the analogous equations for v∗, e∗, r∗, that
(ê′, e∗) + (v̂, e∗x) + (v̂′, v∗) + (ê, v∗

x) + (r̂′, r∗) + (Jµ(r) − Jµ(r∗), r
∗) = 0. (70)Choosing v∗ = v̂, e∗ = ê, r∗ = r̂ in (70), we obtain

1

2

d

dξ

(
|v̂|2 + |ê|2 + |r̂|2

)
+ (v̂, êx) + (ê, v̂x) + (Jµ(r) −Jµ(r∗), r − r∗) = 0. (71)Sine (v̂, êx) + (ê, v̂x) = 0 and r 7→ Jµ(r) is monotone then we infer from (71) that

d

dξ

(
|v̂|2 + |ê|2 + |r̂|2

)
≤ 0,whih, together with the fat that v̂(λ1) = ê(λ1) = r̂(λ1) = 0, leads to v̂ = ê = r̂ = 0and the uniqueness follows.We regularize (68) in the spae variable. Let η be a stritly positive parameter,whih will tend toward zero. We onsider now the regularized problem





1

2
(e′η, e

∗) + (vη, e
∗

x) + η(eηx, e
∗

x) = 0,

(v′

η, v
∗) +

1

2
(eη, v

∗

x) + (rη, v
∗

x) + η(vηx, v
∗

x) = (f, v∗),

(r′η, r
∗) − (vηx, r

∗) + (Jµ(rη), r
∗) + η(rηx, r

∗

x) = 0.

(72)with the initial onditions
(
vη(λ1), eη(λ1), rη(λ1)

)
= (v1, u1x, r1) ∈ V0 × W. (73)Reall that for every η > 0, (72)�(73) has a unique solution. This follows from thegeneral theory of monotone paraboli problems (f. [8℄). We establish now a prioriestimates and then we pass to the limit when η tends to zero.First a priori estimate. Taking v∗ = vη, e∗ = eη/2, r∗ = rη, we obtain

1

2

d

dξ

(1

2
|vη|

2 + |eη|
2 + |rη|

2
)

+
1

2

(
(vη, eηx) + (eη, vηx)

)

+ η
(1

2
|vηx|

2 + |eηx|
2 + |rηx|

2
)

+ (Jµ(rη), rη) = (f, vη).

(74)Sine
(vη, eηx) + (eη, vηx) = 0 and (Jµ(rη), rη) ≥ 0,then we dedue from (74) that

1

2

d

dξ

(1

2
|vη|

2 + |eη|
2 + |rη|

2
)

+ η
(1

2
|vηx|

2 + |eηx|
2 + |rηx|

2
)
≤ (f, vη). (75)From (75), we may onlude, when η tends to zero, that

(vη, eη, rη) is bounded in L∞

3 (λ1, λ2; H), (76a)
(η1/2vη, η

1/2eη, η
1/2rη) is bounded in L2

3(λ1, λ2; V ). (76b)17



Moreover, setting λ = λ1 in (72), we onlude thanks to the initial onditions (73)that 



1

2
(e′η(λ1), e

∗) = (v1x, e
∗) − η(u1xx, e

∗
x),

(v′

η(λ1), v
∗) = (f(λ1) + u1xx + r1x, v

∗) − η(v1x, v
∗

x),

(r′η(λ1), r
∗) = (v1x, r

∗) − η(r1x, r
∗
x),from whih it follows, when η tends to zero, that

(
v′

η(λ1), e
′

η(λ1), r
′

η(λ1)
) is bounded in H3. (77)Seond a priori estimate. Di�erentiating (72) with respet to λ (this is legitimate if(72) is approximated by Galerkin method), and replaing e∗, v∗ and r∗ respetivelyby eη, vη and rη, we get

1

2

d

dξ

(1

2
|v′

η|
2 + |e′η|

2 + |r′η|
2
)

+
1

2

(
(v′

η, e
′

ηx) + (e′η, v
′

ηx)
)

+ η
(1

2
|v′

ηx|
2 + |e′ηx|

2 + |r′ηx|
2
)

+ (J ′

µ(rη), r
′

η) = (f ′, vη).

(78)Using the same argument already given in Lemma 4.4, it is lear that the last term onthe right hand side of (78) is non negative, on the other hand, (v′

η, e
′

ηx)+(e′η, v
′

ηx) = 0,then we dedue from (78) that
1

2

d

dξ

(1

2
|v′

η|
2 + |e′η|

2 + |r′η|
2
)

+ η
(1

2
|v′

ηx|
2 + |e′ηx|

2 + |r′ηx|
2
)
≤ (f ′, vη),from whih it follows, taking into aount of (77), when η tends to zero, that

(v′

η, e
′

η, r
′

η) is bounded in L∞

3 (λ1, λ2; H), (79a)
(η1/2v′

η, η
1/2e′η, η

1/2r′η) is bounded in L2
3(λ1, λ2; V ). (79b)On the other hand, from the preeding estimates, we may dedue that

Jµ(rη) is bounded in L∞(λ1, λ2; H). (80)Then (76), (79) and (80) imply that we an extrat from the sequene (vη, eη,
rη), a subsequene still denoted by (vη, eη, rη), when η tends to zero, suh that

(vη, eη, rη) ⇀ (v, e, r) weakly ∗ in L∞

3 (λ1, λ2; H), (81a)
(v′

η, e
′

η, r
′

η) ⇀ (v′, e′, r′) weakly ∗ in L∞

3 (λ1, λ2; H), (81b)
Jµ(rη) ⇀ Ψµ weakly ∗ in L∞(λ1, λ2; H). (81)By a monotoniity argument, we show that Ψµ = Jµ(r) (f. Chapter 2 of [8℄).Then we may pass to the limit in (72) using (76b), (79b), (81) and �nally we obtain(68). We have proved existene of (v, e, r) that satisfy (68)�(69) suh that (v, e, r)18



and (v′, e′, r′) belong respetively to L∞

3 (λ1, λ2; H) and L∞

3 (λ1, λ2; H). On the otherhand, we infer from (55) that in the sense of distribution, we get





vx =
1

2
e′,

1

2
ex + rx = v′ − f,
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