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A pseudodifferential linear complementarity

problem related to a one dimensional

viscoelastic model with Signorini conditions

Adrien Petrov, Michelle Schatzman

Abstract

The simplified viscoelastic problem

utt − uxx − αuxxt = f, x ∈ R−, t ∈ R+, α > 0,

with boundary condition

u(0, ·) ≥ 0, (ux + αuxt)(0, ·) ≥ 0,
(
u(ux + αuxt)

)
(0, ·) = 0,

is reduced to pseudodifferential linear complementarity problem (LCP)

λ1 ∗ w = g + b, 0 ≤ w ⊥ b ≥ 0.

where λ1 is the inverse Fourier transform of the causal determination of
λ̂1(ω) = iω

√
1 + iαω. We prove the existence of a solution of this LCP; the

energy relation for the original problem is equivalent to

〈ẇ, b〉 = 0.

This relation is formally and rigorously true, but highly non trivial since a
priori b is a measure and ẇ is defined almost everywhere.

1. Introduction and notations

We consider a solid body in motion in a landscape, it may happen that
this solid body hit a rigid obstacle then forces are transmitted by the contact
domain. These forces have two components; a normal component created by
the friction and the tangential component preventing the interpenetration
of materials. In the mathematical point of view, we model a contact problem
by a system of differential equations describing the motion, the deformations
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of the solid body and taken into account the contact and the friction forces
at the boundary.

The contact problems are found in various domains of solid mechanics
as for example the machining process which is the cause of this study.

Most of mathematicians model the contact and the friction respectively
by the Signorini conditions and the Coulomb friction law. The researchers
have quickly obtained the first results for the static contact problems less
realistic than dynamic one but easier to study. Fichera [12] solved indeed
the static contact problem with Signorini boundary conditions but with-
out friction. The problem is more complicated if we replace the Signorini
conditions by the Coulomb friction law at the boundary since the research
is confined to the contact problems with given friction, where the normal
traction in the friction law is a known function. Observe that the first result
of the solvability using the convex analysis is proved for the static problem
with given friction in [10]. Some important results are also obtained by the
Czech school in [21], [11].

Regarding dynamic problems of contact for elastic material, there are hy-
perbolic problems. The contact condition formulated in displacement terms
velocities for the hyperbolic problem, which is an approximation of the im-
penetrability condition, is more convenient than the original condition for-
mulated in displacement. Then the research is confined to that formulation
for thirty years. Let us remark that the contact problem can be approxi-
mated by an auxiliary problem which has a simpler structure. It was quite
usual to approximate the contact problem by the penalty method for the
Signorini contact conditions and by the contact problem with given friction
for the Coulomb friction law. Therefore according to classical methods, it
is easy to prove the solvability of the auxiliary problem. The transition be-
tween the auxiliary contact problem and the original one is done by the
passage to the limit for the penalty parameter in the case of the penalty
approximation and by a fixed point argument in the case of the contact
problem with given friction.

The theory of vibrations of continuous media with unilateral condi-
tions at the boundary purports to understand the mathematical description
of the so-called dynamical Signorini problem; when the medium is elastic
and satisfies the assumptions of the theory of small deformations, the one-
dimensional medium is fairly well understood. In the case of continuous
obstable, Amerio and Prouse [1,4] obtained the first result for a string and
Schatzman [22] treated the case of concave obstacle. In the case of a point-
shaped obstacle, there are works of Amerio [2,3], Schatzman [23], Citrini [8],
Citrini and Marchionna [9] and the theory can be considered as complete. In
the multidimensional case, despite important efforts of mathematicians, the
theory is still quite poor and there are deep functional analytic reasons for
our ignorance. The only case where an energy relation is proved is that of is
a wave equation in a half-space with unilateral conditions at the boundary
[19]. It was only in this work that the equivalence between codimension one
obstacle and constraint at the boundary was clearly stated, though it was
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probably understood before that article appeared. Observe that there is no
friction in this research. The weaker results are also obtained by Uhn [15].

The researchers are also interested in the contact models for the ma-
terial with viscous damping. The existence theorems for different models
of viscoelasticity with contact and with or witout a given friction at the
boundary are established in [13], [14]. These results do not define a trace
space, nor do they give any information on the balance of energy. There are
also several remarkable results obtained by Shillor et al. in [18] and [7].

Since the contact problem with Signorini conditions and Coulomb fric-
tion law is very difficult to solve, some researchers have proposed other
mathematical models leading to the simpler mathematical formulations as
for example the normal compliance model developed in [20]. Many papers,
in particular these treating on quasistatic problems [5], [6], [16] and [17]
used this method. The normal compliance is entirely justified by an analy-
sis of the behaviour of contacting field on a microscale. This analysis leads
also to observe that the model parameters must have a comparable scale to
the non-smooth boundaries. We remark that the Signorini conditions and
Coulomb friction law are recovered if the model parameters tends to zero.
On the other hand, the normal compliance enables an unlimited penetration
to the support and if we fix a bound for the penetration, we lose the com-
pactness informations on the friction term and we obtain the problem more
complicate than in the case of original Signorini conditions and Coulomb
friction law. This approach is especially adapted to study the influences of
asperities.

The present work is dedicated to the study of a one-dimensional vis-
coelastic contact problem in the particular case of a Kelvin-Voigt material.
The existence is easly to establish by the penalty method and was already
known in [13]. A characterization of the trace spaces is given and enables to
show that the weak solution is indeed strong. The main result of this paper
is the balance of energy leading to the conclusion that the energy loss is
purely viscous.

In the most general situation, the dynamical evolution system for Kelvin-
Voigt material is

ρutt = Au+But + f, x ∈ Ω, t ∈ (0, T ),

where A and B are elasticity operators defined with the help of Hooke ten-
sors aijkl and bijkl and Ω is the part of the space occupied by the material.
Define the strain and respective stress tensors:

εij(u) =
∂iuj + ∂jui

2
, σA

ij(u) = aijklεkl(u), σB
ij(u) = bijklεkl(u);

the normal displacement at the boundary is

uN = uiνi,
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where we have chosen νi to be unit normal pointing inward; the normal and
the tangential components of the stress vectors at the boundary are

σA
N = σA

ijνiνj , σB
N = σB

ijνiνj ,(
σA

T

)
j

= σA
ijνi − σA

Nνj ,
(
σB

T

)
j

= σB
ijνi − σB

Nνj .

With these notations, the boundary condition on that part of the boundary
where contact may take place is written:

σA
T + σ̇B

T = 0,

σA
N + σ̇B

N ≥ 0, uN ≥ 0, uN

(
σA

N + σ̇B
N

)
= 0.

If we consider the very particular case where Ω = R− × Rd−1 and if we
seek a solution u which depends only on x1 and t, while the material under
consideration is homogeneous and isotropic, we are led to the following
boundary problem for u1:

ρ
∂2u1

∂t2
=

(
λA + 2µA

)∂2u1

∂x2
1

+
(
λB + 2µB

) ∂3u1

∂x2
1∂t

+ f1, (1)

with the boundary conditions written in the fashion of a linear complemen-
tarity problem (LCP):

0 ≤
(
λA + 2µA

)∂u1

∂x1
+

(
λB + 2µB

) ∂2u1

∂x1∂t
⊥ u1 ≥ 0;

here the orthogonality has the natural meaning: an appropriate duality
product between the two terms of the relation vanishes. The problem for
the second and third components of u is linear, viz. for j = 2, 3,

ρ
∂2uj

∂t2
= µA ∂

2uj

∂x2
1

+ µB ∂3uj

∂x2
1∂t

+ fj ,

with boundary conditions given by

µA ∂uj

∂x1
+ µB ∂2uj

∂x1∂t
= 0.

Therefore we concentrate our efforts on (1), which becomes after appropriate
adimensionalization the one-dimensional viscously damped wave equation
on a half-line:

utt − uxx − αuxxt = f, x < 0, t > 0, α > 0, (2)

with initial data
u(·, 0) = u0 and ut(·, 0) = u1, (3)

and boundary conditions

0 ≤ u(0, ·) ⊥ (ux + αuxt)(0, ·) ≥ 0. (4)
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If u0(0) is strictly positive, we may solve the linear problem (2) with initial
conditions (3) and boundary condition

(ux + αuxt)(0, ·) = 0. (5)

Then by energy estimates we conclude easily that if u0,x, u1 and f are
square integrable respectively on R, R and R× (0, T ), u is continuous over
R × [0, T ]; it suffices therefore to solve (2)-(3)-(5) on the maximum time
interval over which u0(0, ·) is strictly positive, to be reduced to the case

u0(0) = 0.

Denote by ū the solution of

ūtt − ūxx − αūxxt = f, x < 0, t > 0, α > 0, (6)

with initial data (3) and Dirichlet boundary data at x = 0. Define

g = −ūx(0, ·)− αūxt(0, ·). (7)

Then v = u− ū solves

vtt − vxx − αvxxt = 0, (8a)

v(0, ·) ≥ 0, (vx + αvxt)(0, ·) ≥ g,
(
v(vx + αvxt)

)
(0, ·) = 0 (8b)

v(·, t) = 0 if t ≤ 0. (8c)

Call λ1 the distribution whose Fourier transform in time is the causal
determination of iω

√
1 + αiω; we will show in Section 3 that v solves (8) iff

w = v(0, ·) solves

λ1 ∗ w = g + b, 0 ≤ w ⊥ b ≥ 0. (9)

In order to construct a solution of (9), we require that g be a half-integral
of a measure φ with support in R+, i.e. for almost every t > 0:

g(t) =
∫

[0,t[

1√
π(t− s)

φ(s). (10)

We will show in Section 2 that if u0 and u1 belong to H2(−∞, 0) ∩
H1

0 (−∞, 0) and if f and ft belong to L2
loc

(
[0,∞);L2(−∞, 0)

)
, then g belongs

to H1/2
loc (R) and is supported in R+, so that our theory can be applied.

In Section 4, we define a penalized problem associated to (9), for which
we prove the existence and uniqueness of a solution. It is not difficult to
extract weakly convergent subsequences, to pass to the limit and to obtain
therefore the existence of a solution of (9) belonging to H5/4

loc (R).
Let us write at least formally an energy relation for (2): we multiply this

equation by ut, we integrate by parts over (−∞, 0)× (0, τ), and we get

1
2

∫ 0

−∞

(
u2

x + u2
t

)
(·, τ) dx+ α

∫ 0

−∞

∫ τ

0

u2
xt dx dt =

1
2

∫ 0

−∞

(
|u1|2 + |u0,x|2

)
dx

+
∫ τ

0

(
(ux + αuxt)ut

)
(0, ·) dt+

∫ τ

0

∫ 0

−∞
fut dx dt.



6 Adrien Petrov, Michelle Schatzman

The energy loss is purely viscous, iff∫ τ

0

(
(ux + αuxt)ut

)
(0, ·) dt = 0. (11)

By construction, (ux + αuxt)(0, ·) is equal to λ1 ∗ w − g; therefore, (11) is
equivalent to

〈b, ẇ〉 = 0. (12)

A priori, b belongs to H
−1/4
loc (R) and is non negative and ẇ belongs to

H
1/4
loc (R): this is not enough to conclude that (12) holds.

The standard methods used for variational inequalities break down here:
the non local character of the convolution by λ1 seems to preclude any kind
of argument based on the signs of functions. While local estimates using
sign cannot work, we construct a global estimate which will work. This is
where we need regularity on data, i.e. (10).

Let us sketch the principle of the construction of Section 5: define H to
be the Heaviside function and

ν(t) = e−t/αH(t)
α

.

Let ρ be the inverse Fourier transform of the causal determination of√
1 + αiω, and µ the inverse Fourier transform of 1/ρ̂. Then ν is equal to

µ ∗ µ and λ1 = ρ′; the convolution inverse of λ1 is H ∗ µ = µ1.
More information on these distributions is given in the Appendix.
Assume first that our data φ is such that H ∗ ν ∗ φ is positive on some

interval [σ, τ) and then negative on some interval (τ, σ′); an explicit calcula-
tion shows that a good candidate for a solution on [σ, τ ] is 1[σ,τ ]

(
H ∗ ν ∗φ

)
;

then, we calculate a candidate for b, hoping that the support of b will be
included in [τ, σ′], and we find b = −µ ∗ ψ, where ψ is obtained from φ by
a linear operation; however, since after time σ′, we expect the solution to
be positive again, the really good candidate for b is rather −

(
µ ∗ ψ

)
1[τ,σ′),

and, lo and behold, there exists a measure ζ such that

−
(
µ ∗ ψ

)
1[τ,σ′] = µ ∗ ζ;

the calculation of this measure is the object of Lemma 4, where we also give
the formula for w on the next interval where it is non zero. Once we have a
formula for two intervals, we generalize to any number of intervals (Corollary
3). Moreover, we are able to give an estimate on the left derivative of w over
any interval where w is positive (Lemma 6), and this estimate leads to the
above mentioned global sign argument.

However, this construction has a very significant defect: we do not know
that it is possible to extend it to an interval of finite length; therefore, the
next idea is to modify φ so as to realize the locally finite construction; this
is the recursion of Section 6.

A number of estimates are given in that Section, and they lead easily
to the extraction of a convergent subsequence in Section 7; but this is not
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enough to show the desired energy equality; the function ẇ cannot vanish
everywhere on the support of b, since w may have a strictly negative left
derivative at the right end of intervals where w is strictly positive. The
requirement that w vanish almost everywhere on the support of b does not
suffice, since we do not know that b is absolutely continuous with respect to
Lebesgue’s measure. Therefore, we show that ẇ vanishes on the support of b
except on a countable set; on the other hand, as µ ∗ b is a locally essentially
bounded function, the atomic part of b vanishes; thus ẇ is b-integrable and
we are able to conclude.

2. Regularity results for the damped wave equation

Theorem 1. If u0 and u1 belong to H2(−∞, 0) ∩H1
0 (−∞, 0) and if f and

ft belong to L2
loc

(
[0,∞), L2(−∞, 0)

)
, then ū has the following functional

properties:

ū ∈W 2,∞
loc

(
[0,∞);L2(−∞, 0)

)
, (13a)

ūx ∈W 2,∞
loc

(
[0,∞);L2(−∞, 0)

)
∩H2

loc

(
[0,∞);L2(−∞, 0)

)
, (13b)

ūxx ∈ L∞loc
(
[0,∞);L2(−∞, 0)

)
. (13c)

Proof. We sketch here the proof of (13), using a straightforward energy
inequality. The proof could be easily completed by a Galerkin method, but
since it is quite routine, we leave the verification to the reader.

Multiply (6) by ūt, and integrate by parts in x; then we find

1
2

∫ 0

−∞

(
|ūt(·, τ)|2 + |ūx(·, τ)|2

)
dx+ α

∫ τ

0

∫ 0

−∞
|ūxt|2 dx dt

=
∫ τ

0

∫ 0

−∞
fūt dx dt+

1
2

∫ 0

−∞

(
|u1|2 + |u0,x|2

)
dx.

A straightforward application of Gronwall’s lemma yields: ūt, ūx are bound-
ed in L∞loc

(
[0,∞);L2(−∞, 0)

)
, ūxt is bounded in L2

loc

(
[0,∞);L2(−∞, 0)

)
under the assumptions u0 belongs to L2(−∞, 0) ∩ H1

0 (−∞, 0), u1 belongs
to L2(−∞, 0) and f belongs to L2

loc

(
[0,∞);L2(−∞, 0)

)
.

If we multiply (6) by ūxxt, an application of Cauchy-Schwarz inequality
shows that ūxxt belongs to L2

loc

(
[0,∞);L2(−∞, 0)

)
, ūxt and ūxx belong to

L∞loc([0,∞);L2
loc(−∞, 0)).

Similarly, after differentiating (6) with respect to t, and multiplying it
by ūtt, we find that ūxxt belongs to L2

loc

(
[0,∞);L2(−∞, 0)

)
.

Corollary 1. Under the hypotheses of Theorem 1, (ūx +αūxt)(0, ·) belongs
to the space H1/2

loc

(
[0,∞)

)
.

Proof. This proof is a consequence of the classical theory of traces of
Sobolev spaces.
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Remark 1. The conclusion of Corollary 1 is much stronger than needed; its
purpose is only to show that our theory is not empty. Obtaining estimates
in Banach spaces for the traces of the solution of the viscoelastodynamic
equation (6) is much more difficult than in Hilbert spaces, which is the
reason why we have opted for a simple approach of the regularity theory.

3. Reduction to a problem at the boundary

Our convention for the Fourier transform is

ẑ(ω) =
∫

R
e−iωtz(t) dt.

Let us apply a partial Fourier transform in time to (8a), calling ω the
dual variable of t; then equation (8a) becomes

v̂xx = − ω2

1 + iαω
v̂. (14)

The general solution of (14) is given by

v̂(x, ω) = â(ω) exp
(
λ̂(ω)x

)
+ b̂(ω) exp

(
−λ̂(ω)x

)
; (15)

since we performed a Fourier transform on ν, we assumed implicitly that v
and v̂ are tempered respectively in t and ω.

Intuitively the term b̂ exp
(
−λ̂x

)
can be tempered only if b̂ decays at

infinity very fast, and since this must be true for all x, it will imply that b
vanishes as proved in next lemma:

Lemma 1. If v is of finite energy, the coefficient b vanishes.

Proof. We eliminate a by performing a linear combination of v and vx:

−v̂x(x, ·) + λ̂ v̂(x, ·) = 2b̂ λ̂ exp
(
−λ̂x

)
.

The Paley-Wiener-Schwartz theorem implies that λ is a tempered distribu-
tion on R, with support included in R+, i.e. a causal distribution. Let us
define

ŵ(x, ·) = b̂ λ̂ exp
(
−λ̂x

)
.

Since v is of finite energy, it is tempered, and therefore w and ŵ are tem-
pered. Therefore there exists ϕγ , |γ| ≤ m, which is continuous and polyno-
mially increasing such that

ŵ(x, ·) =
∑
|γ|≤m

∂γϕγ(x, ·) in the distributions sense.

Here γ is multi-index (γ1, γ2) and |γ| = γ1 + γ2.
Let ψ and ϕ̂ belong respectively to C∞0 (R) and C∞0 (0,∞); assume that

the support of ϕ̂ is included in {ω : ω1 ≤ |ω| ≤ ω2} with ω1 > 0, and call
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[x1, x2] an interval containing the support of ψ. The distribution b̂ restricted
to (0,∞)×

(
R \ {0}

)
is equal to

ŵ(x, ·) exp
(
λ̂x

)
/λ̂.

If we assume that ∫ x2

x1

ψ(x) dx = 1,

and if y is an arbitrary negative number, we have the equality in the sense
of distributions:〈

b̂, ϕ̂
〉

=
〈
b̂, ϕ̂⊗ ψ

〉
(16)

=
∑
|γ|≤m

∫
R

∫ 0

−∞
(−1)|γ|ϕγ(x, ·)∂γ

(
exp

(
λ̂x

)
λ̂

ϕ̂ψ(x− y)
)
dx dω.

The reader will check that all the derivatives of exp
(
λ̂x

)
ϕ̂ψ(x − y)/λ̂ are

finite sums of expressions of the form

â(ω)ϕ̂(j)(ω)ψ(k)(x− y)xm exp
(
λ̂(ω)x

)
where â is the quotient of a polynomial in λ̂ and a finite number of its
derivatives, and of a power of λ̂. Since 0 is excluded from the support of ω,
we have the estimate ∣∣âϕ̂(j)

∣∣ ≤ C.

Let k > 0 be a lower bound of <λ̂ over ω1 ≤ |ω| ≤ ω2. Then there exists C1

such that for ω verifying ω1 ≤ |ω| ≤ ω2 and for x < 0,

|ϕγ(x, ·)| ≤ C1 exp(−kx/2).

We may estimate each term in the right hand side of (16) by

2(ω2 − ω1)
∫ 0

−∞
CC1 exp(kx/2)

∣∣ψ(k)(x− y)
∣∣|x|m dx.

As y tends to −∞, it is clear that this integral tends to 0, and therefore
the restriction of b̂ to R \ {0} vanishes. This means that b̂ can be a finite
combination of the derivatives of a Dirac mass at 0; but these terms can be
included in â, proving thus the lemma.

We deduce from Lemma 1 that if v is tempered in the neighborhood of
x = −∞, it must be of the form

v̂(x, ·) = â exp
(
λ̂x

)
.

In particular
v̂x(0, ·) + αv̂xt(0, ·) = λ̂1v̂(0, ·). (17)



10 Adrien Petrov, Michelle Schatzman

If we let w be the trace v(0, ·), (8) can be written now

λ1 ∗ w = g + b, w ≥ 0, b ≥ 0, b ⊥ w. (18)

Of course, w vanishes for all negative times, and g has been defined at (7).
At this point, b ⊥ w is a formal statement, and a good part of this article
aims to turn this formal statement into a bona fide mathematical relation
— which implies in particular that we are able to assign a coherent sense
to all the quantities involved.

4. Existence and uniqueness of the solution of the penalized
equation

In (7), the rigid constraint is defined by a set of linear complementary
conditions. We approximate this constraint by a very stiff response which
vanishes when the constraint is not active and is linear when the constraint
is active. More precisely, if r− = −min(r, 0), we consider the problem

λ1 ∗ wε = g + (wε)−/ε, (19)

where wε vanishes for all t < 0. We recall that µ1 is the integral of µ which
vanishes at 0, where µ̂(ω) is the causal determination of 1/

√
1 + iαω.

We establish now the existence and uniqueness of the solution of (19).

Theorem 2. Assume that g belongs to L1
loc(R) ∩ H−1/4

loc (R) and vanishes
for t < 0. Let h be a uniformly Lipschitz continuous function; then there
exists a unique solution vanishing for t < 0 of the convolution equation:

w = µ1 ∗ (g − h(w)). (20)

Moreover w is continuous.

Proof. We see from (89) that on any interval [0, T ], µ1 satisfies the estimate

0 ≤ µ1(t) ≤
2
√
T√
πα

.

Define an integral operator T by

T w = µ1 ∗ (g + h(w)).

It is clearly equivalent to find a solution of (20) or a fixed point of T .
Therefore, it is suffices to find an integer k such that T k will be a strict
contraction in an appropriate functional space.

Let us check first that T maps C0
(
[0, T ]

)
to itself: since µ1 is an integral

of the integrable function µ, it is continuous and therefore µ1 ∗ g is also
continuous. Since the composition h ◦ w is continuous, it is plain that T w
is a continuous function.
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We estimate now the Lipschitz constant of T restricted to C0
(
[0, T ]

)
,

denoting by L the Lipschitz constant of h:∣∣(T w2 − T w1

)
(t)

∣∣ ≤ ∫ t

0

µ1(t− ·)L|w2 − w1| ds ≤
2L
√
T√

πα

∫ t

0

|w2 − w1| ds.

Since this estimate is completely analogous to the classical estimate of Pi-
card iterations, we obtain by induction the estimate

∣∣(T kw2 − T kw1

)
(t)

∣∣ ≤ (
2L
√
t√

πα

)k ‖w2 − w1‖∞
k!

.

Therefore, for all T ∈ (0,∞), we can find an integer k such that the re-
striction of T k to C0

(
[0, T ]

)
is a strict contraction. As T is arbitrary the

theorem is proved.

Remark 2. We could have obtained the stronger estimate:

∣∣(T kw2 − T kw1

)
(t)

∣∣ ≤ (
L√
α

)k

χ1+3k/2(t) ‖w2 − w1‖∞ ,

where χa(t) = (t+)a−1/Γ (a), which leads to the same conclusion, but with
a smaller k for each T .

Remark 3. The same proof works if instead of h(w) we introduce a continu-
ous function h(t, w) which is Lipschitz continuous with respect to its second
argument.

Remark 4. If g1 and g2 coincide over (−∞, T ], then the corresponding so-
lutions w1 and w2 of w1 = µ1 ∗ (g1 − h(w1)) and w2 = µ1 ∗ (g2 − h(w2))
coincide over (−∞, T ), thanks to the causal character of µ1.

We would like to estimate wε in appropriate functional spaces inde-
pendently of ε. We will assume that g belongs to H−1/4

loc (R). Formally we
multiply (19) by ẇε, and we estimate the pseudodifferential term in the
Fourier variables. We obtain

1
2π

<
(∫

R
λ̂1ŵ

εiωŵε dω

)
+

∫ ∞

0

1
2ε

d

dt

(
(wε)−

)2
dt (21)

=
1
2π

<
(∫

R
iωŵεĝ dω

)
.

We infer from the estimate∣∣λ̂1iω
∣∣ ≥ 1

C
|ω|2

(
1 + |ω|

)1/2

that∫
R
|ω|5/2|ŵε|2 dω ≤ C

∫
R
|ω|2

(
1 + |ω|

)1/2|ŵε|
(
1 + |ω|

)−1/4|ĝ| dω, (22)
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and therefore if
(
1+ |ω|

)−1/4|ĝ(ω)| is bounded in L2(R), we see that |ω|
(
1+

|ω|
)1/4|ŵε(ω)| is bounded in L2(R) independently of ε. As it stands, this

calculation is insane, and the aim of the present section is turn it into a valid
result. The essential idea is to use the causality: it enables us to modify g
for large times, to validate the desired result on a time interval for which g
has not been modified, and then to conclude for R+, since the modification
time has been arbitrarily chosen.

The first step consists in proving the following lemma:

Lemma 2. Assume that g belongs to L1
loc(R) and vanishes for t < 0. Then

there exists for all T > 0 an S > T and a compactly supported function G
which coincides with g over [−∞, T ] such that for all ε > 0 the solution W ε

of
λ1 ∗W ε = G+ (W ε)−/ε, (23)

is non negative over [S,∞).

Proof. We choose ψ to be a C∞ function from R to R, which takes its
values in [0, 1], and satisfies

ψ(t) =

{
0 if t < 0,
1 if t ≥ 1.

We define then

G(t) = ψ(T + 1− t)g(t) + βψ(t− T − 2)ψ(T + 3− t),

where β is a number to be defined later. Then, for t ≥ T + 3, we may write

W ε = µ1 ∗G+ µ1 ∗ (W ε)−/ε. (24)

The first term on the right hand side of (24) can be written also as∫ T+1

0

µ1(t− s)g(s)ψ(T + 1− s) ds (25)

+ β

∫ T+3

T+2

µ1(t− s)ψ(s− T − 2)ψ(T + 3− s) ds.

The function µ1(t) is increasing and tends to 1 as t tends to infinity, since
µ is non negative and µ̂(0) = 1. Therefore, the limit for t going to infinity
of the second term of (25) is

lim
t→∞

β

∫ T+3

T+2

µ1(t− s)ψ(s− T − 2)ψ(T + 3− s) ds = β

∫ 1

0

ψ(s)ψ(1− s) ds.

We estimate from below the first term of (25) as follows:∫ T+1

0

µ1(t− s)g(s)ψ(T + 1− s) ds ≥ −
∫ T+1

0

|g(s)| ds.
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We choose β so large that

β

∫ 1

0

ψ(t)ψ(1− t) dt >
∫ T+1

0

|g(s)| ds.

Then there exists S such that for all t ≥ S, (µ1 ∗G)(t) ≥ 0, and thanks to
(24), the conclusion is clear.

This Lemma yields a Corollary:

Corollary 2. The function λ1 ∗W ε is compactly supported and Ẇ ε belongs
to H1/4(R); moreover Ẇ ε decays exponentially to 0 as time goes to infinity.

Proof. As a consequence of Lemma 2, the supports of (W ε)− and G are
included in the interval [0, S]. Define

g1 = G+ (W ε)−/ε.

We infer from (89) and the identity Ẇ ε = µ ∗ g1 that for t > S

|Ẇ ε| ≤ exp(−t/α)√
πα(t− S)

∫ S

0

|g1(s)| exp(s/α) ds

which implies the exponential decay of Ẇ ε. On the other hand, G belongs
to H−1/4(R) and (W ε)− is square integrable and therefore belongs also to
H−1/4(R). Therefore, by Fourier transformation,

(Ẇ ε)̂ (ω) =
(
µ̂ ĝ1

)
(ω) =

ĝ1(ω)√
1 + iαω

,

and it is plain that Ẇ ε belongs to H1/4(R), thus concluding the proof of
corollary.

Lemma 3. The following estimate holds:

sup
ε>0

∫
R
|ω|2

√
1 + |ω|

∣∣Ŵ ε
∣∣2 dω < +∞. (26)

Proof. Since G belongs to H−1/4(R) and Ẇ ε belongs to H1/4(R), we per-
form the duality product of (23) with Ẇ ε. By standard properties of the
Fourier transform,

2π
〈
λ1 ∗W ε, Ẇ ε

〉
H−1/4,H1/4 = <

∫
R
λ̂1Ŵ

εiωŴ ε dω;

thanks to the definition of λ1, there exists a constant C such that <λ̂1 ≥
C|ω|

(
1 + |ω|

)1/2, so that

2π
〈
λ1 ∗W ε, Ẇ ε

〉
H−1/4,H1/4 ≥ C

∫
R
|ω|2

(
1 + |ω|

)1/2∣∣Ŵ ε
∣∣2 dω.
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The duality product of (W ε)− with Ẇ ε can be identified with the L2 scalar
product of these two quantities, since (W ε)− is continuous with compact
support. In consequence, as follows from the classical results on the deriva-
tive of the negative part of an H1

loc(R) function,

〈
(W ε)−, Ẇ ε

〉
H−1/4,H1/4 = −1

2

∫
R

d

dt

(
(W ε)−

)2
dt

which vanishes since (W ε)− is compactly supported. The last term is〈
G, Ẇ ε

〉
H−1/4,H1/4 =

1
2π

<
∫

R
ĜiωŴ ε dω

≤ 1
2π

(∫
R

∣∣Ĝ∣∣2(
1 + |ω|

)1/2
dω

)1/2(∫
R
|ω|2

(
1 + |ω|

)1/2∣∣Ŵ ε
∣∣2 dω)1/2

.

By construction
∣∣Ĝ∣∣(1 + |ω|

)−1/4 is bounded in L2(R), and the conclusion
is clear.

Theorem 3. Assume that g belongs to L1
loc(R)∩H−1/4

loc (R) and vanishes for
t < 0. Then there exists a function w ∈ H

5/4
loc (R) which vanishes for t < 0

and a measure b supported in R+ such that

λ1 ∗ w = g + b, w ≥ 0, b ≥ 0, 〈w, b〉 = 0.

Proof. Define

N(T ) =
∫ T+1

0

|g(t)| dt+ ‖ψ(T + 1− ·)g‖H−1/4 .

The construction of Lemma 2 and Corollary 2 shows that there exists a
constant C such that

‖Ẇ ε‖H1/4 ≤ CN(T ).

Let us estimate the mass of (W ε)−/ε over a finite interval: by definition of
ρ and λ1, we have

λ1 ∗W ε = ρ ∗ Ẇ ε;

but the distribution ρ can be described precisely since

ρ ∗ ρ = δ + αδ′

and therefore

ρ = µ+ αµ′ in the sense of distributions.

We convolve with H the identity

ρ ∗ Ẇ ε = G+
(W ε)
ε

−
,



Simplified viscoelasticity with Signorini conditions 15

obtaining therefore

H ∗ (µ+ αµ) ∗ Ẇ ε = H ∗
(
G+

(W ε)
ε

−)
.

As µ is non negative and of integral 1, we know that 0 ≤ H ∗µ ≤ 1; therefore
for any T0 > 0,

|(H ∗ µ ∗ Ẇ ε)(T0)| ≤
(∫ T0

0

|Ẇ ε|2 dt
)1/2√

T0 ≤ ‖Ẇ ε‖H1/4

√
T0.

On the other hand,

(µ ∗ Ẇ ε)̂ (ω) = (Ẇ ε)̂ (ω)/
√

1 + iαω

and therefore µ ∗ Ẇ ε belongs to H3/4(R), with the estimate

‖µ ∗ Ẇ ε‖H3/4 ≤ C‖Ẇ ε‖H1/4 ,

and by Sobolev injections,

‖µ ∗ Ẇ ε‖L∞ ≤ C‖Ẇ ε‖H1/4 .

Thus, we have obtained the estimate∫ T0

0

(W ε)
ε

−
dt ≤ ‖Ẇ ε‖H1/4

(
C +

√
T0

)
+ ‖G‖L1(0,T0)

≤ CN(T )
(
1 +

√
T0

)
.

We set up now a diagonal process; denote by gn the function associated to
T = n, and by Sn the corresponding number constructed at Lemma 2. The
solution of (23) is now called wε

n. For each n, let (εm)m∈N be a sequence
of positive numbers decreasing to 0 as m tends to infinity. There exists a
subset J of N such that as m tends to infinity in J ,(

ẇεm
n

)
m∈J

⇀ ẇn in H1/4(R) weak, (27)

and (
(wεm

n )−/εm

)
m∈J

⇀ bn in M1(R) weak ∗. (28)

Then, in the limit we have

λ1 ∗ wn = gn + bn in the sense of distributions.

It is plain that bn ≥ 0. Condition (27) implies in particular that wεm
n tends to

wn uniformly on compact subsets of R; condition (28) implies that (wεm
n )−

tends to 0 strongly in L1
loc(R) and therefore wn ≥ 0. If wn(x) > 0, we can

find γ > 0 such that for all large enough m, and all y such that |y−x| ≤ γ,

wεm
n (y) ≥ 1

2
wn(x),
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and therefore, the support of (wεm
n )− does not intersect (x − γ, x + γ); in

the limit, the support of bn does not intersect (x− γ, x+ γ). Thus we have
obtained

supp bn ⊂ {wn = 0}.
Take now (εm)m∈N to be any sequence decreasing to 0 which will be fixed
henceforth. We define J1 ⊂ N as an infinite set such that (wεm

1 )m∈J1 con-
verges in the sense (27), (28). Given Jn, we take Jn+1 ⊂ Jn such that
(wεm

n+1)m∈Jn+1 converges in the sense (27), (28). Let J̄ be the set made out
of the first element of J1, the second of J2, the n-th of Jn and so forth.
Thanks to Remark 4, we have also for all m ∈ N, and all n, all p ≥ n:
wεm

p

∣∣
[0,n]

= wεm
n

∣∣
[0,n]

. As (wεm
p )m∈J̄ converges to wp, we see immediately

that for all n and all p ≥ n: wp

∣∣
[0,n]

= wn

∣∣
[0,n]

. In particular, we may define

w by w
∣∣
[0,n]

= wn, and therefore w is the desired solution.

Remark 5. We know nothing about uniqueness — alas!

5. Solutions whose support is included in a locally finite union of
intervals

If ψ is a measure over R and h a function which is ψ-measurable, we
shall write either ∫

hψ =
∫
h(s)ψ(s)

or
〈ψ, h〉

for the integral of h against ψ. If h is ψ-measurable, for all interval I, the
function h1I is also ψ-measurable, and its integral against ψ can be written∫

h1Iψ =
∫

I

hψ.

We shall keep the traditional notation dt for the Lebesgue measure,
though it is not entirely coherent with the above notation; nevertheless, the
meaning of these notations will always be clear from the context.

We denote by M the space of Radon measures on R and by M1(R) the
space of bounded measures on R with norm given by

‖λ‖M1 =
〈
|λ|, 1

〉
.

We assume from now on that there exists φ ∈ M1(R) with support in R+

such that
g = µ ∗ φ. (29)

We recall that a measure ψ on R has a positive and a negative part, denoted
respectively by ψ+ and ψ−; the following identities hold:

ψ+ = max(ψ, 0), ψ− = −min(ψ, 0), ψ = ψ+ − ψ−, |ψ| = ψ+ + ψ−.
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The first step is to prove an identity for which we need the function:

ω(t) =
1(0,∞)(t)

π(t+ 1)
√
t
. (30)

Later, we shall need an integral of ω:

Ω(t) =
∫ t

0

ω(s) ds =
2
π

1(0,∞)(t) arctan
√
t. (31)

In the following proof and in the remainder of this section, the prime
symbol will never denote a derivative; the distributions µ, ρ, µ1, λ, λ1

have been defined previously and the reader is referred to the Appendix
for formulas.

Lemma 4. Assume that g satisfies the hypothesis (29) and that w satisfies
the relation

λ1 ∗ w = g + b; (32)

assume moreover that b is a measure belonging to M(R+) and that there
exist four numbers σ < τ < σ′ < τ ′ for which w and b satisfy the support
conditions:

suppw ⊂ [σ, τ ] ∪ [σ′, τ ′], (33a)
supp b ⊂ [τ, σ′] ∪ [τ ′,∞]. (33b)

Then the following identities hold:

w1[σ′,τ ′] =
(
H ∗ ν ∗ φ′)1[σ′,τ ′], (34a)

where φ′ is a measure given by

φ′1[σ′,∞) = φ1[σ′,∞) (34b)

+ 1[σ′,∞)

∫
[τ,σ′]

exp
(
−· − s

α

)
ω

(
· − σ′

σ′ − s

)
ψ(s)
σ′ − s

.

Proof. Thanks to the support condition (33a) and to equation (32), w
satisfies the relation

w1[σ,σ′] =
(
H ∗ ν ∗ φ

)
1[σ,τ ]. (35)

Relation (88) enables us to observe that
(
(H ∗ ν ∗ φ)1]τ,∞)

)
(t) can be de-

composed as [∫
[σ,τ ]

(
1− exp

(
−τ − s

α

))
φ(s)

+
∫

[σ,τ ]

(
exp

(
−τ − s

α

)
− exp

(
− t− s

α

))
φ(s)

+
∫

]τ,t]

(
1− exp

(
− t− s

α

))
φ(s)

]
1]τ,∞).
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But ∫
[σ,τ ]

(
1− exp

(
−τ − s

α

))
φ(s) = w(τ) (36)

which vanishes, and∫
[σ,τ ]

(
exp

(
−τ − s

α

)
− exp

(
− t− s

α

))
φ(s)

=
(

1− exp
(
− t− τ

α

)) ∫
[σ,τ ]

exp
(
−τ − s

α

)
φ(s);

therefore

(H ∗ ν ∗ φ)1]τ,∞)

= H ∗ ν ∗
(
δ(· − τ)

∫
[σ,τ ]

exp
(
−τ − s

α

)
φ(s) + φ1]τ,∞)

)
,

which implies that

w1[σ,σ′] = (H ∗ ν ∗ φ)1[σ,τ ] (37)

= H ∗ ν ∗
(
φ1[σ,τ ] − δ(· − τ)

∫
[σ,τ ]

exp
(
−τ − s

α

)
φ(s)

)
.

We infer from this identity that

b1[τ,σ′) =−
(
ρ̇ ∗

(
w1[σ,τ)

)
− g

)
1[τ,σ′)

=−
(
ρ ∗ d

dt

(
w1[σ,τ)

)
− g

)
1[τ,σ′),

and therefore
b1[τ,σ′) = −

(
µ ∗ ψ

)
1[τ,σ′),

with ψ given by

ψ = φ1(τ,∞) + δ(· − τ) exp
(
− τ
α

) ∫
[σ,τ ]

exp
(
s

α

)
φ(s).

Define now

w′ = w1[σ′,∞), g′ =
(
g − λ1 ∗ (w1[σ,τ ])

)
1[σ′,∞), b′ = b1[σ′,∞).

Then it is immediate that w′ satisfies

λ1 ∗ w′ = g′ + b′.

Our purpose now is to identify a measure φ′ such that(
µ1 ∗ g′

)
1[σ′,τ ′] =

(
H ∗ ν ∗ φ′

)
1[σ′,τ ′].
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If this identity holds and φ′ is supported in [σ′,∞), we must have over
[σ′, τ ′]

µ1 ∗ g′ = H ∗ ν ∗ φ′,

or in other words
φ′1[σ′,τ ′] =

(
ρ ∗ g′

)
1[σ′,τ ′].

We proceed now to calculate

ρ ∗ g′ = ρ ∗
(
1[σ′,∞)

(
g − λ1 ∗

(
w1[σ,τ ]

)))
;

relation (37) implies

1[σ′,∞)

(
g − λ1 ∗

(
w1[σ,τ ]

))
= 1[σ′,∞)(µ ∗ ψ).

Therefore, we need the value of the expression

ρ ∗
(
1[σ′,∞)(µ ∗ ψ)

)
,

which is equal to ρ ∗ ρ ∗ µ ∗
(
1[σ′,∞)(µ ∗ ψ)

)
, or in other words to(

1 + α
d

dt

)(
µ ∗

(
1[σ′,∞)(µ ∗ ψ)

))
.

But, for t > σ′, we have the formula

µ ∗
(
1[σ′,∞)(µ ∗ ψ)

)
(t) =

∫
[σ′,t]

µ(t− s)
(∫

[τ,s]

µ(s− r)ψ(r)
)
ds.

We exchange the order of the integrations and we write r∨σ′ = max(r, σ′),
obtaining thus

µ ∗
(
1[σ′,∞)(µ ∗ ψ)

)
(t) =

∫
[τ,t]

ψ(r)
∫ t

r∨σ′
µ(t− s)µ(s− r) ds.

It is plain that∫ t

r∨σ′
µ(t− s)µ(s− r) ds

=
1
πα

exp
(
− t− r

α

)(
π

2
− arcsin

2(r ∨ σ′)− t− r

t− r

)
,

so that

µ ∗
(
1[σ′,∞)(µ ∗ ψ)

)
(t) =

1
α

∫
]σ′,t]

exp
(
− t− r

α

)
ψ(r)

+
1
απ

∫
[τ,σ′)

exp
(
− t− r

α

)(
π

2
− arcsin

2σ′ − t− r

t− r

)
ψ(r);

now, we have to prove that we can exchange differentiation with respect
to t and integration with respect to the measure ψ(r). For σ′ ∈ ]r, t[, the
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function t 7→ arcsin
(
(2σ′ − t − r)/(t − r)

)
is analytic in t; moreover, its

derivative with respect to t is equal to

− π

σ′ − r
ω

(
t− σ′

σ′ − r

)
,

as can be immediately checked; it is a bounded function with respect to r
when t is bounded away from σ′; therefore, we have the pointwise equality
for t > σ′(

1 + α
d

dt

) ∫
[τ,σ′)

ψ(r)
πα

(
π

2
− arcsin

2σ′ − t− r

t− r

)
exp

(
− t− r

α

)
(38)

=
∫

[τ,σ′)

ω

(
t− σ′

σ′ − r

)
ψ(r)
σ′ − r

exp
(
− t− r

α

)
.

The right hand side of (38) is integrable with respect to Lebesgue measure
on every compact subinterval of [σ′,∞): it is clearly measurable for t > σ′,
and, exchanging the order of integrations, we have the following estimate∫

[σ′,∞]

∣∣∣∣∫
[τ,σ′]

ω

(
t− σ′

σ′ − r

)
ψ(r)
σ′ − r

exp
(
− t− r

α

)∣∣∣∣ dt ≤ ∫
[τ,σ′)

|ψ(r)|,

since Ω(+∞) is equal to 1. Then a plain application of general theorems on
the differentiation of integral expressions shows indeed that the expression
on the right hand side of (34b) is a measure on [σ′, τ ′].

This identity can be made recursive:

Corollary 3. Assume that g satisfies assumption (29), that w, g and the
measure b are related by condition (32); assume moreover that there exist
two sequences (τj)j∈J , (σj)j∈J where J is a finite or infinite interval of N
starting at 0, satisfying

0 ≤ σ0 < τ0 < σ1 < τ1 . . . , (39)

such that w and b satisfy the following support conditions:

suppw ⊂
⋃
j∈J

[σj , τj ], supp b ⊂
⋃
j∈J

[τj , σj+1].

Then, if we define
φ0 = φ

and for all j ∈ J \ {max J}

ψj = φj1[τj ,σj+1) + δ(· − τj) exp
(
−τj
α

) ∫
[σj ,τj)

exp
(
s

α

)
φj , (40)

φj+1 = 1[σj+1,∞)φj (41)

+ 1[σj+1,∞)

∫
[τj ,σj+1)

exp
(
−· − s

α

)
ω

(
· − σj+1

σj+1 − s

)
ψj(s)

σj+1 − s
,
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then w is given by

w1[σj ,τj ] =
(
H ∗ ν ∗ φj

)
1[σj ,τj ]. (42)

Moreover, the expression for φj can be rewritten

φj = 1[σj ,∞)φ0 (43)

+ 1[σj ,∞)

j∑
i=1

∫
[τi−1,σi)

exp
(
−· − s

α

)
ω

(
· − σi

σi − s

)
ψi−1(s)
σi − s

.

Proof. The proof of this Corollary is a simple induction which is left to the
reader.

Let us obtain now estimates on the negative part of the derivative ẇ(t),
assuming now that w is non negative. These estimates depend on some
elementary inequalities relative to Ω and to ω, which were defined at (30)
and (31).

Lemma 5. Let H and H1 be defined for σ > σ′ > 0 and r > 0 by

H(r, σ, σ′) =
σ − σ′

α
exp

(
−σr
α

)(
Ω(σ)−Ω(σ′)

)
,

and

H1(r, σ, σ′) =
1
α

∫ σ

σ′
exp

(
−rt
α

)
Ω(t) dt

+
1
r

(
exp

(
−rσ
α

)
− exp

(
−rσ

′

α

))
Ω(σ′).

Then the following inequalities hold:

1
2
H(r, σ, σ′) ≤ H1(r, σ, σ′) ≤ exp

(
r
σ − σ′

α

)
H(r, σ, σ′). (44)

Proof. We rewrite H1 with the help of an integration by parts:

H1(r, σ, σ′) =
1
r

∫ σ

σ′
ω(t)

(
exp

(
−rt
α

)
− exp

(
−rσ
α

))
dt.

Then the first inequality in (44) is equivalent to∫ σ

σ′
ω(t)

[
K

ρ

(
exp

(
−rt
α

)
− exp

(
−rσ
α

))
(45)

− σ − σ′

α
exp

(
−rσ
α

)]
dt ≥ 0,

with K ≤ 2. We choose K > 0 so that the factor of ω in the above integral
vanishes at t = (σ + σ′)/2; hence

K = r(σ − σ′)
(
α exp

(
r
σ − σ′

2α

)
− α

)−1

,
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and clearly K ≤ 2. The factor of ω in (45) is decreasing function of t which
is positive in the first half of the interval [σ′, σ] and negative in its second.
As ω is a positive and decreasing function, it is clear that (45) holds.

For the second inequality in (44), we use the inequality exp(−rt/α) −
exp(−rt/α) ≤ rα−(σ − σ′) exp(−rσ′/α) so that

H1(r, σ, σ′) ≤
σ − σ′

α
exp

(
−rσ

′

α

) ∫ σ

σ′
ω(t) dt

≤ σ − σ′

α
exp

(
−rσ

′

α

)
exp

(
−r σ − σ′

α

)(
Ω(σ)−Ω(σ′)

)
≤ exp

(
−r σ − σ′

α

)
H(r, σ, σ′).

In consequence, we have the

Corollary 4. Let

F (σ, s, i, j) =
1
α

exp
(
−σ − s

α

)(
Ω

(
σ − σi

σi − s

)
−Ω

(
σj − σi

σi − s

))
, (46)

and

F1(σ, s, i, j) =
1

α(σ − σj)

∫
[σj ,σ)

exp
(
− t− s

α

)
Ω

(
t− σi

σi − s

)
dt (47)

+
1

σ − σj

(
exp

(
−σ − s

α

)
− exp

(
−σj − s

α

))
Ω

(
σj − σi

σi − s

)
.

Then for all i ≤ j, all σ ∈ (σj , τj ] and all s ∈ [τi−1, σi), the following
inequalities hold:

1
2
F (σ, s, i, j) ≤ F1(σ, s, i, j) ≤ exp

(
σ − σj

α

)
F (σ, s, i, j). (48)

Proof. After multiplying them by

exp
(
σi − s

α

)
σ − σj

σi − s
,

the inequalities (48) are equivalent to

1
2
H

(
σi − s,

σ − σi

σi − s
,
σj − σj

σi − s

)
≤ H1

(
σi − s,

σ − σi

σi − s
,
σj − σj

σi − s

)
≤ exp

(
σ − σj

α

)
H

(
σi − s,

σ − σi

σi − s
,
σj − σj

σi − s

)
.

The conclusion is immediate.

These inequalities will allow us to estimate the negative part of the left
derivatives ẇ(σ − 0), for σ ∈ (σj , σ] as is explained in next Lemma:
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Lemma 6. Assume that the condition of Corollary 3 are satisfied. For all
j ∈ J , the following estimate holds if σ belongs to (σj , τj ] and w(σ) ≥ 0:

(
ẇ(σ − 0)

)− ≤ 1
α

∫
[σj ,σ)

|φ0(s)| (49)

+
j∑

i=1

∫
[τi−1,σi)

(
2 exp

(
σ − σj

α

)
− 1

)
G(σ, s, i, j)ψ+

i−1(s),

where

G(σ, s, i, j) =
(
Ω

(
σ − σi

σi − s

)
−Ω

(
σj − σi

σi − s

))
ψ+

i−1(s).

Proof. In virtue of (42), for σ ∈ [σj , τj ], w(σ) can be rewritten as

w(σ) =
∫

[σj ,σ)

(
1− exp

(
−σ − s

α

))
φ0(s)

+
j∑

i=1

∫
[σj ,σ)

[∫
[τi−1,σi)

(
exp

(
− t− s

α

)
− exp

(
−σ − s

α

))
ω

(
t− σi

σi − s

)
dt

]
ψi−1(s)
σi − s

.

We exchange the order of the integrations in the double integral, we divide
by σ − σj and we get with the help of (47):

w(σ)
σ − σj

=
∫

[σj ,σ)

1
σ − σj

(
1− exp

(
−σ − s

α

))
φ0(s)

+
j∑

i=1

∫
[τi−1,σi)

F1(σ, s, i, j)ψi−1(s).

Under the assumption w(σ) ≥ 0, we obtain the following estimate:

j∑
i=1

∫
[τi−1,σi)

F1(σ, s, i, j)ψ−i−1(s) ≤
j∑

i=1

∫
[τi−1,σi)

F1(σ, s, i, j)ψ+
i−1(s) (50)

+
∫

[σj ,σ)

1
σ − σj

(
1− exp

(
−σ − s

α

))
φ0(s).

According to (46), we consider the expression for ẇ(σ − 0), which is given
by

ẇ(σ − 0) =
1
α

∫
[σj ,σ)

exp
(
−σ − s

α

)
φ0(s) +

j∑
i=1

∫
[τi−1,σi)

F (σ, s, i, j)ψi−1(s).
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We have now the inequality

(
ẇ(σ − 0)

)− ≤ j∑
i=1

∫
[τi−1,σi)

F (σ, s, i, j)ψ−i−1(s) (51)

−
j∑

i=1

∫
[τi−1,σi)

F (σ, s, i, j)ψ+
i−1(s)−

1
α

∫
[σj ,σ)

exp
(
−σ − s

α

)
φ0(s).

We substitute the inequality (48) into the factors of ψ−i−1 in (51), and then,
thanks to (50), we get

(
ẇ(σ − 0)

)− ≤ j∑
i=1

∫
[τi−1,σi)

(
2F1(σ, s, i, j)− F (σ, s, i, j)

)
ψ+

i−1(s) (52)

+
∫

[σj ,σ)

(
2

σ − σj

(
1− exp

(
−σ − s

α

))
− 1
α

exp
(
−σ − s

α

))
φ0(s).

Since the value of the factor of φ0 in (52) is comprised between −1/α and
1/α and according to inequality (48), we infer that

(
ẇ(σ − 0)

)− ≤ 1
α

∫
[σj ,σ)

|φ0(s)|

+
j∑

i=1

∫
[τi−1,σi)

F (σ, s, i, j)
(

2 exp
(
σ − σj

α

)
− 1

)
ψ+

i−1(s),

which is exactly relation (49).

6. Construction of the approximate solution

The principle of the construction of an approximate solution is the fol-
lowing: we do not know a priori whether for a given g satisfying (29), there
is a solution of (32) which has the locally finite structure determined by the
conditions of Corollary 3, and most probably there is no such solution; how-
ever, we shall choose a parameter n � 1 and construct a slightly different
φn and a solution wn which has the structure described at Corollary 3 and
which approximates well a solution of (32). The construction is recursive.

Let us start by a lemma which tells us that the lower bound of the
support of φ can be taken equal to the lower bound of the support of w:

Lemma 7. Let τ−1 be the lower bound of the support of φ and let w be a
solution of (32); assume that the lower bound of the support of the positive
part of H ∗ ρ ∗ φ is σ0 > τ−1; define

φ0 = 1[σ0,∞)

(
φ+

∫
[τ−1,σ0)

exp
(
−· − s

α

)
ω

(
· − σ0

σ0 − s

)
φ(s)
σ0 − s

)
; (53)
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then the functions

w0 = w1[σ0,∞), g0 = µ ∗ φ0, b0 = b1[σ0,∞)

solve the problem

λ1 ∗ w0 = g0 + b0, 0 ≤ b0 ⊥ w0 ≥ 0. (54)

Moreover, the lower bound of the support of φ0 is equal to the lower bound
σ0 of the support of w0.

Proof. Relation (54) holds as a corollary of the calculation performed at
Lemma 3. The definition of σ0 implies immediately that the lower bound
of the support of w0 is indeed σ0. There remains to prove that the lower
bound of the support of φ0 is also σ0. Definition (53) implies that this lower
bound of the support of φ0 is at least equal to σ0. If the lower bound of
the support of φ0 were strictly larger than the lower bound of the support
of w0, µ ∗ φ0 would vanish identically on some interval [σ0, σ1]. Then, w0

would coincide on [σ0, σ1] with H ∗ µ ∗ b0 which is strictly positive at every
point of (σ0, σ1]. But w0 could not be orthogonal to b0 unless it vanished
on that interval, which is a contradiction.

6.1. Initialization of the recursion

Let us describe now formally the construction of the approximate solu-
tion. If τ−1 < σ0, we start with φ0 defined by (53); the number σ0 is the
lower bound of the support of (H ∗ ν ∗φ0)+. If τ−1 = σ0, we let φ0 = φ. We
let

φ̃n
0 = φ0, σn

0 = σ0.

Call τ̃n
0 the lower bound of the support of the negative part of H ∗ν ∗ φ̃n

0 ;
if τ̃n

0 > σn
0 , we let φn

0 = φ̃n
0 and τn

0 = τ̃n
0 .

If the lower bound of the support of the negative part of H ∗ ν ∗ φ̃n
0 is

equal to σn
0 , this means that we can find, arbitrarily close to σn

0 , times t for
which H ∗ν ∗ φ̃n

0 is of either sign. In particular, we can find, arbitrarily close
to σn

0 , times t for which
(
H ∗ ν ∗ φ̃n

0

)
(t) vanishes, while

(
ν ∗ φ̃n

0 )(t − 0) is
less than or equal to 0. We choose any time t in the interval (σn

0 , σ
n
0 + 1/n]

which satisfies all these conditions, we call it τn
0 , we let

a =
∫

[σn
0 ,τn

0 )

(
φ̃n

0

)+ and b =
∫

[σn
0 ,τn

0 )

(
φ̃n

0 )−, (55)

and we define

φn
0 = aδ(· − σn

0 )− bδ(· − τn
0 ) + φn

01[τn
0 ,∞). (56)

It is plain that the lower bound of the support of the negative part of
H ∗ ν ∗ φn

0 is equal to τn
0 , and that the respective mass of the positive and

the negative parts of φn
0 on [σn

0 , τ
n
0 ) coincide with their counterparts for φ̃n

0 ,
in particular, b > 0.
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6.2. The recursion

The construction will now be described inductively.
We start from a measure φn

j such that

inf suppφn
j = inf supp

(
H ∗ ν ∗ φn

j

)+
. (57)

It is important to observe that if φ is a measure, with support bounded
on the left, H ∗ ν ∗ φ is a continuous function. Let

τn
j = inf supp

(
H ∗ ν ∗ φn

j

)−
.

If τn
j = ∞, the construction stops; we shall show later that τn

j is always
strictly larger than σn

j for j ≥ 1; it is already true by construction for j = 0.
With reference to (40), we define

ψ̃n
j = 1[τn

j ,∞)φ
n
j + δ(· − τn

j ) exp
(
−
τn
j

α

) ∫
[σn

j ,τn
j )

exp
(
s

α

)
φn

j (s), (58)

and
σ̃n

j+1 = inf supp
(
ψ̃n

j

)+
. (59)

We have two cases to consider.

Case 1. If σ̃n
j+1 = ∞, the construction stops.

Case 2. If ∞ > σ̃n
j+1 ≥ τn

j , we choose any time σn
j+1 which does not carry

an atom of ψ̃n
j and which satisfies

max
(
σ̃n

j+1, τ
n
j +

1
2n

)
≤ σn

j+1 ≤ max
(
σ̃n

j+1, τ
n
j +

1
2n

)
+

1
2n
, (60)

and we define

ψn
j = −1[τn

j ,σn
j+1)

(
ψ̃n

j

)− (61)

+ δ(· − σn
j+1)

∫
[τn

j ,σn
j+1)

(
ψ̃n

j

)+ + 1[σn
j+1,∞)ψ̃

n
j .

Since the lower bound of the support of
(
ψ̃n

j

)+ is equal to σ̃n
j+1, the mass

of the atom of ψn
j at σn

j+1 is strictly positive.

The last step of the construction is the construction of φn
j+1; with refer-

ence to (41), it is given by

φn
j+1 = 1[σn

j+1,∞)ψ
n
j (62)

+ 1[σn
j+1,∞)

∫
[τn

j ,σn
j+1)

exp
(
−· − s

α

)
ω

( · − σn
j+1

σn
j+1 − s

)
ψn

j (s)
σn

j+1 − s
.

In order to validate this process, we have to prove the



Simplified viscoelasticity with Signorini conditions 27

Lemma 8. For all j ≥ 0, there exists a non empty interval (σn
j+1, τ

n
j+1) on

which H ∗ ν ∗ φn
j+1 is strictly positive.

Proof. Write for simplicity

τ = τn
j , σ′ = σn

j+1, ψ = ψn
j ,

φ′ = 1[σ′,∞)

(
ψ +

∫
[τ,σ′)

exp
(
−· − s

α

)
ω

(
· − σ′

σ′ − s

)
ψ(s)
σ′ − s

)
.

By construction, ψ
∣∣
[τ,σ′)

≤ 0, and ψ has a positive atom at σ′, whose mea-
sure will be denoted by β > 0. We have the following identity for t > σ′:

(H ∗ ν ∗ φ′)(t) =
(

1− exp
(
− t− σ′

α

))
β

+
∫

(σ′,t)

(
1− exp

(
− t− s

α

))
ψ(s)

+
∫

[σ′,t)

∫
[τ,σ′)

exp
(
−s− r

α

)
ω

(
s− σ′

σ′ − r

)
ψ(r)
σ′ − r

ds

−
∫

(σ′,t)

exp
(
− t− s

α

) ∫
[τ,σ′)

exp
(
−s− r

α

)
ω

(
s− σ′

σ′ − r

)
ψ(r)
σ′ − r

ds.

We can find t1 > σ′ such that∫
(σ′,t1)

|ψ(s)| ≤ β

4
;

then, for t ∈ [σ′, t1], we will have∣∣∣∣∫
(σ′,t)

(
1− exp

(
− t− s

α

))
ψ(s)

∣∣∣∣ ≤ (
1− exp

(
− t− σ′

α

))
β

4
;

we cut the interval [τ, σ′) into two pieces, [τ, σ′ − ε) and [σ′ − ε, σ′), thus,
we have the estimate∣∣∣∣∫

[σ′,t)

(
1− exp

(
− t− s

α

)) ∫
[τ,σ′)

exp
(
−s− r

α

)
ω

(
s− σ′

σ′ − r

)
ψ(r)
σ′ − r

ds

∣∣∣∣
≤

(
1− exp

(
− t− σ′

α

))(∫
[τ,σ′−ε)

|ψ(r)| +
∫

[σ′−ε,σ′)

|ψ(r)|
)
.

We choose ε so small that ∫
[σ′−ε,σ′)

|ψ(r)| ≤ β

4
;

then (
1− exp

(
− t− σ′

α

) ∫
[σ′−ε,σ′)

|ψ(r)| ≤
(

1− exp
(
− t− σ′

α

))
β

4
;
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we fix ε and we choose t2 ∈ (σ′, t1] so small that(
1− exp

(
− t2 − σ′

α

)) ∫
[τ,σ′−ε)

|ψ(r)| ≤
(

1− exp
(
− t2 − σ′

α

))
β

4
;

then, for t ∈ (σ′, t2), (H ∗ ν ∗ φ′)(t) ≥
(
1 − exp(−(t − σ′)/α)

)
β/4 > 0 and

the lemma is proved.

6.3. Mass and order properties of the measures φn
j and ψn

j

The measures defined in this part have some important order properties,
which are summarized in next lemma:

Lemma 9. The following inequalities hold:(
ψ̃n

j

)+ ≤
(
φn

j

)+
, (63)

φn
j+1 ≤ 1[σn

j+1,∞)ψ
n
j , (64)∫

|φn
j+1| ≤

∫
|ψn

j | ≤
∫
|φn

j |, (65)∫
[τn

j ,σn
j+1)

(
ψ̃n

j

)+ ≤
∫

[τn
j ,σn

j+1)

φ+, (66)

(
φn

j+1

)+ ≤ 1[σn
j+1,∞)

(
φn

j

)+ + δ(· − σn
j+1)

∫
[τn

j ,σn
j+1)

(
φn

j

)+
. (67)

Proof. For relation (63), we just take the definition (61) of ψ̃n
j , observing

that the quantity

1
α

exp
(
−
τn
j

α

) ∫
[σn

j ,τn
j )

exp
(
s

α

)
φn

j (s)

is simply equal to the velocity ẇ(τn
j − 0) and hence less than or equal to 0.

Relation (64) can be read on formula (62) with upper indices n thrown in
and the sign condition ψn

j ≤ 0 over [τn
j , σ

n
j+1) coming from the construction.

In order to obtain estimate (65), we integrate∫
[τn

j ,σn
j+1)

exp
(
− t− s

α

)
ω

(
t− σn

j+1

σn
j+1 − s

) |ψn
j (s)|

σn
j+1 − s

(68)

over [σn
j+1,∞), we exchange the order of the integrations, we find that∫
[σn

j+1,∞)

(∫
[τn

j ,σn
j+1)

exp
(
− t− s

α

)
ω

(
t− σn

j+1

σn
j+1 − s

) |ψn
j (s)|

σn
j+1 − s

)
dt

≤
∫

[τn
j ,σn

j+1)

Ω

(
t− σn

j+1

σn
j+1 − s

) ∣∣∣∣t=∞
t=σn

j+1

∣∣ψn
j (s)

∣∣ =
∫

[τn
j ,σn

j+1)

∣∣ψn
j (s)

∣∣ ,
where we have estimated exp(−(t − s)/α) by 1; the conclusion is clear.
Relation (66) is a consequence of (58) and of the relations (63) and (64)
with an induction on j; finally (67) is an immediate consequence of (61)-
(63).
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6.4. The approximate problem

We define now

φ̄n = φ+
(
φn

0 − φ
)
1[σn

0 ,τn
0 )

+
∑
j≥0

(
δ(· − σn

j+1)
∫

[τn
j ,σn

j+1)

(
ψ̃n

j

)+ − 1[τn
j ,σn

j+1)

(
ψ̃n

j

)+
)
.

(69)

The above sum must be understood as extended to the set of indices for
which the recursion is defined: it is a finite sum if one of the τn

j or σn
j is

infinite. As the length of the intervals [τn
j , σ

n
j+1) is at least equal to 1/(2n),

we know that this sum is locally finite.

Theorem 4. Let gn = µ ∗ φ̄n. Then, the function wn given by

wn =
∑
j≥0

1[σn
j ,τn

j ]

(
H ∗ ν ∗ φn

j

)
(70)

is continuous, non negative, and it is a solution of

λ1 ∗ wn = gn + bn, (71a)
wn ≥ 0 (71b)
bn ≥ 0 (71c)〈
wn, bn

〉
= 0. (71d)

Proof. The function wn is non negative on the intervals [σn
j , τ

n
j ] by con-

struction, i.e. (71b) holds.
The definition of gn comes from the fact that we modify the data in each

interval [τn
j , σ

n
j+1), according to (61); in particular,

ψn
j − ψ̃n

j = δ(· − σn
j+1)

∫
[τn

j ,σn
j+1)

(
ψ̃n

j

)+ − 1[τn
j ,σn

j+1)

(
ψ̃n

j

)+; (72)

therefore wn satisfies (71a), with bn given by

bn = −
∑
j≥0

1[τn
j ,σn

j+1)

(
µ ∗ ψn

j

)
,

and we just have to check (71c): but it is a result of the construction per-
formed in Subsection 6.2 that the measure ψn

j is negative on [τn
j , σ

n
j+1).

Moreover, µ ∗ ψn
j belongs to the space Lp

loc for all p ∈ [1, 2), and therefore,
the duality product 〈wn, bn〉 makes sense locally as a Lebesgue integral of
the product of two functions, and therefore (71d) is true.
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6.5. Estimates on the approximation

We prove first a result on the convergence of the measure φ̄n:

Lemma 10. The norm of the measure φ̄n is bounded by 3‖φ‖M1 and con-
verges weakly ∗ to φ as n tends to infinity.

Proof. We estimate the norm in M1 of all the terms in (69): thanks to
(55) and (56), we have the estimate

‖(φn
0 − φ)1[σn

0 ,τn
0 )‖M1 ≤ 2‖φ1[σn

0 ,τn
0 )‖M1 .

Similarly thanks to (72)

‖(ψn
j − ψ̃n

j )1[τn
j ,σn

j+1)
‖M1 ≤ 2

∫
[τn

j ,σn
j+1)

(
ψ̃n

j

)+

and in virtue of (63) and (67)

‖(ψn
j − ψ̃n

j )1[τn
j ,σn

j+1)
‖M1 ≤ 2

∫
[τn

j ,σn
j+1)

φ+;

therefore, we find the inequality

‖φ̄n‖M1 ≤ 3‖φ‖M1 . (73)

Let h be a continuous function on R with compact support and let ρ be
its modulus of continuity: ρ is a continuous increasing function from R+ to
itself such that

∀x, y ∈ R, |h(x)− h(y)| ≤ ρ|x− y|;

moreover, ρ vanishes at 0. According to (61), we rewrite as follows the
duality product between h and ψn

j − ψ̃n
j :〈

ψn
j − ψ̃n

j , h
〉

=
∫

[τn
j ,σn

j+1)

(
h(σn

j+1)− h(s)
)(
ψ̃n

j (s)
)+;

but we have the straightforward estimate∣∣∣∣∫
[τn

j ,σn
j+1)

(
h(σn

j+1)− h(s)
)(
ψ̃n

j (s)
)+

∣∣∣∣ ≤ ρ
(
σn

j+1 − σ̃n
j+1)

∫
[τn

j ,σn
j+1)

(
ψ̃n

j (s)
)+;

thanks to the choice (60) of σn
j+1, we know that

σn
j+1 − σ̃n

j+1 ≤
1
n
,

and therefore in virtue of (61) and (66),∣∣〈ψn
j − ψ̃n

j , h
〉∣∣ ≤ ρ

n

∫
[τn

j ,σn
j+1)

φ+;

we have an analogous estimate for the initial term, and the lemma is proved.
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The next result gives an estimate of gn − g:

Lemma 11. For all p ∈ [1, 2), there exists a constant C such that the fol-
lowing inequality holds:

‖gn − g‖Lp ≤ Cn1/2−1/p exp
(

1
2αn

)(∫
[σn

0 ,τn
0 )

|φ| +
∑
j≥0

∫
[τn

j ,σn
j+1)

(
φ
)+

)
.

Proof. The difference gn − g a sum of terms of the form

µ ∗
(
δ(· − σn

j+1)
∫

[τn
j ,σn

j+1)

(ψ̃n
j )+ − 1[τn

j ,σn
j+1)

(ψ̃n
j )+

)
, (74)

and possibly of an initial term given by

µ ∗
(
δ(· − σn

0 )
∫

[σn
0 ,τn

0 )

φ+ + δ(· − τ̄)
∫

[σn
0 ,τn

0 )

φ− − φ1[σn
0 ,τn

0 )

)
. (75)

Let us start by the terms of the form (74): they can be rewritten as∫
[τn

j ,σn
j+1)

(
µ(t− σn

j+1)− µ(t− s)
)(
ψ̃n

j (s)
)+
,

which we estimate in Lp(0, T ) by appealing to Minkowski inequality for
integrals:(∫ T

τn
j

∣∣∣∣∫
[τn

j ,σn
j+1)

(
µ(t− σn

j+1)− µ(t− s)
)(
ψ̃n

j (s)
)+

∣∣∣∣p dt)1/p

≤
∫

[τn
j ,σn

j+1)

(
ψ̃n

j (s)
)+

(∫ T

τn
j

∣∣µ(t− σn
j+1)− µ(t− s)

∣∣p dt)1/p

.

But we observe the following inequality∫
[τn

j ,σn
j+1)

∣∣µ(t− σn
j+1)− µ(t− s)

∣∣p dt
≤

(σn
j+1 − τn

j )1−p/2

(απ)p/2(1− p/2)
exp

(
p
σn

j+1 + τn
j

α

)
;

We cut the interval [σn
j+1, T ] into two pieces, one from σn

j+1 to σn
j+1 + ε and

the second one on the remainder of the interval, and we will adjust ε so as
to obtain the best possible result. On the first piece, we have the estimate∫ σn

j+1+ε

σn
j+1

∣∣µ(t− σn
j+1)− µ(t− s)

∣∣p dt
≤

∫ σn
j+1+ε

σn
j+1

∣∣µ(t− σn
j+1)

∣∣p dt =
ε1−p/2

(απ)p/2(1− p/2)
.
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On the third piece, we use the derivative of µ, this derivative is equal to
−(1/(2t3/2

√
απ) + 1/(αt1/2

√
απ)) exp(−t/α) for t > 0, and we obtain the

estimate ∫ T

σn
j+1+ε

∣∣µ(t− σn
j+1)− µ(t− s)

∣∣p dt
≤

∫ T

σn
j+1+ε

∣∣∣∣ (s− σn
j+1)(α+ 2(t− σn

j+1))
2α
√
απ (t− σn

j+1)3/2

∣∣∣∣p exp
(
−pε
α

)
dt.

Since s ∈ [τn
j , σ

n
j+1), we estimate this integral by

(σn
j+1 − τn

j )p(α+ 2(T − σn
j+1))

p

ε3p/2−1(3p/2− 1)(2α)p(απ)p/2
exp

(
−pε
α

)
.

We choose ε = σn
j+1 − τn

j , and we see that there is a constant C such that
for all n and all j:(∫ T

τn
j

∣∣µ(t− σn
j+1)− µ(t− s)

∣∣p )1/p

dt

≤ C
(
σn

j+1 − τn
j

)1/p−1/2 exp
(
σn

j+1 − τn
j

α

)
.

But σn
j+1−τn

j is at most equal to 1/(2n), and we obtain finally the estimate

‖µ ∗ (ψ̃n
j − ψn

j )‖Lp ≤ Cn1/2−1/p exp
(

1
2αn

) ∫
[τn

j ,σn
j+1)

(
ψ̃n

j

)+
.

Inequality (66) enables us to estimate the integral of
(
ψn

j

)+ over [τn
j , σ

n
j+1],

by the integral of φ+ over the same interval. Let us pass now to estimates
on (75). Arguing as above, we observe that(∫

[σn
0 ,T ]

∣∣µ ∗ (
φn

0 − φ
)∣∣p dt)1/p

≤ Cn1/2−1/p exp
(

1
2αn

) ∫
[σn

0 ,τn
0 ]

|φ|.

The assertion of the lemma is proved.

Let us obtain now some estimates on wn and its derivatives:

Lemma 12. The time derivative ẇn belongs to L∞(R) and the bound on wn

is independent of n; the measure bn is a function which is locally integrable
on R+, with bound independent of n.

Proof. By the definition (70) of wn on the interval [σn
j , τ

n
j ) we have the

estimate ∥∥∥ẇn
∣∣
[σn

j ,τn
j )

∥∥∥
L∞

≤ 1
α

∫
[σn

j ,τn
j )

|φn
j |,
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and thanks to (65), we obtain immediately the estimate

‖ẇn‖L∞ ≤ 1
α
‖φ‖M1 . (76)

Since λ1 = ρ̇, the convolution of (71a) with H yields the identity

ρ ∗ wn = H ∗ (gn + bn). (77)

But ρ = µ+ αµ̇, hence (77) can be rewritten(
µ ∗ wn + αµ ∗ ẇn

)
(t+ 0) =

∫
[0,t]

gn(s) ds+
∫

[0,t]

bn(s) ds.

Relation (76) implies that the left hand side of the above relation is bounded
by (1+t)‖φ‖M1/α; similarly, we use (73) to find that the integral of gn over
[0, T ] is bounded by 3‖φ‖M1 . This shows the desired estimate.

7. Passage to the limit

We start by an easy convergence result:

Lemma 13. There exists a subsequence, still denoted by wn which has the
following convergence properties:

wn converges to w uniformly on compact sets;
ẇn converges to ẇ in L∞(0, T ) weakly ∗ for all positive t;

bn converges to b in M1(0, T ) weakly ∗ for all positive t.

Moreover, w and b satisfy (32).

Proof. The possibility of extracting a subsequence is an immediate conse-
quence of Lemma 12. It is clear that w and b are non negative; the duality
product 〈wn, bn〉 converges to its limit which is 〈w, b〉. Thus we have con-
structed a solution of (18).

We infer from this result an important information on the measure b:

Lemma 14. The measure b has no atoms.

Proof. The derivative ẇ is equal in the sense of distributions to ν ∗φ+µ∗b.
As φ is a measure, ν ∗φ is locally essentially bounded; since ẇ is essentially
bounded, this means that µ ∗ b is essentially bounded. Denoting by ba its
atomic part, we infer from the positivity of b that µ ∗ ba is also essentially
bounded; but this means clearly that ba must vanish, which concludes the
proof.

Now comes the essential result of this article:
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Theorem 5. Let N be the set of atoms of φ: 1Nφ is a purely atomic measure
and (1− 1N )φ is a diffuse measure. For any solution of (18) defined by the
above convergence process, let U be the open set

U = {t ∈ R : w(t) > 0}, (78)

which is a countable union of connected components:

U =
⋃

κ∈K

(σκ, τκ).

The set composed of all the points σκ and τκ is a countable set called N1.
Then for all t /∈ N ∪ N1 ∪ U , w is differentiable at t and its derivative
vanishes.

Proof. Assume thus that w(t) vanishes, that t is not an end point σκ or
τκ, and that t does not belong to N . We have to deal with derivatives on
the left and on the right, and we use different strategies for each of them. If
there exist respectively a non empty interval [t, t + ε) or (t − ε, t] included
in the complement of U , it is clear that the derivative on the right or on
the left of w at t vanishes.

Assume that there is no interval of the form [t, t + ε) included in the
complement of U . Since t is not an end point σκ or τκ, this means that
there exists decreasing subsequences σκ(m) and τκ(m) converging to t.

If it is not true that the right derivative of w at t vanishes, we can find
a subsequence tm decreasing to t and a number β > 0 such that

w(tm)
tm − t

≥ β > 0, (79)

and in particular, for all m, w(tm) is strictly positive. Possibly extracting
subsequences, we may assume that the following situation holds for all large
enough m:

σκ(m) < tm < τκ(m) < σκ(m−1)

For all m, there exists a number n(m) such that for all n ≥ n(m), wn(tm) is
strictly positive, thanks to the uniform convergence of wn to its limit. Let
(σn

j(n), τ
n
j(n)) be the connected component of tm in the open set

Un = {t ∈ R : wn(t) > 0}.

We infer from (42) the identity

wn(tm) =
∫

[σn
j(n),tm)

(
1− exp

(
− tm − s

α

))
φn

j(n)(s).

At this point, we observe that relation (67) implies∫
[σn

j(n),tm)

φn
j(n) ≤

∫
[τn

j(n)−1,tm)

φ+;



Simplified viscoelasticity with Signorini conditions 35

therefore, we have the estimate

wn(tm)− w(t)
tm − t

≤ 1
tm − t

∫
[τn

j(n)−1,tm)

φ+. (80)

If the inferior limit of τn
j(n)−1 as n tends to infinity is σ̄ < t, this means that

there exists a subsequence of wn, still denoted by wn, such that for n large
enough

∀s ∈ [(t+ σ̄)/2, tm], wn(s) > 0,

and hence the support of b does not meet ((t+ σ̄)/2, tm); in particular, on
this interval, ẇ is of bounded variation, and as t does not carry an atom of
φ, ẇ is continuous at t; the sign condition implies then that ẇ(t) vanishes.
If the inferior limit of τn

j(n)−1 is at least equal to t, then we estimate for n
large enough the right hand side of (80) by

1
tm − t

∫
(t−ε,tm)

φ+(s),

with ε an arbitrary positive number. We pass to the limit in n and then in
ε and we obtain the inequality

w(tm)− w(t)
tm − t

≤
∫

[t,tm)

φ+(s); (81)

since t is not an atom of φ, we may choose m so large that the right hand
side of (81) is less than or equal to β/2, contradicting thus the assumption
(79). Therefore, the derivative of w on the right at t exists and vanishes.

Let us turn now to the other side of the estimates. This is where estimate
(49) will prove useful. Assume then that there is no interval of the form
(t − ε, t] included in the complement of U . Since t is not an end point σκ

or τκ, this means that there exists increasing subsequences σκ(m) and τκ(m)

converging to t.
If it is not true that the derivative on the left of w at t vanishes, we can

find a number β > 0 and a sequence of times tm increasing to t such that

w(tm)− w(t)
t− tm

≥ β. (82)

We assume also that for all m, b charges a neighborhood of σκ(m) and a
neighborhood of τκ(m): if this were not true, we could always take a smaller
σκ(m) and a larger τκ(m).

As t does not carry an atom of φ, we may choose m and ε > 0 such that

1
α

∫
[σκ(m)−ε,τκ(m)]

|φ| ≤ β

4
;

as above, we denote by (σn
j(n), τ

n
j(n)) the connected component of tm in Un;

relation (82) implies that for all large enough n,

wn(tm)− wn(τn
j(n)) ≥

3β
4

(t− tm),
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and therefore
wn(tm)− wn(τn

j(n)) ≥
3β
4

(t− τn
j(n));

therefore, there exists in [σn
j(n), τ

n
j(n)] a set M of positive measure on which

the derivative of w is negative enough:

ẇn(σ) ≤ −3β
4
, ∀σ ∈M.

We apply inequality (49), observing that the terms ψn
i are all non positive

on [τn
i−1, σ

n
i ) and therefore(

ẇn(σ − 0)
)− ≤ 1

α

∫
[σn

j(n),σ]

|φ(s)|,

which is at most equal to

1
α

∫
[σκ(m)−ε,τκ(m)]

|φ|,

since σn
j(n) tends to σκ(m) under the assumption that b charges a neighbor-

hood of σκ(m). Therefore, on the set M , we have the estimate(
ẇn(σ)

)− ≤ β

4
,

which is clearly a contradiction.

We have another expression for the derivative of w in the sense of dis-
tributions:

ẇ = µ ∗ (g + b).

Under assumption (29), this relation can be rewritten

ẇ = ν ∗ φ+ µ ∗ b in the sense of distributions. (83)

Except at the atoms of φ, ν ∗φ is a continuous function. On the other hand,
µ ∗ b is defined everywhere on R, as proved in next Lemma:

Lemma 15. If µ∗b is locally essentially bounded, the function µ∗b is defined
for all t ∈ R, lower semi-continuous and locally bounded on R.

Proof. The function µ(t − ·) is continuous except at 0; therefore, it is b-
measurable, since b has no atoms, thanks to Lemma 14. Therefore, the
expression ∫

µ(t− s)b(s)

is defined as an element of [0,∞] and can be obtained as a limit of integral
of continuous functions with respect to the measure b. Take for instance

ρh(t) =


0 if 0 ≤ t ≤ h,
(t− h)/h if h ≤ t ≤ 2h,
1 if 2h ≤ t;
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then it is plain that

(
µ ∗ b

)
(t) = lim

h↓0

∫
µ(t− s)ρh(t− s)b(s).

Moreover, µ ∗ b is lower semi-continuous: if tn is a sequence converging to t,
the inferior limit of µ(tn − ·) is greater than or equal to µ(t− ·) and thanks
to Fatou’s lemma

lim inf
∫
µ(tn − s)b(s) ≥

∫
µ(t− s)b(s).

Finally, the function µ ∗ b is locally bounded if it is locally essentially
bounded: suppose indeed that there exists a time t such that∫

µ(t− s)b(s) = ∞.

Let M be the essential bound of µ∗b over [0, T ]; for all M ′ > M there exists
ε > 0 such that ∫ t−ε

0

µ(t− s)b(s) ≥M ′.

Then, for all t′ ∈ (t− ε, t], and for all s ∈ [0, t− ε] we have the inequality

µ(t′ − s) ≥ µ(t− s)

which we integrate over [0, t− ε] with respect to b, obtaining thus∫
[0,t−ε]

µ(t′ − s)b(s) ≥
∫

[0,t−ε]

µ(t− s)b(s),

so that there is a set of measure ε on which µ ∗ b is at least equal to M ′,
which contradicts the assumption on the essential bound of µ∗ b over [0, T ].

We have now two expressions for the derivative of w, which are known to
coincide in the sense of distributions and therefore almost everywhere. We
wish to show that they coincide everywhere, except at a countable number
of point; this will be a consequence of next Lemma. Write Φ = ν ∗ φ and
observe that a priori, thanks to the lower semi-continuity, we expect the
inequality

ẇ(t) ≥ Φ(t) +
(
µ ∗ b

)
(t),

if we are able to prove that ẇ is continuous at the points t which are not
atoms of φ.

Lemma 16. At all the points where w is differentiable and Φ continuous
we have the relation

ẇ(t) = Φ(t) +
(
µ ∗ b

)
(t).
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Proof. Let t be a point which is not an atom of φ and at which w is
differentiable. Let us examine the differentiation of H ∗µ∗ b at t from either
side. For t+ h > 0 and t > 0, we use the identity

1
h

(
2
√
t+ h− 2

√
t− h

1√
t

)
= − 1√

t

√
t+ h−

√
t√

t+ h+
√
t
; (84)

We decompose the expression used for defining the derivative as follows for
h > 0 :

w(t+ h)− w(t)
h

− (µ ∗ b)(t)− Φ(t)

=
1
h

∫ t+h

0

(
(H ∗ ν)(t+ h− s)− (H ∗ ν)(t− s)− hν(t− s)

)
φ(s)

+
1
h

∫ t

0

(
(H ∗ µ)(t+ h− s)− (H ∗ µ)(t− s)− hµ(t− s)

)
b(s)

+
1
h

∫
[t,t+h]

(
(H ∗ ν)(t− s)− hν(t− s)

)
φ(s)

+
1
h

∫
[t,t+h]

(H ∗ ν)(t+ h− s)b(s).

Passing to the limit and using Lebesgue’s dominated convergence theorem
we obtain, thanks to (84)

ẇ(t+ 0) =Φ(t) + (µ ∗ b)(t)− lim
h↓0

1
h

∫
[t,t+h]

(H ∗ ν)(t+ h− s)b(s) (85)

− lim
h↓0

1
h

∫
[t,t+h]

(
(H ∗ ν)(t− s)− hν(t− s)

)
φ(s).

Similarly, for h < 0, we write

w(t+ h)− w(t)
h

− (µ ∗ b)(t)− Φ(t)

=
1
h

∫ t+h

0

(
(H ∗ ν)(t+ h− s)− (H ∗ ν)(t− s)− hν(t− s)

)
φ(s)

+
1
h

∫ t+h

0

(
(H ∗ µ)(t+ h− s)− (H ∗ µ)(t− s)− hµ(t− s)

)
b(s)

− lim
h↑0

1
h

∫ t

t+h

(H ∗ ν)(t− s)φ(s)− lim
h↑0

∫ t

t+h

ν(t− s)φ(s)

− lim
h↑0

1
h

∫ t

t+h

(H ∗ µ)(t− s)b(s)− lim
h↑0

∫ t

t+h

µ(t− s)b(s).
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Using as above (84) and Lebesgue’s dominated convergence theorem, we see
that

ẇ(t− 0) =Φ(t) +
∫ t

0

µ(t− s)b(s)

+ lim
h↑0

1
h

∫ t

t+h

(H ∗ ν)(t− s)φ(s) + lim
h↑0

∫ t

t+h

ν(t− s)φ(s) (86)

+ lim
h↑0

1
h

∫ t

t+h

(H ∗ µ)(t− s)b(s) + lim
h↑0

∫ t

t+h

µ(t− s)b(s).

Relation (85) implies that

ẇ(t) ≥ Φ(t) +
(
µ ∗ b

)
(t),

and symmetrically, relation (86) implies that

ẇ(t) ≤ Φ(t) +
(
µ ∗ b

)
(t).

These two inequalities enable us to conclude the proof.

We are able now to conclude the article by proving the last result:

Proposition 1. Let w be the solution constructed at Lemma 13; then, for
all T > 0, we have the identity∫ T

0

(
µ̇ ∗ w

)
ẇ dt =

∫ T

0

gẇ dt.

Proof. The convolution µ̇ ∗w is the sum of the measure b and the function
g; therefore, the duality product 〈1[0,T ], g + b〉 is well defined; the function
ẇ(t) is bounded, and it vanishes b-almost everywhere on the support of
b; therefore, for all T > 0, the integral

∫ T

0
bẇ vanishes, which proves the

proposition.

Now, we can drop the requirement that φ be a bounded measure:

Corollary 5. Let φ be a Radon measure with support included in R+; then
there exists a function w such that (54) and hold.

Proof. For each m, the measure φ1[0,m] is bounded and we may construct
wn,m(t) so that it coincides with wn,k(t) for t ≤ min(m, k)(t). Therefore, a
diagonal process lets us extract a solution possessing the required properties.

Therefore the duality product 〈w, b〉 makes sense and vanishes which
enables us to deduce immediately that the energy loss is purely viscous.

A possible extension to this work is to investigate if the techniques de-
veloped in this paper for the balance of energy remain still valid for any
geometrical obstacle. On the other hand, Jarušek proved by the penalty
method an existence result for the full viscoelasticity including the Sig-
norini conditions and a given friction at the boundary, his result published



40 Adrien Petrov, Michelle Schatzman

in [14] do not define a trace of the stress at the boundary, nor do they give
information on the balance of energy. We may examine if the Fourier anal-
ysis enables us to characterize the trace spaces and then to deduce that the
weak solution is also strong one. Here, we mean by strong solution that all
the traces can be defined. We remark that the question of uniqueness for
the dynamic contact problems are open problems.

Appendix

Define the following complex-valued functions:

ν̂(ω) =
1

1 + iαω
,

µ̂(ω) =
√
ν̂(ω) =

1√
1 + iαω

, <µ̂ ≥ 0,

ρ̂(ω) =
1

µ̂(ω)
=
√

1 + iαω, <ρ̂ ≥ 0,

λ̂1(ω) = iωρ̂(ω) = iω
√

1 + iαω,

λ̂(ω) = iωµ̂(ω) =
iω√

1 + iαω
,

µ̂1(ω) =
µ̂(ω)

i(ω − i0)
,

where we have used the notation

1
ω − i0

= lim
ε↓0

1
ω − iε

.

The inverse Fourier transform of ν̂ is given by

ν(t) =
exp(−t/α)

α
1R+(t). (87)

Let H denote the Heaviside function. We observe that

H ∗ ν =
(
1− exp(− · /α)

)
H. (88)

The functions µ̂, ρ̂, µ1 and λ̂1 are analytic in the upper half-plane, so that
their inverse Fourier transform, µ, ρ and λ1 are supported in R+.

We have an explicit expression of µ:

Lemma 17. The inverse Fourier transform of µ̂ is

µ(t) =
exp(−t/α)√

2παt
1(0,∞)(t). (89)



Simplified viscoelasticity with Signorini conditions 41

Proof. It is plain that µ̂ is holomorphic in C\ i[1/α,+∞); thanks to Paley-
Wiener-Schwartz theorem, the support of µ is included in [0,+∞). In order
to calculate the inverse Fourier transform of µ̂, choose the integration path
Γ pictured at Figure 1; the part on the arcs of circle AB and EF converges
to 0 as R tends to infinity; thanks to Cauchy’s theorem and an obvious
passage to the limit∫

R
exp(iωt)µ̂ dω = 2

∫ +∞

1/α

exp(−rt)√
αr − 1

dr.

The change of variable s = (r − 1/α)t yields the desired conclusion.

PSfrag replacements

A
B
C
D
E
F
R
0

<(ω)
=(ω)

Γ
1/α

θ
2ε

Fig. 1. The path Γ in the complex plane.

The function µ1 is given in physical variables by

µ1(t) =
∫ t

0

µ(s) ds =
∫ t

0

exp(−s/α)√
παs

ds. (90)
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