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Abstract
We consider a damped wave equation
uy — Au — aAu, = f, x € (—o0,0] X R 6> 0, 0> 0,
with unilateral boundary conditions
w(0,°) >0, (uz; + g, )(0,7) >0, (u(ug, + aug,))(0,-) = 0.
We study also the evolution of a Kelvin-Voigt material:
P 1t = 8j0?j(u) + 8jailj(ut) + fi,x € (—00,0] x R ¢ >0,
with boundary conditions on {0} x R x [0, c0)
u1 <0, 09y (u) + o1y (ur) <0, ug (0 (u) + o711 (ur)) =0,
oia(u) + ofp(ur) =0 and  ofs(u) + oyz(ur) = 0.

Under appropriate regularity assumptions on the initial data, both problems
possess a weak solution which is obtained as the limit of a sequence of penalized
problems; the functional properties of all the traces are precisely identified
through Fourier analysis, and this enables us to infer the existence of a strong
solution.

1 Introduction and notations

This paper aims to give some new mathematical results on existence for a damped
wave equation with an obstacle and for full viscoelasticity in the particular case of
a Kelvin-Voigt material with unilateral boundary conditions.

We consider in Section 2 a damped wave equation taking place in a half-space,
with an obstacle at the boundary. Let u(z,t) be the displacement at time ¢ of the
material point of spatial coordinate z = (zy,7') € (—00,0] x R?"! at rest. Let
f(zq,2',t) denote a density of external forces, depending on space and time. Define
Q) = (—00,0] x R¥! and let a be a positive number. The mathematical problem is
formulated as follows:

uyg — Au— aAuy = f, x € Q, t > 0, (1.1)
with Cauchy initial data

u(-,0) =up and w(-,0) = uy, (1.2)
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and Signorini boundary conditions at z; = 0, t > 0,
0<u Ll ugy + aug, > 0. (1.3)

The orthogonality has the natural meaning: an appropriate duality product between
two terms of relation vanishes.

We suppose that the initial position ug belongs to the Sobolev space H?(2) and
satisfies the compatibility condition ug(0,-,-) > 0, the initial velocity u; belongs
to H'(Q2) and the density of forces f belongs to LIOC([O, o0); L*(2)). The choice of
a function f defined for all non negative time is justified by the use of a Fourier
transform in the later part of the article. This is not significant restriction as we
can always extend f by 0 if it is defined only for finite times.

Let K be the convex set:
K ={v € Hy.(2x[0,00)) : Vg € Li ([0, 00); L*(2)), v| oy xa-1 > 0}.

This unusual convex set has been devised in order to write a weak formulation of our
problem. Since we expect to find a scalar product (Vug, Vw), we require Vu, to be
square integrable. Thus, the weak formulation associated to (1.1)-(1.3) is obtained
by multiplying (1.1) by v — u, v € K and by integrating formally over Q x (0, 7).
Then, we get:

(Find v € K such that for all v € K and for all 7 € (0, 00),

[to- ol [ [ wiza -
//Vu+aVut (Vo —Vu) dxdt>/ /fv—u ) dx dt.

We treat also in Section 3 the evolution of a Kelvin-Voigt material (see [1]) occupying
a half-space, satisfying Signorini conditions at the boundary and Cauchy data at
t = 0. We make the assumptions of small deformations. Let e;;(u) = (2, +Uiz;)/2
be the strain tensor and let there be given two Hooke tensors, aj,, n = 0,1. We
define the two stress tensors o7} corresponding respectively to the elastic and the
viscous part of the stress:

O',Z(U) = @%klgkl(u); (15)
here, we have used the summation convention on repeated indices. The displacement
field u satisfies the system

pui,tt - O-?j,xj (U) + Uilj,xj (ut) + fia S Qa t> 0 (16)
The initial data are given by
u(-,0) =vy and u(-,0) = vy. (1.7)

The components of the unit external normal are d;; (0 is the Kronecker), and a
basis of tangential vectors can be taken as 7; = dq;, and T],- = 03;. Denote by
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¥ = {0} x R the boundary of Q. Then, the boundary conditions on ¥ x [0, 0o)
are

0>wu; L oY, (u)+ oy, (u) <0, (1.8a)

0l (u)+oty(u) =0 and  ol5(u) + o15(us) = 0. (1.8b)

One of the main results of Section 3 is to make (1.8a) precise and to justify the use
of duality here.

In order to simplify the problem, we have considered an homogeneous and isotropic
material; then, the Hooke tensors a7, are defined with the help of Lamé constants
A" and p™:

a%kl = /\”5ij5kl + 2Mn5ik5ﬂ, n = O, 1.

We define two elasticity operators A™ by
A = agi05ep(u), n =0, 1.
Then, the problem (1.6)-(1.8) can be rewritten as follows:

puy — A% — Aluy = f,2€Q, t >0,

0>wup L (agl(u) + ail(ut)) <0 on X x][0,00),

ody(u) + oiy(u,) =0 and  ol5(u) + ois(u)) =0 on X x [0, 00),

u(-,0) =vy and w(-,0) =vy.
Let us describe now the functional hypotheses on the data; if X is a space of
scalar functions, the bold-face notation X denotes systematically the space X¢.
For the final result, we require vy to belong to H*?(Q), v; to H¥?(Q) and f

to Hi.([0,00); L*(2)). The initial data must satisfy the compatibility condition
(v0)1(0,2") < 0 for all ' € 3. Let K be the convex set defined by:

K={veH'(Qx(0,7)): Vv, € L*(Q2 x (0,7)),v(0,-) < 0}.
Define two bilinear forms by
a’(u,v) = / @?jklaij(u)akl(v) dr and a'(u,v) = / agjklaij(u)akl(v) dx.
Q Q
We obtain a weak formulation of the problem (1.9) as follows: we multiply (1.9a)

by v —u, v € K and we integrate formally the result over Q2 x (0, 7); we obtain then
the variational inequality:

(Find u € K such that for all v € K and for all 7 € (0, 00),

/ /putt v—u d:l:dt—l—/ a’(u,u —v)dt (1.10)
/ Yug, v — u) dt>/ /f v —u)dxdt.
\ 0




The existence result for (1.1)-(1.3) is easily established by the penalty method, and
was already proved by JaruSek et al [4] in the case of distributed constraints.

Jarusek has also proved in [3] an existence result for (1.9), in a much more general
and complicated case, since it allows for contact, a given friction at the boundary, a
nonlinear constitutive law for viscoelasticity and a general geometry. However, the
boundary conditions must be understood in the sense of duality, since this is the
sense in which his traces are defined.

In the present paper, for both problems, we penalize the obstacle constraint, we
construct a solution of the penalized problem, and we show the existence of a weak
solution by passing to the limit with respect to the penalty parameter. Then, under
appropriate regularity conditions on the data, we prove that the penalized solution
has traces, which can be estimated, and therefore, the limiting weak solution that
we obtained is a strong solution. Observe that nothing is known about uniqueness.
These two problems are treated in the same article, because they are quite close.
Proofs for the second problem are shortened, when very close proofs for the first one.
Nevertheless, there are substantial differences in detail, since the second problem is
much more complicated than the first one. In particular, the bulk of the proof in
Section 3 consists in obtaining a solution of a linear system through Fourier-Laplace
transform, and then to estimate this solution in anisotropic Sobolev spaces.

2 The damped wave equation with Signorini bound-
ary conditions

2.1 The penalized problem

We approximate (1.1)-(1.3) by the penalty method. This means that we replace the
rigid constraint (1.3) by a very stiff response. When the constraint is active, the
response is linear, and it vanishes when the constraint is not active. More precisely,
letting 7~ = — min(r, 0), we replace u by u¢, which satisfies

ug — Au —alAu; = f,x € Q, t >0, (2.1)

with initial data
u(+,0) =wuy and wuj(-,0) = uy, (2.2)

and boundary condition
(uftl + au;m)(ov K ) - (ue(()? "y '))_/6' (23)
Define the following sets:

Q,=Qx(0,7) and I, =X x(0,7), V7 € (0,00). (2.4)



Theorem 2.1 Let Wi, = {u € Hp.([0,00) x Q) : Vu, € L% ([0,00); L*(2))}.

loc

Assume that ug and uy belong to HY(Q), f belongs to L2 .([0,00); L*(Q)); then for

loc

every € > 0 there ezists a unique weak solution u® € Wi of the problem (2.1)-(2.3)
such that

ut € Lin([0,00); H'(2)), (2.5a)
ug € L ([0, 00); H'(Q), (2.5b)
ug € Lipe ([0, 00); L*(€2)), (2.5¢)

and for every T € (0,T) and for all v € W, the following variational equality is
satisfied:

/((uiv)(-m)—(uw)(-,o))dx—/ uSvydedt + | VuVudadt
! " o (2.6)

1
+a | VuiVodrdt — - / (u) vdx' dt = [ fodzdt.
Q- € Jr, Qr

Proof. The Theorem is proved by the standard Galerkin method and the reader can
see for example [2] or the appendix of [4]. O

2.2 A priori estimates

We establish here estimates up to the boundary and interior estimates which, later,
will enable us to infer the existence of a weak solution to (1.1)-(1.3).

Lemma 2.2 Assume that f belongs to L2 .([0,00); L*(Q)), ug to H*(Q) and uy to

L*(Q). Then independently of € > 0 , u$, Vuc are bounded in L.([0,00); L*(Q)),

loc
Vus§ is bounded in L2 ([0, 00); L*(2)) and (u(0, -, )~ /+\/€ is bounded in L;2.(]0, 00);
L*(R7)).

loc

Proof. These estimates are simply an application of the Gronwall lemma to the
energy identity. We multiply (2.1) by u{ and we integrate this expression over @,
to get

/ u,ftufdxdt—/ Aueuidxdt—oz/ Au,fu;dxdt:/ fuidxdt.

We integrate the first integral in time in the above relation, we use Green’s formula
for the second and the third one, and with the help of the boundary conditions (2.3),
we obtain

1
5/(]u§(~,7')\2+]Vue(-,T)IQ) dr + « ]Vuﬂdedt
Q Qr
1 . 1
+— ((ue(o,-,-))—)Q] dx’:/ fu;dxdt+—/(|vuo|2+|u1|2) dx.
2e Jy 0 Qr 2 Ja
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We may deduce from a classical Gronwall lemma that u; and Vu® are bounded
in L2 ([0, 00); L?(Q)), Vus is bounded in L ([0, 00); L2(Q)) and (u(0,-,-))~//€ is
O

loc
bounded in L ([0, 00); L*(R91)) independently of € > 0.

loc

Remark 2.3 If we suppose that f vanishes for t large then, independently of € > 0,
u$ and Vu® are bounded in L>=([0,00); L*(2)), Vu§ is bounded in L*([0, 00); L*(£2)).
These properties can be proved using the arguments given in the proof of Lemma 2.2,
with the origin of time moved to T if f(-,t) vanishes for t > T; since the integral
involving f vanishes, the conclusion is clear.

Lemma 2.4 Assume the hypotheses of Lemma 2.2. Then for all non negative,
continuously differentiable and compactly supported 1 on R~ and for all T € [0,T],

/ ()" a! at
I,

€

is bounded independently of € > 0. In particular, (u®(0,-,-))” /¢ is a bounded measure
on I..

Proof. Let ¢ be a continuous function with compact support; we multiply (2.1) by
¢ and we integrate over ),; thanks to the boundary conditions (2.3) and Green’s
formula, we obtain

/gbu;(-,t)}gdx—k/ Vo(Vu® + aVuy) dxdt—l/ (u)"pda’ dt = of dxdt.
Q Qr I

€

Since the product |zy| can be estimated by |z]?/2 + |y|?/2, we get the following
inequality:

1 €\ — / 1 € 2 2 2
—/IT(u) o dx dt§§/ﬂ(\ut(~,7)\ + |uy | )d:zc+/ﬂ\¢\ dx

€

(2.7)

+ | |VoVu|dzdt + « |V¢Vu§|dxdt+/ |of| da dt.
Qr Qr Qr

loc
L*(Q) and u§, Vu® and Vu§ belong to L2 ([0, 00); L*(Q2)). Moreover (uc(0,,-))” is
non negative; if the trace ¢ of ¢ over X is non negative, the inequality is clear. The
last statement of the theorem is obtained by a classical approximation argument.
Write pu¢ = (u(0,-,-))”/e. Let ¢, be an increasing sequence of non negative, con-
tinuously differentiable and compactly supported functions on >, which are at most
equal to 1. Then the integrals of ¢,, against u° converge to the integral of lim, v,
against u¢, so that the integral of any non negative, continuous and compactly sup-
ported function against u¢ is non negative, and this is precisely the definition of a

non negative measure on X. 0

The right hand side of (2.7) is bounded since f belongs to L2 ([0, 00); L*()), u; to



Lemma 2.5 Assume the hypotheses of Lemma 2.2, and suppose moreover that ug
belongs to H?*(QY). Then independently of ¢ > 0, Au is bounded in the space
12,10, 00); LA(2)).

loc

Proof. Once again we use energy techniques, but now we multiply relation (2.1) by
Au‘ and we integrate over @),

/ u,Audrdt — | |AuPdrdt —a | AutAutdrdt = fAu dzdt. (2.8)
. o Q- Q-

We integrate by parts the first integral in (2.8) first in time, then in space; we use
Green’s formula several times, and since the third integral in the left hand side of
(2.8) contains a total time derivative, we obtain

/Q((quue)(~,t))}gdx—/l (utuxlt)(0,~)dx'dt+/ |Vus|? da dt
/ | Auc |2dxdt——/|Au( )|2‘gdl‘:/ fAu dx dt.
T QT

According to the boundary condition (2.3), (2.9) becomes

(2.9)

\Au€]2d:1:dt+%/!Aue(-,r)Ide - %/\Auo\%
Q Q

! 1
TO&G I ((ue)_)lejdt - a\/IT(Uguzl)dl‘/ dt + \/Q(UEAUE)(7T) dx (210)

Qr

fAuedxdt—/ulAuodx+ |Vug|? du dt.
0

Qr Qr

In order to estimate the left hand side of (2.10), we organize the terms of its right
hand side into different groups. The initial data terms

g/\AmFdx and —/ulAuodx
2 Jo Q

are bounded thanks to our assumptions on ug and u;. The terms

1
— [ ((w)")’da’dt and |V us|? da dt
2a€ J), Q-

are bounded independently of ¢ thanks to Lemma 2.2. We estimate the remaining
terms with the help of the inequality zy < v|z|?/2 + |y[*/(27) for all ¥ > 0 and all
real z and y. Therefore,

/( WANTAS dx<—/|A |2dx—|——/|t 7)|*dx

/ fAuS dx dt < 2— |f|2d dt+ |Auf? dx dt
T QT
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and we will choose v, and 5 later. The boundary term is estimated as

1
/|u§u§l|dx’dt§ —/ e d dt+—/| < 2 da dt. (2.11)
I. 273 I,

If w and w,, belong to L*(€2), we have the classical estimate

[P s <€ [ (juf + s, ) do
2 Q

which we apply to the right hand side of (2.11), getting thus

C
/ lugus, | da’ dt g—/ (Ju])® + |ugye]?) da dt
I ' 273 Jq.

C
+% (Jus, |* + uS,,, [2) da dt.
Q

T

We use now the ellipticity of A: there exists a constant C; such that for all w in
H2(Q),

/]wxlxl\de < / (\w[Q + \Aw\Q) dx.

We gather all these estimates and we infer from (2.10) the following inequality:

/|Au|2dxdt+ /|Au( de < Cp+ L /|A M2 dz

1
—|——/|u§(-,7’)|2dx—|——/ |f|2dxdt+l/ A dz dt
27 Jo 272 Jo, 2 Jo.
C C C
+o |u§|2dxdt—|——/ |u§1t|2dxdt+£/ ug, |? da dt
273 273 Jo, 2 Jo.

Qr
+00173 001'73 ‘AUGP dx dt.
Q‘I’

(2.12)

|uf|? da dt+
Qr

Now we choose the v;’s: it suffices to have the inequalities
m <a and /24 CCly3/2 <1,

and the conclusion is clear. O

Remark 2.6 If we suppose that f vanishes fort > T, then, independently of € > 0,
we have the estimate
|Au P drdt < C(1+ 7).
Qr
This property is proved by moving the origin of times to T', and by studying carefully
(2.12) with the help of Remark 2.3.

Let us turn now to interior estimates.



Lemma 2.7 Assume the hypotheses of Lemma 2.5. Then for all 3 > 0, uj, and Auj
are bounded in the space L% ([0, 00); L*((—oo, —3) x X)), independently of € > 0.

loc

Proof. The idea of the proof is twofold: we multiply ¢ by a truncation function
¢ € C§°(R), and we define v¢ = pu€; we will observe that w® = vf satisfies a heat
equation, whose right hand side will be estimated thanks to the previous lemmas.
Let us go now into details.

Let ¢ be a truncation function which is equal to 1 if x < —f and to 0 if z > —f3/2,
G > 0. Then, we multiply u® by ¢ which enables us to forget about the strongly
non linear boundary conditions. Define

v (@1, 0) = p(a)ul (2, 0. (2.13)

The derivatives of v¢ are given by:

Uy = Plly, (2.14a)
Ave = AU + 20, VU + pp 5, U, (2.14b)
Avp = AUy + 204, VU + Py, Uy (2.14c)

Observe that thanks to relations (2.1) and (2.14), we have
vy, — AvC — alAvy = ¢, (2.15)

where ¢ = of — 2¢,, (Vu* + aVu§) — ©u, (u€ + aus). Since f, uf, Vuc, Vus and
u® are bounded in L2 ([0, 00); L*(Q2)), g¢ is bounded in L2 ([0, 00); L*()). Let us
define

we=wv; and ¢°=7g°+ Av". (2.16)

Substituting (2.16) in (2.15), we obtain
wy — aAw = g°. (2.17)

2 ([0,00); L*(€2)). For this purpose, we
multiply (2.17) by w; we integrate this expression over (2,

/\wﬂde—a/Awew,fdx:/gewfdx.
Q Q Q

We use Green’s formula in the second term on the left hand side of the above
expression, getting thus the following inequality:

/|wf|2dl‘+a/waVwedx:/gewfdx. (2.18)
Q Q Q

We integrate (2.18) over (0,7) and we observe that the product |géw{| can be esti-
mated by |g]*/2 + |w§]?/2 and we obtain

Let us prove now that w{ is bounded in L?

\wﬂdedt—l—&/]Vw€(~,7')\2dx
o “ (2.19)
Soz/|Vwe(-,O)|2dx—|—/ |g¢|? d dt.

o Q-
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Since u; belongs to H'(Q) and ¢ belongs to C5°(R), Vw(-,0) = ¢, u1 + ¢Vuy is
bounded in L?(£2). Moreover g€ is bounded in the space L2 ([0, 00); L*(€2)) because

loc

Av® and g¢ are bounded in L2 ([0, 00); L*(Q2)). Therefore (2.13), (2.16) and (2.19)
enable us to deduce that ug, is bounded in L2 ([0, 00); L*((—o0, —f) x X)). We use
analogous arguments to show that Au$ is bounded in L2 ([0, 00); L?((—o0, —3)xX)).

We multiply (2.17) by Aw€, we integrate over ), and thanks to Green’s formula,
we obtain

1 T
— [ |Vw?*|" dx — a Awe|? da dt = g Awe dx dt. 2.20
0
2 Ja Q- Qr

Therefore the product |g¢Aw¢| can be estimated by |g¢|?/2v + v|Aw¢|*/2, and if we
choose 7 € (0,2a), we obtain the following inequality:

1 1
(a—z) | Awe|? da dt < —/ IQGIQdIdH‘/|Vw€(-,0)|2dx- (2.21)
2 o 2/7 Q- 2 Q

Since g¢ and Vw<(-,0) are respectively bounded in L2 ([0, 00); L*(Q)) and L*(Q),

according to (2.13), (2.16) and (2.21), we infer that Au§ is bounded in the space
Li ([0700)7[/2((_007_5) X E)) O

loc

2.3 Existence of a weak solution

In this section, we show that it is possible to pass to the limit in the variational
formulation of the penalized problem, to obtain a weak solution of (1.1)-(1.3). There
is a small subtlety due to unboundedness of €.

Theorem 2.8 Assume the hypotheses of Lemma 2.5. Then there exists a solution
of the variational inequality (1.4); this solution can be obtained as a limit of a
subsequence of the penalty approzimation defined by (2.1)-(2.3).

Proof. Let v belong to K and ¢ be a function belonging to C$°(Q2 x [0, 00)), which
takes its values in [0, 1]. Multiplying (2.1) by (v — u)e and integrating over @), and
then observing that

/ (u) (v —u)) da’ dt = / (((ue)_)ng) dx' dt + / ((u) " v) da’ dt
Ir Ir Ir
is non negative, we may deduce the following inequality:
/ usp(v — ue)’g dx — / us(p(v —u))eda dt
Q

" (2.22)

-I—/ (Vus + aVuy)V(e(v — uf))dz dt > fo(v—u)dx dt.
T QT
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We infer from Lemmas 2.2, 2.4 and 2.5 that it is possible to extract a subsequence,
still denoted by u¢, such that

ut —=u in L2.([0,00); L*(Q)) weak =, (2.23a)
ul =, in L2 ([0,00); L*(Q)) weak *, (2.23b)
Vut = Vu in L ([0,00); L*(Q)) weak x, (2.23¢)
Auf — Au in  L2([0,00); L*(Q)) weak x, (2.23d)
Vul = Vu, in L ([0,00); L*(Q)) weak *. (2.23e)

Define the set: Qp = {z : x; < 0,|2'| < R} x [0, R]. Thanks to the classical
compactness properties of injections of Sobolev spaces on bounded open sets, we
see for all R > 0, the restrictions of u° and Vu* to Qg converge strongly to their
respective limits in L?(Qg); therefore, we can pass to the limit in all the terms of
(2.22) except possibly the first two terms.

Let us prove that u; is continuous from [0,00) to L*() equipped with the weak
topology: we infer from the estimates of Lemma 2.7 that for all 3 > 0, uj, restricted
to 1 < —@3 is bounded in L2 ([0, 00); L*((—o0, — 3] x X)); therefore it is plain that
ug converges to a function u; whose restriction to x; < —/ is continuous from [0, co)
to L?((—o0, =] x X). Let t; € [0,00) be a sequence converging to to, < 00; as uy
belongs to L ([0,00); L*(R2)), we may extract a subsequence, still denoted by ¢;,
such that
uf(,t;) =z in L*(Q) weak.
But since for all 5 > 0,
U (-, ) Lay<—py — W too) Lgm<—py  in L*(Q)  weak,

we see that z must coincide with (-, %), and that all the sequence converges
strongly to u;(+, s ); this proves that u; is continuous from [0, 00) to L%(€2) weak.

Let us prove now that uf(-,t) converges weakly to u;(-,¢) for all t > 0: let v be an
arbitrary positive number; let z belong to L?*(€2); denote by C} is an upper bound
for |ug|Le(0,17;22(n)) With T" fixed. We choose 3 so small that

iz
Els dz) < —
</—,3<:E1<0 401
then, for t € 0,7

/Q(ug(,t) —uy(+,t))zdr| < / <7g(u§(.’t) —uy(+,t))zdx

1/2 1/2
+ (/ ]z\%lx) (/ lug (-, t) — ut(-,t)Ide) :
—f[<x1<0 —[B<x1<0

By definition of C, the second term on the right hand side of (2.24) is estimated by
C17/2Cy = v/2. AS Uf|(—0o,—p)x 1y 18 bounded in H'((—o0, =) x Ir), we see that

-3 -5
/ / ujzdx converges to / / upz d
—c0 JX —o0 JXE

11
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uniformly with respect to t € [0,7]. It suffices therefore to choose € so small that
the first term on the right hand side of (2.24) is estimated by /2. This proves that
the convergence of fQ usz dz to fQ usz dr is uniform on compact sets in time. In
particular, as € tends to 0, it is plain that for all 7 > 0,

/ ugp(v — uf) de — / upp(v — u) dx.
Q Q
Let us turn now to the term

/ a0 — u) + v, — ) de d.

T

It is clear that

/ ug(i(v —u) + @uy) do dt — (v — u) + puy) de dt.
T Q‘r
There remains to prove the convergence
|uf)?p dz dt — / \ug|*p da dt.
Qr Qr
We observe that

/ ]u,f—utIZcpdxdtg/ / \uf—utl2g0dxdt+/ / \uf—utIQQDdxdt.
Qr 0 z1<-0 0 —<x1<0

Let v be any positive number. We infer from the estimates over |ug|.>;,) and
|Vug|r2(q,) that there exists a constant C, independent from e such that

‘ug(xla " ')’LQ(ZX(OJ)) < Ch.

/ / luf — ue*p da dt < C33.
0 J—-B<x1<0

We choose 3 so small that C33 < 7/2; then we know from the estimates of Lemmas
2.5 and 2.7 that the restriction of u¢ to {z1 < —f} intersected with a ball containing
the support of ¢ is bounded in H? of that set; therefore, for e small enough,

Therefore,

/ luf — wy|?p do dt < %,

and the convergence of the first two terms of (2.22) is proved.

We observe now that since u, u;, Vu and Vu,; belong to L2 ([0, 00); L*(2)), we
may replace ¢ by ¢g in the variational inequality where g is equal to 1 over the
set Qg and vanishes outside of Qg 1. It is plain that as R — oo all the terms in
(2.22) converge to their limit; thus we have proved the existence of the desired weak

solution. O

Remark 2.9 Nothing is known about uniqueness.
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2.4 Auxiliary results on the damped wave equation with Di-
richlet boundary conditions

We establish a priori estimates on the damped wave equation with Dirichlet bound-
ary conditions. These estimates will enable us to give some properties on the trace
spaces which we use in the next subsection.

Lemma 2.10 Assume uy belongs to H*?(Y); then, there exists a function z €
H3(2 x [0,00)) with compact support in t such that the trace of z on X is equal to
Ug-

Proof. We extend w into a function belonging to H*/2(R%): as the boundary of (2 is
smooth, this extension is a consequence of classical results on Sobolev spaces. Then
there exists a function Z belonging to H?*(R? x [0, 00)) whose trace is ug. It suffices
now to select a cutoff function ¢ € C*([0,00)) which is equal to 1 on [0, 1] and to
0 on [2,00), and to define z as the restriction of ¢Z to Q x [0, 00). O

Lemma 2.11 Assume ug belongs to H°/?(Q), u, belongs to H*(Q) and f belongs to
L2 .([0,00); L*(Q)). Define z as in Lemma 2.10 and let @ be the solution of (1.1) with

loc

the initial data (1.2) and boundary condition w(0,-,-) = z(0,-,-). Then the trace g =
— (g, + Qlig,1)(0, -, ) is well defined and belongs to the space L2 .([0,00); L*(R471)).
Moreover, if f is compactly supported in time,

. 2
/ |9(-, t)|L2(Z) dt
0

increases at most polynomially with respect to 7.

Proof. The function ( = u — z satisfies the equation
(e —AC—aAG=F,z€Q,t>0, (2.25)
where F' = f — zy + Az + aAz;, with initial data
¢(+,0) =0 and §(+,0) = uy,

and the Dirichlet boundary condition (0, -,-) = 0. If we multiply (2.25) by ¢; and
integrate, and if we suppose that f and F' are compactly supported in time, we may
easily deduce that (;, V are bounded in L{*.([0, 00); L*(©)) and V¢, is bounded in
L2 .(]0,00); L*(©2)). In order to get more information, we multiply (2.25) by A(;
since the boundary term vanishes, we get immediately the identity

1
o ]Agt\dedt+—/\AC(-,T)]QCZJHL/\V(t(~,r)\2dx
Q- 2 Ja Q
:/|Vgt(-,0)|2dx—/ FAG da dt.
Q Q-

13



We remark that the product FA(; can be estimated by a|A¢|?/2 + |F|?/(2«) then
A(; is bounded in L2 ([0, 00); L*(€2)), A¢ and V¢, are bounded in L, ([0, 00); L*(9)
). In particular, if the support in time of F' is bounded, A(; is bounded in L*(]0, c0);
L*(Q)) and A¢ and V(; are bounded in L*([0,00); L*(©2)). Therefore we may
deduce that (,,4(0,-,-) and (,, (0, -, -) belong respectively to L2 ([0, 00); HY/2(R4~1))
and to L2 ([0, 00); HY/2(RI1)), and if the support in time of f is bounded, the local
character of these spaces may be removed. 0

2.5 Regularity of the trace

We characterize the trace spaces using Fourier analysis and we prove that u is a
strong solution of (1.1)-(1.3). Here, we mean by strong solution that all the traces
can be defined.

Let v be a positive number. Denote by v¢ = exp(—vt)(u® — @) a solution of

v+ 0)v — (1 +alv+0,)Av =0,z €Q,t>0, (2.26a)
(1 + a(y + at))vftl (07 ) ) = eiytg - (Ue(ov ) ) + eilltﬂ(ov > '))7/67 (2'26b)
ve(-,t) =0 and wvi(-,t)=0. (2.26¢)

We denote by & = (&, ..., &))" and w respectively the dual variables to ' = (o, ...,
z4)T and t. The Fourier transform of u(0,2’,t)is u(0,&,w). where the convention
for the Fourier transform is

u(0,&,w) = / e~ )0, 2/ t) da dt.
Rd

Then u(0,2’,t) belongs to the Sobolev space H{:"(R*! x [0,00)), (a,b) € R?, iff
1€1%0(0, &, w) and |w|*4(0, &, w) belong to L*(RY).

We apply a partial Fourier transform in the tangential variable to (2.26a), and we
get the following differential equation:

Ve, = (\6\2 (VJF—W) . (2.27)

1+ a(v+iw)

Define A to be the causal determination of the square root of |2 + (v + iw)?/(1 +

a(v+iw)):
(v taw)
Mg w) = \/|§|2 1+au+zw)

thus A is holomorphic in the lower half-plane S(w) < 0 and R\ > 0 for J(w) = 0.

The general solution of (2.27) is given by @ cehn 4 Bee *’\xl, since we performed a
Fourier transform on v¢, we assumed implicitly that v¢ and v° are tempered respec-

tively in (2/,¢) and (£, w). We remark that the term Bee=®1 can be tempered only if

14



Eﬁ decays at infinity very fast, and since this must be true for all x, it implies that
b¢ vanishes, the proof is similar to the one given in [6]; we deduce that the solution

of (2.27) is @ce’. In particular,
(1 + a(v + 0))vs, N0, &, w) = M0, €, w), (2.28)
where A; = (1 + a(v + iw))X. Define
g(z',t) =eg(a',t) and h(2',t) = e u(0,2, 1)
If we let w(2’,t) be the trace v¢(0,2',t), (2.26) can be written now
M w® =g+ (w4 h)” /e, (2.29)

where w® vanishes for all ¢ < 0.

Remark 2.12 It is clear that X is a holomorphic function in F(w) < 0 and thus we
may deduce that Ay is a causal distribution.

Lemma 2.13 Let u¢ be the solution of (2.1)-(2.3). Then we may extract a subse-
quence, still denoted by u® such that

u(0,+,-) = u(0,-,-) weakly in 1’-]1/2’5/4(]1%‘1_1 x [0, 00)).

loc

Moreover u is a strong solution of (1.1)-(1.3).

Proof. Formally, we multiply (2.29) by a(rvw® + wf) + w*, and we estimate the
pseudodifferential term in the Fourier variable; we obtain

ﬁé}%/ X1@6(1+a(u+iw))@€dwd§
R4
_ (er)d?ﬁ / G+ (v + i) dw de (2.30)
R4

+1 / / (w4 h)~(1+ a(v+ 0))w da' dt.
€ 0 Rd-1

Since (u(0,,-))~/+/€ is bounded in the space L. ([0, 00); L*(R%71)), the absolute

loc

value of the second integral in the right hand side of (2.30) is bounded and we infer
that there exists C'; > 0 such that

R | MDPA+alv+iw)dode <Cy+R [ G0+ alv + iw))@ dwdé. (2.31)
R4 Rd

On the other hand, we have

V(1 + av) + (=1 + av)w? and gz 2wt aw(v? + w?)

2 — [£]2
R &7+ 11+ a(v +iw)|? 11+ a(v +iw)|?

15



We may choose v such that va = 1; we get then

~ 9 ~
R\ =€+ =——— and QN =

—_—. 2.32
a?)2 +iawl? al2 +iaw|? (232)

Therefore we infer that

~ 1 €212 + iaw]* + 2
arg A = 3 arctan

aw(3 + a’w?)

According to (2.32), arg A belongs to [0, 7/4] and since \ is never equal to zero, we
get for €| + |w| > 1 the following inequality:

A > C(1+ €]+ V]w]). (2.33)

Therefore, we obtain
C/ 2 4+ taw* (1 + €] + V/|w|) |0°]* dw d€ < C, +/ 12 + iaw||g]|w*| dw dE.
R4 Rd

We estimate the product |zy| by |2]2/(27) + v|y|>/2, v > 0, we see that

(0=3) [ 2+ iawP(u+1e+ Vi) o de
Rd
1 g (2.34)
<Cy+ — dw d€.
VT 2y e 1t Je + Vol

We choose v such that v < 2C, since g belongs to L?([0,00); H'/?(R%1)) then it is
easy to deduce from (2.34) that u¢(0, -, -) is bounded in 1'171/2’5/4(]1@_1 x[0,00)). More-

loc

over it is clear that (uy, + @ug,¢)(0,-, ) is bounded in the space H1;§/2’71/4(Rd_1 X

[0,00)). Therefore all the traces are defined and we may deduce that u is a strong
solution of (2.1)-(2.3). O

Remark 2.14 We have been unable to establish that the energy loss is purely viscous
as in the case of the one-dimensional viscously damped wave equation on the half-line
and with unilateral boundary conditions [6, 7].

3 The evolution of a Kelvin-Voigt material with Sig-
norini boundary conditions

As for the damped wave equation with unilateral boundary conditions, a priori
estimates on the penalized problem and care relative due to the unboundedness of €2
enable us to pass to the limit in the penalized variational formulation and to deduce
the existence of a solution to (1.9). Korn’s inequality plays here an important role. If
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we denote by @ the solution of (1.9a) with initial data (1.9d) and Dirichlet boundary
data at x; = 0 then we establish that the trace —(al,,,cm (@) + aiyen(tt))]sx(0.00)
increases exponentially with time in L2 (X x [0, 00))and not polynomially as in the
case of the damped wave equation with Dirichlet boundary conditions studied in
Subsection 2.4. We determine the trace spaces using analogous techniques already
developed in Section 2.5 but here we perform a Fourier transform in the tangential

variables (3, x3,t) and a Laplace transform in z;.

3.1 The penalized problem

We approximate (1.9) as in Section 2.1. More precisely, let ™ = max(r,0), we
replace u by u® which is solution of the following penalized problem:

pus, — A%u — AluS = f,x € Q, t>0, (3.1)

with initial data
u(-,0) =vy and wug(-,0) = vy, (3.2)

and boundary conditions

a1 e (u) + apyen(uf) = —(ug)t/e, (3.3a)
opiEr(u) + ajoen(uf) =0 and  afgyen(u®) + aggpep(uf) = 0. (3.3b)

Recall that ), and I, were defined by (2.4).

Theorem 3.1 Let W = {u € H. _([0,00) x Q) : Vu, € L% _([0,00); L*(Q2))}. Then
for each € > 0 there exists a unique weak solution u € W of the problem (3.1)-(3.3)
such that

u® € Lz ([0, 00); HY(Q)),

loc

ui € Lige ([0, 00); H1()),

loc

u, € L ([0, 00); L2(12)),

loc

and for every T € (0,T) and for all v € W, the following variational equality is
satisfied:

/ pus, - vdx dt + / (a®(u,v) + a' (us, v)) dt
. 0

+/ (g vy do’ dt > f-vdxdt.
. € Q-

Proof. We leave the verification of the proof to the reader as it is analogous to the
one developed in [3]. O
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3.2 Estimates on the penalized solution

We establish a priori estimates which are essential to prove the existence of a weak
solution to (3.1)-(3.3). These estimates are obtained thanks to the techniques al-
ready developed in Section 2.2 for the damped wave equation and to Korn’s inequal-

ity.
Lemma 3.2 Assume that f belongs to L ([0, 00); L*(Q)), vo to H'(Q) and v; to

L2(Q). Then independently of € > 0 , u§ and Vu are bounded in L2.([0, 00); L*(2)),
Vu§ is bounded in L

2 ([0,00); L2(Q)) and (u(0,-,-))*/\/€ is bounded in the space
L5 ([0, 00); L2(R?)).

Proof. These estimates are a simple application of the Gronwall lemma to the energy
estimate. We multiply (3.1) by u and integrate this expression over @), to get

1 T € €
5/(P|U§|2+a?jk15z‘j(ue)€kz(ue))’0 dx+/ afjei(uf)ep (ug) da dt
0 Q-
1 (3.5)

+2€ ((u)*) ]Od’ /fuda:dt

According to Korn’s inequality, it is possible to infer that there exist two positive
constants C and C4y such that

/ apwer(2)eij(2) dz > C / Vz|? dz — C'Q/|z|2dz, n=0,1.
Q Q Q

As fu§ can be estimated by |f|*/(2v) + v|u§|?/2, v > 0, and using the above in-
equality, we deduce from (3.5) that

1
5/(p]uﬂQ+01]Vu6\2)(~,7')d3:+01/ Va2 dar dt

+2i€/2(( ) /yu nPdet (G /\utﬁdazdt

1
"‘_27 ‘f’dedt—i— /( ’?)1’ +@zgkz5zg(vo)5kl(vo)) da.
Q

A classical Gronwall lemma enables us to deduce that uf and Vu are bounded in the
space L2 ([0, 00); L2(£2)), Vus§ is bounded in L2 ([0, 00); L*(€2)) and (us(0, ))*/\/_
is bounded in L ([0, 00); L2(R471)).

loc

Remark 3.3 If we suppose that f vanishes for large t then independently of € > 0,

ess sup |u‘(-,t)[ ;0 S COA+T)

0<t<T

and
1/2

(/OT s (-, 1) 5 dt) <CO+T).
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These properties can be proved using the arqguments given in the proof of Lemma
3.2, with the origin of time moved to T if f vanishes for t > T'; since the integral
involving f vanishes, the conclusion is clear.

loc

)
L2(2). Then independently of € > 0, the trace (u$(0,-,-))" /e is bounded in the space
of measures on Ir.

Lemma 3.4 Assume that f belongs to L2 ([0,00); L*(2)), vy to HY(Q) and vy to
(

Proof. Let ¢ be a cut-off function, which belongs to C!(R971), is equal to 1 in the
sphere of center 0 and radius R > 0 and vanishes outside of a sphere of radius R+ 1.
We multiply (3.1) by ¢ and we integrate over @;; due to the boundary conditions
(3.3), we obtain

T 1
/ pus - 90’0 dx + - / (u$) Ty da’ dt + / U?j(ue)sij(cp) dx dt
Q I T

+/Q oy (uf)ei; () da dt = : f-pdxdt.

As the product |zy| can be estimated by |z|*/2 + |y|?/2, we get the following in-
equality:

1
—/ (uf) Ty da’ dt < 3/(|u;(.,7)|2+ |v1]?) dx—l—p/|g0|2dx
€Ji, 2 Ja Q
(3.6)
+ g ’(a?j(ue) + Jilj(uf))aij(ga)} dx dt + /Q |f - | dxdt.
We may deduce that the right hand side of (3.6) is bounded using the Lemma 3.2.
Since (u$(0,-,-))" is non negative, the conclusion is clear. O

Lemma 3.5 Assume that f, vy and vy belong respectively to L ([0, 00); L*(

loc
Q)), H*(Q), L*(Q). Then independently of € > 0, A% and A'u® are bounded in
L% (0, 00), L2(2).

loc

Proof. Once again we use energy techniques, but now we multiply relation (3.1) by
Alu¢ and we integrate over (Q,, we obtain

1 1
—/]Alue(-,T)Ide: —/]Alvo\de+/ pus, - (Atuc) dx dt
2 Ja 2 Ja
’ (3.7)
— / (A%u) - (A'u) do dt — [ (A'u) dx dt.
. Qr

We observe that
/ pus, - (A'u€) dx dt = p/ u - (Alue)}gdx
. Q

—p/ u ,o1,(u€) da’ dt—i—/ e (ug)en(uf) da dt.
I

T

19



Carrying (3.8) into (3.7) and using the boundary conditions (3.3), we obtain
1 1, € 2 1 1 2 0,e€ 1, €
— [ AW, 7)|Pde == | |[Av|"de — | (AuS) - (A u) dz dt
2 Ja 2 Ja ,

— [ f- (A" dxdt+p/u;-(A1u€)]gdx+3/ uf,(ug)* da’ dt (3.9)
Q- Q €Jr,

+p/ u 07 (u) dx'dt—l—/ afipEis () e (uf) da dt.
I,

T

On the other hand, we observe that

/ \a?j(ue)Ide’dt <C (/ \ue\Qd:IJdt+/ \A1u€]2dxdt) , (3.10)
I QT Q‘r

and for all v belonging to H'(2) and A'v belonging to L?(2), we get
|A%] 120y < Clolp2(q) + 140 120y (3.11)

Define
F(t) = L\A1u€(~,t)\2 dz. (3.12)

According to (3.10)-(3.12) and since u§ - (A'u€) can be estimated by |uf|?/(27) +
v|AMuf|?/2, v > 0, it is possible to infer from (3.9) the following inequality:

<1 _ %) F(r) < %F(O)Jr (2+0) /OTF(t)dH%/QTVIQth

2
+£/|u§(-,7)|2dx—|—p/|vl . (Alvo)|dx+/ agjklsij(ui)skl(ui) dx dt
2y Jo Q Q-
p

+— / (u$(, 7)) da’ + (1 +O) | JuPdedt+ | |ug]?da’ dt.
28 b Qr Ir

If we choose v such that py < 1, we may infer using Lemma 3.2 and a classical
Gronwall inequality that F' is bounded in L% ([0, 00)). This proves the Lemma. [

loc

Remark 3.6 If we suppose that f vanishes fort large, then, independently of € > 0,
A€ and A*uc are polynomially increasing. These properties can be proved using
the arguments given in Remark 3.3.

Let us turn now to interior estimates.

Lemma 3.7 Assume that f belongs to L2 ([0, 00); L*(Q)), vo to H?(Q2), vy to L*(Q).

Then for all 3 > 0, u,, A'uS are bounded in L*([0,00); L*((—o0, —f) x X)), inde-
pendently of € > 0.
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Proof. As for the proof of Lemma 2.7, we use here a truncation function which
enables us to forget about the strongly nonlinear boundary conditions. More pre-
cisely, we multiply u¢ by a cutoff function ¢(z1) € C*([0,00)) which is equal to 0
onry < —0Fand tolonxz; >—03/2, 5> 0. Define

ve(x1, -, ) = ple)u (2, ). (3.13)

The derivatives of v¢ are given by:

Uft = (Pugtv (314&)
Eklz; (ve) = PCkix; (ue) + 2(10118161(”6) + prlxlu27 (314b)
Ekl,a; (vf) = PEKL,x; (ug) + 205, p(ug) + @xlxluz,t' (3.14c)

Notice that thanks to relations (3.1) and (3.14), we have
vf, — A% — Al = G, (3.15)

where g7 = o f; — 25, (afjen (U) + aijpEn(uf)) = Para (@, + ajjug,). Thanks
to Lemma 3.2, we deduce that g is bounded in L2 ([0, 00); L?(f2)). Define

loc
w=vf and ¢°=g°+ A%". (3.16)
We substitute (3.16) in (3.15), we obtain
wi — Alw® = g~ (3.17)

2 ([0,00); L*(€2)). For this purpose, we mul-
tiply (3.17) by wf; we integrate this expression over @), we obtain

We will prove that wf is bounded in L2

|wf|2d$dt—/ (Alwe)-wfdxdt:/ g° - wy dx dt.

T

Qr

1 T
/ (Alwﬁ) . w: dx dt = —5 /Q@zljklgij(we)5kl(we) }0 daj‘, (318)

we infer that

1
|w§|2dxdt—|—§/aijklsij(we)skl(we)}tde
. @ “ (3.19)

= Q/Qailjklsij(we)skl(we)}to dx—i—/Q g - wi dx dt.

T

According to Korn’s inequality, we infer that there exists C; and C such that

/ 0L iy () e (w) dz > C / V2 de — Cy / wPde. (3.20)
Q Q Q
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Carrying the above inequality into (3.19) and observing that ¢¢-wj can be estimated
by |g°1/2 + Jwi]?/2, we get

]w,f\dedt+Cl/]Vwe(.,T)Pd:z:g/Qagjklgij(we)ekl(we)}tzod:l:

—|—C’2/|w |2dx—|—/ lg¢|? dz dt.

As vy belongs to H?(2), v; belongs to H'(€2), ¢ belongs to C5°(R), ¢° is bounded in
L2 .([0,00); L*(2)), we infer that the right hand side of (3.21) is bounded. Therefore

using identities (3.13) and (3.16), it is possible to deduce that u§, is bounded in
L, ([0, 00); L2((—00, =) x X)).

loc
We will show that A'w® is bounded in L2 ([0, 00); L*(2)) using an analogous me-

thod. We multiply (3.17) by A'w€, we integrate over @, we obtain
/ w - (A'w®) dx dt —
. Qr

Carrying (3.18) and (3.20) into (3.22) and ¢¢ - (A'w®) being estimated by |¢¢|*/2 +
| Alwe|? /2, we obtain

|A1w€|2dxdt—|—C’1/|Vw5(-,7')|2dl‘S/ailjklgz‘j(we)%l(we)’todx
Q

+C’2/|w |2dx—|—/ lg¢|? dz dt.

Thanks to (3.13) and (3.16), we may deduce from (3.23) that Al'u¢ is bounded in
L} ([07 OO>; L2((—OO, _ﬂ> X Z)) O

loc

o (3.21)

|Awe|? do dt = / g (A'w®) dx dt. (3.22)

@ (3.23)

3.3 Existence of a weak solution

Thanks to the estimates obtained in Section 3.2, we are able to pass to the limit in the
variational formulation associated to the penalized problem (3.1)-(3.3). Therefore
it a routine to deduce that there exists a solution to (1.9).

Because (2 is an unbounded set, the proof will be technical but similar to the one
developed in Section 2.3.

Theorem 3.8 Assume that f belongs to L _([0,00); L*(Q2)), vo to H?(Q), vy to
L2(Q). Then there exists a solution to the variational inequality (1.10); this solution
is the limit of a subsequence of the penalty approximation defined by (3.1)-(3.3).

Proof. Let ¢ € C°(Q x [0,00)) be a function which takes its values between 0
and 1. We suppose here that v belongs to K. Multiplying (3.1) by (v — u)¢ and
integrating over (), and

[ i et~ da'de == [ (@) dr' e+ [ () pund

I, I I,
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being negative, then we get the following inequality:

/qui (p(v — u®))|7 da — / i - (v — u)), da dt

T

+/ (agsem (u)eiy (u) + agpen (uf)ei; (u)) (e (v; — uf)) da dt (3.24)
Q-

[ (p(v —uf)) ddt.
Q-

We may deduce from Lemmas 3.2 and 3.5 that there exists a subsequence, still
denoted by u, such that

ut —=u in L ([0,00); L*()) weak x, (3.25a)
ui =, in L2 ([0,00); L()) weak *, (3.25b)
Vu® = Vu in L2.([0,00); L*(Q)) weak =, (3.25¢)
A"yt =A™y in L2([0,00); L*(Q)) weak %, n=0,1, (3.25d)
Vui — Vu, in LE.([0,00); L*(Q)) weak *. (3.25e)

Thanks to the classical compactness properties of Sobolev spaces injections on
bounded open sets, we see that for all R > 0, the restrictions of u® and a?jklekl(ue),
n=0,1,t0 Qr = {z : 1 < 0,]2'| < R} x [0, R] (a set which has already been
defined in the Section 2.3), converge strongly to their respective limits in L*(Qg).
On the other hand, using the same techniques as those of Section 2.3, we may prove
that u converges strongly to u in L2 ([0, 00); L?(2)). The complete proof can be
found in [5], p. 113-115.

loc

We observe now that since u and u; belong to L2 ([0, 00); L*(€2)), we may replace

¢ by ¢g in the variational inequality where g is equal to 1 over the set g and
vanishes outside of Qr11. When R tends to infinity all the terms in (3.24) converge
to their limit; thus we have proved the existence of a weak solution. O

Remark 3.9 As for the damped wave equation with Signorini boundary conditions,
the uniqueness is still an open problem.

3.4 Preliminary results

In this section, we establish estimates on the problem (1.9a) with initial data (1.9d)
and the Dirichlet boundary condition which enable us to charaterize the trace spaces
in the next section.

Lemma 3.10 Assume vy and v, belong respectively to H*%(Q) and H3%(Q); then,
there exists a function with compact support in t such that the trace of z and z; on
Y. are respectively vy and v .
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Proof. We extend vy and v, into functions belonging respectively to H*/?(R?) and
H?32(R?). Then there exists a function Z belonging to H3(R? x [0, 00)) such that
Zlpaxpoy = vo and Zy|gaygoy = v1. We select a cutoff function ¢ € C>([0, 00))
which is equal to 1 on [0, 1] and to 0 on [2,00), and we define z as the restriction of
o(x)Z(z,t) to 2 x [0, 00). O

Lemma 3.11 Assume vy belongs to HY?(Q), v, belongs to H'(Q) and f belongs
to L. ([0,00); L*(Q2)). Define z as in Lemma 8.10 and let u be the solution of

(1.9a) with initial data (1.9d) and boundary condition u(0,-,-) = 2(0,-,-). Then the
trace § = —(a%,em (@) + ahklskl(ﬂt))‘ZX[o vy 8 well defined and belongs to the space

L} ([0,00); L*(X)). Moreover, there exists K > 0 such that e %'g € L?(X x [0, 0)).

loc
Proof. Let ( = u — z be the solution of the following problem:
o — A — AV =F 2€Q,t>0, (3.26)

where F' = f — pz + A% + A'z; with initial data ¢(-,0) = (-, 0) = 0 and boundary
condition ((0,-,-) = 0. Multiplying (3.26) by (; and integrating over @,, Korn’s
inequality enables us to deduce that ¢, and V¢ are bounded in L2 ([0, 00); L*(£2)),

loc

V¢ is bounded in L ([0, 00); L*(Q)). If we multiply (3.26) by A'¢, we may deduce

loc

that A°C and A'C are bounded in L2 ([0, 00); L*(€2)), arguing as in the proof of

loc
Lemma 3.5. On the other hand, we have

1 T
Ctt . (AlCt) dx dt = —5 / agjkl&“kl(g)&'i]’(g)’o dz.
Qr Q
Therefore, we multiply (3.26) by A'(;, we integrate over Q,, and thanks to the above
identity, we get
g/ailjklffkl(@t)&j@t)}tT dz —I—/ | AL da dt
Q QT
1 - P
+ 3 /Q(AOQ ) (Alg)}o dr = 5 /Q aijklskl(g)eij(@)}t:o dx

- / F - (AYG) da dt.

T

According to Gronwall’s lemma, there exists K > 0 such that

T 2 2 2
o ‘AICthx dt < CeK <’F‘L2(O,T;L2(Q)) + ’57&(70)‘]{1(9) + ’€’L2(O,T;L2(Q))) :

The Lemma is now clear. O
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3.5 The trace spaces

We proceed as in Section 2.5. A Fourier-Laplace transform and Lemma 3.11 enable
us to infer that all the traces can be defined. Therefore it is plain that a weak
solution of (1.9) is also a strong one.

Let us remark first that the problem (3.3) can be written under an equivalent form:
let us extend by 0 for ¢ < 0 the difference v¢ = e™"*(u® — @); then it satisfies

p(v =+ 805 — (A + %) + (A + ) (v + 8y)) div s

3.27
—(W+ v+ ) AvE =0, T€Q, t>0, (3.27)
with boundary conditions at {z; = 0}
(IU/O + l/lul)(vje',xl + /Uixj) + :ul(v;,xlt + vixjt) = 07 j = 27 37 (328&)
A+ M (v 4 8)) dive +2(u° + p' (v + 9p))vs,
[ 7 +
_ g Wiz eMu) (3.28b)
€
and with initial data
v(-,0) =0 and wvi(-,0) =0. (3.29)

If v¢ is a tempered distribution, we may perform a Fourier transform in the tangential
variable (2’ t) and a Laplace transform in ;. Denoting by £ and w the dual variables
of ' and ¢ and by 7 the dual variable of x;, we are led to the system:

i€
+ (1 + gt (v +iw)) (1€]? = n?)o° = 0.

p(v +iw)?0° — (A + 1) + (A + p') (v + iw)) < g ) (m, i€ (3.30)

Equation (3.30) is a linear system of equations; we seek its eigenvalues 7; and its
eigenvectors ¢;:

2 2 p(v + iw)Q 0
= = . 31
771 ’5’ + ,U/O + ,Uzl (l/ ¥+ ZCU) and ¢1 ij_ y (3 3 a)
2 _ je2 p(v + iw)? (1
772 - |£| + ,LLO + ,LLI(I/ + Zu)) and ¢2 - O 5 (331b)
2 2 p(v + iw)Q 3
= d = X 3.31
s = el AO 4200 + (AL 4 2pt) (v + iw) and - ¢ i )7 (3.31c)

where ¢4 is obtained from ¢ by a rotation of 7/2. We choose 7; to be the causal
determination of the square root of n?. Let us denote by ©° the partial Fourier
transform of v¢ with respect to the tangential variables. As v and v¢ are tempered
distributions, v° is also tempered; therefore, it can only include factors of the form
e and thus, it must be of the form

3

0 (1, &, w) = Y 0:(&, w)ie™ ™ (3.32)

i=1



Our goal now is to determine 6;. Define v¢ = (v, (v°)"). If we apply a partial Fourier
transform in the tangential variable to the boundary condition (3.28a), we obtain

(05, (0, &, w) = —i€07(0, &, w). (3.33)
Carrying (3.32) into (3.33), we infer that at z; = 0,
i€ a0 + i€ty = —i€(02 + nsbs),

thus it is clear that #; = 0 and 0y = —2n305. Furthermore relation (3.32) taken at
x1 = 0 enables us to deduce that 03 = —05(0,&,w)/ns. Finally, we obtain

66(1‘17 57 w) = 26; (07 57 w)¢26772$1 - ai(ov 57 w)¢3€773$1/773‘ (334)

At last using (3.34), the left hand side of (3.28b) can be written as a product of
convolution: if we perform a Fourier transform of the left hand side of (3.28b) and
since

U140, (0,§,w) = (272 = m3)01(0,§,w) and  (0)(0, ¢, w) = —ig(0, €, w)/ns,
we obtain
(A2 + M (v + y)) div ot + 2(u° + (v + 9))vs,, 0, €, w) = b (0, €, w)
where
b= (A% + 210+ (N + 20" ) (v + iw)) (2ns — 1) + (A + M (v + iw))[€*/ns.
Let we(z’,t) be the trace v°(0,2’,t); then (3.28b) can be written now

€ _ vty O7 o +
bxwp=e""g~ (wi = (0, ))" (3.35)
€

Lemma 3.12 Let u¢ = (u$,us, u$)” be the solution of (3.1)-(3.3a). Then we may
extract a subsequence, still denoted by uj, such that

ui(0,+,-) = uy(0,-,-) weakly in 1."-11/2’5/4(]1@’1 x [0, 00)).

loc
Moreover u is a strong solution of (1.9).
Proof. We denote by 15 and g the respective Fourier transforms of ¢ = \° + 2% +

A+ 2uM) (v + &) and g = e *'g. Multiplying (3.35) by w¢ and using Plancherel
identity, we obtain

1 = 1 =
W%/Rdwb]wlﬁdfdw: (27T>d§)‘E/Rdgww1d§dw

+

o) [ 0’ .
_ / / (wi =m0, ) Yt e dt.
0 Rd—1 €
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According to Cauchy-Schwarz’s inequality and since (u$(0, -, -))"/1/€ is bounded in
L2 ([0, 00); L2(R471)), the absolute value of the second mtegral on the right hand

loc

side of the above inequality is bounded by C}, therefore we get

WS|* dé dw < O —1— §R/ g@/)wl d¢ dw. (3.36)
Define
o —p(v + iw)? — 2P (p° + (v + iw)p')
—p(v +iw)? — €2 (X0 + 200 + (v + 1w) (AT + 2u1))’
2p(A0 4+ vAL)
Ty =

AN+ (A2

Then b = {/)\(2772 — kn3) and we remark also that it is sufficient to find a function
h which depends on ¢ and w such that R(2n, — xn3) > |h|. If we assume that
€] + |w| > 1, we have two cases to consider according to the values taken by |].
We suppose first that |£]2 + 2p(vu' — u®)/(u')? > 0; then 1, can be approximated
by 7, defined as follows:

= (e (55)'

Therefore it is easy to deduce that [3|> > [£]*/4 + p?w?/(p')? and then, in the case
I€12 + 2p(vpt — %) /(p')? > 0, we obtain the following estimate:

1 4 2,2\ 1/4
Ry > cos(m/4)|na| > 7 (% + 6:;2) : (3.37)

In the other case, we suppose [£|? + 2p(vu' — p°)/(u')? < 0; then, it is plain that

3p(vp' + p1°)
(p')?

which implies that there exists C' > 0 such that

1
and  |Sn2| > pr ||

Rn2| <
R, | < = (U 4 )2 + (pu0)?

’

arccotann?] < (vt + ) (0! + v + (1)) _ C

(11)?|] el

We deduce from the above inequality and from |n;|* > Clw| that |argni| < m/2 +
C/|w| and thus cos(argny) > 1/2. In the case |£]? + 2p(vut — p°)/(1')? <0, we get

Ry > C/|w|/2. (3.38)

Therefore in both cases, we infer from (3.37) and (3.38) that there exists M > 0
such that

Ripp > M (0* + | (3.39)
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Furthermore, there exists C' > 0 such that |s|* < 1+ Cly¢j<s0}/|w|? and for || large
enough, || > |n3|. Then (3.39) enables us to deduce

R(20n — wmg) > M (w? + €)' (3.40)
Carrying (3.40) into (3.36), we obtain
i 4| ~e ST E
M [ (1) @R dedo < €t [ IR dgdw. @)
R R

We estimate the product zy by |2|2/(27) + v|y|?/2, 7 > 0, we see that

Y 2( 2 4\ 1/4 | ~¢ 12 1 |Ag|2
M- = wl® (w® + dédw < C{+ — — —dfdw
< 2) /Rd’ ‘ ( ‘5‘ ) wl’ . = 2y /Rd (W2 |f|4>1/4 ‘

We choose v such that v < 2M. On the other hand, e ®'g(-,¢) is bounded in
L*(¥ x [0,00)), so that g(-,¢) is bounded in L*(X x [0,00)) if we choose v > K.
Therefore uS is bounded in HY/>*/*(£x[0, 00)). In particular, (A%4+A! (v+8,)) div v+

2(u® + pt(v + 0;))ve, is bounded in H_I/Q’_1/4(E x [0,00)). We conclude that wu is

1 loc
a strong solution of (1.9) because all the traces can be defined. O
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