On the convergence for kinetic variational inequality to quasi-static variational inequality with application to elastic-plastic systems with hardening

Adrien Petrov*1

In this note, a priori estimates for the kinetic problem are obtained that imply, that the kinetic solutions converge to the quasi-static ones, when the size of initial perturbations and the rate of application of the forces tend to 0. An application to three-dimensional elastic-plastic systems with hardening is given.

Copyright line will be provided by the publisher

1 Mathematical formulation

We start with a Hilbert space $H \stackrel{\text{def}}{=} H_1 \times H_2$ with dual H^* , the dual pairing and the norm are respectively denoted by $\langle \cdot, \cdot \rangle : H \times H^* \to \mathbb{R}$ and $\|\cdot\|_H$. Let $V \stackrel{\text{def}}{=} V_1 \times V_2$ be such that $V \subset H \subset V^*$ with the dual V^* . We use below the following norms: $\|\cdot\|^2 \stackrel{\text{def}}{=} \langle A \cdot, \cdot \rangle$, $\|\cdot\|^2 \stackrel{\text{def}}{=} \langle \cdot, A^{-1} \cdot \rangle$ and $\|\cdot\|_M \stackrel{\text{def}}{=} \|M^{1/2} \cdot\|_H$. We denote by $A: H \to H^*$ a strictly positive operator. We consider the variational inclusion

$$\varepsilon^{2}M\ddot{q}(t) + Aq(t) + \partial \mathcal{R}(\dot{q}(t)) \ni l(t) \text{ where } M \stackrel{\text{def}}{=} \begin{pmatrix} m & 0 \\ 0 & 0 \end{pmatrix}, A \stackrel{\text{def}}{=} \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, \tag{1.1}$$

 $q(t) \stackrel{\text{def}}{=} (u(t), z(t))^{\mathsf{T}}$ with $u \in H_1$ and $z \in H_2$, $l(t) \stackrel{\text{def}}{=} (f_u(t), f_z(t))^{\mathsf{T}}$, ε is a parameter which eventually tends to 0 and $\partial \mathcal{R}$ is the subdifferential of the dissipation functional \mathcal{R} which is assumed to be convex, lower-semicontinuous, homogeneous of degree 1. Here we assume to be given initial data $(\dot{u}(0), q(0)) \in H_1 \times V$. The corresponding quasi-static solution $\bar{q} \stackrel{\text{def}}{=} (\bar{u}, \bar{z})$ solves (1.1) with $\varepsilon = 0$ together with $\bar{q}(0) \in V$. In what concerns the kinetic problem, the theory of maximal monotone operators is used to prove existence of a unique solution whereas for the quasi-static problem, we refer to [3] or the recently developed theory in [6].

2 A priori estimates

The aim of this section is to estimate the distance between q and \bar{q} by introducing a special intermediate solution $\widehat{q}=(\widehat{u},\widehat{z})$ satisfies (1.1) together with initial conditions $(\widehat{u}(0),\widehat{q}(0))=(0,\bar{q}(0))$. Notice that the existence of a unique \widehat{q} is obtained using the theory of maximal monotone operators. First, we provide a priori estimates for the problem which allow us to control the term $M\ddot{q}$ in H instead of the usual estimates in V^* . The problem occurs through the fact that $\partial \mathcal{R}$ is nonsmooth and classical techniques for smooth problems do not suffice. One way to handle this is to use Yosida regularization (see [4]). Here we choose a different technique that is based on difference quotients. Our a priori estimates can be derived most easily by using the bilinear form $B: V \times H \times V^* \to \mathbb{R}$ defined via $B[q,\dot{q},l] \stackrel{\text{def}}{=} |\varepsilon \dot{q}|_M^2 + \|q-A^{-1}l\|^2 + \|ll\|_*^2$. The construction is such that for solutions we have $B[q,\dot{q},l] = 2\mathcal{E}(t,q,\dot{q}) + 2\|ll\|_*^2$ with $\mathcal{E}(t,q,\dot{q}) = \frac{1}{2}\langle \varepsilon^2 M \dot{q}, \dot{q}\rangle + \frac{1}{2}\langle Aq,q\rangle - \langle l(t),q\rangle$. Moreover, B defines an equivalent norm on $V \times H \times V^*$, since $\frac{1}{g^2}(\|q\|^2 + |\varepsilon \dot{q}|_M^2 + \|ll\|_*^2) \leq B[q,\dot{q},l] \leq g^2(\|q\|^2 + |\varepsilon \dot{q}|_M^2 + \|ll\|_*^2)$ with $g \stackrel{\text{def}}{=} \frac{1+\sqrt{5}}{2} \approx 1.618$ is the golden ratio. Then, one can deduce the following proposition

Proposition 2.1 Let $l_1, l_2 \in W^{1,1}([0,T];V^*)$ and q_1 and q_2 be solutions of (1.1) with right-hand sides l_1 and l_2 respectively, then $w = q_1 - q_2$ satisfies the estimate

$$\forall t \in [0,T]: B[w(t), \dot{w}(t), l_1(t) - l_2(t)]^{1/2} \leq B[w(0), \dot{w}(0), l_1(0) - l_2(0)]^{1/2} + g\sqrt{2} \int_0^t \|\dot{l}_1(\tau) - \dot{l}_2(\tau)\|_* d\tau. \tag{2.1}$$

Since $\hat{u}(0) = 0$, we may choose $\hat{q}(t) = \hat{q}(0)$ for all $t \in [-\rho, 0]$, $\rho > 0$, and let $l(t) = A\hat{q}(0)$. Hence, we deduce that the stability condition $l(0) \in \partial R(0) + A\hat{q}(0)$ holds and that the following limits for $h \setminus 0$ exist:

$$\frac{1}{h} \left(\widehat{q}(0) - \widehat{q}(-h) \right) \to 0 \text{ in } V, \ \frac{1}{h} \left(\dot{\widehat{u}}(0) - \dot{\widehat{u}}(-h) \right) \to 0 \text{ in } H_1, \ \frac{1}{h} \left(l(0) - l(-h) \right) \to 0 \text{ in } V^*. \tag{2.2}$$

Weierstraß-Institut für Angewandte Analysis und Stochastik, Mohrenstraße 39, 10117 Berlin, Germany

^{*} Corresponding author: e-mail: petrov@wias-berlin.de, Phone: +00 493 020 372 460, Fax: +00 493 020 449 75

Using Proposition 2.1 and (2.2), we find

$$|\varepsilon \hat{\vec{q}}(t)|_{M} \le gB[\hat{\vec{q}}(t), \hat{\vec{q}}(t), \dot{\vec{l}}(t)]^{1/2} \le gB[0, 0, 0]^{1/2} + g^{2}\sqrt{2}(\|\dot{l}(0)\|_{*} + \int_{0}^{t} \|\ddot{l}(s)\|_{*} \,\mathrm{d}s). \tag{2.3}$$

On the other hand, we use the standard trick of adding variational inequalities leads to

$$\left| \dot{\varepsilon} \hat{\overline{q}}(t) \right|_{M}^{2} + \left\| \widehat{q}(t) - \overline{q}(t) \right\|^{2} \leq 2 \bar{C} \operatorname{ess \, sup}_{s \in [0, T]} \left| \dot{\varepsilon} \hat{\overline{q}}(s) \right|_{M} \int_{0}^{t} \varepsilon \| l(s) \|_{*} \, \mathrm{d}s. \tag{2.4}$$

The difference between the solution q and the special solution \widehat{q} comes from Proposition 2.1. Hence, (2.3) and (2.4) imply the following theorem:

Theorem 2.2 Let the above assumptions on M, A and \mathcal{R} hold and assume $l=(f_u,f_z)\in W^{2,1}([0,T],V^*)$. For $\bar{q}(0)\in V$ with $l(0)\in\partial\mathcal{R}(0)+A\bar{q}(0)\subset\{0\}\times H_2$ let \bar{q} be the unique solution of (1.1) with $\varepsilon=0$. For arbitrary $q(0)=(u(0),z(0))\in V$ and $\dot{u}(0)\in H_1$ satisfying $f_z(0)\in a_{21}u(0)+a_{22}z(0)+\partial\mathcal{R}(0)$ let q be the unique solution of (1.1). Then there exists C>0 such that

$$\left(\left|\varepsilon\dot{q}(t)\right|_{M}^{2} + \|q(t) - \bar{q}(t)\|^{2}\right)^{1/2} \le \left(\left|\varepsilon\dot{u}(0)\right|_{M}^{2} + \|q(0) - \bar{q}(0)\|^{2}\right)^{1/2} + C\sqrt{\varepsilon}.\tag{2.5}$$

3 Application: elastic-plastic systems with hardening

We consider a body with reference configuration $\Omega \subset \mathbb{R}^d$. This body may undergo displacements $u:\Omega \to \mathbb{R}^d$. The plastic strain will be characterized by $e^{\mathrm{pl}}:\Omega \to \mathbb{S}_0^d$ where \mathbb{S}_0^d is the space of symmetric $d\times d$ tensors such that the trace of e^{pl} vanishes. The set of admissible displacements \mathcal{F} is chosen as a suitable subspace of $W^{1,2}(\Omega;\mathbb{R}^d)$ by describing Dirichlet data at the part Γ_{Dir} of $\partial\Omega$ and the plastic variable e^{pl} lives in $\mathcal{Z} \stackrel{\mathrm{def}}{=} L^2(\Omega;\mathbb{S}_0^d)$. We denote by $e(u) \stackrel{\mathrm{def}}{=} \frac{1}{2}(\nabla u + \nabla u^{\mathrm{T}})$ and \mathbb{E} respectively the linearized strain tensor and elasticity tensor. We define the dissipation potential by $\mathcal{R}(\dot{e}^{\mathrm{pl}}) \stackrel{\mathrm{def}}{=} \int_{\Omega} R(x,\dot{e}^{\mathrm{pl}}(x)) \,\mathrm{d}x$ where $R(x,\cdot)$ is 1-homogeneous, convex and satisfies $0 < r_1|v| \le R(x,v) \le r_2|v|$. We consider the governing system

$$\begin{cases} \varepsilon^{2}\rho\ddot{u} - \operatorname{div}(\mathbb{E}:(e(u) - e^{\operatorname{pl}})) = l_{\operatorname{ext}}(t), \\ -\dot{e}^{\operatorname{pl}} + \partial R^{*}(\mathbb{E}:(e(u) - e^{\operatorname{pl}}) - \mathbb{H}e^{\operatorname{pl}}) \ni 0. \end{cases}$$
(3.1)

We assume to be given initial data $(u(0), \dot{u}(0), e^{pl}(0)) \in \mathcal{F} \times \mathcal{F} \times \mathcal{Z}$. Here $\rho > 0$ is the density, $l_{\rm ext}(t)$ is the applied mechanical loading and R^* is the Legendre transform of R. Let (\bar{u}, \bar{e}^{pl}) solves (3.1) with $\varepsilon = 0$ and $(\bar{u}(0), \bar{e}^{pl}(0)) \in \mathcal{F} \times \mathcal{Z}$. Notice that the existence result for the kinetic problem was established in [7, 8] whereas existence and uniqueness of a strong solution to the corresponding quasi-static problem was obtained in [1, 2]. On the other hand, applying Theorem 2.2 and using Korn's inequality, we deduce the following Corollary:

Corollary 3.1 Assume that $(u(0), e^{\operatorname{pl}}(0))$ and $(\bar{u}(0), \bar{e}^{\operatorname{pl}}(0))$ satisfy $0 \in \mathbb{E}:(e^{\operatorname{pl}}(0) - e(u(0))) + \mathbb{H}e^{\operatorname{pl}}(0) + \partial \mathcal{R}(0)$ and $(l_{\operatorname{ext}}(0), 0)^{\mathsf{T}} \in A(\bar{u}(0), \bar{e}^{\operatorname{pl}}_{0})^{\mathsf{T}} + \{0\} \times \partial R(0)$, respectively. Then there exist c, C > 0 such that

$$\forall \varepsilon > 0 : \left(\|\varepsilon \rho^{1/2} \dot{u}(t)\|_{L^{2}}^{2} + \|u(t) - \bar{u}(t)\|_{W^{1,2}}^{2} + \|e^{\mathrm{pl}}(t) - \bar{e}^{\mathrm{pl}}(t)\|_{L^{2}}^{2} \right)^{1/2}$$

$$\leq c \left(\|\varepsilon \rho^{1/2} \dot{u}(0)\|_{L^{2}}^{2} + \|u(0) - \bar{u}(0)\|_{W^{1,2}}^{2} + \|e^{\mathrm{pl}}(0) - \bar{e}^{\mathrm{pl}}(0)\|_{L^{2}}^{2} \right)^{1/2} + C\sqrt{\varepsilon}.$$

Acknowledgements The author is indebted to A. Mielke for helpful discussions, and acknowledge the Deutsche Forschungsgemeinschaft through the projet C18 "Analysis and numerics of multidimensional models for elastic phase transformation in a shape-memory alloys" of the DFG Research Center MATHEON.

References

- [1] C. JOHNSON. Existence theorems for plasticity problems. J. Math. Pures Appl. (9), 55(4):431-444, 1976.
- [2] C. JOHNSON. On plasticity with hardening. J. Math. Anal. Appl., 62(2):325–336, 1978.
- [3] P. Krejčí. Evolution variational inequalities and multidimensional hysteresis operators. In *Nonlinear differential equations (Chvalatice, 1998)*, volume 404 of *Chapman & Hall/CRC Res. Notes Math.*, pages 47–110. Chapman & Hall/CRC, Boca Raton, FL, 1999.
- [4] J. A. C. MARTINS, M. D. P. MONTEIRO MARQUES and A. PETROV. On the stability of quasi-static paths of elastic-plastic systems with hardening (submitted), 2007. WIAS Preprint 1223.
- [5] A. MIELKE. Evolution in rate-independent systems (Ch. 6). In C. Dafermos and E. Feireisl, editors, *Handbook of Differential Equations, Evolutionary Equations*, vol. 2, pages 461–559. Elsevier B.V., Amsterdam, 2005.
- [6] A. MIELKE and F. THEIL. On rate-independent hysteresis models. Nonl. Diff. Eqns. Appl. (NoDEA), 11, 151-189, 2004.
- [7] R. E. SHOWALTER and P. SHI. Plasticity models and nonlinear semigroups. J. Math. Anal. Appl., 216(1):218-245, 1997.
- [8] R. E. SHOWALTER and P. SHI. Dynamic plasticity models. Comput. Methods Appl. Engrg., 151(1):501–511, 1998.