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On the convergencefor kinetic variational inequality to quasi-static varia-
tional inequality with application to elastic-plastic systemswith har dening

Adrien Petrov*!
! WeierstraRR-Institut fir Angewandte Analysis und Stodkasohrenstrae 39, 10117 Berlin, Germany

In this note, a priori estimates for the kinetic problem ab¢amed that imply, that the kinetic solutions convergetfte t
quasi-static ones, when the size of initial perturbatiams the rate of application of the forces tenddtoAn application to
three-dimensional elastic-plastic systems with hardgismiven.
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1 Mathematical formulation

We start with a Hilbert spac&l £ H, x H, with dual H*, the dual pairing and the norm are respectively denoted by

() : Hx H* - Rand|-||z. LetV £ V; x V, be such that’ ¢ H ¢ V* with the dualV’*. We use below the following
norms: ||| £ (A-,-), [|-|2 = (-, A" ') and|-|,, £ |[M/%|/ 4. We denote byd : H — H* a strictly positive operator.
We consider the variational inclusion

e2Mj(t) + Aq(t) + OR(§(t)) > I(t) where M & ( m 0 ) AE ( @i 2 ) (1.1)

0 0 a1 a2

q(t) = (u(t), z(t))T with uw € Hy andz € Hy, [(t) £ (fu(t), f-(t))7, € is a parameter which eventually tendsitandoR
is the subdifferential of the dissipation functiorfalwhich is assumed to be convex, lower-semicontinuous, hemeaus of
degree 1. Here we assume to be given initial data), ¢(0)) € H, x V. The corresponding quasi-static solutipf (i, z)
solves (1.1) withe = 0 together withg(0) € V. In what concerns the kinetic problem, the theory of maximahotone
operators is used to prove existence of a unique solutiomeais€for the quasi-static problem, we refer to [3] or the mége
developed theory in [6].

2 Apriori estimates

The aim of this section is to estimate the distance betwesmdg by introducing a special intermediate soluti@n- (u, 2)
satisfies (1.1) together with initial conditiofs(0), 3(0)) = (0, (0)). Notice that the existence of a unig@iés obtained using
the theory of maximal monotone operators. First, we progigeiori estimates for the problem which allow us to contha t
termMqin H instead of the usual estimatesliti. The problem occurs through the fact t# is nonsmooth and classical
techniques for smooth problems do not suffice. One way toleahé is to use Yosida regularization (see [4]). Here we
choose a different technique that is based on differencéeqnis. Our a priori estimates can be derived most easilysiygu
the bilinear formB : V x H x V* — R defined viaB|q,¢,1] £ |43, + Hq AN + |\l||2 The construction is such
that for solutions we hav|q, ¢,1] = 2E(t,q,q) + 2|[1||? with £(¢,q,4) = 3(e*Mq,q) + 2(Aq,q) — (I(t),q). Moreover,

B defines an equivalent norm an x H x V*, sinceg%(Hq|\2+|5q|?\4+|\l||i) < Blq,q,1] g g (llql*+eql3,+17]) with

gZ 1+—2‘/3 ~ 1.618 is the golden ratio. Then, one can deduce the following psitiom

Proposition 2.1 Letly,lo € WH1([0,7];V*) andg; andg be solutions of 1.1) with right-hand sides; and !, respec-
tively, thenw = ¢; —¢- satisfies the estimate

Vi e [0,T]: Blw(t),w(t),l(t)—la(t)]"? < B[w(O),w(O),11(0)—12(0)]1/%9\@/0 i1(7)=la(7)]|+ d7. (2.1)

Sinceii(0) = 0, we may choosg(t) = 4(0) forall t € [—p,0], p > 0, and let/(t) = Ag(0). Hence, we deduce that the
stability condition/(0) € OR(0) + Aq(0) holds and that the following limits fa ~\, 0 exist:

(d(0)—q(~h)) — 0 in V., %(ﬁ(opﬁ(%)) o 0in Hy, %(1(0)_1(_@) —0in V. 2.2)

S| =
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Using Proposition 2.1 and (2.2), we find

t
£0)] a0 < 9B, (0. 0)2 < 9B(0.0.02 + #VE(JIO)]. + [ )] ds), (2.3)
0
On the other hand, we use the standard trick of adding vaniatinequalities leads to
t
2 ~ _ = By
l€q(t) ] + () ()] < 20688[51;1]>IEQ(S)IM/ elli(s)l+ ds. (2.4)
s€|0, 0

The difference between the solutigmnd the special soluticpncomes from Proposition 2.1. Hence, (2.3) and (2.4) imply the
following theorem:

Theorem 2.2 Let the above assumptions 8, A andR hold and assume= (f., f.) € W21([0,T],V*). Forg(0) € V
with1(0) € OR(0)+Ag(0) C {0} x Hs letg be the unique solution dfL.1)withe = 0. For arbitrary ¢(0) = (u(0), 2(0)) € V
andu(0) € H; satisfyingf.(0) € as1u(0)4a222(0)+9R(0) let ¢ be the unique solution ofL.1). Then there exist§’ > 0
such that

(Id(®)%; + lla®)—a®)[)""? < (le(0)]%,+]lg(0)=q(0) %) /* + Cvz. (2.5)

3 Application: elastic-plastic systemswith hardening

We consider a body with reference configuratiorc R?. This body may undergo displacements 2 — R<. The plastic
strain will be characterized by’ : Q — S¢ whereS{ is the space of symmetritx d tensors such that the traced8fvanishes.
The set of admissible displacemerfiss chosen as a suitable subspacéiof?(Q; R?) by describing Dirichlet data at the
partT'p;r of 09 and the plastic variable” lives in 2 = L2(Q;S¢). We denote by:(u) £ 1(Vu+VuT) andE respectively

the linearized strain tensor and elasticity tensor. We @dfie dissipation potential bi (éP') = Jo R(z, ¢Pl(x)) dz where
R(x,-) is 1-homogeneous, convex and satisfies r |v| < R(x,v) < r2|v|. We consider the governing system

e2pii — diV(E:(e(u)—epl)) = lexi(t),
{—épl + OR* (E:(e(u)—epl) — Hepl) 35 0. (3.1)

We assume to be given initial data(0),1(0),e”(0)) € F x F x Z. Herep > 0 is the density/.:(¢) is the applied
mechanical loading an®* is the Legendre transform @t. Let (i, e”') solves (3.1) withe = 0 and((0), e?(0)) € F x Z.
Notice that the existence result for the kinetic problem established in [7, 8] whereas existence and uniquenessiairays
solution to the corresponding quasi-static problem waaiobt in [1, 2]. On the other hand, applying Theorem 2.2 aimtus
Korn’s inequality, we deduce the following Corollary:

Corollary 3.1 Assume thatu(0), e?'(0)) and ((0),eP!(0)) satisfy0 € E:(eP!(0)—e(u(0))) + HeP!(0) + OR(0) and
(Lext(0),0) T A(w(0), &P T+{0} x HR(0), respectively. Then there existC' > 0 such that

. _ _ 1/2
Ve > 0 ([lepZalt)]| 3+ u®)—a())|Fa+e? (B - (1)]22) "
. _ _ 1/2
< c(llep™2i(0) |32+ 1u(0)—a(0) 1.2+ (0)—" (0)]132)/* + CVE.
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