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On the convergence for kinetic variational inequality to quasi-static varia-
tional inequality with application to elastic-plastic systems with hardening

Adrien Petrov∗1
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In this note, a priori estimates for the kinetic problem are obtained that imply, that the kinetic solutions converge to the
quasi-static ones, when the size of initial perturbations and the rate of application of the forces tend to0. An application to
three-dimensional elastic-plastic systems with hardening is given.
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1 Mathematical formulation

We start with a Hilbert spaceH
def
= H1 × H2 with dual H∗, the dual pairing and the norm are respectively denoted by

〈·, ·〉 : H × H∗ → R and‖·‖H . Let V
def
= V1 × V2 be such thatV ⊂ H ⊂ V ∗ with the dualV ∗. We use below the following

norms:‖·‖2 def
= 〈A ·, ·〉, ‖·‖2

∗
def
= 〈 · , A−1·〉 and| · |M

def
= ‖M1/2·‖H . We denote byA : H → H∗ a strictly positive operator.

We consider the variational inclusion

ε2Mq̈(t) + Aq(t) + ∂R(q̇(t)) ∋ l(t) whereM
def
=

(
m 0
0 0

)
, A

def
=

(
a11 a12

a21 a22

)
, (1.1)

q(t)
def
= (u(t), z(t))T with u ∈ H1 andz ∈ H2, l(t)

def
= (fu(t), fz(t))

T, ε is a parameter which eventually tends to0 and∂R
is the subdifferential of the dissipation functionalR which is assumed to be convex, lower-semicontinuous, homogeneous of
degree 1. Here we assume to be given initial data(u̇(0), q(0)) ∈ H1 × V . The corresponding quasi-static solutionq̄

def
= (ū, z̄)

solves (1.1) withε = 0 together withq̄(0) ∈ V . In what concerns the kinetic problem, the theory of maximalmonotone
operators is used to prove existence of a unique solution whereas for the quasi-static problem, we refer to [3] or the recently
developed theory in [6].

2 A priori estimates

The aim of this section is to estimate the distance betweenq andq̄ by introducing a special intermediate solutionq̂ = (û, ẑ)

satisfies (1.1) together with initial conditions( ˙̂u(0), q̂(0)) = (0, q̄(0)). Notice that the existence of a uniqueq̂ is obtained using
the theory of maximal monotone operators. First, we providea priori estimates for the problem which allow us to control the
termM ¨̂q in H instead of the usual estimates inV ∗. The problem occurs through the fact that∂R is nonsmooth and classical
techniques for smooth problems do not suffice. One way to handle this is to use Yosida regularization (see [4]). Here we
choose a different technique that is based on difference quotients. Our a priori estimates can be derived most easily by using
the bilinear formB : V × H × V ∗ → R defined viaB[q, q̇, l]

def
= |εq̇|2M + ‖q−A−1l‖2 + ‖l‖2

∗. The construction is such
that for solutions we haveB[q, q̇, l] = 2E(t, q, q̇) + 2‖l‖2

∗ with E(t, q, q̇) = 1
2 〈ε2Mq̇, q̇〉 + 1

2 〈Aq, q〉 − 〈l(t), q〉. Moreover,
B defines an equivalent norm onV × H × V ∗, since 1

g2

(
‖q‖2+|εq̇|2M+‖l‖2

∗

)
≤ B[q, q̇, l] ≤ g2

(
‖q‖2+|εq̇|2M+‖l‖2

∗

)
with

g
def
= 1+

√
5

2 ≈ 1.618 is the golden ratio. Then, one can deduce the following proposition

Proposition 2.1 Let l1, l2 ∈ W 1,1([0, T ]; V ∗) andq1 andq2 be solutions of(1.1)with right-hand sidesl1 and l2 respec-
tively, thenw = q1−q2 satisfies the estimate

∀t ∈ [0, T ] : B[w(t), ẇ(t), l1(t)−l2(t)]
1/2 ≤ B[w(0), ẇ(0), l1(0)−l2(0)]1/2 +g

√
2

∫ t

0

‖l̇1(τ)−l̇2(τ)‖∗ dτ. (2.1)

Since ˙̂u(0) = 0, we may choosêq(t) = q̂(0) for all t ∈ [−ρ, 0], ρ > 0, and letl(t) = Aq̂(0). Hence, we deduce that the
stability conditionl(0) ∈ ∂R(0) + Aq̂(0) holds and that the following limits forh ց 0 exist:

1

h

(
q̂(0)−q̂(−h)

)
→ 0 in V,

1

h

(
˙̂u(0)− ˙̂u(−h)

)
→ 0 in H1,

1

h

(
l(0)−l(−h)

)
→ 0 in V ∗. (2.2)
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Using Proposition 2.1 and (2.2), we find

|ε¨̂q(t)|M ≤ gB[ ˙̂q(t), ¨̂q(t), l̇(t)]1/2 ≤ gB[0, 0, 0]1/2 + g2
√

2
(
‖l̇(0)‖∗ +

∫ t

0

‖l̈(s)‖∗ ds
)
. (2.3)

On the other hand, we use the standard trick of adding variational inequalities leads to

|ε ˙̂q(t)|2M + ‖q̂(t)−q̄(t)‖2 ≤ 2C̄ ess sup
s∈[0,T ]

|ε¨̂q(s)|M
∫ t

0

ε‖l(s)‖∗ ds. (2.4)

The difference between the solutionq and the special solution̂q comes from Proposition 2.1. Hence, (2.3) and (2.4) imply the
following theorem:

Theorem 2.2 Let the above assumptions onM , A andR hold and assumel = (fu, fz) ∈ W 2,1([0, T ], V ∗). For q̄(0) ∈ V

with l(0) ∈ ∂R(0)+Aq̄(0) ⊂ {0}×H2 let q̄ be the unique solution of(1.1)with ε = 0. For arbitrary q(0) = (u(0), z(0)) ∈ V

and u̇(0) ∈ H1 satisfyingfz(0) ∈ a21u(0)+a22z(0)+∂R(0) let q be the unique solution of(1.1). Then there existsC > 0
such that

(
|εq̇(t)|2M + ‖q(t)−q̄(t)‖2

)1/2 ≤
(
|εu̇(0)|2M+‖q(0)−q̄(0)‖2

)1/2
+ C

√
ε. (2.5)

3 Application: elastic-plastic systems with hardening

We consider a body with reference configurationΩ ⊂ R
d. This body may undergo displacementsu : Ω → R

d. The plastic
strain will be characterized byepl : Ω → S

d
0 whereS

d
0 is the space of symmetricd×d tensors such that the trace ofepl vanishes.

The set of admissible displacementsF is chosen as a suitable subspace ofW 1,2(Ω; Rd) by describing Dirichlet data at the
partΓDir of ∂Ω and the plastic variableepl lives inZ def

= L2(Ω; Sd
0). We denote bye(u)

def
= 1

2 (∇u+∇uT) andE respectively

the linearized strain tensor and elasticity tensor. We define the dissipation potential byR(ėpl)
def
=

∫
Ω

R(x, ėpl(x)) dx where
R(x, ·) is 1-homogeneous, convex and satisfies0 < r1|v| ≤ R(x, v) ≤ r2|v|. We consider the governing system

{
ε2ρü − div

(
E:(e(u)−epl)

)
= lext(t),

−ėpl + ∂R∗
(
E:(e(u)−epl) − Hepl

)
∋ 0.

(3.1)

We assume to be given initial data(u(0), u̇(0), epl(0)) ∈ F × F × Z. Hereρ > 0 is the density,lext(t) is the applied
mechanical loading andR∗ is the Legendre transform ofR. Let (ū, ēpl) solves (3.1) withε = 0 and(ū(0), ēpl(0)) ∈ F × Z.
Notice that the existence result for the kinetic problem wasestablished in [7, 8] whereas existence and uniqueness of a strong
solution to the corresponding quasi-static problem was obtained in [1, 2]. On the other hand, applying Theorem 2.2 and using
Korn’s inequality, we deduce the following Corollary:

Corollary 3.1 Assume that(u(0), epl(0)) and (ū(0), ēpl(0)) satisfy0 ∈ E:(epl(0)−e(u(0))) + Hepl(0) + ∂R(0) and
(lext(0), 0)T∈A(ū(0), ēpl

0 )T+{0} × ∂R(0), respectively. Then there existc, C > 0 such that

∀ε > 0 :
(
‖ερ1/2u̇(t)‖2

L2+‖u(t)−ū(t)‖2
W 1,2+‖epl(t)−ēpl(t)‖2

L2

)1/2

≤ c
(
‖ερ1/2u̇(0)‖2

L2+‖u(0)−ū(0)‖2
W 1,2+‖epl(0)−ēpl(0)‖2

L2

)1/2
+ C

√
ε.
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