ON THE BEST CONSTANT IN GAFFNEY INEQUALITY

Bernard DACOROGNA

EPFL - Lausanne - Suisse

avec G. CSATO et S. SIL

à paraître dans Journal of Functional Analysis (2018)

En l'honneur des 60 ans de Jérôme Pousin

GAFFNEY inequality for vector fields states that there exists a constant $C = C(\Omega) > 0$ such that for every vector field $u \in W^{1,2}(\Omega; \mathbb{R}^n)$

$$\|\nabla u\|_{L^2}^2 \le C\left(\|\operatorname{curl} u\|_{L^2}^2 + \|\operatorname{div} u\|_{L^2}^2 + \|u\|_{L^2}^2\right)$$

where, on $\partial \Omega$, either

 $\nu \wedge u = 0$

(i.e. u is parallel to u and we write then $u \in W_T^{1,2}\left(\Omega; \mathbb{R}^n\right)$) or

 $\nu \,\lrcorner\, u = \mathbf{0}$

(i.e. u is orthogonal to ν and we write then $u \in W_N^{1,2}(\Omega; \mathbb{R}^n)$).

GAFFNEY inequality Let $0 \le k \le n$ and $\Omega \subset \mathbb{R}^n$ be a bounded open smooth set. Then there exists a constant $C = C(\Omega, k) > 0$ such that

 $\begin{aligned} \|\nabla \omega\|_{L^2}^2 &\leq C\left(\|d\omega\|_{L^2}^2 + \|\delta \omega\|_{L^2}^2 + \|\omega\|_{L^2}^2\right) \\ \text{for every } \omega \in W_T^{1,2}\left(\Omega;\Lambda^k\right) \cup W_N^{1,2}\left(\Omega;\Lambda^k\right). \end{aligned}$

Define ($\|\cdot\|$ stands for the L^2 -norm)

$$C_T\left(\Omega,k
ight) = \sup_{\omega \in W_T^{1,2} \setminus \{0\}} \left\{ rac{\|
abla \omega\|^2}{\|d\omega\|^2 + \|\delta\omega\|^2 + \|\omega\|^2}
ight\}$$
 $C_N\left(\Omega,k
ight) = \sup_{\omega \in W_N^{1,2} \setminus \{0\}} \left\{ rac{\|
abla \omega\|^2}{\|d\omega\|^2 + \|\delta\omega\|^2 + \|\omega\|^2}
ight\}$

It is easy to see that

$$C_{T}\left(\mathbf{\Omega},k
ight),C_{N}\left(\mathbf{\Omega},k
ight)\geq1.$$

The cases k = 0 and k = n are trivial and $C_T = C_N = 1$.

The discussion deals with the case $1 \le k \le n-1$ (k = 1 is the case of vector fields).

Bibliography

- Gaffney (1951) for manifolds without boundary

- For manifolds with boundary: Friedrichs (1955), Morrey and Morrey-Eells (1956).

- Bolik (in L^p and in Hölder spaces), Csató-Dacorogna-Kneuss, Iwaniec-Martin, Iwaniec-Scott-Stroffolini (in L^p), Mitrea , Mitrea-Mitrea, Schwarz, Taylor, von Wahl.

- For vector fields in dimension 2 and 3 : Amrouche-Bernardi-Dauge-Girault, Costabel, Dautray-Lions, Desvillettes-Villani.

A stronger version (in fact a regularity result) of Gaffney inequality is

 $\|\nabla \omega\|^{2} \leq C\left(\|d\omega\|^{2} + \|\delta\omega\|^{2} + \|\omega\|^{2}\right), \quad \forall \, \omega \in W_{T}^{d,\delta,2}\left(\Omega;\Lambda^{k}\right)$ (and similarly with T replaced by N) where

$$\omega \in W_T^{d,\delta,2}\left(\Omega;\Lambda^k\right) = \left\{ \omega \in L^2\left(\Omega;\Lambda^k\right) : \left\{ \begin{array}{l} d\omega \in L^2\left(\Omega;\Lambda^{k+1}\right) \\ \delta\omega \in L^2\left(\Omega;\Lambda^{k-1}\right) \\ \nu \wedge \omega = 0 \text{ on } \partial\Omega \end{array} \right\}.$$

For smooth or convex Lipschitz domains

$$W_T^{d,\delta,2}\left(\Omega;\Lambda^k\right) = W_T^{1,2}\left(\Omega;\Lambda^k\right).$$

For non-convex Lipschitz domains, in general,

$$W_T^{\mathbf{1},\mathbf{2}} \underset{\neq}{\subset} W_T^{d,\delta,\mathbf{2}}.$$

Bibliography (for the stronger version)

- Mitrea, Mitrea-Mitrea

- For vector fields in dimension 2 and 3 : Amrouche-Bernardi-Dauge-Girault, Ben Belgacem-Bernardi-Costabel-Dauge, Ciarlet-Hazard-Lohrengel, Costabel, Costabel-Dauge, Girault-Raviart. Plan of the talk

I) The main theorem

II) Some examples

III) The case of polytopes

IV) Idea of proof

I) The main theorem

Definition Let $\Omega \subset \mathbb{R}^n$ be an open smooth set and $\Sigma = \partial \Omega$ be the associated (n-1)-surface. Let $\gamma_1, \dots, \gamma_{n-1}$ be the principal curvatures of Σ . Let $1 \leq k \leq n-1$. We say that Ω is k-convex if

 $\gamma_{i_1} + \dots + \gamma_{i_k} \ge 0$ for every $1 \le i_1 < \dots < i_k \le n-1$.

Remark (i) When $k = 1 : \Omega$ is convex if and only if Ω is 1-convex, i.e.

 $\gamma_i \ge 0$ for every $1 \le i \le n-1$.

The result is due to Hadamard and to Chern-Lashof.

(ii) When k = n - 1: Ω is (n-1)-convex if and only if the mean curvature of $\Sigma = \partial \Omega$ is non-negative, i.e.

 $\gamma_1 + \dots + \gamma_{n-1} \ge 0.$

Theorem Let $\Omega \subset \mathbb{R}^n$ be a bounded open smooth set and $1 \leq k \leq n-1$. Then the following statements are equivalent.

(i)
$$C_T(\Omega, k) = 1$$
 (i.e. $\|\nabla \omega\|^2 \le \|d\omega\|^2 + \|\delta \omega\|^2 + \|\omega\|^2$)

(ii) The sharper version of Gaffney inequality holds, namely $\|\nabla \omega\|^{2} \leq \|d\omega\|^{2} + \|\delta \omega\|^{2}, \quad \forall \, \omega \in W_{T}^{1,2}\left(\Omega;\Lambda^{k}\right).$ (iii) Ω is (n-k)-convex.

(iv) The supremum is not attained.

(v) C_T is scale invariant , namely, for every t > 0 $C_T(t \Omega, k) = C_T(\Omega, k)$. **Remark** (i) Similar results for N, since

$$C_T(\Omega,k) = C_N(\Omega,n-k).$$

(ii) When k = 1, we have the equivalence between

-
$$C_T(\Omega, 1) = 1$$
 (i.e. $\|\nabla \omega\|^2 \le \|\operatorname{curl} \omega\|^2 + \|\operatorname{div} \omega\|^2 + \|\omega\|^2$)

- The sharper version of Gaffney inequality

$$\|\nabla \omega\|^2 \leq \|\operatorname{curl} \omega\|^2 + \|\operatorname{div} \omega\|^2, \quad \forall \, \omega \in W^{1,2}_T \left(\Omega; \mathbb{R}^n\right)$$

- Ω is (n-1) -convex i.e. the mean curvature of $\Sigma = \partial \Omega$ is non-negative, meaning that

$$\gamma_1 + \dots + \gamma_{n-1} \ge 0.$$

(iii) Still when k = 1, since

$$C_T(\Omega, 1) = C_N(\Omega, n - 1)$$

- $C_N(\Omega, 1) = 1$ (i.e. $\|\nabla \omega\|^2 \le \|\operatorname{curl} \omega\|^2 + \|\operatorname{div} \omega\|^2 + \|\omega\|^2$)

- The sharper version of Gaffney inequality

$$\|\nabla \omega\|^{2} \leq \|\operatorname{curl} \omega\|^{2} + \|\operatorname{div} \omega\|^{2}, \quad \forall \, \omega \in W_{N}^{1,2}(\Omega; \mathbb{R}^{n})$$

- Ω is convex i.e.

$$\gamma_1, \cdots, \gamma_{n-1} \geq 0.$$

II) Some examples

Proposition Let $1 \le k \le n-1$. Then there exists a set $\Omega_k \subset B$ (a fixed ball of \mathbb{R}^n) such that $C_T(\Omega_k, k)$ is arbitrarily large (and similarly for C_N).

Proof (k = 1) Choose Ω_1 an annulus with very small inner radius. Then choose

$$\omega\left(x\right) = \frac{x}{\left|x\right|^{n}}$$

and observe that $\nu \wedge \omega = 0$ on $\partial \Omega_1$ and it is a harmonic field i.e.

 $d\omega = 0 \quad \text{and} \quad \delta\omega = 0.$ Then $\left[\|\nabla \omega\|^2 / \|\omega\|^2 \right] \to \infty$ as the inner radius $\to 0$.

III) The case of Polytopes

Definition $\Omega \subset \mathbb{R}^n$ is said to be a generalized polytope, if there exist

$$\Omega_0\,,\Omega_1\,,\cdots\,,\Omega_M$$

bounded open polytopes such that, for every $i, j = 1, \dots, M$ with $i \neq j$,

$$\overline{\Omega}_i \subset \Omega_0\,, \quad \overline{\Omega}_i \cap \overline{\Omega}_j = \emptyset \quad ext{and} \quad \Omega = \Omega_0 \setminus \left(igcup_{i=1}^M \overline{\Omega}_i
ight).$$

In this case $\overline{\Omega}_i$, $i = 1, \dots, M$, are called the *holes*.

Theorem Let $\Omega \subset \mathbb{R}^n$ be a generalized polytope. Then the following identity holds

$$\|\nabla \omega\|^{2} = \|d\omega\|^{2} + \|\delta \omega\|^{2}, \quad \forall \, \omega \in C^{1}_{T}\left(\overline{\Omega}; \Lambda^{k}\right) \cup C^{1}_{N}\left(\overline{\Omega}; \Lambda^{k}\right).$$

Remark In particular if $\omega \in C_T^1 \cup C_N^1$ is a harmonic field i.e.

 $d\omega = \mathbf{0}$ and $\delta\omega = \mathbf{0}$,

then $\omega \equiv 0$ independently of the topology !!!

IV) Idea of proof

We discuss only the case k = 1 (i.e. $d \sim \text{curl}$ and $\delta \sim \text{div}$). Recall that

(*i*)
$$C_T(\Omega, 1) = 1$$
 (i.e. $\|\nabla \omega\|^2 \le \|d\omega\|^2 + \|\delta \omega\|^2 + \|\omega\|^2$)

(ii) The sharper version of Gaffney inequality holds, namely $\|\nabla \omega\|^2 \leq \|d\omega\|^2 + \|\delta \omega\|^2, \quad \forall \, \omega \in W_T^{1,2}(\Omega; \mathbb{R}^n).$ (iii) Ω is (n-1) -convex i.e.

 $\gamma_1 + \dots + \gamma_{n-1} \ge 0.$

The implication $(ii) \Rightarrow (i)$ is trivial and we discuss only

(*iii*) \Rightarrow (*ii*).

For k = 1 we have

$$|\operatorname{curl} \omega|^2 + |\operatorname{div} \omega|^2 - |\nabla \omega|^2 = 2\sum_{i < j} \left(\frac{\partial \omega^i}{\partial x_i} \frac{\partial \omega^j}{\partial x_j} - \frac{\partial \omega^j}{\partial x_i} \frac{\partial \omega^i}{\partial x_j} \right)$$

Integrating the above we get, for every $\omega \in W^{1,2}_T\left(\Omega; \Lambda^k
ight),$

$$\int_{\Omega} \left(|\operatorname{curl} \omega|^2 + |\operatorname{div} \omega|^2 - |\nabla \omega|^2 \right) = \int_{\partial \Omega} |\langle \omega; \nu \rangle|^2 \left(\gamma_1 + \dots + \gamma_{n-1} \right)$$