Flots de courbure moyenne multiphase avec mobilités et applications à la croissance de nanofils

Simon Masnou

Institut Camille Jordan Université Lyon 1

en collaboration avec Elie Bretin (ICJ & INSA Lyon) Alexandre Danescu et José Penuelas (Institut de Nanotechnologies de Lyon)

Colloque en l'honneur des 60 ans de Jérôme Pousin Lyon 1er décembre 2017

Motivation

Many physical systems involve several phases and associated interfaces whose shapes minimize a general area energy (under various constraints).

Many restoration problems (in particular, in image processing) require the reconstruction of volumes whose boundaries minimize a general area energy (under various constraints).

We are interested in simulating such systems, and solving such problems.

Examples: Wetting

Droplet wetting on a lotus leaf (energy = area)

Bubbles

Bubbles

Soap foam

(energy = multiphase area)

Honeycomb

Honeycomb (energy = 2D multiphase perimeter)

Polycrystalline materials

$$E(\Sigma_1,\ldots,\Sigma_N) = \frac{1}{2}\sum_{i,j=1}^N \sigma_{i,j}\operatorname{Area}(\partial\Sigma_i\cap\partial\Sigma_j)$$

 $(\sigma_{i,j} \text{ are surface tensions})$

Nanowires

Nanowires (energy = multiphase anisotropic area)

Phases and interfaces

Let $D \subset \mathbb{R}^d$

Consider a partition of D in N closed sets $\Sigma_1, \ldots, \Sigma_N$ called phases s.t.

$$D = \bigcup_{i=1}^{N} \Sigma_{i}$$
$$\Sigma_{i} \cap \Sigma_{j} = \partial \Sigma_{i} \cap \partial \Sigma_{j}, \quad i \neq j$$

Denote $\Gamma_{ij} = \partial \Sigma_i \cap \partial \Sigma_j$.

Multiphase perimeter

$$E(\Sigma_1, \dots, \Sigma_N) = \frac{1}{2} \sum_{i,j=1}^N \sigma_{i,j} \mathcal{H}^{d-1}(\Gamma_{i,j}) = \frac{1}{2} \sum_{i,j=1}^N \sigma_{i,j} \int_{\Gamma_{i,j}} d\Gamma$$

where $\sigma_{i,j} \in \mathbb{R}^{d^2}$ are surface tensions s.t.

$$\begin{aligned} \sigma_{ii} &= 0 \\ \sigma_{ij} &= \sigma_{ji} > 0 \quad \forall i \neq j \\ \text{triangle inequality} \quad \sigma_{ij} + \sigma_{jk} \geq \sigma_{ik} \end{aligned}$$

Introduction to Phase Field Approximation

Take a set $E \subset \mathbb{R}^N$ and its characteristic function $\mathbb{1}_E$ A smooth approximation $u_{\varepsilon} : \mathbb{R}^N \to [0,1]$ of $\mathbb{1}_E$ is called a phase field. The set $\{u_{\varepsilon} = \frac{1}{2}\}$ is an approximation of the boundary ∂E . The area of ∂E is called the perimeter of E.

Perimeter approximation

$$\mathsf{Thus,}\ \int \varepsilon |\nabla u_\varepsilon|^2 \mathrm{d} x \approx \frac{1}{\varepsilon} \mathsf{Area} \approx \frac{1}{\varepsilon} \varepsilon \mathsf{P}(\mathsf{E}) = \mathsf{P}(\mathsf{E}) \quad \text{ as } \varepsilon \to 0.$$

However, any constant function has zero energy! How to force u_{ε} to be close to a characteristic function?

Perimeter approximation

Use a double-well potential, for instance $W(s) = \frac{1}{2}s^2(1-s)^2$.

If $\sup_{\varepsilon} \left(\int \frac{1}{\varepsilon} W(u_{\varepsilon}) dx \right) < +\infty$ then $u_{\varepsilon} \to 0$ or 1 a.e. as $\varepsilon \to 0$, i.e. u_{ε} approximates a characteristic function.

The Van der Waals Cahn-Hilliard functional

Phase field approximation of P(E)

If u_{ε} is a smooth approximation of $\mathbb{1}_{E}$, the phase-field approximation of P(E) is the Van der Waals-Cahn-Hilliard energy

$${\mathcal{P}}_{arepsilon}(u_{arepsilon}) = \int \left(rac{arepsilon}{2} |
abla u_{arepsilon}|^2 + rac{1}{arepsilon} W(u_{arepsilon})
ight) \mathrm{d}x$$

Key idea: replace the highly singular energy P by the smooth energy P_{ε} .

Phase-field approximation of perimeter

Convergence of P_{ε} (Modica, Mortola - 1977) P_{ε} **Г-converges to**

 $P(u) = \begin{cases} \lambda P(E) & \text{si } u = \mathbb{1}_E \text{ has bounded variations (BV)} \\ +\infty & \text{otherwise} \end{cases}$

(where $\lambda = cst$ depends only on potential W).

Γ-convergence is the right notion of convergence for functionals in a variational context (due to De Giorgi).

Γ-convergence and minimizers

If (F_n) Γ -converges to F and, $\forall n, u_n$ is a minimizer of F_n , then every cluster point of (u_n) minimizes F.

In other words: minimizers of P_{ε} approximate minimizers of P.

Optimal profile

The phase-field optimal profile associated with *E* is:

$$u_arepsilon(x) = q\left(rac{1}{arepsilon} d_s(x,E)
ight) \qquad ext{with} \quad q(s) = rac{1}{2}(1- anh(rac{s}{2}))$$

Signed distance $d_s(x, E) = d(x, E) - d(x, \mathbb{R}^N \setminus E)$

Convergences

For a bounded set E

•
$$u_{\varepsilon} \rightarrow \mathbb{1}_{E}$$

•
$$P_{\varepsilon}(u_{\varepsilon}) \rightarrow \lambda P(E)$$
 if *E* has finite perimeter

as $\varepsilon \rightarrow 0$.

Phase field mean curvature flow

$$u_t = \Delta u - \frac{1}{\varepsilon^2} W'(u)$$

Easy to simulate numerically using a splitting scheme and Fourier series with periodic boundary conditions

Evolution law and equilibrium at interfaces

The Clausius-Duhem inequality in sharp interface theory implies that normal and velocity are proportional:

Interface velocity

$$\frac{1}{m_{ij}}V_{ij} = \sigma_{ij}H_{ij} \quad \text{a.e. } x \in \Gamma_{ij},$$

with m_{ij} the interface mobilities.

Herring's condition (equilibrium at triple points)

If x is a triple-junction between phases i, j, k, then

$$\sigma_{ij}n_{ij}+\sigma_{jk}n_{jk}+\sigma_{ki}n_{ki}=0,$$

Multiphase mean curvature flow: the additive case I

Assumption: $\exists \sigma_i \ge 0$ such as $\sigma_{ij} = \sigma_i + \sigma_j$. Always true for three phases

Then

$$\boldsymbol{P}(\Omega_1,\Omega_2,\cdots,\Omega_N)=\frac{1}{2}\sum_{1\leq i< j\leq N}\sigma_{ij}\int_{\Gamma_{ij}}1d\sigma=\sum_i^N\sigma_i\int_{\partial\Omega_i}1d\sigma.$$

. .

can be approximated by

$$\boldsymbol{P}_{\varepsilon}(\boldsymbol{u}) = \begin{cases} \frac{1}{2} \sum_{i=1}^{N} \int_{Q} \sigma_{i} \left(\varepsilon \frac{|\nabla u_{i}|^{2}}{2} + \frac{1}{\varepsilon} W(u_{i}) \right) dx, & \text{if } \sum_{i=1}^{N} u_{i} = 1 \\ +\infty & \text{otherwise.} \end{cases}$$

Multiphase mean curvature flow: the additive case II The L^2 gradient flow is

$$\partial_t u_k^{\varepsilon} = \sigma_k \left[\Delta u_k^{\varepsilon} - \frac{1}{\varepsilon^2} W'(u_k^{\varepsilon}) \right] + \lambda^{\varepsilon}, \quad \forall k = 1, \dots, N,$$

where the Lagrange multiplier field λ^{ε} comes from $\sum_{k=1}^{N} u_{k}^{\varepsilon} = 1$.

Method of matched asymptotic expansions: If $\Omega_i^{\varepsilon} = \{x \in D; u_i(x, t) \ge \frac{1}{2}\}$, then around the interface $\Gamma_{ij}^{\varepsilon}$ the solution $\boldsymbol{u}^{\varepsilon}$ satisfies

$$\begin{cases} u_i^{\varepsilon} &= q\left(\frac{dist(x,\Omega_i^{\varepsilon})}{\varepsilon}\right) + O(\varepsilon), \\ u_j^{\varepsilon} &= 1 - q\left(\frac{dist(x,\Omega_i^{\varepsilon})}{\varepsilon}\right) + O(\varepsilon), \\ u_k^{\varepsilon} &= O(\varepsilon), \text{ for } k \in \{1, 2, \dots, N\} \setminus \{i, j\} \end{cases}$$

Moreover, for the associated normal velocity: $V_{ij}^{\varepsilon} = \frac{1}{2}\sigma_{ij}H_{ij} + O(\varepsilon)$. The convergence is only linear.

Multiphase mean curvature flow: the additive case III

Localize now the Lagrange multiplier (see [Bretin-Denis, 2017]) to improve the accuracy:

$$\partial_t u_k^{\varepsilon} = \sigma_k \left[\Delta u_k^{\varepsilon} - \frac{1}{\varepsilon^2} W'(u_k^{\varepsilon}) \right] + \lambda^{\varepsilon} \sqrt{2W(u_k)} \quad \forall k = 1, \dots, N,$$

Then, near $\Gamma_{ii}^{\varepsilon}$:

$$\begin{cases} u_i^{\varepsilon} &= q\left(\frac{dist(x,\Omega_i^{\varepsilon})}{\varepsilon}\right) + O(\varepsilon^2), \\ u_j^{\varepsilon} &= 1 - q\left(\frac{dist(x,\Omega_i^{\varepsilon})}{\varepsilon}\right) + O(\varepsilon^2), \\ u_k^{\varepsilon} &= O(\varepsilon^2), \text{ for } \mathsf{k} \in \{1, 2, \dots, N\} \setminus \{i, j\}, \end{cases}$$

with $V_{ij}^{\varepsilon} = \frac{1}{2}\sigma_{ij}H_{ij} + O(\varepsilon)$.

The convergence is quadratic

Incorporating the mobilities: the energy viewpoint [Garcke-Nestler-Stoth'99] propose to plug the mobilities m_{ij} directly in the Cahn-Hilliard energy:

$$oldsymbol{P}_{arepsilon}(oldsymbol{u}) = \int_{oldsymbol{Q}} arepsilon f(oldsymbol{u},
abla oldsymbol{u}) + rac{1}{arepsilon} W(oldsymbol{u}) dx,$$

where $f(\boldsymbol{u}, \nabla \boldsymbol{u}) = \sum_{i < j} m_{ij} \sigma_{ij} |u_i \nabla u_j - u_j \nabla u_i|^2$ and

$$W(\boldsymbol{u}) = 9 \sum_{i,j=1,i< j}^{N} \frac{\sigma_{ij}}{m_{ij}} u_i^2 u_j^2 + \sum_{i< j< k} \sigma_{ijk} u_i^2 u_j^2 u_k^2$$

The term $\sum_{i < j < k} \sigma_{ijk} u_i^2 u_j^2 u_k^2$ is a penalization term, with σ_{ijk} ufficiently large as to ensure the Γ -convergence of $\boldsymbol{P}_{\varepsilon}$ to \boldsymbol{P} .

As the mobilities appear in the energy form (and not only in the flow of P_{ε}), the size of the diffuse interface Γ_{ij} depends on m_{ij} .

This is a limitation for high contrast mobilities, and degenerate mobilities cannot be handled.

Incorporating the mobilities: the metric viewpoint

Define the gradient flow of P_{ε} with respect to a weighted scalar product:

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle_{L^2_A(Q,\mathbb{R}^d)} = \int_Q (\boldsymbol{A} \boldsymbol{u}) \cdot \boldsymbol{v} dx$$

where the matrix **A** depends on mobilities m_{ij} .

Additive mobilities

Assumption: there exist $m_i \ge 0$ such as

$$\frac{1}{m_{ij}}=\frac{1}{m_i}+\frac{1}{m_j}.$$

Then, choosing $\mathbf{A} = \mathbf{M}^{-1}$ with

$$M_{ij} = egin{cases} m_i & ext{ if } i=j \ 0 & ext{ otherwise} \end{cases}$$

leads to the Allen-Cahn system:

$$\partial_t u_k^{\varepsilon} = m_k \left[\sigma_k \left(\Delta u_k^{\varepsilon} - \frac{1}{\varepsilon^2} W'(u_k^{\varepsilon}) \right) + \lambda^{\varepsilon} \sqrt{2W(u_k)} \right], \quad \forall k \in \{1, 2, \cdots, N\}$$

where the Lagrange multiplier field λ^{ε} is, as usual, associated with the constraint $\sum u_i^{\varepsilon}=1.$

Additive mobilities

Then, around the interface Γ_{ij} , the solution $\boldsymbol{u}^{\varepsilon}$ satisfies (formally):

$$\begin{cases} u_i^{\varepsilon} &= q\left(\frac{dist(x,\Omega_i^{\varepsilon})}{\varepsilon}\right) + O(\varepsilon^2), \\ u_j^{\varepsilon} &= 1 - q\left(\frac{dist(x,\Omega_i^{\varepsilon})}{\varepsilon}\right) + O(\varepsilon^2), \\ u_k^{\varepsilon} &= O(\varepsilon^2), \text{ for } \mathsf{k} \ \in \{1, 2, \dots, N\} \setminus \{i, j\}, \end{cases}$$

with

$$\frac{1}{m_{ij}}V_{ij}^{\varepsilon}=\sigma_{ij}H_{ij}+O(\varepsilon).$$

The convergence is quadratic.

General mobilities

Define

$$A_{ij} = \begin{cases} -\frac{1}{m_{ij}} & \text{if } i \neq j \\ 0 & \text{if } i = j. \end{cases}$$

which leads to

$$\boldsymbol{A}\partial_t \boldsymbol{u}^{\varepsilon} = \sigma \Delta \boldsymbol{u}^{\varepsilon} - \frac{1}{\varepsilon^2} W'(\boldsymbol{u}^{\varepsilon}) + \lambda^{\varepsilon} \sqrt{2W(\boldsymbol{u}^{\varepsilon})},$$

where, for all $k \in \{1, 2, \cdots, N\}$,

$$(\sigma \Delta \boldsymbol{u})_k = \sigma_k \Delta u_k, \quad W'(\boldsymbol{u})_k = W'(u_k) \text{ and } (\sqrt{2W(\boldsymbol{u})})_k = \sqrt{2W(u_k)}.$$

This system is well-posed as soon as **A** is semi-definite positive on $(1, 1, \dots, 1)^{\perp}$, which in turn imposes some restriction on the choice of the mobilities m_{ij} .

General mobilities

Around the interface $\Gamma_{ij}^{\varepsilon}$, the solution u^{ε} satifies (formally)

$$\begin{cases} u_i^{\varepsilon} &= q\left(\frac{dist(x,\Omega_i^{\varepsilon})}{\varepsilon}\right) + O(\varepsilon), \\ u_j^{\varepsilon} &= 1 - q\left(\frac{dist(x,\Omega_i^{\varepsilon})}{\varepsilon}\right) + O(\varepsilon), \\ u_k^{\varepsilon} &= O(\varepsilon), \text{ for } \mathsf{k} \in \{1, 2, \dots, N\} \setminus \{i, j\}, \end{cases}$$

with

$$\frac{1}{m_{ij}}V_{ij}^{\varepsilon}=\sigma_{ij}H_{ij}+O(\varepsilon).$$

The model is of order 1 only.

Numerical approximation

A robust, accurate, fast, and convergent scheme can be designed thanks to the previous considerations.

It is heavily based on Fourier representation.

Numerical iterative scheme

• L^2 -gradient flow of the Cahn-Hilliard energy without constraint: let $u^{n+1/2}$ be an approximation of $v(\delta_t)$ where $v = (v_1, v_2, \dots, v_N)$ is the solution of

$$\begin{cases} \partial_t v_k(x,t) &= m_k \sigma_k \left[\Delta v_k(x,t) - \frac{1}{\varepsilon^2} W'(v_k(x,t)) \right] & \forall (x,t) \in Q \times [0, e^{-1}] \\ \boldsymbol{v}(x,0) &= \boldsymbol{u}^n(x), \quad \forall x \in Q \text{ with periodic boundary conditions.} \end{cases}$$

Projection onto the partition and volume constraints: for all k ∈ {1, 2, ..., N} define u_kⁿ⁺¹ by

$$u_{k}^{n+1} = u_{k}^{n+1/2} + m_{k}\lambda^{n+1}\sqrt{2W(u_{k}^{n+1/2})} + m_{k}\mu_{k}^{n+1}G_{k}(\boldsymbol{u}^{n+1/2}),$$

where λ^{n+1} and μ_i^{n+1} are defined to satisfy the discrete constraints $\sum_{k=1}^{N} u_k^{n+1} = 1$ and $\int_Q u_k^{n+1} = V_k^{n+1} = \operatorname{Vol}_k((n+1)\delta_t)$.

In the special case of nanowires VLS growth, $\boldsymbol{u} = (u_S, u_L, u_V)$ and the potentials G_k are:

$$G_L(\boldsymbol{u}) = \sqrt{2W(u_L)}, \quad G_S(\boldsymbol{u}) = u_S u_L, \text{ and } \quad G_V(\boldsymbol{u}) = u_V u_L.$$

Numerical scheme

- Use a semi-implicit Fourier spectral scheme;
- 2 All projections can be computed explicitly.

Highly contrasted and even degenerate mobilities can be handled!

$$m = (m_{12}, m_{13}, m_{23}) = (1, 0, 0),$$

 $\sigma = (1, 1, 1)$

$$m = (m_{12}, m_{13}, m_{23}) = (1, 0, 0),$$

 $\sigma = (1, 1, 1)$

$$m = (m_{12}, m_{13}, m_{23}) = (1, 0, 0),$$

 $\sigma = (1, 1, 1)$

$$m = (m_{12}, m_{13}, m_{23}) = (1, 0, 0),$$

 $\sigma = (1, 1, 1)$

 $m = (m_{12}, m_{13}, m_{23}) = (1, 0, 0),$ $\sigma = (1, 0, 2.1)$

$$m = (m_{12}, m_{13}, m_{23}) = (1, 0, 0),$$

 $\sigma = (1, 0, 2.1)$

 $m = (m_{12}, m_{13}, m_{23}) = (1, 0, 0),$ $\sigma = (1, 0, 2.1)$

$$m = (m_{12}, m_{13}, m_{23}) = (1, 0, 0),$$

 $\sigma = (1, 0, 2.1)$

$$m = (m_{12}, m_{13}, m_{23}) = (1, 0, 0),$$

 $\sigma = (1, 1, 0.2)$

$$m = (m_{12}, m_{13}, m_{23}) = (1, 0, 0),$$

 $\sigma = (1, 1, 0.2)$

$$m = (m_{12}, m_{13}, m_{23}) = (1, 0, 0),$$

 $\sigma = (1, 1, 0.2)$

$$m = (m_{12}, m_{13}, m_{23}) = (1, 0, 0),$$

 $\sigma = (1, 1, 0.2)$

Molecular Beam Epitaxy

Nanowires

Nanowires

Nanowires with thinning

t = 0.2, $\sigma_{LS} = 0.62 \sigma_{LV} = 0.85 \sigma_{SV} = 1.24$

t = 5.1, $\sigma_{LS} = 0.62 \sigma_{LV} = 0.85 \sigma_{SV} = 1.24$

t = 14.9, $\sigma_{LS} = 0.62 \sigma_{LV} = 0.85 \sigma_{SV} = 1.24$

