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Motivation

Many physical systems involve several phases and associated interfaces
whose shapes minimize a general area energy (under various constraints).

Many restoration problems (in particular, in image processing) require the
reconstruction of volumes whose boundaries minimize a general area
energy (under various constraints).

We are interested in simulating such systems, and solving such problems.



Examples: Wetting

Droplet wetting on a lotus leaf
(energy = area)



Bubbles

Bubbles Soap foam

(energy = multiphase area)



Honeycomb

Honeycomb
(energy = 2D multiphase perimeter)



Polycrystalline materials

Silicon Polycrystalline material

(energy=multiphase inhomogenous area)

E (Σ1, . . . ,ΣN) =
1

2

N∑
i ,j=1

σi ,j Area(∂Σi ∩ ∂Σj) (σi ,j are surface tensions)



Nanowires

Nanowires
(energy = multiphase anisotropic area)



Phases and interfaces
Let D ⊂ Rd

Consider a partition of D in N closed sets Σ1, . . . ,ΣN called phases s.t.

D =
N⋃
i=1

Σi

Σi ∩ Σj = ∂Σi ∩ ∂Σj , i 6= j

Denote Γij = ∂Σi ∩ ∂Σj .
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Multiphase perimeter

E (Σ1, . . . ,ΣN) =
1

2

N∑
i ,j=1

σi ,jHd−1(Γi ,j) =
1

2

N∑
i ,j=1

σi ,j

∫
Γi,j

dΓ

where σi ,j ∈ Rd2
are surface tensions s.t.

σii = 0
σij = σji > 0 ∀i 6= j
triangle inequality σij + σjk ≥ σik



Introduction to Phase Field Approximation

Take a set E ⊂ RN and its characteristic function 1E

A smooth approximation uε : RN → [0, 1] of 1E is called a phase field.

The set {uε = 1
2} is an approximation of the boundary ∂E .

The area of ∂E is called the perimeter of E .



Perimeter approximation

Thus,

∫
ε|∇uε|2dx ≈

1

ε
Area ≈ 1

ε
εP(E ) = P(E ) as ε→ 0.

However, any constant function has zero energy! How to force uε to be
close to a characteristic function?



Perimeter approximation

Use a double-well potential, for instance W (s) = 1
2s

2(1− s)2.

0 1

W

If sup
ε

(∫
1

ε
W (uε)dx

)
< +∞ then uε → 0 or 1 a.e. as ε→ 0, i.e. uε

approximates a characteristic function.



The Van der Waals Cahn-Hilliard functional

Phase field approximation of P(E )

If uε is a smooth approximation of 1E , the phase-field approximation of
P(E ) is the Van der Waals-Cahn-Hilliard energy

Pε(uε) =

∫ (
ε

2
|∇uε|2 +

1

ε
W (uε)

)
dx

E
1E E

uε
ε

Key idea: replace the highly singular energy P by the smooth energy Pε.



Phase-field approximation of perimeter

Convergence of Pε (Modica, Mortola - 1977)

Pε Γ-converges to

P(u) =

{
λP(E ) si u = 1E has bounded variations (BV)
+∞ otherwise

(where λ = cst depends only on potential W ).

Γ-convergence is the right notion of convergence for functionals in a
variational context (due to De Giorgi).

Γ-convergence and minimizers

If (Fn) Γ-converges to F and, ∀n, un is a minimizer of Fn, then every
cluster point of (un) minimizes F .

In other words: minimizers of Pε approximate minimizers of P.



Optimal profile

The phase-field optimal profile associated with E is:

uε(x) = q

(
1

ε
ds(x ,E )

)
with q(s) =

1

2
(1− tanh(

s

2
))

1

0

q Signed distance

ds(x ,E ) = d(x ,E )−d(x ,RNrE )

Convergences

For a bounded set E

I uε → 1E

I Pε(uε)→ λP(E ) if E has finite perimeter

as ε→ 0.



Phase field mean curvature flow

ut = ∆u − 1

ε2
W ′(u)

Easy to simulate numerically using a splitting scheme and Fourier series
with periodic boundary conditions



Evolution law and equilibrium at interfaces

The Clausius-Duhem inequality in sharp interface theory implies that
normal and velocity are proportional:

Interface velocity

1

mij
Vij = σijHij a.e. x ∈ Γij ,

with mij the interface mobilities.

Herring’s condition (equilibrium at triple points)

If x is a triple-junction between phases i , j , k , then

σijnij + σjknjk + σkinki = 0,



Multiphase mean curvature flow: the additive case I

Assumption: ∃ σi ≥ 0 such as σij = σi + σj .
Always true for three phases

Then

P(Ω1,Ω2, · · · ,ΩN) =
1

2

∑
1≤i<j≤N

σij

∫
Γij

1dσ =
N∑
i

σi

∫
∂Ωi

1dσ.

can be approximated by

Pε(u) =

{
1
2

∑N
i=1

∫
Q σi

(
ε |∇ui |

2

2 + 1
εW (ui )

)
dx , if

∑N
i=1 ui = 1,

+∞ otherwise.



Multiphase mean curvature flow: the additive case II
The L2 gradient flow is

∂tu
ε
k = σk

[
∆uεk −

1

ε2
W ′(uεk)

]
+ λε, ∀k = 1, . . . ,N,

where the Lagrange multiplier field λε comes from
∑N

k=1 u
ε
k = 1.

Method of matched asymptotic expansions:
If Ωε

i =
{
x ∈ D; ui (x , t) ≥ 1

2

}
, then around the interface Γε

ij the solution
uε satisfies 

uεi = q
(
dist(x ,Ωε

i )
ε

)
+ O(ε),

uεj = 1− q
(
dist(x ,Ωε

i )
ε

)
+ O(ε),

uεk = O(ε), for k ∈ {1, 2, . . . ,N} \ {i , j}

Moreover, for the associated normal velocity: V ε
ij = 1

2σijHij + O(ε).

The convergence is only linear.



Multiphase mean curvature flow: the additive case III

Localize now the Lagrange multiplier (see [Bretin-Denis, 2017]) to improve
the accuracy:

∂tu
ε
k = σk

[
∆uεk −

1

ε2
W ′(uεk)

]
+ λε

√
2W (uk) ∀k = 1, . . . ,N,

Then, near Γε
ij :

uεi = q
(
dist(x ,Ωε

i )
ε

)
+ O(ε2),

uεj = 1− q
(
dist(x ,Ωε

i )
ε

)
+ O(ε2),

uεk = O(ε2), for k ∈ {1, 2, . . . ,N} \ {i , j},

with V ε
ij = 1

2σijHij + O(ε).

The convergence is quadratic



Incorporating the mobilities: the energy viewpoint
[Garcke-Nestler-Stoth’99] propose to plug the mobilities mij directly in the
Cahn-Hilliard energy:

Pε(u) =

∫
Q
εf (u,∇u) +

1

ε
W (u)dx ,

where f (u,∇u) =
∑

i<j mijσij |ui∇uj − uj∇ui |2 and

W (u) = 9
N∑

i ,j=1,i<j

σij
mij

u2
i u

2
j +

∑
i<j<k

σijku
2
i u

2
j u

2
k .

The term
∑

i<j<k σijku
2
i u

2
j u

2
k is a penalization term, with σijk ufficiently

large as to ensure the Γ-convergence of Pε to P.

As the mobilities appear in the energy form (and not only in the flow of
Pε), the size of the diffuse interface Γij depends on mij .

This is a limitation for high contrast mobilities, and degenerate mobilities
cannot be handled.



Incorporating the mobilities: the metric viewpoint

Define the gradient flow of Pε with respect to a weighted scalar product:

〈u, v〉L2
A(Q,Rd ) =

∫
Q

(Au) · vdx

where the matrix A depends on mobilities mij .



Additive mobilities

Assumption: there exist mi ≥ 0 such as

1

mij
=

1

mi
+

1

mj
.

Then, choosing A = M−1 with

Mij =

{
mi if i = j

0 otherwise

leads to the Allen-Cahn system:

∂tu
ε
k = mk

[
σk

(
∆uεk −

1

ε2
W ′(uεk)

)
+ λε

√
2W (uk)

]
, ∀k ∈ {1, 2, · · · ,N}

where the Lagrange multiplier field λε is, as usual, associated with the
constraint

∑
uεi = 1.



Additive mobilities

Then, around the interface Γij , the solution uε satisfies (formally):
uεi = q

(
dist(x ,Ωε

i )
ε

)
+ O(ε2),

uεj = 1− q
(
dist(x ,Ωε

i )
ε

)
+ O(ε2),

uεk = O(ε2), for k ∈ {1, 2, . . . ,N} \ {i , j},

with
1

mij
V ε
ij = σijHij + O(ε).

The convergence is quadratic.



General mobilities

Define

Aij =

{
− 1

mij
ifi 6= j

0 if i = j .

which leads to

A∂tuε = σ∆uε − 1

ε2
W ′(uε) + λε

√
2W (uε),

where, for all k ∈ {1, 2, · · · ,N},

(σ∆u)k = σk∆uk , W ′(u)k = W ′(uk) and (
√

2W (u))k =
√

2W (uk).

This system is well-posed as soon as A is semi-definite positive on
(1, 1, · · · , 1)⊥, which in turn imposes some restriction on the choice of the
mobilities mij .



General mobilities

Around the interface Γε
ij , the solution uε satifies (formally)

uεi = q
(
dist(x ,Ωε

i )
ε

)
+ O(ε),

uεj = 1− q
(
dist(x ,Ωε

i )
ε

)
+ O(ε),

uεk = O(ε), for k ∈ {1, 2, . . . ,N} \ {i , j},

with
1

mij
V ε
ij = σijHij + O(ε).

The model is of order 1 only.



Numerical approximation

A robust, accurate, fast, and convergent scheme can be designed thanks
to the previous considerations.

It is heavily based on Fourier representation.



Numerical iterative scheme
1 L2-gradient flow of the Cahn-Hilliard energy without constraint: let

un+1/2 be an approximation of v(δt) where v = (v1, v2, . . . , vN) is the
solution of{
∂tvk(x , t) = mkσk

[
∆vk(x , t)− 1

ε2W
′(vk(x , t))

]
∀(x , t) ∈ Q × [0, δt ],

v(x , 0) = un(x), ∀x ∈ Q with periodic boundary conditions.

2 Projection onto the partition and volume constraints: for all
k ∈ {1, 2, . . . ,N} define un+1

k by

un+1
k = u

n+1/2
k + mkλ

n+1
√

2W (u
n+1/2
k ) + mkµ

n+1
k Gk(un+1/2),

where λn+1 and µn+1
i are defined to satisfy the discrete constraints∑N

k=1 u
n+1
k = 1 and

∫
Q un+1

k = V n+1
k = Volk((n + 1)δt).

In the special case of nanowires VLS growth, u = (uS , uL, uV ) and the
potentials Gk are:

GL(u) =
√

2W (uL), GS(u) = uSuL, and GV (u) = uV uL.



Numerical scheme

1 Use a semi-implicit Fourier spectral scheme;

2 All projections can be computed explicitly.

Highly contrasted and even degenerate mobilities can be handled!



Simulations for various mobilities/surface tensions I
Blue=1, Red=2, Green=3
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Simulations for various mobilities/surface tensions I
Blue=1, Red=2, Green=3

m = (m12,m13,m23) = (1, 0, 0),

σ = (1, 1, 1)
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Simulations for various mobilities/surface tensions I
Blue=1, Red=2, Green=3

m = (m12,m13,m23) = (1, 0, 0),

σ = (1, 1, 1)
t = 0.092407,    σ
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Simulations for various mobilities/surface tensions I
Blue=1, Red=2, Green=3

m = (m12,m13,m23) = (1, 0, 0),

σ = (1, 1, 1)
t = 0.13861,    σ
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Simulations for various mobilities/surface tensions II
Blue=1, Red=2, Green=3

m = (m12,m13,m23) = (1, 0, 0),

σ = (1, 0, 2.1)
t = 1.5259e−05,    σ
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Simulations for various mobilities/surface tensions II
Blue=1, Red=2, Green=3

m = (m12,m13,m23) = (1, 0, 0),

σ = (1, 0, 2.1)
t = 0.01651,    σ
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Simulations for various mobilities/surface tensions II
Blue=1, Red=2, Green=3

m = (m12,m13,m23) = (1, 0, 0),

σ = (1, 0, 2.1)
t = 0.033005,    σ
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Simulations for various mobilities/surface tensions II
Blue=1, Red=2, Green=3

m = (m12,m13,m23) = (1, 0, 0),

σ = (1, 0, 2.1)
t = 0.049515,    σ
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Simulations for various mobilities/surface tensions III
Blue=1, Red=2, Green=3

m = (m12,m13,m23) = (1, 0, 0),

σ = (1, 1, 0.2)
t = 1.5259e−05,    σ
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Simulations for various mobilities/surface tensions III
Blue=1, Red=2, Green=3

m = (m12,m13,m23) = (1, 0, 0),
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t = 0.132,    σ
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Simulations for various mobilities/surface tensions III
Blue=1, Red=2, Green=3

m = (m12,m13,m23) = (1, 0, 0),

σ = (1, 1, 0.2)
t = 0.26401,    σ
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Simulations for various mobilities/surface tensions III
Blue=1, Red=2, Green=3

m = (m12,m13,m23) = (1, 0, 0),

σ = (1, 1, 0.2)
t = 0.39601,    σ
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Molecular Beam Epitaxy



Nanowires

Nanowires



Nanowires with thinning

a



Nanowire growth with σGe = (0.62, 0.85, 1.24)

t = 7.6294e−06,    σ
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 =1.24
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Nanowire growth with σGe = (0.62, 0.85, 1.24)

t = 0.2,    σ
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Nanowire growth with σGe = (0.62, 0.85, 1.24)

t = 5.1,    σ
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Nanowire growth with σGe = (0.62, 0.85, 1.24)

t = 10,    σ
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Nanowire growth with σGe = (0.62, 0.85, 1.24)

t = 14.9,    σ
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Nanowire growth with σGe = (0.62, 0.85, 1.24)

t = 20,    σ
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