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1 - Basic models and formulations
Friction and contact problems relate to nON=-Smooth mechanics

- Unilateral conditions - non penetration

U=uyh+Uus R = RN n + RT Normal-tangential decomposition

Complementarity problem (Signorini)
Uy <0,
Ry<0
uyRy=0
Ry 4

v

Not a function

A multivalued application !



- Friction : Coulomb friction - Armonton

[Rrll=p | Ry |
If|[Rr][< pu |Ry|  then L=
If||Rr]|= n|Ry|  then [lJT:-/iRT ]

A
- RN

Cone de!Coulomb

Not a function Non associate law !...
A multivalued application ! No normality rule



Consequence
on the thermodynamics formulation

The potentials (free energy and potential of dissipation) include non
differentiable terms and indicator functions of sets characterizing the
iInequality contraints

The state laws and the complementary laws have to be written in
term of differential inclusions

See [1]



Consequence
on the variational formulation

Elasticity problem
Variational equation

uin U suchthat a(u,v)-L(v)=0 forany vin U

Elasticity problem with unilateral contact and friction

Implicit variational inequality

a(u,v—u) + j(u,v) — j(u,u) > L(v — u) Yo e K



Variational form of the unilateral problem with Coulomb friction

An implicit variational inequality
(or a quasi-variational inequality on the dual form)

Let K be the convex of the admissible displacements :

K={veU/uvy<0onl¢} with U:{UE{Hl(Q)f/U:OODFD}

Problem (Pv) . let @1, 5 be given as previously defined in (P,),

find u € K such that :

a(u,v —u) + Jy(u,v) — Ji(u,u) > L(v — u) Ywe K (2)

with :
a(u,v) = '/Qa(u)e(u) dx (3)
= Kijrigij(w)ep(v) dz Yu,v e U (4)
L(v) = /Q ®yv dx + /F[ dyv ds YveU (5)

[ (v w) = f Ry (el Iwil ds ] (6)

Ref :
- Duvaut G., Lions J. L., 1972, Les inéquations en mécanique et en physique, Dunod, Paris

- P.D. Panagiotopoulos, Inequality problems in Mecahnics, convex and non Convex energy functions,
Birkhauser Verlag, Boston Basel (1985) and Hemivariational inequalities



Static and quasi-static problem

The static problem has no sense for frictional problem but it will be
helpfull for solving the quasi-static problem

Problem (IDtemps) . Find u(t) € K and Fi such that :

4

a(u(t),v —u(t)) + j(u(t), v) = jlu(t). u(t)) = L{v —u(t))
+ < Ry '(U(t)),UN — ’U,j\,(t)) > YoeV

<Ry (u(t)), 2y —un(t)) > >0 Ve K

\

Coupling of two variational inequalities

Reference:
M. Cocou, E. Pratt, M. Raous, Formulation and approximation of quasistatic frictional contact,

International Journal for Engineering Sciences, 34, n°7, 783-798, 1996.



Dynamics

Non derivability versus time (shocks)

The classical motion equation has no anymore sense

M U + CU + KU =F (here the discrete form)




Conseguence of discontinuity of the velocities

The equation of motion has to be written in term of differential measure

Problem P,: Find U such that V¢ € [0,7] U(t) € Vi, U(0) = U,,

U(0) = Vj and :
M.dU + KU+ CU = F + Rdv (79)

and for the contact nodes:

U_\'(t) <0 R;\r(f.) < 0 and RL\T(f)UN(t) =0
if | R (Dl] < pl R (D) Tr =0
|Re(t)]] < plRy (D) and { |
if ||Ry(t)|| = p|Ry(t)] 3IA > 0t.q. Up = —ARp(t)
where dU is a differential mesure representing the discretized ac-
celeration and dv is a nonnegative real mesure relative to which dU

happens to possess a density function.

Reference (many other works):
M. Jean, J.-J. Moreau, 1987, Dynamics in the presence of unilateral contact and dry friction:

a numerical approach, in « Unilateral problem in structural analysis Il, CISM Lectures collection,
304, Del Piero& Maceri (Eds), Springer Verlag Wien. 10



About numerical methods for dynamics problems

Newmark is not convenient because of no derivability of the solution

Let’s have a look on the numerical method NSCD
Non Smooth Contact Dynamics method (M. Jean — J.-J. Moreau)

The system on differential measure can be written in the following form Vvt € [0, T]

M(U(t) - U(0)) = /Ot(F — K.U - C.U)ds + /[O ) Rdv

Time discretization: i = 0...N, ti = i.h (h is the time step)

. . Lit :
MU (tiy1) —Ul(t;)) = / (F—K.U—-CU)ds + / Rdv
t; [t

irtit1]

_. 1
R = — / Rdv.
h [tistit1]

11



Combination of 8-Methods

We have used the following three methods:
» 6-Method : both integrals are approximated by the classical 8-method

t;+1
[ fds = h(Of(ti) + (1 0) (1)

%

 6-Euler-Method: the first integral is approximated by the 8-method
and the second one by the Euler implicit method,

» modified 6-Method: both integrals are approximated by the 8-method
but in the contact relations the displacement u(t..) is replaced by

W(tiv1) = u(tivr) + (1 — O)a(ti11).

12



Figure 8. Impact between two bars.
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Figure 9. Normal velocity at the center of the contact zone.
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2 — Regularization : a comfort or an artefact ??

Replace the multivalued applications by functions in order to get a classical non linear (but
smooth!) problem.
But ... the regularized problem is another problem (very different of the

initial one)

* compliance or penalization for the contact

} Uy,

* tanh (- ), sqrt (= = -), polynom (— ) for friction

Rn

Rt a

\
X 14




We have to stress that when using regularization
we get other models ! The behaviors are different !

We have replaced the multivalued application by functions ...
- very comfortable mathematical aspects

- very comfortable for computations (regularization is often used in computer codes)

My,

- unilateral contact : with normal compliance such that: — Rnv= C),(un)"

“squeeze of the asperities” ... any doubt !
But when one computes the squeeze of an asperity in large plastic deformations
(see reference below), it turns out that the coefficient Cn and mn are huge and

do not correspond to the convenient values for the computations.

When compliance is used in the computational code, it has to be checked if
the penetration is convenient for the problem under consideration.

Reference :
M. Raous, M. Sage, Numerical simulation of the behavior of surface asperities for metal

forming, in “Numerical Methods in Industrial Forming Processes, Chenot-Wood &
Zienkiewicz (eds), 1992, Balkema, pp. 175-180.

15



- Friction : when the friction law is regularized, that means that the
solid is always moving ... (except if the tangential force is zero !)

With a very small force you can get the refrigerator going across the
kitchen if you wait for a sufficient long period of time !...

» The choice of the parameters of the regularization has an important
influence on the tangential forces ...

> Regularization does not fit subtle analysis as the sStudy of instabilities or
squeal and other ones ... The results of the analysis will depend on the values of the

regularization parameters.
Instabilities can be characterized when using the strict Coulomb friction with a

constant friction coefficient because of the non smooth character of the law.

Reference phic il

J.A.C. Martins, M. Raous (Eds), Friction and instabilities, INSTABILITIES
CISM Courses and Lectures, Springer Verlag, n°457,
Wien-New York, 2002. (310 pages)

EDITED BY

JOAO A.C. MARTINS
MICHEL RAOUS

&
'&‘ SpringerWien NewYork



Conclusion :

Regularization is very comfortable for the mathematics and the
computations but it deals with another problem and precautions
have to be taken (choice of the parameters, verifications a posteriori,
...). It is not always convenient !

17



Consequence of no normality rule

Non associated law No equivalence with the minimization of

potential energy
No minimization problem

Elasticity problem

Find u in U such that forany vin U J(u) < J(v)

with J(v) =% a (v, v) — L(V)




How to get a minimization problem ... the Tresca friction

The problem can be set as a Tresca problem included in a fixed point process

IRyll < 9 with
If J|Ry]] < 9 then iy =0 (

If [[Ry]|] = 9 then JA >0 such that 47 = — R

/

Associate law
(normality rule for the sliding !)

19



Problem Pyp,: Find the fixed point of the application S :
S(g) =-u Rn (Ug)
with u, solution of the following problem P,q,7rescq :

Problem PygrTresca: For a given g, find u, € K such that :
a(ug, v —ug) +j(v) — jlug) =2 L(v —uy) Vv €K

with: j(v) = [i. gllve]| ds

which is shown to be equivalent to the following minimisation problem

Problem (FP,,) : For a given g, find u, € K such that

[ J(ug) < J(v) Vve K ]

1

[ J(v) = Za('v,fv) + jg(v) — L(v) ]

20



3 - Outlines of some mathematical res

21




Mathematical framework

Duality product

Contact Uc = HY2(T¢)3 (R,w) S = H-12(I"c)?  contact force space
Displacement space

Trace operator

displacement space U = HY(QQ)3 <@, v> D= L%(Q)3 ® LT3 load space

Deformation operator Equilibrium equations
E=Gradsu divo=-@, in Q2
o.n=¢, on I,

Deformation space  E = L?(Q)° <<o,e> S=L?(Q)° Stress space

<< 0,8 >>= / o(u)e(v) dx Vo e U
Q

| H! (Q) ={u e L%(Q)3 ; ouox e L(Q)3 i=1,
<P, >= / o0 dx + / Do ds YveU S = EREE) € LAQ) =1.3)
Q Ip

22

ds Yw € U.

Wi |

(R,w) = /1: f| R () |



Panorama of the mathematical results

In classical elasticity, existence and uniqueness theorems are based on coercivity and
continuity of the operators and the demonstration is based on Lax-Milgram theorem and
Korn inequality (equivalence of norms).

The (given) applied forces were chosen to be in L?(Q)2 ® L?(I)3. In contact mechanics, the
first difficulty which arises is that the contact force which is unknown is a distribution
belonging to in HY2(I") . This implies some compactness difficulties and a regularization
using a convolution product is used in most of the mathematical results.

New definition for the contact force (introduction of non local friction)

R*=R«x% @  where @ is a function with compact support and « very smooth »

R is in H12 (Q) is a distribution
R*isin L? (©) is a function in L2 (QQ)
References:

G. Duvaut, Equilibre d’un solide élastique avec contact unilatéral et frotte-

memt de Coulomb, CRAS, Paris, 290A, 263-265, 1980.

Cocou, M., Existence of solutions of Signorini problems with friction, Int. J. Engng.
Sci., Vol. 22, N° 5, 1984, pp. 567-575.

23



Existence and uniqueness of the solutions

a - Static problem

(no mechanical meaning but interesting intermediate problem)

An implicit variational inequality
Problem : Find u € K such that forany v € K

a(u,v-u) + j(v,u) —j(u,u) — (f,v-u) = 0

where K is the convex of the admissible displacements uy

24



Mathematical results for the static problem

- Signorini problem (no friction) : existence and uniqueness
Fichera (1964)

- Signorini + Coulomb : existence if u is small and no uniqueness
Necas-Jarusek-Haslinger (1980), Jarusek (1983), Eck-Jarusek (1998)

- Signorini + Coulomb (non local friction) : existence and uniqueness if
u is small
Cocou (1984), Duvaut (1972), Demkowicz-Oden (1982)

- Compliance + Coulomb : existence and uniqueness if u is small
(Klarbring-Mikellic-Shillor (1989)

25



b — Quasi-static problem
Two coupled variational inequalities (one of the

Problem (Piepps) © Find u(t) € K such that :

afult), 0 — 1))+ hlul) v) — Hue) i(0) > Lo — (1)
+ < O'N(u(t))?UN — I},N(t)) > YVoeV

| <on(u(t)),zy —un(t)) > >0  Vzek

Jiv,w) = [ plRy (o)l liwilds

26



Mathematical results for the quasi-static problem

- Signorini + Coulomb : existence if u and grad p are small (condition in L*
and in H-¥2) and no uniqueness
Andersson (2000 ), Cocou-Rocca (2000, 2001, 2001)

- Signorini + Coulomb (non local friction) : existence if p is small
(condition only in L) and no uniqueness
Cocou-Pratt-Raous (1995, 1996)

- Compliance + Coulomb : existence if u is small and no uniqueness
(only a few works)
Andersson (1991), Klarbring-Mickelic-Shillor (1989)

27



c — Dynamics formulation (J.-J. Mo

Differential measures (shocks = discontinuity of the

Problem Pj,: Find U such that V¢t € [0,7] U(t) € V;,, U(0) = Uy,

U(0) =1V, and :
M.dU + KU+ CU = F + Rdv (79)

and for the contact nodes:

Un(t) < 0 Ry(t) < 0and Ry (t)Un(t) = 0
if | Rr(t)]] < p|Ry(t)] Ur =0

[Rr(®)|| < plRy(t)]and :
if [[Re()| = plRy(®)] 3A> 0t.q.Ur = =ARy (1)

where dU is a differential mesure representing the discretized ac-
celeration and dv is a nonnegative real mesure relative to which dU

happens to possess a density function.

28



Mathematical results for the dynamic problem (quasi nothing !...)

0 Continous problem

> Frictionless in elasticity
» Normal compliance: existence - Martins-Oden (1987, 1988)
= Signorini : a few results on specific geometries (axial symetry) — Munoz-Rivera-
Racke (1998)

» Viscoelasticity
= Normal & tangential compliance : existence and uniqueness - Martins-Oden
(1987, 1988), Kuttler (1997)
= Signorini + non local friction: existence - Cocou(2002), Cocou-Scarella (2006)
= Signorini + Tresca friction: existence — Jarusek (1996)

U Discrete problem

= Existence and uniqueness for analytical loading in 1D
- frictionless — Ballard (2000)
- with friction — Ballard-Basseville (2005)

and works of Michele Schatzman
29



In most of the cases, there is no uniqueness.

Some results of uniqueness have been obtained if [l is small

L small ? Is it sufficient or also necessary ? What does “small” mean ?

For the simplest case of the static problem, it is possible to construct
examples showing the existence of multiple solutions as the famous
simple example of Anders Klarbring with a few degrees of freedom

References:
Klarbring A., Examples of non uniqueness and non existence of solutions to quasistatic
contact problem with friction, Ingenieur-Archiv, 60, 1990, pp. 529-541.

see also

- Janovsky V. (1980 and 1981)

- Alart P. — Curnier A. (1986)

- Mitsopoulos E.N., Doudoumis I.N. (1987)
- Francois Hild

Selc ...

30



3 - Outline of some numerical methods

31




A brief overview not exhaustive !l

At least 4 classes for quasi-static problems:

- Regqularization — penalization : non linear problem, Newton and other
- Lagrangian : Mixed formulations - Uzawa
- Minimization : SORP and other
- Mathematical Programming method : Complementarity formulation
(direct method) Lemke

For dynamics problem

- NSCD Non Smooth Contact Dynamics method

32



a - Regularization — Penalization

As presented before, a non linear problem is obtained and c
methods can be used (Newton, etc ...)

Special care has to be dedicated to the choice of the
penalization parameters and to the control of the solution

33



b - Lagrangian formulation

Mixed formulation (U, R)
both displacement (or velocity) and contact force

Saddle point (min-max problem) ‘ Uzawa

Augmented Lagrangian are very used

34




c — Sequence of minimization problems

Fixed point method associated to the Tresca problem :
minimization under contraints of a non linear

and not differentiable functional

SORP, Aitken, Conjugate Gradient (but a regularization is needed !)
They solve the initial non smooth problem !

Very powerfull when multigrid methods are used (good smoothers)

35



d - Mathematical Programming method (direct method)

Complementariry problem

Problem Peompi: Find '€ RP, u € R? such that

Mu=F*"+R
R, <0, u; <0 1=1...p
R;u; =0 1=1...p

- M and F are respectively a non-symmetric matrix and a loading vector deduced from the FEM
problem by condensation (including a change of variables for the friction conditions)

- R and U are the contact forces and the contact displacements,
- p is the number of contact degrees of freedom (small !)

Direct methods

- LEMKE (Mathematical Programming method) — pivoting
techniques similar to Simplex Method

- Interior points method

36



4 - Extension to adhesion

Unilateral contact, friction ... and
- normal resistance when traction is applied
- tangential resistance before sliding

- damage of the interface: adhesion forces disappear when the contact
forces are strong enough

- eventually viscosity effects (dependence on the loading velocity)

37



The RCCM model (Raous-Cangémi-Cocou-Monerie)

Signorini and Coulomb

Ry

-5 858558508 R

- [uy]

Reference:

M. Raous, L. Cangemi, M. Cocou, A consistent model coupling adhesion,
friction and unilateral contact, Computer Methods in Applied Mechanics and
Engineering, 177, n°3-4, 1999, pp. 383-399.

38



lun] <0, oy + Cn [un] ,62 <0, (ony + Cn [un] 52) [up] = O | Unilateral contact

‘Rt - /Bgctut‘ < pu(l=pP) |R;

Where Friction and

if ‘Rt - 520tut) < p(l=p) rR; then ;=0 adhesion
if |R,— B*Cou| = p(1-8)[R;| thenIN>0 i = —\(R, — *Cuu)
1

: — 2 2\ - Evolution of the intensity of
6 — _E(w - B(Cﬂun + Ct ‘ut’ ) adhesion
?Srametersfﬁgir:ﬁ‘ rgggfﬁlc:ient Yﬁrial? - normal and tangential displacements
-C,, C, initial stiffness of the interface ‘R Rt’ normal and tanggential foch):es
- adhesion energy ) R Ay -
-b viscosity of the interface B adhesion intensity (damage)

39



Material boundary assumption :

A surfacic energy E and a specific entropy S are associated to I'¢.

Free energy of Helmoltz : v = F — ST defined onT'¢.

Choice of the state variables

Variables [u N ] [ur] B

Thermodynamic forces | Ry = Ry + R}{} Rp = R + R’jl' G

40



Reversible parts of the behaviour

Choice of the free energy ¥V

4 )
CN 2 72
¥(lun], [ut], 8) = —= [un]"6" + == [ur]"6° + (1 = fw + I ([un]) + Ipp,y(8) (1)
pe v
\_ J
The state laws (differential inclusions) Indicator function
. ovd I, (V) = .If vy €K
(a) Ry = Blur] + o f (UN E K
N
(b) R[\ - {dw S 'r)l,,([‘u,.\;]) on I'¢ K - {V / V S O}
Olun] )
ovt . .
() -Gz — 28 c C”[U 1](3) State variables Forces and reversible laws
[un] Ry —Cnun]f? >0, [un] <0,
(R’ — Oy [un]3? ) [un]=0.
[u] RY. = Cop [up]B2.
Gg > u iof =0,
3 (;J:m—((\u\r +(, ur )3 if %eﬂl[
Gg <w — (( N [llf\ + Cr [ur] if pB=
41




P is convex but non differentiable

U4 is ditferentiable but not convex versus (u, /3)
(but convex versus u and convex versus [3)

endommagement
O 0.2 5.4
. 0.6 pg.g

potentiel

10.2

deplacement

42



Irreversible parts of the behaviour

Choice of the potential of dissipation ¢

® convex relatively to (v, vy

@z@([uﬂ,B) such that : { O(v,v) >0 V(U,’y)E(V>)<H

$(0,0) = 0.
(" A
. - o . b L p+1 .
@([UTL@;XN) =(1—-B)u|Rny — Cn [un]B?| |[ur]] + ] ‘5‘ + Ie-{(B)
(4)
\_ J
The complementarity laws
Irreversibility concerning [uT] et 3
IREN < glw), avee 4 IETl < gb0) =in=0.
o=0" Ry =R} BT = g(xn) = 3A 20,0 = ARY.

(Rir,Gg) € 0([ur], ) Gy € 9305 = blAf = - (@)_
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A few examples of application

Influence of adhesion and friction between fiber
and matrix on the crack progression in a
composite material

Simulation of the
in a pull out test

__ Prescribed
—= 1 displacement

L z
2D ®
e iy - v
aP e
| CRACK
FRONT . INITIAL
/ WATRIX C™=44GPalum  CRACK
- '..' ! =4 i |
i ' / ¥ - i
FIBREMATRIX | | || |
INTERFACE

n
Lmas-c‘ =25 GPalum
e 20,41

Sliding of a glass indentor on a polymer block
(recoverable adhesion)

4

2!
KX

A R AN A VAV 7Y S BT AVAVAVAYY AV STAVAVAY:
AR A A A R A7
% A‘:‘f %L‘Q'gi?k T

vy

aTE

NS
e
AVATES!

SN LYAVAYA LY,

i

Adhesion zone




A unified model for adhesive interfaces
(joint work with Gianpietro Del Piero, University of Ferrara)

The ideais to give a general thermomechanical framework from
which the various interface laws could be deducted.

The concepts presented in this work are similar of the ones of
Generalized Standart Material introduced by Halphen and Nguyen.
They are used here for interfaces

References :
G. Del Piero, M. Raous, A unified model for adhesive interfaces with damage,

viscosity and friction, European Journal of Mechanics - A/Solids, 29(4), 2010, pp.
496-507.

B. Halphen, Q.S. Nguyen, Sur les matériaux standard généralisés, Journal de
Mécanique, 14, 1975, 39-63.
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About some key ideas

Contact problems relate non smooth mechanics and this non smooth
character is fundamental (instabilities, etc ...)

> Regularization treats another problem
Numerical methods solving the non smooth problem do exist

Mathematical analysis is still opened (specially on dynamics problems)

When uniqueness is proved, it is only for small values of the friction
coefficient ...

Just remember that
»> when U goes to zero we effectively tend to a frictionless boundary condition,
» but when L goes to infinite we do not tend to clamped boundary conditions but towards

46



Thank for your attention
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