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30 nov. & 1er déc. 2017, INSA de Lyon



or

Why do we care about T.-P. Liu’s
Physical singularity at the boundary ?



Euler equations

Density ρ, velocity u, pressure p, internal energy e :

∂tρ+ div(ρu) = 0, (1)

∂t(ρu) + Div(ρu⊗ u) +∇p(ρ) = 0. (2)

Equation of state (ideal gas)

p = Aργ, e =
p

(γ − 1)ρ
(γ > 1).

For smooth flows, (1,2) imply

∂t

(
1

2
ρ|u|2 + ρe

)
+ div

(
(
1

2
ρ|u|2 + ρe+ p)u

)
= 0. (3)



Initial data. ρu(x,0) = m0(x) and ρ(x,0) = ρ0(x). Equivalently,

c(x,0) = c0(x), c :=

√
dp

dρ
= aρκ the sound speed.

Cauchy problem with vacuum around.

Ω(t) = {x ∈ Rd | ρ(x, t) > 0} bounded, but unknown.

Match the vacuum. Rankine–Hugoniot gives

ρ(u · ν − σ) = 0, ρ(u · ν − σ)u+ p(ρ)ν = 0,

with ν the unit normal to ∂Ω(t), σ the normal velocity of the boundary.

=⇒ ρ = 0 on ∂Ω(t).

Boundary shocks are impossible.



Classical solutions. Local theory

Needs a symmetrization (Godunov, ...)

Makino, Ukai & Kawashima (1986) found a non-singular symmetrization:

(
κ−1 0

0 κ

)
(∂t + u · ∇)

(
c
u

)
+ c

(
0 div
∇ 0d

)(
c
u

)
= 0.

with κ := γ−1
2 .

Implies locally well-posedness of the Cauchy problem in variables
(c, u), even in presence of vacuum !!

. . . −→



Theorem 1 (MUK, Chemin.) Let s > 1 + d
2 be given. Let the

initial data (u0, c0) ∈ Hs(Rd) be such that c0 ≥ 0. Then there
exists T ∗ > 0 and a unique solution

(u, c) ∈ C([0, T ∗);Hs(Rd)) ∩ C1([0, T ∗);Hs−1(Rd))

of the Cauchy problem.

♣

These are classical solutions (Sobolev: Hs ⊂ C1, Hs−1 ⊂ C0),

(u, c) ∈ C1([0, T ∗)× Rd).

Linear growth:

Ω(t) ⊂ Ω(0) +B|t|M , where M := sup
x,t
|u|.

Questions −→ . . .



• Can the Hs-solution be a global one ? (Is T ∗ = +∞ possible?)

• When it is not, is it sufficient to incorporate shock wave theory ?

A positive result

Warm-up: an academic case. If c0 ≡ 0 (no gas at all !) then c ≡ 0, and
the system reduces to

∂tu+ (u · ∇)u = 0,

a vector-Burgers equation.

Method of characteristics: dXdt = u(X, t), dudt = 0 yields

d∇u
dt

+ (∇u)2 = 0,

a Ricatti equation in Md(R) !



The Ricatti ODE

M ′+M2 = 0, M(0) = M0

yields

Y ′+MY = 0 for Y (t) := M(t)(Id + tM0)−M0,

whence Y ≡ 0d :

M(t) = M0(Id + tM0)−1.

Its solution is global (up to t = +∞) iff

σ(M0)
⋂

(−∞,0) = ∅.

Lemma 1 Let∇u0 ∈ Hs−1(Rd) be given, with s > 1 + d
2 .The classi-

cal solution of the vector-Burgers equation exists for all t > 0 iff

σ(∇u0)
⋂

(−∞,0) = ∅, ∀x ∈ Rd.



Typically, ∇u(X(t), t) ∼ 1
t Id.

A perturbation argument shows that the dispersion may dominate the
non-linearity:

Theorem 2 (M. Grassin 1988.) Suppose

min
x

dist(σ(∇u0(x));R−) > 0.

There exists δ > 0 such that if ‖c0‖Hs < δ, then the classical
solution exists for all t > 0.

♦



A negative result.

The boundary ∂Ω is convected by the flow. For a classical solution, trajec-
tories along ∂Ω satisfy

dX

dt
= u(X, t),

du

dt
= −

c

κ
∇c= 0.

Hence the flow coincides, at the boundary, with that of the free transport:

φt(a) ≡ a+ tu0(a) =: ψt(a), ∀a ∈ ∂Ω0.

Theorem 3 (à la J. Milnor.) The volume Q(t) of Ω(t) is a poly-
nomial function, of degree ≤ d.

♠



Proof Ω(t) = φt(Ω0).

vol Ω(t) =
∫

Ω0

Jac(φt) dx =
∫

Ω0

div(φt1∇φ
t
2 ∧ · · · ∧ ∇φ

t
d) dx

=
∫
∂Ω0

φt1(∇φt2 ∧ · · · ∧ ∇φ
t
d) · νx ds(x)

=
∫
∂Ω0

φt1 det(∇φt2, · · · ,∇φ
t
d, νx) ds(x)

But the restrictions of φt and ψt to ∂Ω0 coincide :

∇φtj = ∇ψtj + aj(t, x)νx.

Hence

vol Ω(t) =
∫
∂Ω0

ψt1 det(∇ψt2, · · · ,∇ψ
t
d, νx) ds(x)

=
∫
∂Ω0

ψt1(∇ψt2 ∧ · · · ∧ ∇ψ
t
d) · νx ds(x).

The integrand is a polynomial in t, of degree ≤ d.

Q.E.D.



Dominant term

Q(t) = Jtd + l.o.t. ,

with

J :=
∫
∂Ω0

u01(∇u02 ∧ · · · ∧ ∇u0d) · νx ds(x)

=
∫

Ω0

Jac(u0) dx.



Recalling that Q(t) ≥ 0, we infer

Theorem 4 Suppose ∫
Ω0

Jac(u0) dx < 0.

Then the classical solution is only local-in-time:

T ∗ <∞.

♥

Remark. Thm 4 needs only that (u, c) be smooth at the boundary ∂Ω(t).
Shocks are welcome in Ω(t) !



The limit case J = 0

Theorem 5 (γ ≤ 1 + 2
d−1 .) Let (u, ρ) be an admissible∗ solution

of the isentropic Euler system , with (u, c) smooth at the boundary.
Suppose ∫

Ω0

Jac(u0) dx ≤ 0.

Then the solution is only local: T ∗ <∞.

♣

Allowing shock waves is not sufficient to have global solutions !!

Proof.

The case J < 0 has been treated above. Suppose instead J = 0. Then

Q(t) = |Ω(t)| ∈ R[t], degQ ≤ d− 1.

· · · −→
∗In the sense of the energy inequality.



Lemma 2 (Dispersion.) If γ ≤ 1 + 2
d , then∫

ργdx ≤ C(1 + t)−2dκ.

If instead 1 + 2
d < γ , then∫ +∞

0
t dt

∫
ργdx <∞.

Proof based upon

d

dt

∫ (
1

2
ρ|tu− x|2 + t2ρe

)
dx =

d

dt

[
t2
∫ (

1

2
ρ|u|2 + ρe

)
dx

−t
∫
ρu · x dx+

∫ |x|2
2
ρ dx

]
≤ t

∫
(2ρe− dp) dx = 2t(1− dκ)

∫
ρe dx.

Use ρe = cst · ργ, plus the Gronwall inequality.



Proof of Theorem 5 (say γ ≤ 1 + 2
d).

Let M be the total mass. Apply Hölder inequality and degQ ≤ d− 1 :

M =
∫
ρ(t, x) dx ≤ |Ω(t)|1−1/γ

(∫
ργ dx

)1/γ

≤ C(1 + t)(d−1)(1−1/γ)
(∫

ργ dx

)1/γ
.

Dispersion gives

M ≤ C(1 + t)(d−1)(1−1/γ)−2dκ/γ = C(1 + t)
1
γ−1

t→+∞−→ 0.

But M > 0 is a constant ; contradiction ! Q.E.D.



The case of eternal flows

Definition 1 A solution U(t) of a dynamical system is eternal if it
is defined for all t ∈ R.

... thus not only for all t > 0.

Examples of eternal solutions:

• Steady, periodic, homoclinic, heteroclinic solutions,

• (For PDEs) travelling waves and solitons, U(x, t) = φ(x− ct).

• Multi-solitons (KdV),



• Interacting fronts (Hamel & Nadirashvili, 1999) in reaction-diffusion equa-
tions,

• Interacting viscous shock fronts (D. S. 1998).

• Global Maxwellians of the Boltzmann equation (D. Levermore 2014).

• (Averaging the former) Eternal isothermal flow with Gaussian density.

Question : Do there exist eternal solutions of the isentropic Euler
equations, compactly supported in space ?



A dichotomy d even/odd

d even (existence). One may choose ∇u0 ∈ Hs−1
loc (Rd) such that

σ(∇u0(x)) ∩ R = ∅, ∀x. (4)

If ‖c0‖Hs << 1, then Grassin’s Theorem provides an eternal smooth
solution (u, c). Example : u0(x) = x⊥.

d odd (non-existence). The choice (4) is not possible. Instead, let (ρ, u)

be admissible, eternal, with (u, c) smooth at the boundary ∂Ω. The
volume Q ∈ R[t] satisfies Q ≥ 0, hence has an even degree.

But degQ ≤ d, hence

degQ ≤ d− 1.

Again, dispersion and t→ +∞ yields a contradiction.



Resolving a paradox

We have seen that the regularity of c at the boundary, in the sense that c∇c
vanishes, is an obstacle to the existence of global solutions

... because it does not always let the volume of the domain grow as td,

... even if we allow shock waves.

However, ...



The show——– flow must go on !

Whence the need of · · · −→



Physical singularities at the boundary (after T.-P. Liu)

The volume Ω(t) has to grow like td (at least) to cope with the dispersion
estimate and the conservation of mass ...

... even if J < 0.

Some kind of singularity may/must form at the front, sooner or later ...

... but we know that boundary shocks don’t exist. So what ?



Revisit the particle trajectories

dX

dt
= u(X(t), t),

d2X

dt2
= ut + (u · ∇)u = −

1

γ − 1
∇(c2).

If c is only 1
2-Hölder (instead of Lipschitz), the front experiences a normal

acceleration

g := −
1

γ − 1

∂(c2)

∂ν
≥ 0.

Notice the sign: c2 is > 0 in the interior and vanishes at the boundary:

the front is accelerated.



Local existence of shock-free solutions with physical singularity:

d = 1. Juhi Jang, N.Masmoudi. Commun. Pure Appl. Math., 62 (2009),
pp 1327–1385.

D. Coutand, S. Shkoller. Commun. Pure Appl. Math., 64 (2011), pp
328–366.

d ≥ 2. Juhi Jang, N. Masmoudi. Commun. Pure Appl. Math., 68 (2015),
pp 61–111.

D. Coutand, S. Shkoller. Archive Rat. Mech. Anal., 206 (2012), pp
515–616.

Spherical symmetry : Tao Luo, Zhouping Xin & Huihui Zeng. Archive Rat.
Mech. Anal., 213 (2014), pp 763–831.



Physical singularity (d = 1)

Domain

Ω(t) = (a(t), b(t)).

Due to acceleration, t 7→ b(t) is convex ; a is concave.

In Ω, (ρ, u) is an entropy solution of the Euler system.

At almost every P ∈ ∂Ω,

lim
(x,t)→P

ρ(x, t) = 0.

A 2-characteristic may emanate from (a(t), t) or may terminate at (b(t), t),
but not the converse. Switch a←→ b for 1-characteristics.



slope q+p+

p- (=q+)
q- (=p+)

1-char

2-char

vacuum

vacuum

gas

1-char

2-char

x=a(t)

x=b(t)

t

x

Shock-free 1-D gas bubble with physical singularity at the boundary.

The (space-time) domain is hyperbola-shaped.



One-dimensional scattering

Let (ρ, u) be an eternal flow.

Define (remember the convexity)

p± = lim
t→±∞

a′(t), q± = lim
t→±∞

b′(t).

Theorem 6 (d = 1, γ > 1.) If the flow is shock-free in Ω and has physical
singularity at the front, then

p+ = q−, p− = q+.

♥

In other words

Ω(t) ∼ t(q−, q+), |t| → +∞.

Similar to flows that are smooth at the boundary (d even) : Ω(t) ∼ tu0(Ω(0)).



Mono-atomic gas

For γ = 3, the system is made of two Burgers equations

∂tr±+ r±∂xr± = 0, r± := u± c.

Coupled only at shocks and at the vacuum front !

Example. Domain

|x| <
√

1 + t2

with flow

ρ =

√
1 + t2 − x2

1 + t2
, u =

tx

1 + t2
.



Theorem 7 (d = 1, γ = 3.) For the solution with physical bound-
ary to be eternal and shock-free, it is necessary and sufficient that
the initial data r0 = u0+c0 be concave and s0 = u0−c0 convex.

Given an equation F (x, v) < 0 (F convex) of the domain

{(x, v) | s0(x) < v < r0(x)},

the solution is given by

F (x− vt, v) = 0, v = u± c.

♠



Thank you for attention

Très bon anniversaire Jérôme !


