QUANTUM STOPPING TIMES
AND QUASI-LEFT CONTINUITY

by Stéphane ATTAL & Agnés COQUIO

ABSTRACT . — We study the general properties of quantum stopping
times on Hilbert spaces equipped with a filtration. We define and investigate
notions such as the spaces of anterior events, the spaces of strictly anterior events
and above all we define the property S < T for two stopping times together
with the notion of predictable quantum stopping times. It is well-known that the
natural filtration of any normal martingale with the predictable representation
property is quasi-left continuous; with the help of our new notions we prove that
this property is actually an intrinsic property of the symmetric Fock space ®
over L2(R+). We also apply these definitions to the case of a non commutative
stochastic base. We show, in this context, that the fermionic Fock space over
L%(R*), the quasi-free boson and fermion spaces are also quasi-left continuous.

I. Introduction

The fundamental importance of stopping times in the classical theory of
stochastic processes does not need to be demonstrated any more. That is a rea-
son why the difficulties to define a serious and efficient theory of stopping times
in the framework of quantum processes can be felt as an obstacle to important
developments.

The theory of quantum processes and quantum noises has had an impressive
development since the last 25 years and has found many deep applications in
quantum physics. For example, the quantum statistical description of the dilation
of the dynamic of a quantum open system, with the help of quantum noises, is one
of the most remarkable application of quantum probability theory ([H-P]).
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The theory of quantum statistical mechanics is now having a very quick
development and follows in parallel the tracks of the older (classical) statistical
mechanics theory: Gibbs states become K.M.S. states, generators of Feller pro-
cesses become Lindblad generators of quantum dynamical semigroups,.... The
important open problems in quantum statistical mechanics are those of return
to equilibrium, recurrence, existence of invariant states, spectral gaps,.... It is
well-known that the most remarkable answers to the corresponding problems in
the classical theory were obtained with the help of Markov processes and stopping
time theory.

But why are stopping times so difficult to handle in quantum theory? The
first obstacle is physical and philosophical. It is very delicate (and sometime taboo)
to associate an observable with the time when something happens in a quantum
system. The main reason is that in order to observe such a time one should be
continuously monitoring the system. This is of course very delicate in quantum
mechanics as the system is definitely affected by the observation. The brutal
continuous observation of a quantum system leads to surprising consequences such
as freezing the system in the initial state (quantum Zeno effect). But on the other
hand it is also true that the theory of continuous observation of quantum systems
has made impressive progresses recently, both theoretically and experimentally
(non-demolition measurement).

It is even more remarkable that, forgetting the physical constraints, it is
very easy to mathematically associate an observable to the time when some event
occurs in a quantum system. For example, when studying the quantum stochas-
tic differential equations describing the dynamics of some quantum open systems
(such as in quantum optics for example), one can exhibit abelian subalgebras of
observables which are invariant under the dynamic. This thus gives rise to commu-
tative processes which can be realised (diagonalised) on some probability space. As
a consequence, any classical stopping time associated to this process (exit times,
hitting times,...) gives rise to a quantum stopping time when pulled back in the
general setup.

The theory of quantum stopping times has been initiated by R. L. Hud-
son ([Hud]) in the framework of Fock space. The basic idea is to say that a
classical stopping time is a positive random variable (with value +oo admitted)
which satisfies some adaptedness property with respect to a given filtration of o-
fields. Thus a quantum stopping time is a quantum random variable (a self-adjoint
operator on a spectral measure) which is positive, which admits the value +oc and
which satisfies some adaptedness property on the Fock space. This theory has been
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developed by several authors in the same framework: [App], [P-S], [A-S], [Att],
but also in the framework of filtered families of o-finite and finite von Neumann
algebras: [BN1], [BN2], [B-L] and [B-T].

In this article, a stopping time is an increasing family of projections on a
filtered Hilbert space, adapted to an increasing family of algebras. This approach
thus covers all the preceding cases.

In the five first parts we study stopping times on filtered Hilbert spaces
(H,(H¢t)e>0), without really mentioning algebras and we define for a stopping
time T, the spaces Hr, Hr—, the property S < T for two stopping times and the
notion of previsible stopping time. The last two notions being actually the real
new ones with respect to the usual litterature.

The first application of this first part is the case of the symmetric Fock space
over L2(R*t). Tt is well-known that any classical martingale (i.e. with angle bracket
< z,7 >; equal to t for all t € RT) which possesses the predictable representation
property, admits its chaotic space to be naturally isomorphic to the symmetric Fock
space over L?(RT). This the starting point of the connections between classical
and quantum stochastic calculus. It happens that all these classical martingales
actually share another property: their natural filtration is quasi-left continuous
(i-e. every accessible stopping time is predictable, or equivalently the jumps of
these martingales are totally inaccessible). In the part VI of this article, we show
that this property is actually independent of the probabilistic interpretations of
the Fock space, it is a completely intrinsic (and stronger) property of this space:

Oy = oy

for every predictable quantum stopping time 7', thus in particular for the classical
predictable stopping times.

In the last part, we apply the preceding definitions and results to the cases
of the antisymmetric Fock space over L?(R") and the quasi-free representations of
the CCR and CAR. We also prove that in all these cases the quasi-left continuity
property is verified.

[I. Quantum stopping times

A filtered Hilbert space is a complex separable Hilbert space H together
with a family of orthogonal projections (E;)scp+ with range (H;);cr+ satisfying
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1) ’Ho:(Cands—limEtzI(j.e. /\ HtZH).

t——4oo teR+
ii) EsE; = EyE, = E for all s <t (i.e. Hy C Hy for s < t).
iii) s—lim E, = E; (i.e. [ Hu = He)-
Z;’: u>t

We write H;— = \/ Hs and E;_ is the orthogonal projection onto H;—, t € R
s<t
(with the convention Ho_ = Hy).

An operator X on H is said to be adapted at time t if
i) Ey(Dom X) C Dom X, for all u > ¢,
and
ii) E,X = XE, on Dom X, for all u > t.

A stopping time (or quantum stopping time) T on a filtered Hilbert space
(H, (Et)¢er+) is a (right-continuous) spectral measure on Rt U {+oo} with values
in the set of orthogonal projectors on H, such that, for all ¢ € Rt the operator
T([0,t]) is adapted at time ¢.

In the following we adopt probabilistic-like notations: for every Borel subset
E C Rt U {+00} we write Lrcg instead of T(E). In the same way Lr<; means
T([0,t]), Ly=¢ means T'({t}), ....
Note that in particular
1<y =S—_}i0m Ir<ite ,
>0
and
N1y =S—_1i0m Tr<i—e -
>0

In particular, 17« is also adapted at time ¢, for all t € RT.

Let us see briefly how this definition connects to the classical one. If T is
a classical stopping time on a filtered probability space (Q, F, (Ft)¢cr+, P), then
taking H = L?(Q, F, P), H; = L?(Q, F, P) (if we assume that the filtration verifies
the “usual conditions” of completeness and right-continuity) and E; = E[- /7]
makes up a filtered Hilbert space. The operators /\/l]1T<t of multiplication by
I(7<s) on H then define a quantum stopping time on #.

Conversely, if T is a quantum stopping time on a filtered Hilbert space
(M, (Et)ter+) then the operators 17<¢, t € RT U{+00}, are two by two commuting.
Thus they simultaneously diagonalise on a probability space (2, F, P) to give rise
to operators of multiplication by indicator functions of the form 1, <; for some
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random variable 7 valued in Rt U {+occ}. Taking F; to be the o-field generated
by the image of H; into L?(f2, F, P), make T being a classical stopping time.

Thus when considering one quantum stopping time (or a commuting fam-
ily of quantum stopping times) leads to a theory which is exactly equivalent to
the classical one. Of course the difference appears when considering several non-
commuting stopping times on 7. Each of them can be individually interpreted
classically, but not together. They come from different probabilistic context and
they are put together in the same context, exactly like observables in quantum
mechanics.

A point t € Rt is a continuity point for a quantum stopping time T if
I7—; = 0. Note that as H is separable, then any stopping time 7" admits an at
most countable set of points which are not of continuity for 7'. Also note that if ¢
is a continuity point for 7' then the map s — ll7<, is strongly continuous at ¢.

A stopping time T is discrete if there exists a finite set £ = {0 < t; < 3 <
or <ty < +oo} in RY U {+00} such that 1rep = 1.

A sequence of stopping times (T),),¢n is said to converge to a stopping time

T if s—lim U7, <; = 17<¢ for all continuity point ¢ of T
n—-+oo - -

A stopping time T is finite if 17—, = 0.

Two stopping times S, T satisfy S < T if 1g<; > Lp>, for all t € Rt (in
the sense of comparison of projectors). In particular

Ir<t = Is<illp<y = A< lls<t
for all t € RY.

Let S and T be two stopping times on H. We define the stopping times
SVT and S AT on H by, for all t € R,

1syr<¢ = orthogonal projection onto Ran lg<; N Ran <y
Isat<t = orthogonal projection onto Ranlg<;V Ranlr< .
PROPOSITION 1. — For any two stopping times S, T on H we have

i) SAT<S and SAT <T.
i) SV >Sand SVT >T.

iii) If U is any stopping time satisfying U < S and U < T then one has
U<LSAT.



iv) If U is any stopping time satisfying U > S and U > T then one has
U>SvT.

Proof.

i) We have Ran Isa7<; O Ran 15<; URan Il7<;. One concludes easily. The
proof of ii) is identical.

iij) f U < S and U < T then Ranlly<; D Ranlg<; U Ranly<;. Thus
Ranly<; D Ranlg<; V Ranllr<; = Ranlisar<i. One concludes easily. The
proof of iv) is identical. ]

Note that the stopping time 7' given by

1 O fors<t
T<s =171 fors>t

is nothing but the deterministic time 7" = tI, denoted ¢ simply.

Finally, for a stopping time T', by a sequence of refining T-partitions of Rt
we mean a sequence (E,)nen of finite subsets E, = {0 =1 <} < --- <1} <
+o00} of RT such that:

i) all the ¢7 are continuity points for 7', n € N, j > 1;
ii) E, CE,4 forallneN;

i) the diameter 6, = sup{t}, , — 7 ;

i € N} of E,, tends to 0 when n tends to

+00;
iv) sup E,, tends to +oo as n tends to +o0.

Note that, for any stopping time 7" such a sequence always exists.

PROPOSITION 2. — For every stopping time T there exists a sequence
(Th)nen of discrete stopping times such that Ty > Ty > --- > T and (Ty)nen
converges to T'.

Proof. — Let E={0=1ty) <t1 <tz < -+ <t, <400} be a partition of
R*. Define the spectral measure Tz by

{TE({tz}) :T([tl_l,tz[) for i = 1,...,n,
Te({+00}) = T([tn, +00]).

Then Ty is clearly a quantum stopping time.

Now let (E,)nen be a sequence of refining T-partitions of R and put
T, = Tg, for all n € N. Let us first check that T,, > T),41 > T for all n € N. For

6



all t € RY, let tg:) be given by tg:) =max{t; € E, ; t; <t}. As E, C E,; we
have £ < #{"*" < ¢ and

Ir,<t = ]lTe[o,tf-g)[ ’

Iz, <t = ]lTe[o gt -
ity
This proves T, > T, 41 > T.

Let us now prove the convergence. Let f € H and t € RT. We have
Iz, <¢f = Lr<ifII* = ||]1T<t§.g>f — < f|?

= ||]1T€[t$g),t]f||2 )

which converges to ||17—¢f||* when n tends to +oc. Thus it converges to 0 if ¢ is
a continuity point for T'. ]

lll. The space Hr

Let (H, (H¢)ier+) be a filtered Hilbert space and T be a stopping time on
H. The space H; classically interprets as the space of events occurring before time
t (see the discussion in section II about the connections with classical theory).
Thus mimicking the classical definition of Fy, the o-field of events anterior to T,
that is
Fr={AeF; (T<t)yNAeF foral teR"},

we define in our quantum context: the space of events anterior to a stopping time
T is the space

Hr={f €M ; Ir<,f €H; forall teR'}.

We denote by Ep the orthogonal projection onto H, which is clearly a closed
subspace of H.

PROPOSITION 3.
1) IfS <T then Hs C Hr.
2) If (T),)nen is a decreasing sequence of stopping times converging to T'

then
Hr = ﬂ Hr,

neN

and (BT, )nen decreases and converges to Er.

7



3) HT:{f€H7 ﬂT<tf€Ht foralltER"‘}.

Proof.

1) If f € Hs then Lyp<;f = Lp<;lg<;f. By hypothesis 1g<;f belongs to
H; and thus so does Iy<;1s<;f (by adaptedness). Thus f € Hy.
2) We have T' < T), and thus Hr C () Hr,. Now if f belongs to () Hr,

neN neN
and t is a continuity point for 7', then Lr<;f = lim 11, <;f and thus Lr<;f
- n—00 = =

belongs to H;. Now, if ¢ is not a continuity point for 7" we can find a sequence
(tn)nen of continuity points for 7' which decreases and converges to t. Thus Lr<y, f

belongs to Hy, and Ly« f = 1i_>m 1r<¢, f belongs to (| Hi, = He.
- n—oo neN

3) As Iy« = Ly lly<; and L7, is adapted at time ¢, we clearly have
Hr C{f € H; Lrf € H for all t € RT}. Now, if L1y« f € H; for all ¢, then

Ir<if = nll>r-ir-loo Ly 2 f which belongs to HQN”HH% = Hy. ]
n
THEOREM 4. — Let T be a discrete stopping time with Y Ip—y, = 1. We
i=1
then have

Er = Z JlT:ti Eti = Z Eti Ir—; ,
i=1

i=1

with the convention F., = I.

Proof. — 1If T is a discrete stopping time with values {0 <t; <--- <t, <
+oo} then the operator

n
pP= Z ) O o (with Ey, = I)
i=1
is easily seen to be an orthogonal projector. If f belongs to Ran P, if t € Rt then

n n
lrif =Y W=, By f = By Y Lo, By f
tii=51t iii=51t
=Elr<if
Thus f belongs to Hp. That is, Ran P C Hp. Now if f belongs to Hy then

n n
Pf=Y lr—yEf =) Eilr=,f

=1 i=1

= Z Lr—¢, f (for Lp—¢, f € Hy, by hypothesis)

i=1

=f.



Thus Ran P = Hr and P = Er. []

THEOREM 5. — Let T be a quantum stopping time on H. Let (T,)nen
be a sequence of discrete stopping times converging to T', such as in Proposition
2, then the sequence (ET, )nen strongly converges to Er. In other words

n——+oo £

N
Er :s—_lgm Z ITe[ti_hti[Eti + HTZth
=1

where the diameter of the partition {0 =to < t1 < --- < tn, } tends to 0 and tn,
tends to +o0.

Proof. — This is now an easy consequence of Proposition 2, Proposition 3,
part 2) and Theorem 4. [



PROPOSITION 6.

1) If S and T are two discrete stopping times then
Esyr = EsV Er .

2) If S and T are two stopping times then
Esnr =EsANEr .

Proof.

1) We always have Hg V Hr C Hsyr. Now let S and T be discrete and
S be the union of their support. Suppose SNRY = {0 < #; < --- < tx}. Let

f € HENHF. We have Esf = 0 but
N

Esf = ls—yoof + »_ Ls—t, B, f
i=0

= ]]-S:+oof + ]]‘SStNEtN - Z ]]-SSti (Eti+1 - Etl)f

N
=f- Z Ls<y (Eti+1 —E,)f
i=0
with the convention tx41 = +00.

In the same way

N
Esvrf =f - lsvr<t(Be,, — Eu)f -
=0
But
1= k
Lsyrsy =s—lim — > (Ms<rlr<y,)
e M
thus .
Esvrf=f- lm — Z > (Ms<rlr<y,) *(Buy, — Bi)F.
k=0 i=0
Note that
N N
Z Is<i (Eti+1 - E,) Z ]ITStj (Etj+l - Etj) = Z Ls<t; Dr<y (Eti+1 - Ey,).
; i=0 =0

In the same way

N k

N N
k
(]ISSti ]ITSti) (Eti+1 _Eti) = |:Z ]ISSti (Eti+1 _Eti) Z ]ITStj (Etj+1 _Etj)

=0 7=0

= [t~ B9y - )"
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This gives

n—1

Bsorf=f~ lim L3 [~ Es)(1~En)]'f
k=0
=f—(Bs VEp)f

=0.

This proves 1).

2) We always have Hg N Hy D Hsar. Now let f belong to Hs N Hy. For
all t € Rt we have

Usar<tf = f — Usarsef

n—1

. 1
=f- nllg_loo n kz_o(]15>t]lT>t)kf .

But
X k
(Lsselrso)* = [( = Ls<)( — Lry)]
= I — Lt
where L; satisfies Ly f € H;.

Thus
1 n—1
n Z(]ls>t]1T>t)kf =f-9
k=0
with g € H;. This shows Igar<¢f € Hy and proves 1). []

IV. The space Hr_

As our definition of Hr in our setup seems to fit very well, we pursue
the analogy with classical probability theory and define the space of event strictly
anterior to a stopping time T as the space Hp_ which is the closure of the subspace
of H generated by Ho and {I7s¢f ; f € Hy, t € RT}.

PROPOSITION 7. — For every stopping time T we have Hr_ C Hr.

Proof. — First of all, if f € Ho then lp<;f = Lr<iEof = Lr<¢Ef =
Eillr<;f and thus Ir<;f belongs to H;, that is Ho C Hr.
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Now if f € H; let us consider g = L~ f. We then have

1 0 ifs<t
T<s9 = ]lTE]t,s]f if s > t.

In particular Ir<,g belongs to H; for all s. Thus g belongs to Hr.

We have proved that all the generators of Hr_ are elements of Hr, which
is closed. Thus Hr_ C Hr. [

PROPOSITION 8. — If the filtration is continuous (i.e. Hy— = H; for all t)
then Hp_ = Hry for every discrete stopping time T'.
Proof. — Let g € (Hr_)*. We thus have, for all t € R, all f € H,
(Ir>iEf,g) =0, ie. (f,r>iErg)=0.
This means l7~;E;g = 0 for all t € RT.
Now suppose that T is discrete with zn: Ip—y, =1 Ift <ty then Ipsy =1

=1
and E.;g = 0 thus by the continuity hypothesis E;, g = 0.

K3
If t; <t < tip1 then Eyg = lp<;Eyg = 3 ly—; Eyg. Now let ¢ tend to
=0

i
tiy1, this gives By, . g = ) Lr—; By, 9. Thus in particular 17—, B, 9 = 0.
i=0
All together we have proved that Erg = ) 17—, Fy,g = 0 and thus g €
i

(Hr)*. n

ProrosITION 9. — If S and T are two stopping times such that S < T,
then Hs— C Hr—.

Proof. — The space Hg_ is generated by Hg and the g Eif, f € H, t €
Rt. But 55 = Lss¢lrs and thus Iss¢ By f = Lssilrs By f = Mrsi Bl f €

Hr_. This proves Hs_ C Hr_. ]
PROPOSITION 10. — If (T),)nen is an increasing sequence of stopping times
converging to T then
Hr_ =\/Hr._ .
n
Proof. — By Proposition 9, each space Hr, — is a subspace of Hr_, thus

V., Hr,— C Hr—. Conversely, if f belongs to H and if ¢ is a continuity point
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for T, then Ly~ By f = liIJrrl 1y, > E; f which belongs to \/,, Hr,—. If t is not
n—-+oo

a continuity point for T, then choose a decreasing sequence (t,,)nen of continuity
points for T, converging to t. We conclude by the identity

LrseEBy f = nllgloo Lrse, B f - ]

Let T be a finite stopping time (i.e. 17—y, = 0). Then the spectral integral
S+ threqs defines a self-adjoint operator on H, which we denote by T again.

PROPOSITION 11. — IfT is any finite stopping time then the operator T
maps DomT NHy to Hr.

If moreover T is bounded, it maps Hr_ to Hr_.

Proof. — If f belongs to Dom T N ‘Hr then
Tf =lim Z tilrer; i f
i

(where the limits is taken as usual under a sequence of partitions whose diameter
tends to 0) and thus, as Ir<,(}_ tillrep, +,,,[f) belongs to H,, we have I7<,Tf €

(3
Hs and thus T'f € Hr. This proves the first part.
If T is bounded, we have

TlrsiE f =lim Z tilre; g Lr>t B f
i

where each term in the sum is an element of Hr_. Thus Tlrs.FE; f belongs to
Hr_. This proves THr_— C Hr—. ]

V. Strictly smaller stopping times

We wish to give a correct meaning to the relation S < T for two quantum
n

stopping times, S and T on H. If S is a discrete stopping time with Y Ig—,, =1
=1
and if T is any stopping time, it is then natural to say that S < T if and only if

ls=s; = Iy L5=y, forall 7.

Note that this in particular implies S < T and we have S < T if and only if

n
z ]1T>si ]lS:Si = I
i=1
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or else if and only if
n
Z ]lS:Si ]lT>Si =1I.
i=1
This motivates the general definition.

Two stopping times S and T on H are said to satisfy S < T if and only if
one has that the expression

N,
Z L7y, ]ISE[ti—l,ti[
i=1
weakly converges to I when {t;, ¢ = 1,...,N,} follows a sequence of refining

S-partitions of Rt .

Note that S < T implies S < T for if S < T then
N,
Ir<y Z Irsy Ugep,_y ls<t (1)
converges weakly to lTSt]lsst,z?):lt (1) also equals
Na
Ir< Z Irse; Lsepp_q,]
which weakly converges to Ir<;. =

Note that if S and T commute, that is if for all s and ¢ in R, T1g<;Lr<; =

Nn

I7<¢1s<s, then for all sequence of refining partitions of Rt , R, = >~ Irsy, Lgeps_, 4]
i=1

converges strongly. In fact, in this case, (R,)n>0 is an increasing sequence of pro-

jections.

PROPOSITION 12. — Let S and T be two stopping times. Then the fol-
lowing assertions are equivalent.

i) S<T.

Nn
i) Y Isept;_y u[dT>t; converges weakly to I.
i=1

Nn

iii) Y Ir<y; Dsefy;_, ¢, converges weakly to 0 and Is— o = 0.
i=1
Nn

iv) Y- Isepti_y e[ IT<e; converges weakly to 0 and Is=yo = 0.
i=1

Proof. — Assumption i) implies that

N, N
Z Useftigr,til — Z r<¢; Usepe;_y 00 converges weakly to I.
i=1 i=1
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That is
N,

Z Ir<t, Usefy;_, ;) converges weakly to — Lg=4
i=1

thus
Nnp,
Z Ir<t Usepp;_y i ls=+00 converges weakly to — ls=y
i=1
thus 1g—yo = 0. All the others parts of the proof are obvious. ]
PROPOSITION 13. — If S and T are two stopping times on H such that

S < T then Hs C Hr_.

Proof. — For all f € H, the quantity

Nn
Z ]]-T>ti ]I'SE[ti_l,ti[Eti f

i=1
belongs to Hr_, but it is also equal to

N,
Z ]]-T>ti B‘Se[ti_l,ti[ESE f )

i=1
where E = {t;, i = 1,..., N, }, (with the notation Sg of the proof of Proposition 2)
which converges weakly to Egf. Thus Egf belongs to Hp_. |

PROPOSITION 14.

i) If (T))nen is an increasing sequence of stopping times converging to T
and with T, < T for all n, then Hy_ = \/ .y HT,, -

ii) If (T}, nen is a decreasing sequence of stopping times converging to T' and

with T, > T for all n, then Hr = (| Hr,_ .
neN

Proof.

i) We have Hr, C Hr— for all n € N, thus Vpen "1, € Hr—. But by
Proposition 10 we have Hr— =\, Hr.- C \V Hr,.
ii) We have Hr C Hr,— for alln € N, thus Hr C (| Hr,—- But (| Hr, -
neN neN
is included in (M7, which is equal to Hr by Proposition 3, part. 2). This

proves ii). |
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Let us study a rather pathological example. Consider a filtered Hilbert
spaces (H, (Et)¢cr+). Then the spectral measure (F)ycp+ itself defines a quantum
stopping time T by putting

Ir<;=E;, teR".
Let us then compute Hr and Hr_. We have
Hr={f€H; Lr<,f € H; for all t}
={feH; E,f €H, forall t}
and thus Hr = H.
We have N~ E;f = (I — E;)E;f =0 for all t € RY. Thus Hr_ = Ho.

Now let T}, be defined by I1,<; = Eyy1/n, t € RY. Then T, is a stopping
time again and the sequence (T),)nen is increasing and converging to T. We
obviously have T,, < T for all n. Thus Hr, = Hr, - = Hp.

We end this section with two definitions, which follow from the classical
corresponding definitions.

A stopping time T is previsible if there exists an increasing sequence of
stopping times (T7,)nen which converges to T' and such that T, < T for all n € N.

A filtered Hilbert space (H, (E:)ier+) is quasi-left continuous if Hr = Hr—
for every previsible stopping time T'.

The pathological example above shows that a filtered Hilbert space is never
quasi-left continuous. We actually have to enlarge our definitions.

Let (H, (Et)ier+) be a filtered Hilbert space. Let U be a closed subalgebra
of B(H) and (U;)¢cr+ an increasing family of closed subalgebras of U/ such that

U U; generated U, and which satisfies
terR

XE,=E.,X
forall X € Uy, all u > t.

We define a (U;)¢cr+-stopping time T to be a spectral measure on RT U
{400}, valued in H and such that I7<; belongs to U; for all t. Then note that all
what has been proved before remains valid for any (Ug);cr+-stopping times.

Examples.

) IfU = {X € B(H) ; YVu >t, E,X = XE,} then we recover the case
studied in the previous sections.
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2) If U is a von Neumann algebra acting on an Hilbert space H and (Uy);cr+
is an increasing family of von Neumann subalgebras which generates /. Assume
there exists a unit vector 2 € H which is cyclic and separating for ¢/ and a family
(My)¢ecr+ of normal w-invariant conditional expectations M; : U — U;, where
w(-) = (Q,-Q). We denote by H; the closure of U2 in H and by E; the orthogonal
projection onto H;. We then have

E(XQ) = My(X)Q
and thus for all u > ¢, all X € U, we have E, X = XE, (indeed E,XAQ =
M (XA)Q=XM,(AQ=XE,AQ).

Thus our definitions covers the case of stopping times in von Neumann
algebras such as studied in [BW1] or [BSW].

3) Let ® be the symmetric Fock space on L?(Rt;C): & = I',(L%(R*;C)).
If we define ®;) = I',(L?([0,¢]; C)) and &, = [',(L?([t, +o0[;C)), we then have the
well-known “continuous tensor product” property of Fock spaces:

@ ~ Qt] ® Q[t
and we can consider ®;; as a subspace of ® (see next section for more details).

In the framework of quantum stochastic calculus ([H-P]) a bounded operator
H on & is said to be adapted at time ¢ if it is of the form H = K ® I for some
K : @t] — @t]

By considering the algebras U; of t-adapted bounded operators, ¢t € Rt our
set up covers all the theory of quantum stopping times on the Fock space &.

We extend our definitions into:

o A (Uy)icr+-stopping time T is previsible if there exists a sequence (T},)nen
of (Uy)er+-stopping times such that (7,),en converges to T and T,, < T for all
neN

o A filtered Hilbert space (H, (Et)scr+) together with a family (Uy)scr+ is
quasi-left continous if for all previsible (U;);cgr+-stopping time T we have Hp_ =
Hr.

VI. The Fock space case

We here just recall few facts about the symmetric Fock space. Details can
be found in [Att] or [Mey].

17



The Fock space ® is the symmetric Fock space over L2(Rt;C) : & =
['s(L?(R*;C)). This space can be advantageously understood as the space L?(P)
where P is the set of finite subsets of R* equipped with the Guichardet symmetric
measure. That is, an element f of ® = L?(P) is a measurable function f : P — C
such that

171 = /p 1 (0)? do

= 17OF + 3 / U7l s PPy s <.

We then have the following properties:

i) If we write ®; (resp. @) for the subspace of & made of those f such
that f(o) = 0 unless o C [0,%] (resp. o C [t, +00[), then the mapping

@t]®q)[t—)¢
feg—h,

with h(c) = f(oc N [0,t])g(c N [t, +00[), extends to a unitary operator. We thus
identify ® to &, ® @, for all t € RY.

ii) For all f € ®, if we define D, f by
[th](a) = f(oU {t})]lUC[O,t]
we then have that Dy f belongs to ® for a.a.t and

1P = 1 @) + / DI dt .
0

iii) If (g¢)¢er+ is a family of elements of ® such that
a) g € @y for all t
b) t — g; is measurable
c) Jo llgell* dt < oo

then (g¢)¢cr+ is said to be Ito-integrable. In this case we write

o
/ gt dxt
0
for the element h of ® given by

h(a)— 0 ifd:@
T Vg, ({trs- o tna)) ifo={t; <ta<---<tn}

This element h of ® is called the Ito integral of (g;);cr+ and we have
oo
17 = [ ol de

18



If we denote by 1 the vacuum of ®, that is the element of & given by
{ 1 ifo=90

(o) = 0 otherwise,

and by E; the orthogonal projection from ® onto @, t € Rt \ {0}, we then easily
have the following theorem, cf. [Att] for details.

THEOREM 15. — For every f € ®, the family (Dyf);cr+ is Ito integrable
and we have

=101+ [ Dif . )

0

For all t € Rt \ {0} we have
t
Bf = f01+ [ Duf i, (3)
We have the isometry formula

IF1* = [F @) +/ |DsfII* ds - (4)

0

We put U to be the algebra B(®) of bounded operators on ® and, for all
t € R*, U, is the algebra of t-adapted bounded operators on @ in the sense of
Hudson-Parthasarathy, that is the algebra of bounded operators H on & of the
form
H=kxI

on &, ® @, for some bounded operator k on ®;. Note that, for all ¢t € R*t, all
u >t and all H € U; we have E,H = HE,,.

Clearly, (®, (E¢)icr+) is a filtered Hilbert space and from now on we define
stopping times on & as being affiliated to the family (U);cp+-

In particular (E¢);cr+ is not a stopping time on ®.

The following theorem is proved in [A-S], Proposition 6.

THEOREM 16. — Let T be a stopping time on ®. Then for all f € ® we
have

ETf = f(0)1+/000 ﬂT>stf dXs .

COROLLARY 17. — Let (T)nen be any sequence of stopping times on &
converging to T. Then (ET,)nen converges strongly to Er.

19



Proof. — Indeed, we have by Theorem 16 and Theorem 15 (4),

o0
|Erf — Bx, fII? = / (Lzss — Ly 50) D, |17 ds
0

which converges to 0. ]
PROPOSITION 18. — Let S and T be any two stopping times on ®. We
then have

Erys = ErV Es .

Proof. — We know that EpV Eg < Erys. Let f € (drVv®g)t = dF AP
We have Erf = Esf = 0 and thus for a.a. s € Rt

]lT>stf = 15>stf =0
and f(0) = 0.

As a consequence, D, f belongs to Ran 1r<; NRanlg<, for a.a. s € RF,
that is to Ran 17y g<,. This says that 17vgssD,sf =0 for a.a. s € RT and finally
ESVTf =0. n

The Fock space ® admits several probabilistic interpretations (cf. [Att] or
[Mey]) in terms of the Brownian motion, the compensated Poisson process or the
Azema martingales. All these classical martingales have in common that their
canonical space and filtration is quasi-left continuous.

The theorem to come proves that this property is actually intrinsic to the
Fock space structure, and does not depend on any classical probabilistic interpre-
tation of it.

THEOREM 19. — The filtered Fock space (®, (Ey)icr+, Us)ier+) is quasi-
left continuous.

Proof. — Let T be a previsible stopping time on ® and (T},)nen an increas-
ing sequence of stopping times converging to T with T, < T for all n € N.

By Proposition 14 we know that ®7_ = VnGN &7, . But if f € &7 we have

f=Erf= lirJrr1 Er, f (by Corollary 17) and thus f € \/, .y ®7,. This proves
n—-+0o00

that &7 C vnEN q)Tn- Thus ®7_ = &7. | |

We are now going to discuss some interesting examples of stopping times
on &:
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1) Projection on chaoses. — For every n € N, we denote by C,, the
space of f € ® such that f(o) = 0 unless #o = n. It is a closed subspace of ®

@:@Cn.

neN

and we have

The space C,, is called the n-th chaos of ®. We denote by @),, the orthogonal

n
projection from ® onto € C;, that is
=0

[@nfl(0) = f(0)Ngo<n
and by @, the operator
[@n.t; F1(0) = f(0)L(oro,)<n -
The operator @, is t-adapted and equal to
Qnje, g, -

It is an orthogonal projection also and Qnt < Qn,s if s <t. We define a stopping
time T}, by putting
{ Ir,5t = Qnye

II-T.,,:+oo = Qn -
We clearly have T,, < T, for all n € N. Note that for all s,t € Rt we have
Ir,<slr, <t = 11,y <elr, <s -

We also have
Er, f= f(@)]H‘/ Ly, >¢ D f dxe
0

=101+ [ QuDif dx
0
= fO)1n+ Qn+1/ D, f dx:
0

= Qn+1f-

n+1 n
Thus &7, = @ C;. But note that 17, <:Ef = QnE:f and thus &7, = @ C;.

=0 1=0

In particular the T},’s are not previsible.

2) Jumping times of the Poisson process. — For this example only
we refer to quantum stochastic integration on ® (cf. [Att] or [Mey] for details) and
we consider the reader very familiar with it.
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Let (af )ser+, (a7 )ier+ and (a?);cr+ be the usual creation, annihilation
and conservation processes on ®. Let Ny = a} + a; + af + tI be the Poisson
process on ®. We define a family of stopping times (T,)nen by

TO =0 "
Ir,>¢ =1— [f(I1,5s — L7,,_,55)dNs, n> 1.

Indeed, straightforward applications of the quantum Ito formula show that
the family (17, >¢)icr+ is a decreasing family of projectors, adapted at time ¢.
Thus they define a stopping time T,.

More straightforward applications of the quantum Ito formula show that,
for all s,t € Rt, alln,m € N

Ir,<;17,<¢ = L1, <;l7, <5 ,

and that T, < T, for n < m.

One can even be more precise.

ProprosITION 20. — For all t € Rt the self-adjoint operator N; admits
a spectrum equal to N and the spectral projection onto the eigenspace associated
ton € Nis

Ir,<¢IT,, >t -

Proof. — Consider, for t € Rt , n € N*, the operators
Xi =lg,<llp, >t -
The family (X]*)nen+ is family of two by two orthogonal projections whose sum is

equal to I (for 1y, 5 converges strongly to I when n tends to +00). Thus (X{*)nen
is a spectral measure.

Furthermore,

n __
X =11, > — Ug, 5y

t
= / (_]I'Tn+1>8 + ]]-Tn>s + ]]-Tn>s - ]]-Tn—1>s) dN,
0

t
=/ (X7" = X7) dN; .
0
Thus

o] ¢t 00
> onXp :/ > XrdN,
n=1 0 n=0

t
=/ I dN,
0

=N;.
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Details are left to the reader. [ |
PROPOSITION 21. — For alln > 1, we have T,, < Ty41.

Proof. — Let
N—1
R = Z ]lTnE[ti,ti+1[]]'Tn+1€[ti,ti+1[
i=0
N—1
= Z ]lTn-HE[ti,ti+1[]1Tn€[ti,ti+1[ .
i=0
From the identity
n—1
E(F)lrsE9)y =
3=0
where e(h)(c) = [] h(s) for all ¢ € P, all h € L?>(R*;C), we can prove that R

s€o
converges strongly to 0 when the partition refines and that 17—y = 0. ]

t i t
W e Jo 1O h) (g)y

PROPOSITION 22. — We have &1, = &1, _ for all n € N*, but T, is not
previsible, for any n € N*.

Proof. — Let f € &3 _, we have g, 5. E;f = 0 for all ¢ € R;.. But also
(see [Att]) we have

t
]1Tn>tEtf = f(@)]l +/ (]lTn_1>stf - (]lTn>s - ]lTn_1>s)Esf dXs)
0

t
—/ (L7, 55 — I, _,55)(Dsf + Esf) ds .
0

Thus, for a.a.t
L1, ,>tDif = (Ury>e — U, _i>¢) Eif
and (]1Tn>t - ]1Tn_1>t)(th +Ef)=0.
In particular, 17, ~;D;f = 0 for a.a.t. and thus Er, f = 0 (Theorem 16).
This proves &7, = &7, _.

It is proved in [A-S] that if, for all t € R

t t
Ty = / Mg dXs +/ Qg ds
0 0

with, for all s € R*, m, and a, belong to &), [ ||ms||* ds < oo and [° ||as|| ds <
00, then for every stopping time T, the limit (over refining partitions as usual)

zr = lim E Yrefts tin [Ttizn
i
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exists and is equal to

o0 o0
TT =/ Lrssms dxs +/ Irssas ds .
0 0

Suppose T, is previsible and let (Sp)pen be a sequence of stopping times converging
to Ty, and with S, < T, for all p.

We know that
Z nspe[tiyti+1[]]'Tn Stiga 1l

2

converges to 1. But z{™ = 1z, 5,1 = 1 — fg(mgn) — 2" V) (dys + ds) thus
+oo
o == [ Mg el = a0 e ) = 1.
0

But 11SP>3(33§") — 2"y = Ig,5s1—1g 5,17, ,~,1. This quantity converges to
17,51 —1p, ,5s1 when p tends to +oc.

Finally,

o0
1=1- / (Lgosll — g, o, 1)(dxs + ds) -
0

As
+o0
lim 17,51 =0=1-— / (U7, >s1 — 17, _,>51)(dxs + ds)
t——+o0 0
we have a contradiction. [

VII. Applications to (strictly non-Fock) quasifree boson
or fermion quantum stochastic theories

In the case of quasifree boson and fermion quantum stochastic theories, we
have a family (U;)icr+ of von Neumann algebras acting on a Hilbert space # and
such that Uy, C U; for all s < t. We put Uy, = \/teR+ U;. We also suppose that
there exists a cyclic and separating unit vector €2 for U, in H, and that there exists
a family (My);er+ of normal, w-invariant, conditional expectations My : Uso — U
where w is the vector state associated to 2. We denote by H; the closure of U2 in
‘H and by E; the orthogonal projection from H to H;. We have E; XQ = M (X)Q2
for all X € U,. Furthermore since H; is invariant under U, it follows that E;
belongs to Uj.

This setup includes the Ito-Clifford (fermion) theory and the quasi-free CAR
and CCR theories. In the former case, w is a tracial state.
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In all these three cases we have a representation theorem for the elements of
H, see [H-L], [BSW], [Lin], [BW1], [B-L]. This representation implies that if (T7,)n
is a sequence of (Uy)icr+-stopping times converging to T, then Er, converges
strongly to Er (Corollary 3.4 of [BW1], Theorem 3.7 of [B-L]). Thus, as in Theorem
19 the filtered space (H, (Et)iecr+, (Us)ecr+) is quasi-left continuous.

In fact, in [B-L], [BW1], [BW2] and others, one defines M7 as the strong
limit of ) Tpeps,_, ;[ M, and one proves that Mz is an orthogonal projection on

K3
L*(Us). Tt is easy to see that, for X € L?(Us,), we have My (X)Q = EpXA.
Thus, using the isometry between L?(U,) and H (given by X — X)) makes the
study of E7 or Mt equivalent.

Actually, in [B-L] and [BW1], M7 is the limit of ) My, Irepy,_, [, but if
i

one denotes by My this limit, then clearly Mr(X) = MT(X *)*.

The case of tracial state.

Let us suppose now that w is tracial. This is for example the case of the Ito-
Clifford theory and of the CAR algebra over L?(R") where w is the gauge-invariant
quasi-free state given by

+o0
o (10a) =3 [ Felate) ds

PROPOSITION 23. — Let S,T be two (U;)¢>o-Stopping times such that
S < T. Let (S;)nen be an increasing family of partitions of Rt and Rs, be

defined by Rgn = Z;S 'ﬂTe[ti—l,ti[ﬂse[ti—l,ti[‘
t; €S

Then the sequence (Rs, )nen is always strongly convergent.

Proof. — We have
w((Rsn - Rs,)"(Rs, — Rsm))
=(Q,(Rs, — Rs,.)"(Rs, — Rs,,))
=w(Rs, Rs,) + w(Rs, Rs,,) — (2, R5, Rs,, ) — (O, (Rs,,)"Rs, Q) .
We claim that if S C &’ then (RsQ, Rs:Q) = (Q, Rs:Q). Indeed,

Rs = Z ]]'Te[ti—l,ti[]l'se[ti—lati[
t; €S’
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and

RTSRS’ = Z Z ]ISE[Sj_l,Sj[]lTE[Sj_1,Sj[]1T€[ti—1,ti[]ISE[ti—l,ti[
s;ESt; €S’

= Z Z ]]'SE[Sj_l,Sj[]]‘Te[ti—l,ti[]]‘SE[ti—lati[
8;€S tizsj—1<t;—1<t:i<s;
thus, by traciality
NS D SR PR
$;ES tiz85—1<t;_1<t;<s;
= w(Rgz) .
This gives

W ((Rgn — Rs,)*(Rs, — Rgm)) = w(R% Rs,) — w(R% Rs,)

and (Rs, )nen is converging in L?(Us,). Let R be the limit. We have Rs, € Uy
and ||Rs, || <1 for all n. Therefore Rgs, converges to R strongly and R belongs to
Us- ]

In this context we are thus always able to say if two stopping times such
that § < T are such that S < T or not. Indeed, this is the case if and only if
R=0 and ]I.S:+Oo =0.

Remark. — If we want the following property to be satisfied:
S<T and T<R=—S<R

we need to define S < T by a strong convergence of ) I, Lgep;_, 4,1 to I

2

Indeed, in this case
Z lRE[ti—l,ti[]lSE[ti—l,ti[ = Z ]lRe[ti—I,ti[]lTe[ti—lyti[ Z lTE[ti—l,ti[]ISE[ti—hti[ .
i i i

But the second sum in the right hand side converges strongly to 0 and the first
one is bounded by 1. This gives the claim.
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