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1. C∗-ALGEBRAS

1.1 First definitions

A C∗-algebra is an algebra A equipped with an involution A 7→ A∗ and a
norm || · || satisfying:

i) A∗∗ = A

ii) (λA+ µB)∗ = λA∗ + µB∗

iii) (AB)∗ = B∗A∗

i’) ||A|| ≥ 0 and ||A|| = 0 if and only if A = 0
ii’) ||λA|| = |λ| ||A||
iii’) ||A+B|| ≤ ||A||+ ||B||
iv’) ||AB|| ≤ ||A|| ||B||
i”) A is complete for ||·||
ii”) ||AA∗|| = ||A||2.

An algebra with an involution as above satisfying i), ii) and iii) is called a
∗-algebra.

An algebra satisfying all the conditions above but where ii”) is replaced by
ii”) ||A∗|| = ||A||
is called a Banach algebra.

The basic examples of C∗-algebras are:
1) A = B(H), the algebra of bounded operators on a Hilbert space H. The

involution is the usual adjoint mapping and the norm is the usual operator norm:

||A|| = sup
||f ||=1

||Af ||

.
2) A = K(H), the algebra of compact operators on H. It is a sub-C∗-algebra

of B(H).
3) A = C0(X), the space of continuous functions vanishing at infinity on a

locally compact space X. Recall that a function f is vanishing at infinity if for
every ε > 0 there exists a compact K ⊂ X such that |f | < ε outside of K. The
involution on A is the complex conjugation f and the norm is

||f || = sup
x∈X

|f(x)| .

We will see later that examples i) and ii) contain all the cases of C∗-algebras.

Proposition 1.1 –On a C∗-algebra A we have ||A∗|| = ||A|| for all A ∈ A.

Proof
We have ||A||2 = ||A∗A|| ≤ ||A∗|| ||A|| and thus ||A|| ≤ ||A∗||. Inverting the

role of A and A∗ gives the result.
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An element I of a C∗-algebra A is a unity if

IA = AI = A

for all A ∈ A.
If a unity exists it is unique and norm 1 (except if A = {0}). But it may not

always exists. Indeed, in the example K(H) there is a unity if and only if H is
finite dimensional. In the example C0(X) there exists a unity if and only if X is
compact.

But if a C∗-algebra does not contain a unity one can easily add one as follows.
Consider the vector space A′ = A⊕ C and provide it with the product

(A, λ)(B,µ) = (AB + λB + µA, λµ),

the involution
(A, λ)∗ = (A∗, λ)

and the norm
||(A, λ)|| = sup

||B||=1

||AB + λB|| .

Equipped this way A′ is a C∗-algebra. It admits a unity (0, 1). The algebra A
identifies to the subset of elements of the form (A, 0). The only delicate point is
to check that ||(A, λ)|| = 0 if and only if A = 0 and λ = 0. One can assume that
λ 6= 0 for if not we are in A. Thus one can assume that λ = 1. We have

||B −AB|| ≤ ||B|| ||(−A, 1)|| .
Thus if ||(−A, 1)|| = 0 then B = AB for all B ∈ A. Applying the involution gives
B = BA∗ for all B ∈ A. In particular A∗ = AA∗ = A and thus B = AB = BA.
This means A is a unity. Contradiction.

Note that the above definition of the norm in A′ comes from the fact that in
any C∗-algebra we have

||A|| = sup
||B||=1

||AB|| .

Indeed, there is obviously an inequality ≥ between the two terms above. The
equality is obtained by considering B = A∗/ ||A||.

1.2 Spectral analysis

Let A be a C∗-algebra with unity I. An element A of A is invertible if there
exists an element A−1 of A such that

A−1A = AA−1 = I.

One calls resolvant set of A the set

ρ(A) = {λ ∈ C;λI −A is invertible}.
We put

σ(A) = C \ ρ(A)
and call it the spectrum of A.
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If |λ| > ||A|| then the series

1
λ

∑
n

(
A

λ

)n

is normally convergent and equals (λI −A)−1. This implies that σ(A) is included
in B(0, ||A||).

Furthermore, if λ0 belongs to ρ(A) and if λ ∈ C is such that |λ− λ0| <
||λ0I −A||, then the series

(λ0I −A)−1
∑

n

(
λ0 − λ

λ0I −A

)n

normally converges to (λI −A)−1. In particular we have proved that:
1) the set ρ(A) is open
2) the mapping λ 7→ (λI −A)−1 is analytic on ρ(A)
3) the set σ(A) is compact.

We define
r(A) = sup{|λ| ;λ ∈ σ(A)}

the spectral radius of A.

Theorem 1.2 –We have for all A ∈ A

r(A) = lim
n
||An||1/n = inf

n
||An||1/n ≤ ||A|| .

In particular the above limit always exists and σ(A) is never empty.

Proof
Let n be fixed and let |λ| > ||An||1/n. Every integer m can be written m =

pn+ q with p, q integers and q < n. Thus we have∑
m

∣∣∣∣∣∣∣∣(Aλ
)m∣∣∣∣∣∣∣∣ =∑

m

∣∣∣∣∣
∣∣∣∣∣
(
A

λ

)pn+q
∣∣∣∣∣
∣∣∣∣∣ ≤∑

m

(
||An||
|λ|n

)p( ||A||
|λ|

)q

≤

(
1 +

||A||
|λ|

+ . . .+
(
||A||
|λ|

)n−1
)∑

p

(
||An||
|λ|n

)p

<∞.

Thus the series
1
λ

∑
m

(
A

λ

)m

converges and is equal to (λI −A)−1. This proves that r(A) ≤ ||An||1/n and thus
r(A) ≤ lim infn ||An||1/n.

Let us prove that r(A) ≥ lim supn ||An||1/n. If we have

r(A) < lim sup
n

||An||1/n
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then consider the open set

O = {λ ∈ C; r(A) < |λ| < lim sup
n

||An||1/n}.

On O all the operators λI−A are invertible, thus so are the operators I− 1
λA. The

mapping λ 7→ (I − 1
λA)−1 is analytic onO and its Taylor series

∑
n(A

λ )n converges.

But the convergence radius of the series
∑

n z
nAn is exactly (lim supn ||An||1/n)

−1
.

This would mean
1
|λ|

< (lim sup
n

||An||1/n)
−1

which contradicts the fact that λ ∈ O. We have proved the first part of the
theorem.

If r(A) > 0 then it is clear that σ(A) is not empty. It remains to consider the
case r(A) = 0. But note that if 0 belongs to ρ(A) this means that A is invertible
and 1 = ||AnA−n|| ≤ ||An|| ||A−n||. In particular, passing to the limit, we get
r(A) > 0. Thus if r(A) = 0 we must have 0 ∈ σ(A). In any case σ(A) is non
empty.

Corollary 1.3 –A C∗-algebra A with unity and all of which elements, except 0,
are invertible is isomorphic to C.

Proof
If A ∈ A its spectrum σ(A) is non empty. Thus there exists a λ ∈ C such

that λI −A is not invertible. This means λI −A = 0 and A = λI.

An element A of a C∗-algebra A with unity is
normal if A∗A = AA∗,
self-adjoint if A = A∗,
isometric if A∗A = I,
unitary if A∗A = AA∗ = I.

Theorem 1.4 –
a) If A is normal then r(A) = ||A||.
b) If A is self-adjoint then σ(A) ⊂ [− ||A|| , ||A||].
c) If A is isometric then r(A) = 1.
d) If A is unitary then σ(A) ⊂ {λ ∈ C; |λ| = 1}.
e) For all A ∈ A we have σ(A∗) = σ(A) and σ(A−1) = σ(A)−1.
f) For every polynomial function P we have

σ(P (A)) = P (σ(A)).

g) For any two A,B ∈ A then

σ(AB) ∪ {0} = σ(BA) ∪ {0}.
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Proof
a) If A is normal than∣∣∣∣∣∣A2n

∣∣∣∣∣∣2 =
∣∣∣∣∣∣A2n

A∗2
n
∣∣∣∣∣∣ = ∣∣∣∣∣∣(AA∗)2n

∣∣∣∣∣∣ = ∣∣∣∣∣∣(AA∗)2n−1

(AA∗)2
n−1
∣∣∣∣∣∣

=
∣∣∣∣∣∣(AA∗)2n−1

∣∣∣∣∣∣2 = . . . = ||AA∗||2
n

= ||A||2
n+1

.

One now concludes easily with Theorem 1.2.
b) We only have to prove that the spectrum of any self-adjoint element of A

is a subset of IR. Let λ = x + iy be an element of σ(A), with x, y real. We have
x+ i(y + t) ∈ σ(A+ itI). But

||A+ itI||2 = ||(A+ itI)(A− itI)|| =
∣∣∣∣A2 + t2I

∣∣∣∣ ≤ ||A||2 + t2.

This implies
|x+ i(y + t)|2 = x2 + (y + t)2 ≤ ||A||2 + t2

or else
2yt ≤ ||A||2 − x2 − y2

for all t. This means y = 0.
c) If A is isometric then

||An||2 = ||A∗nAn|| =
∣∣∣∣∣∣A∗n−1An−1

∣∣∣∣∣∣ = . . . = ||A∗A|| = ||I|| = 1.

d) Assume e) is proved. Then if A is unitary we have

σ(A) = σ(A∗) = σ(A−1) = σ(A)
−1
.

This and c) imply that σ(A) is included in the unit circle.
e) The property σ(A∗) = σ(A) is obvious. For the other identity we write

λI −A = λA(A−1 − λ−1I) and λ−1I −A−1 = λ−1A−1(A− λI).
f) Note that if B = A1 . . . An inA, where all the Ai are two by two commuting,

we have that B is invertible if and only if each Ai is invertible. Now choose α and
α1, . . . αn in C such that

P (x)− λ = σ
∏

i

(x− αi).

In particular we have
P (A)− λI = α

∏
i

(A− αiI).

As a consequence λ ∈ σ(P (A)) if and only if αi ∈ σ(A) for a i. But as P (αi) = λ
this exactly means that λ belongs to σ(P (A) if and only if λ belongs to P (σ(A)).

g) If λ belong to ρ(BA) then

(λI −AB)(I +A(λI −BA)−1B) = λI.

This proves that λI − AB is invertible, with possible exception of λ = 0. This
proves one inclusion. The converse inclusion is obtained exchanging the role of A
and B.
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Theorem 1.5 –The norm which makes a ∗-algebra being a C∗-algebra, when it
exists, is unique.

Proof
By the above results we have

||A||2 = ||AA∗|| = r(AA∗)
for AA∗ is always normal. But r(AA∗) depends only on the algebraic structure of
A.

Proposition 1.6 –The set of invertible elements of a C∗-algebra A is open and
the mapping A 7→ A−1 is continuous on this set.

Proof
If A is invertible and if B is such that ||B −A|| <

∣∣∣∣A−1
∣∣∣∣−1 then B =

A(I −A−1(A−B)) is invertible for
r(A−1(A−B)) ≤

∣∣∣∣A−1(A−B)
∣∣∣∣ < 1

and thus I −A−1(A−B) is invertible. The open character is proved. Let us now
show the continuity. If ||B −A|| < 1/2

∣∣∣∣A−1
∣∣∣∣−1 then∣∣∣∣B−1 −A−1

∣∣∣∣ = ∣∣∣∣∣
∣∣∣∣∣
∞∑

n=0

(
A−1(A−B)

)n
A−1 −A−1

∣∣∣∣∣
∣∣∣∣∣

≤
∞∑

n=1

∣∣∣∣A−1(A−B)
∣∣∣∣n ∣∣∣∣A−1

∣∣∣∣
≤

∣∣∣∣A−1
∣∣∣∣ ||A−B||

1− ||A−1(A−B)||

≤ 2
∣∣∣∣A−1

∣∣∣∣2 ||A−B|| .
This proves the continuity.

Theorem 1.7 [Functional calculus] –Let A be a C∗-algebra with unity. Let A be a
self-adjoint element in A. Let C(σ(A)) be the C∗-algebra of continuous functions
on σ(A). Then there is a unique morphism of C∗-algebra

C(σ(A)) −→ A
f 7−→ f(A)

which sends the function 1l on I and the function idσ(A) on A.
Furthermore we have

σ(f(A)) = f(σ(A)) (3)
for all f ∈ C(σ(A)).

Proof
When f is a polynomial function the application f 7→ f(A) is well-defined

and isometric for
||f(A)|| = sup{|λ| ;λ ∈ σ(f(A))} = sup{|λ| ;λ ∈ f(σ(A))} = ||f || .
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Thus it extends to an isometry on C(σ(A)) by Weierstrass theorem. The extension
is easily seen to be a morphism also. The only delicate point to check is the identity
(3). Let µ ∈ f(σ(A)), with µ = f(λ). Let (fn)n∈IN be a sequence of polynomial
functions converging to f . The sequence (fn(λ)I − fn(A))n∈IN converges to µI −
f(A). As none of the fn(λ)I − fn(A) is invertible then µI − f(A)is not either
(Proposition 1.6). Thus f(σ(A)) ⊂ σ(f(A)). Finally, if µ ∈ C \ f(σ(A)) then let
g(t) = (µ− f(t))−1. Then g belongs to C(σ(A)) and g(A) = (µI − f(A))−1. Thus
µ belongs to C \ σ(f(A)).

An element A of a C∗-algebra A is positive if it is self-adjoint and its spectrum
is included in IR+.

Theorem 1.8 –Let A be an element of A. The following assertions are equivalent.
i) A is positive.
ii) A is self-adjoint and ||tI −A|| ≤ t for some t ≥ ||A||.
iii) A is self-adjoint and ||tI −A|| ≤ t for all t ≥ ||A||.
iv) A = B∗B for a B ∈ A.
v) A = C2 for a self-adjoint C ∈ A.

Proof
Let us first prove that i) implies iii). If i) is assumed then tI −A is a normal

operator and

||tI −A|| = sup{|λ| ;λ ∈ σ(tI −A)} = sup{|λ− t| ;λ ∈ σ(A)} ≤ t.

This gives iii).
Obviously iii) implies ii). Let us prove that ii) implies i). If ii) is satisfied

and if λ ∈ σ(A) then t− λ ∈ σ(tI − A) and with the same computation as above
|t− λ| ≤ ||tI −A|| ≤ t. But as λ ≤ t we must have λ ≥ 0. This proves i).

We have proved the equivalence of the first 3 assertions.
We have that v) implies iv) obviously. In order to show that i) implies v) it

suffices to consider C =
√
A (using the functional calculus of Theorem 1.7 and

identity (3)). It remains to prove that iv) implies i). Let f+(t) = t ∨ 0 and
f−(t) = (−t) ∨ 0. Let A+ = f+(A) and A− = f−(A) (note that when ii) holds
then A is automatically self-adjoint and thus accepts the functional calculus of
Theorem 1.7). We have A = A+ − A− and the elements A+ and A− are positive
(by (3)). Furthermore the identity f+f− = 0 implies A+A− = 0. We have

(BA−)∗(BA−) = A−(A+ −A−)A− = −A3
−.

In particular −(BA−)∗(BA−) is positive.
Writing BA− = S + iT with S and T self-adjoint gives

(BA−)(BA−)∗ = −(BA−)∗(BA−) + 2(S2 + T 2).

In particular, as the equivalence established between i), ii) and iii) proves it
easily (exercise), the set of positive elements of A is a cone, thus the element
(BA−)(BA−)∗ is positive. As a consequence σ((BA−)(BA−)∗) ⊂ [0, ||B|| ||A−||].
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But by Theorem 1.4 g) we must also have σ((BA−)∗(BA−)) ⊂ [0, ||B|| ||A−||]. In
particular σ(−A3

−) ⊂ [0, ||B||2||A−||2]. This implies σ(A3
−) = {0} and

∣∣∣∣A3
−
∣∣∣∣ =

0 = ||A−||3. That is A− = 0.

This notion of positivity defines an order on elements of A, by saying that
U ≥ V in A if U − V is a positive element of A.

Proposition 1.9 –Let U, V be self-adjoint elements of A such that U ≥ V ≥ 0.
Then

i) W ∗UW ≥W ∗VW ≥ 0 for all W ∈ A;
ii) (V + λI)−1 ≥ (U + λI)−1 for all λ ≥ 0.

Proof
i) is obvious from Theorem 1.8.
ii) As we have U + λI ≥ V + λI, then by i) we have

(V + λI)−1/2(U + λI)V + λI)−1/2 ≥ I.

Now, note that ifW is self-adjoint andW ≥ I then σ(W ) ⊂ [1,+∞[ and σ(W−1) ⊂
[0, 1]. In particularW−1 ≤ I. This argument applied to the above inequality shows
that

(V + λI)1/2(U + λI)−1
V + λI)1/2 ≤ I.

Multiplying both sides by (V + λI)−1/2 gives the result.

1.3 Representations and states

A ∗-algebra morphism is a linear mapping Π : A → B, between two ∗-algebras
A and B, such that Π(A∗B) = Π(A)∗Π(B) for all A,B ∈ A.

Such a morphism is always positive, that is it maps positive elements of A on
positive elements of B. Indeed we have Π(A∗A) = Π(A)∗Π(A).

Theorem 1.10 – If Π is a morphism between two C∗-algebras A and B then Π is
continuous, with norm smaller than 1. Furthermore the range of Π is a sub-C∗-
algebra of B.

Proof
If A is self-adjoint then so is Π(A) and thus

||Π(A)|| = sup{|λ| ;λ ∈ σ(Π(A))}.
But it is easy to see that σ(Π(A)) is included in σ(A) and consequently

||Π(A)|| ≤ sup{|λ| ;λ ∈ σ(A)} = ||A|| .
For a general A now, we have

||Π(A)||2 = ||Π(A∗A)|| ≤ ||A∗A|| = ||A||2.
We have proved the first part of the theorem.
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For proving the second part we reduce the problem to the case where kerΠ =
{0}. If this is not the case, following Annexe 1.1, we consider the quotient of A by
the two-sided closed ideal kerΠ : AΠ = A/ ker Π which is a C∗-algebra. We can
thus assume kerΠ = {0}. Let BΠ be the image of Π, it is sufficient to prove that
it is closed. Consider the inverse morphism Π−1 from BΠ onto A. As previously,
for A self-adjoint in A we have

||A|| =
∣∣∣∣Π−1(Π(A))

∣∣∣∣ ≤ ||Π(A)|| ≤ ||A|| .
Thus Π−1 and Π are isometric and one concludes easily.

A representation of a C∗-algebra A is a couple (H,Π) made of a Hilbert space
H and a morphism Π from A to B(H). The representation is faithful if ker Π = {0}.

Proposition 1.11 –Let (H,Π) be a representation of a C∗-algebra A. Then the
following assertions are equivalent.

i) Π is faithful.
ii) ||Π(A)|| = ||A|| for all A ∈ A.
iii) Π(A) > 0 if A > 0.

Proof
We have already seen that i) implies ii), in the proof above. Let us prove that

ii) implies iii). If A > 0 then ||A|| > 0 and thus ||Π(A)|| > 0 and Π(A) 6= 0. As
we already know that Π(A) ≥ 0, we conclude that Π(A) > 0. Finally, assume iii)
is satisfied. If B belongs to kerΠ and B 6= 0 then Π(B∗B) = 0. But ||B∗B|| =
||B||2 > 0 and thus B∗B > 0. Which is contradictory and ends the proof.

Clearly we have not yet discussed the existence of representations for C∗-
algebras. The key tool for this existence theorem is the notion of state.

A linear form ω on A is positive if ω(A∗A) ≥ 0 for all A ∈ A.
Note that for such positive linear form one can easily prove a Cauchy-Schwarz

inequality:
|ω(B∗A)|2 ≤ ω(B∗B)ω(A∗A).

Proposition 1.12 –Let ω be a linear form on A. Then the following assertions
are equivalent.

i) ω is positive.
ii) ω is continuous with ||ω|| = ω(I).

Proof
By Theorem 1.8 ii), recall that a self-adjoint element A of A, with ||A|| = 1 is

positive if and only if ||(I −A)|| ≤ 1. In particular, for any A ∈ A, we have that
||A∗A|| I −A∗A is positive.

If i) is satisfied then ω(A∗A) ≤ ||A∗A||ω(I). By Cauchy-Schwarz we have

|ω(A)| ≤ ω(I)1/2 |ω(A∗A)|1/2 ≤ ||A∗A||1/2
ω(I) = ||A||ω(I). (1.2)
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This proves ii).
Conversely, if ii) is satisfied. One can assume ω(I) = 1. Let A be a self-adjoint

element of A. Write ω(A) = α+ iβ for some α, β real. For every λ ∈ IR we have

||A+ iλI||2 =
∣∣∣∣A2 + λ2I

∣∣∣∣ = ||A||2 + λ2.

Thus we have
β2 + 2λβ + λ2 ≤

∣∣α2 + i(β + λ)
∣∣2 = |ω(A+ iλI)|2 ≤ ||A||2 + λ2.

This implies that β = 0 and ω(A) is real. Consider now A positive, with ||A|| = 1.
We have

|1− ω(A)| = |ω(I −A)| ≤ ||I −A|| ≤ I.

Thus ω(A) is positive.

We call state any positive linear form on A such that ω(I) = 1.
We need an existence theorem for states.

Theorem 1.13 –Let A be any element of A. Then there exists a state ω on A
such that ω(A∗A) = ||A||2.

Proof
On the space B = {αI + βA∗A;α, β ∈ C} we define the linear form

f(αI + βA∗A) = α+ β||A||2.
One easily checks that ||f || = 1. By Hahn-Banach we extend f to the whole of A
into a norm 1 continuous linear form ω. By the previous proposition ω is a state.

We now turn to the construction of a representation which is going to be fun-
damental for us, the so called Gelfand-Naimark-Segal construction (G.N.S. con-
struction). Indeed, note that if (H,Π) is a representation of a C∗-algebra A and
if Ω is any norm 1 vector of H, then the mapping

ω(A) = <Ω , Π(A)Ω>
clearly defines a state on A. The G.N.S. construction proves that any C∗-algebra
with a state can be represented this way.

Theorem 1.14 (G.N.S. representation) –Let A be a C∗-algebra with unit and ω
be a state on A. Then there exists a Hilbert space Hω, a representation Πω of A
in B(Hω) and a unit vector Ωω of Hω such that

ω(A) = <Ωω , Πω(A)Ωω >

for all A. Furthermore the space {Πω(A)Ωω;A ∈ A} is dense in Hω.
Such a representation is unique up to unitary isomorphism.

Proof
Let Vω = {A ∈ A;ω(A∗A = 0)}. By Cauchy-Schwarz inequality one easily

sees that Vω is a closed two-sided ideal. We consider the quotient C∗-algebra
A/Vω. On A/Vω we define

< [A] , [B]> = ω(B∗A).
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It is a positive sesquilinear form which makes A/Vω a pre-Hilbert space. Let Hω

be the its closure. We put
LA : A/Vω → A/Vω

[B] 7→ [AB].
We have

<LA[B] , LA[B]> = ω(B∗A∗AB) ≤ ||A||2ω(B∗B)
for C 7→ ω(B∗CB) is a positive linear form equal to ω(B∗B) on C = I. In partic-
ular <LA[B] , LA[B]> ≤ ||A||2< [B] , [B]>. One can extend LA into a bounded
operator Πω(A) on Hω. If we put Ωω = [I] then the construction is achieved.

Let us check uniqueness. If (H′,Π′,Ω′) is another such triple, we have

<Πω(B)Ωω , Πω(A)Ωω > = <Ωω , Πω(B∗A)Ωω > = ω(B∗A)
= <Ω′ , Π′(B∗A)Ω′> = <Π′(B)Ω′ , Π′(A)Ω′>.

The unitary isomorphism is thus defined by U : Πω(A)Ωω 7→ Π′(A)Ω′.

Theorem 1.15 –Let A be a C∗-algebra . Then A is isomorphic to a sub-C∗-
algebra of B(H) for some Hilbert space H.

Proof
For every state ω we have the G.N.S. representation (Hω,Πω,Ωω). Put H =

⊕ωHω and Π = ⊕ωΠω where the direct sums run over the set of all states on A.
For every A ∈ A there exists a state ωA such that ||ΠωA

(A)|| = ||A|| (Theorem
1.12). But we have ||Π(A)|| ≥ ||ΠωA

(A)|| = ||A||. Thus we get ||Π(A)|| = ||A||.
This means that Π is faithful.

1.4 Commutative C∗-algebras

We have shown the very important characterization of C∗-algebras, namely
they are exactly the closed ∗-sub-algebras of bounded operators on Hilbert space.
We dedicate this last section to prove the (not very useful for us but) interesting
characterization of commutative C∗-algebras .

Let A be a commutative C∗-algebra . A character on A is a linear form χ on
A satisfying

χ(AB) = χ(A)χ(B)
for all A,B ∈ A. On then calls spectrum of A the set σ(A) of all characters on A.

Proposition 1.16 –Every character is positive.

Proof
Let A ∈ A and λ 6∈ σ(A). Then there exists B ∈ A such that (λI −A)B = I.

Thus χ(λI−A)χ(B) = (λχ(I)−χ(A))χ(B) = χ(I) = 1. This implies in particular
that λ 6= χ(A). We have proved that χ(A) always belong to σ(A). In particular
χ(A∗A) is always positive.

13



As a corollary every character is a state and thus is continuous. The set σ(A)
is a subset of A∗, the dual of A.

Theorem 1.17 –Let A be a commutative C∗-algebra and X be the spectrum of A
endowed with the ∗-weak topology of A∗. Then X is a Haussdorf locally compact
set; it is compact if and only if A admits a unit.

Furthermore A is isomorphic to the C∗-algebra C0(X) of continuous functions
on X which vanish at infinity.

Proof
Let ω0 ∈ X. Let A positive be such that ω0(A) > 0. One can assume

ω0(A) > 1. Let K = {ω ∈ X;ω(A) > 1}. It is an open neighborhood of ω0.
Its closure K is included into {ω ∈ X;ω(A) ≥ 1}. The latest set is closed and
included in the unit ball of A∗ which is compact. Thus X is locally compact.

If A contains a unit I, then the same argument applied to A = 2I shows that
X is compact.

Now, for all A ∈ A we put Â(ω) = ω(A). Then Â is a continuous complex
function and A 7→ Â is a morphism. Furthermore∣∣∣∣∣∣Â∣∣∣∣∣∣2 = sup

ω∈X

∣∣∣Â(ω)
∣∣∣2 = sup

ω∈X

∣∣∣Â∗A(ω)
∣∣∣ = ||A||2

for it exists an ω such that |ω(A∗A)| = ||A||. Thus A 7→ Â is an isomorphism.
The set Kε = {ω ∈ X;ω(A) > ε} is ∗-weakly compact and thus Â belong to

C0(X). Finally Â separates the points of X, thus by Stone-Weierstrass theorem,
the mapping Â gives the whole of C0(X).

Appendix: Quotient algebras and approximate identities

A subspace J of a C∗-algebra A is a left ideal if for all J ∈ J and all A ∈ A
then JA belongs to J . In the same way one obviously defines right ideals and
two-sided ideals.

If J is a two-sided, self-adjoint ideal of A, one can easily define the quotient
algebra A/J by the usual rules:

i)λ[X] + µ[Y ] = [λX + µY ],
ii)[X] [Y ] = [XY ],
iii)[X]∗ = [X∗],

where [X] = {X + J ; J ∈ J } is the equivalence class of X ∈ A modulo J . We
leave to the reader to check the consistency of the above definitions.

We now define a norm on A/J by

||[X]|| = inf{||X + J || ; J ∈ J }.
The true difficulty is to check that the above norm is a C∗-algebra norm. For this
aim we need the notion of approximate identity.
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If J is a left ideal of A then an approximate identity in J is a generalized
sequence (eα)a of positive elements of J satisfying

i) ||eα|| ≤ 1,
ii) α ≤ β implies eα ≤ eβ ,
iii) limα ||Xeα −X|| = 0 for all X ∈ J .

Proposition 1.18 –Every left ideal J of a C∗-algebra A possesses an approximate
unit.

Proof
Let J+ be the set of positive elements of J . For each J ∈ J+ put

eJ = J(I + J)−1 = I − (I + J)−1
.

It is a generalized sequence, it is increasing by Proposition 1.9 and ||eJ || ≤ 1. Let
us now fix X ∈ J . For every n ∈ IN there exists a J ∈ J+ such that J ≥ nX∗X.
Thus

(X −XeJ)∗(X −XeJ) = (I − eJ)X∗X(I − eJ) ≤ 1
n

(I − eJ)J(I − eJ)

by Proposition 1.9. It suffices to prove that

sup
J∈J+

∣∣∣∣J(I − eJ)2
∣∣∣∣ <∞.

But note that J(I − eJ)2 = J(I + J)−2 and using the functional calculus this
reduces to the obvious remark that λ/(1 + λ2) is bounded on IR+.

We can now prove the main result of the appendix.

Theorem 1.19 – If J is a closed, self-adjoint, two-sided ideal of a C∗-algebra A,
then the quotient algebra A/J , equiped with the quotient norm, is a C∗-algebra.

Proof
Let us first show that

||[X]|| = lim
α
||eαX −X||

for all X ∈ J . By definition of the quotient we obviously have

||[X]|| ≤ lim
α
||eαX −X|| .

As σ(eα) ⊂ [0, 1] we have σ(I − eα) ⊂ [0, 1] and ||I − eα|| ≤ 1. This implies

||(X + eαX) + (Y + eαY )|| = ||(I − eα)(X + Y )|| ≤ ||X + Y || .
In particular lim supα ||(X + eαX)|| ≤ ||X + Y || for every Y ∈ J . This proves our
claim.

Now we have

||[X]||2 = lim
α
||X − eαX||2 = lim

α
||(X∗ −X∗eα)(X − eαX)||

= lim
α
||(I − eα)(X∗X + Y ∗)(I − eα)||

≤ ||X∗X + ψ||

15



for every Y ∈ J . This implies

||[X]||2 ≤ ||[X]∗[X]||
and thus the result.
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2. VON NEUMANN ALGEBRAS

2.1 Topologies on B(H)

As every C∗-algebra is a sub-∗-algebra of some B(H), closed for the operator
norm topology (or uniform topology), then it inherits new topologies, which are
weaker.

On B(H) we define the strong topology to be the locally convex topology
defined by the semi-norms Px(A) = ||Ax||, x ∈ H, A ∈ B(H). This is to say that
a base of neighborhood is formed by the sets

V (A;x1, . . . , xn; ε) = {B ∈ B(H); ||(A−B)xi|| < ε, i = 1, . . . , n}.
On B(H) we define the weak topology to be the locally convex topology defined by
the semi-norms Px,y(A) = |<x , Ay >|, x, y ∈ H, A ∈ B(H). This is to say that a
base of neighborhood is formed by the sets

V (A;x1, . . . , xn; y1, . . . , yn; ε) = {B ∈ B(H); |<xi , Ayj >| < ε, i, j = 1, . . . , n}.

Proposition 2.1 –
i) The weak topology is weaker than the strong topology which is itself weaker

than the uniform topology. Once H is infinite dimensional then these comparisons
are strict.

ii) A linear form on B(H) is strongly continuous if and only if it is weakly
continuous.

iii) The strong and the weak closure of any convex subset of B(H) coincide.

Proof
i) All the comparisons are obvious in the large sense. To make the difference

in infinite dimension assume that H is separable with orthonormal basis (en)n∈IN .
The sequence (Pn)n∈IN of orthogonal projections onto the space generated by
e1, . . . , en converges strongly to I but not uniformly. Furthermore, consider the
unilateral shift S : ei 7→ ei+1. Then Sk converges weakly to 0 when k tends to
+∞ but not strongly.

ii) Let Ψ : B(H) → C be a strongly continuous linear form. Then there exists
x1, . . . , xn ∈ H such that

|Ψ(B)| ≤
n∑

i=1

||Bxi||

for all B ∈ B(H) (classical result on locally convex topologies, not proved here).
On B(H)n let P be the semi-norm defined by

P (A1, . . . , An) =
n∑

i=1

||Aixi|| .
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On the diagonal of B(H)n we define the linear form Ψ̃ by Ψ̃(A, . . . , A) = Ψ(A). We
then have

∣∣∣Ψ̃(A, . . . , A)
∣∣∣ ≤ P (A, . . . , A). By Hahn-Banach, there exists a linear

form Ψ on B(H)n which extends Ψ̃ and such that

|Ψ(A1, . . . , An)| ≤ P (A1, . . . , An).

Let Ψk be the linear form on B(H) defined by

Ψk(A) = Ψ(0, . . . , 0, A, 0, . . . , 0). (A is at the k-th place)

Then |Ψk(A)| ≤ ||Axk|| for every A. Every vector y ∈ H can be written as Axk for
some A ∈ B(H). The linear form Axk 7→ Ψk(A) is thus well-defined and continuous
on H. By Riesz theorem there exists a yk ∈ H such that Ψk(A) = <yk , Axk >.
We have proved that

Ψ(A) =
n∑

i=1

<yk , Axk >.

Thus Ψ is weakly continuous.
iii) is an easy consequence of ii) and of the geometric form of Hahn-Banach

theorem.

Another topology is of importance for us, the σ-weak topology. It is the one
determined by the semi-norms

p(xn)n∈IN ,(yn)n∈IN
(A) =

∞∑
n=0

|<xn , Ayn>|

where (xn)n∈IN and (yn)n∈IN run over all sequences in H such that
∑

n ||xn||2 <∞
and

∑
n ||yn||2 <∞.

Let T (H) denote the Banach space of trace class operators on H, equiped
with the trace norme ||H||1 = tr |H|, where |H| =

√
H∗H.

Theorem 2.2 –The Banach space B(H) is the topological dual of T (H) thanks to
the duality

(A, T ) 7→ tr(AT ),
A ∈ B(H), T ∈ T (H). Furthermore the ∗-weak topology on B(H) associated to
this duality is the σ-weak topology.

Proof
The inequality |tr(AT )| ≤ ||A|| ||T ||1 proves that B(H) is included in the

topological dual of T (H). Conversely, let ω be an element of the dual of T (H).
Consider the rank one operators Eξ,ν = | ξ >< ν |. One easily checks that
||Eξ,ν ||1 = ||ξ|| ||ν||. Thus |ω(Eξ,ν)| ≤ ||ω|| ||ξ|| ||ν||. By Riesz theorem there
exists an operator A ∈ B(H) such that ω(Eξ,ν = <ν , Aξ >. The linear form
tr(A ·) then coincides with ω on rank one projectors. One concludes that they
coincide on T (H) by density of finite rank operators. This proves the announced
duality.
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The ∗-weak topology associated to this duality is defined by the seminorms

PT (A) = tr(AT )

where T runs over T (H). But every trace class operator T writes

T =
∞∑

n=0

λn | ξn >< νn|

for some orthonormed systems (νn)n∈IN , (ξn)n∈IN and some absolutely summable
sequence of complex numbers (λn)n∈IN . Thus

tr(AT ) =
∞∑

n=0

λn<νn , AΞn>

and the seminorms PT are equivalent to those defining the σ-weak topology.

Corollary 2.3 –Every σ-weakly continuous linear form on B(H) is of the form

A 7→ tr(AT )

for some T ∈ T (H).

We can now put the first definition of a von Neumann algebra.
A von Neumann algebra is a C∗-algebra acting on H which contains a unit I

and which is weakly (strongly) closed.

Of course the whole of B(H) is the first example of a von Neumann algebra.

Another example, which is actually the archetype of commutative von Neu-
mann algebra, is obtained when considering a measured space (X,µ), with a σ-
finite measure µ. The ∗-algebra L∞(X,µ) acts on H = L2(X,µ) by multiplication.
One can assume that X is locally compact. The C∗-algebra C0(X) also acts on
H. But every function f ∈ L∞(X,µ) is almost sure limit of a sequence (fn)n∈IN

in C0(X). By dominated convergence, the space L∞(X,µ) is included in the weak
closure of C0(X). But as L∞(X,µ) is also equal to its weak closure, we have that
L∞(X,µ) is the weak closure of C0(X). We have proved that L∞(X,µ) is a von
Neumann algebra and we have obtained it as the weak closure of some C∗-algebra.

2.2 Commutant

Let M be a subset of B(H). We put

M′ = {B ∈ B(H);BM = MB for all M ∈M}.
The space M′ is called the commutant of M. We also define

M′′ = (M′)′, . . . ,M(n) = (M(n−1))′, . . .

Proposition 2.4 –For every subset M of B(H) we have
i) M′ is weakly closed;
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ii) M′ = M′′′ = M(5) = . . .

and M⊂M′′ = M(4) = . . .

Proof

i) If (An)n∈IN is a sequence in M′ which converges weakly to A in B(H) then
for all B ∈M and all x, y ∈ H we have

|<x , (AB −BA)y >| ≤ |<x , (A−An)By>|+ |<x , B(A−An)y >| →n→∞ 0.

Thus A belongs to M′.

ii) If B belongs to M′ and A belongs to M then AB = BA, thus A belongs
to (M′)′ = M′′. This proves the inclusion M⊂M′′. But note that if M1 ⊂M2

then clearly M′
2 ⊂M′

1. Applying this to the previous inclusion gives M′′′ ⊂M′.
But as M′′′ is also equal to (M′)′′ we should also have the converse inclusion to
hold true. This means M′ = M′′′. We now conclude easily.

Proposition 2.5 –Let M be a self-adjoint subset of B(H). Let E be a closed
subspace of H and P be the orthogonal projector onto E. Then E is invariant
under M (in the sense ME ⊂ E for all M ∈M) if and only if P ∈M′.

Proof

The space E is invariant under M ∈M if and only MP = PMP . Thus if E is
invariant under M we have MP = PMP for all M ∈M. Applying the involution
on this equality and using the fact that M is self-adjoint, gives PM = PMP for
all M ∈ M. Finally PM = MP for all M ∈ M and P belongs to M′. The
converse is obvious.

Theorem 2.6 [Von Neumann density theorem] –Let M be a sub-∗-algebra of B(H)
which contains the identity I. Then M is weakly (strongly) dense in M′′.

Proof

Let B ∈M′′. Let x1, . . . , xn ∈ H. Let

V = {A ∈ B(H); ||(A−B)xi|| < ε, i = 1, . . . , n}

be a strong neighborhood of B. It is sufficient to show that V intersects M.
One can assume B to be self-adjoint as it can always be decomposed as a linear
combination of two self-adjoint operators which also belong to M′′.

Let H̃ = ⊕n
i=1H and π : B(H) → B(H̃) be given by π(A) = ⊕n

i=1A. Let
x = {x1, . . . , xn} ∈ H̃. Let P be the orthogonal projection from H̃ onto the
closure of π(M)x = {π(A)x;A ∈ M} ⊂ H̃. By Proposition 2.5 we have that P
belongs to π(M)′.

If one identifies B(H̃) to Mn(B(H)) it is easy to see that π(M)′ = Mn(M′)
and π(M′′) ⊂ Mn(M′)′ (be aware that the prime symbols above are relative to
different operator spaces!).
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This means that π(B) belong to π(M′′) ⊂Mn(M′)′ = π(M)′′. In particular
B commutes with P ∈ π(M)′. This means that the space π(M)x is invariant
under π(B). In particular

π(B) (π(I)x) =

Bx1
...

Bxn


belongs to π(M)x. This means that there exists a A ∈M such that ||(B −A)xi||
is small for all i = 1, . . . n. Thus A belongs to M∩ V .

As immediate corollary we have a characterization of von Neumann algebras.

Corollary 2.7 [Bicommutant theorem] –Let M be a sub-∗-algebra of B(H) which
contains I. Then the following assertions are equivalent.

i) M is weakly (strongly) closed.
ii) M = M′′.
As I always belong to M′′, we have that a C∗-algebra M ⊂ B(H) is a von

Neumann algebra if and only if M = M′′.

2.3 Predual, normal states

Let M be a von Neumann algebra. Put M1 = {M ∈ M; ||M || ≤ 1}. It is
a weakly closed subset of the unit ball of B(H) which is weakly compact. Thus
M1 is weakly compact. Note that the weak topology and the σ-weak topology
coincide on M1 (exercise).

We denote by M∗ the space of weakly (σ-weakly) continuous linear forms on
M1. The space M∗ is called the predual of M, for a reason that will appear clear
in next proposition. If Ψ belongs to M∗ then Ψ(M1) is compact in C, thus Ψ is
norm continuous. Thus M∗ is a subspace of M∗ the topological dual of M.

Proposition 2.6 –
i) M∗ is closed in M∗, it is thus a Banach space.
ii) M is the dual of M∗.

Proof
i) Let (fn)n∈IN be a sequence in M∗ which converges to a f in M∗, that is

sup
||A||=1

|fn(A)− f(A)| −→n→∞ 0.

We want to show that f belongs to M∗, that is f is weakly continuous on M1.
Let (An)n∈IN be a sequence in M1 which converges weakly to A ∈M1. Then

|f(An)− f(A)| ≤ |f(An)− fm(An)|+ |fm(A)− f(A)|+ |fm(An)− fm(A)|
≤ 2 sup

||B||=1

|fm(B)− f(B)|+ |fm(An)− fm(A)|
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→n→∞ 2 sup
||B||=1

|fm(B)− f(B)|

→m→∞ 0.

This proves i).
ii) For a A ∈M we put

||A||du = sup
ω∈M∗;||ω||=1

|ω(A)|

the norm of A for the duality announced in the statement of ii). Clearly we have
||A||du ≤ ||A|| .

For x, y ∈ H we denote by ωx,y the linear form A 7→ <y , Ax> on B(H) and
ωx,y |M the restriction of ωx,y to M. We have

||A|| = sup
||x||=||y||=1

|<y , Ax>| ≤ sup
ω=ωx,y;||ω||=1

|ω(A)| ≤ ||A||du .

Thus M is indeed identified linearly and isometrically to a subspace of (M∗)
∗.

We just have to prove that this identification is onto.
Let φ be a continuous linear form on M∗. Let φ′(x, y) = φ(ωx,y |M). Then φ′

is a continuous sesquilinear form on H, it is thus of the form φ′(x, y) = <y , Ax>
for some A ∈ B(H).

If T ′ is a self-adjoint element of M′ then ωT ′x,y |M = ωx,T ′y |M and

<AT ′x , y > = <T ′Ax , y >

for all x, y ∈ H. Thus A belong to M′′ = M.
As ωx,y(A) = <y , Ax> = φ′(x, y) = φ(ωx,y |M) then the image of A in

(M∗)
∗ coincides with φ at least on the ωx,y. Now, it remains to show that this is

sufficient for A and φ to coincide everywhere. That is, we have to prove that an
element a of (M∗)

∗ which vanishes on all the ωx,y is null. But all the elements of
M∗ are linear forms ω of the form ω(A) = tr(ρA) for some trace class operator ρ.
As every trace class operator ρ writes as

ρ =
∑

n

λn |xn〉〈xn|

for some orthonormal basis (xn)n∈IN and some summable sequence (λn)n∈IN , we
have that

ω =
∑

n

λn ωxn,xn

where the series above is convergent in M∗. One concludes easily.

The two main examples of von Neumann algebra have well-known preduals.
Indeed, if M = B(H) then M∗ = T (H) the space of trace class operators.

If M = L∞(X,µ) then M∗ = L1(X,µ).

Theorem 2.7 [Sakai theorem] –A C∗-algebra is a von Neumann algebra if and
only if it is the dual of some Banach space.
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Admitted.

A state on a von Neumann algebra M is called normal if it is σ-weakly
continuous. The following characterization is now straightforward.

Theorem 2.8 –On a von Neumann algebra M, for a state ω on M, the following
assertions are equivalent.

i) The state ω is normal
ii) There exists a positive, trace class operator ρ on H such that trρ = 1 and

ω(A) = tr(ρA)

for all A ∈M.
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3. MODULAR THEORY OF VON NEUMANN ALGEBRAS

3.1 The modular operators

The starting point here is a couple (M, ω), where M is a von Neumann
algebra acting on some Hilbert space, ω is a normal faithful state on M. Recall
that ω is then of the form

ω(A) = Tr(ρA)
for a strictly positive ρ, with Trρ = 1.

Let us consider the G.N.S. representation of (M, ω). That is, a triple (H,Π,Ω)
such that

i) Π is a morphism from M to B(H).
ii) ω(A) = <Ω , Π(A)Ω>
iii) Π(M)Ω is dense in H.

From now on, we omit to mention the representation Π and identify M and
M′ with Π(M) and Π(M′). We thus write ω(A) = <Ω , AΩ>.

Proposition 3.1 –The vector Ω is cyclic and separating for M and M′.

Proof
Ω is cyclic for M by iii) above. Let us see that it is separating for M. If

A ∈M is such that AΩ = 0 then ω(A) = 0, but as ω is faithful this implies A = 0.
Let us now see that these properties of Ω on M imply the same ones on M′.

If A′ belongs to M′ and A′Ω = 0 then A′BΩ = BA′Ω = 0 for all B ∈ M. Thus
A′ vanishes on a dense subspace of H, it is thus the null operator. This proves
that Ω is separating for M′.

Finally, let P ′ be the orthogonal projector onto the space M′Ω. As it is the
projection onto a M′-invariant space, it belongs to (M′)′ = M. But PΩ = Ω and
thus (I − P )Ω = 0. As Ω is separating for M this implies I − P = 0 and Ω is
cyclic for M′.

As a consequence the (anti-linear) operators

S0 : MΩ −→ MΩ
AΩ 7−→ A∗Ω

F0 : M′Ω −→ M′Ω
BΩ 7−→ B∗Ω

are well-defined (by the separability of Ω) on dense domains.

Proposition 3.2 –The operators S0 and F0 are closable and F 0 = S∗0 , S0 = F ∗0 .
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Proof
For all A ∈M, B ∈M′ we have
<BΩ , S0AΩ> = <BΩ , A∗Ω> = <AΩ , B∗Ω> = <AΩ , F0BΩ>.

This proves that F0 ⊂ S∗0 and S0 ⊂ F ∗0 . The operators S0 and F0 are thus closable.
Let us show that F 0 = S∗0 . Actually it is sufficient to show that S∗0 ⊂ F 0.

Let x ∈ DomS∗0 and y = S∗0x. For any A ∈M we have
<AΩ , y > = <AΩ , S∗0x> = <x , S0AΩ> = <x , A∗Ω>.

If we define the operators Q0 and Q+
0 by

Q0 : AΩ 7−→ Ax
Q+

0 : AΩ 7−→ Ay

we then have
<BΩ , Q0AΩ> = <BΩ , Ax> = <A∗BΩ , x>

= <y , B∗AΩ> = <By , AΩ>
= <Q+

0 BΩ , AΩ>.
This proves that Q+

0 ⊂ Q∗0 and Q0 is closable. Let Q = Q0. Note that we have
Q0ABΩ = ABx = AQ0BΩ.

This proves that Q0A = AQ0 on DomQ0 and thus AQ ⊂ QA for all A ∈M. This
means that Q is affiliated to M′, that is, it fails from belonging to M′ only by the
fact it is an unbounded operator; but every bounded function of Q is thus in M′.
In particular, if Q = U |Q| is the polar decomposition of Q then U belongs to M′

and the spectral projections of |Q| also belong to M′.
Let En = 1l[0,n](|Q|). The operator Qn = UEn |Q| thus belongs to M′ and

QnΩ = UEn |Q|Ω = UEnU
∗U |Q|Ω

= UEnU
∗Q0Ω = UEnU

∗x.

Furthermore we have
Q∗nΩ = En |Q|U∗Ω = EnQ

+
0 Ω = Eny.

This way UEnU
∗x belongs to DomF0 and F0(UEnU

∗x) = Eny. But En tends to
I and UU∗ is the orthogonal projector onto RanQ, which contains x.

Finally, we have proved that x ∈ DomF 0 and F 0x = y = S∗0x. That is,
S∗0 ⊂ F 0.

The other case is treated similarly.

We now put S = S0 anf F = F 0.

Lemma 3.3 –We have
S = S−1.

Proof
Let z ∈ DomS∗. We have

<S0AΩ , S∗z > = <A∗Ω , S∗0z > = <z , S0A
∗Ω> = <z , AΩ>.
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Thus S∗z belongs to DomS∗0 = S∗ and (S∗)2z = z.

Let y ∈ DomS and z ∈ DomS∗, we have S∗z ∈ DomS∗ and

<S∗z , Sy > = <y , (S∗)2z > = <y , z >.

This means that Sy belongs to DomS∗∗ = DomS and S2y = S∗∗Sy = y.

We have proved that DomS2 = DomS and S2 = I on DomS.

We had proved in Proposition 3.2 that F = S∗. Thus the operators FS and
SF are (self-adjoint) positive. The operators F and S have their range equal to
their domain, they are invertible and equal to their inverse.

Let ∆ = FS = S∗S. Then ∆ is invertible, with inverse ∆−1 = SF = SS∗.
As S, ∆ and thus ∆1/2 have a dense range then the partial anti-isometry J

such that
S = J(S∗S)1/2

(modular decomposition of S) is an anti-isometry from H to H.
Furthermore

S = J∆1/2 = (SS∗)1/2J = ∆−1/2J.

Let x belong to DomS. Then

x = S2x = J∆1/2∆−1/2Jx = J2x

and thus J2 = I.

Note the following relations

S = J∆1/2

F = S∗ = ∆1/2J

∆−1 = J∆J.

The operator ∆ has a spectral measure (Eλ). Thus the operator ∆−1 = J∆J
has the spectral measure (JEλJ). Let f be a bounded Borel function, we have

<f(∆−1)x , x> =
∫
f(λ) d<JEλJx , x>

=
∫
f(λ) d<Jx , EλJx>

=
∫
f(λ) d<EλJx , Jx>

= <f(∆)Jx , Jx>
= <Jx , f(∆)Jx>
= <Jf(∆)Jx , x>.

This proves
f(∆−1) = Jf(∆)J.
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In particular

∆it = J∆itJ

∆itJ = J∆it.

Finally note that SΩ = FΩ = Ω and thus ∆Ω = FSΩ = Ω which finally gives

∆1/2Ω = Ω.

Let us now resume the situation we have already described.

Theorem 3.4 –There exists an anti-unitary operator J from H to H and an
(unbounded) invertible, positive operator ∆ such that

∆ = FS, ∆−1 = SF, J2 = I

S = J∆1/2 = ∆−1/2J

F = J∆−1/2 = ∆1/2J

J∆it = ∆−itJ

JΩ =∆Ω = Ω.

The operator ∆ is called the modular operator and J is the modular conjuga-
tion.

It is interesting to note the following. If the state ω were tracial, that is,
ω(AB) = ω(BA) for all A,B, we would have

||S0AΩ||2 = ||A∗Ω||2 = <A∗Ω , A∗Ω> = ω(AA∗) = ω(A∗A) = ||AΩ||2.
Thus S0 would be an isometry and thus

S =J = F

∆ = I.

3.2 The modular group

Let A,B,C ∈M. We have

SASBCΩ = SAC∗B∗Ω = BCA∗Ω = BSAC∗Ω = BSASCΩ.

This proves that B and SAS commute. Thus SAS is affiliated to M′.

Let us assume for a moment that ∆ is bounded. In that case the operators
∆−1 = J∆J , S and F are also bounded.

We have seen that

SMS ⊂M′

FM′F ⊂M.

This way we have

∆M∆−1 = ∆1/2JJ∆1/2M∆−1/2JJ∆−1/2

= FSMSF ⊂ FM′F ⊂M.
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We also have
∆nM∆−n ⊂M

for all n ∈ IN.
For any A ∈M, A′ ∈M′, the function

f(z) = ||∆||−2z
<φ , [∆zA∆−z, A′]ψ>

is analytic on C. It vanishes for z = 0, 1, 2, ...
As
∣∣∣∣∆−1

∣∣∣∣ ||J∆J || = ||∆|| we have

|f(z)| = O
(
||∆||−2<z (||∆|||<z|)2

)
= O(1)

when <z > 0.
By Carlson’s theorem we have f(z) = 0 for all z ∈ C. Thus

∆zM∆−z ⊂M′′ = M
for all z ∈ C. But

M = ∆z(∆−zM∆z)∆−z ⊂ ∆zM∆−z

and finally
∆zM∆−z = M.

Furthermore

JMJ = J∆1/2M∆−1/2J = SMS ⊂M′

JM′J = J∆−1/2M∆1/2J = FMF ⊂M.

We have proved
JMJ = M′.

The results we have obtained here are fundamental and extend to the case
when ∆ is unbounded. This is what the following theorem says. We do not prove
it as it implies pages of difficult analytic considerations. We hope that the above
computations make it credible.

Theorem 3.5 [Tomita-Takesaki’s theorem] – In any case we have

JMJ = M′

∆itM∆−it = M.

Put
σt(A) = ∆itA∆−it.

This defines a one parameter group of automorphisms of M.

Proposition 3.6 –We have, for all A,B ∈M
ω(Aσt(B)) = ω(σt+i(B)A). (1)
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Proof

<Ω , A∆itB∆−itΩ> = <∆−itA∗Ω , BΩ>
= <∆−it−1/2A∗Ω , ∆1/2BΩ>
= <∆−it−1∆1/2A∗Ω , ∆1/2BΩ>
= <J∆−it+1J∆1/2A∗Ω , ∆1/2BΩ>
= <J∆1/2BΩ , ∆−it+1J∆1/2A∗Ω>
= <B∗Ω , ∆−it+1AΩ>
= <Ω , B∆−i(t+i)AΩ>
= <Ω , ∆i(t+i)B∆−i(t+i)AΩ>
= ω(σt+i(B)A).

It is interesting to relate the above equality with the following result.

Proposition 3.7 –Let ω be a state of the form

ω(A) = Tr(ρA)

on B(K) for some trace-class positive ρ with Trρ = 1. Let (σt) be the following
group of automorphisms of B(K):

σt(A) = eitHAe−itH

for some self-adjoint operator H on K. Then the following assertions are equiva-
lent.

i) For all A,B ∈ B(K), all t ∈ IR and a fixed β ∈ IR we have

ω(Aσt(B)) = ω(σt−βi(B)A).

ii) ρ is given by

ρ =
1
Z
e−βH ,

where Z = Tr(exp(−βH)).

Proof
ii) implies i): We compute directly

ω(Aσt(B)) =
1
Z

Tr(e−βHAeitHBe−itH)

=
1
Z

Tr(AeitHBe(−it−β)H)

=
1
Z

Tr(Ae−βHe(it+β)HBe(−it−β)H)

=
1
Z

Tr(e−βHe(it+β)HBe(−it−β)HA)

= ω(σt−βi(B)A).
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i) implies ii): We have

Tr(ABρ) = Tr(ρAB) = ω(AB)
= ω(σ−βi(B)A) = Tr(ρeβHBe−βHA) = Tr(AρeβHBe−βH).

As this is valid for any A we conclude that

Bρ = ρeβHBe−βH

for all B. This means
B
(
ρeβH

)
=
(
ρeβH

)
B.

As this is valid for all B we conclude that ρ exp(βH) is a multiple of the identity.
This gives ii).

Another very interesting result to add to Proposition 3.6 is that the modular
group is the only one to perform the relation (1).

Theorem 3.8 –σ· is the only automorphism group to satisfy (1) on M for the
given state ω.

Proof
Let τ. be another automorphism group on M which satisfies (1). Define the

operators Ut by
UtAΩ = τt(A)Ω.

Then Ut is unitary for

||UtAΩ||2 = <τt(A)Ω , τt(A)Ω> = <Ω , τt(A∗A)Ω>
= ω(τt(A∗A)) = ω(τt+i(I)A∗A)

= ω(A∗A) = ||AΩ||2.
The family U· is clearly a group, it is thus of the form Ut = exp itM for a self-
adjoint operator M .

Note that UtΩ = Ω and thus MΩ = 0.
Let A,B be entire elements for τ·, then the relation ω(τi(B)A) = ω(AB)

implies

<B∗Ω , ∆AΩ> = <∆1/2B∗Ω , JJ∆1/2AΩ>
= <A∗Ω , BΩ>
= ω(AB)
= ω(τi(B)A)
= <Ω , e−MBeMAΩ>
= <B∗Ω , eMAΩ>.

This means
∆ = eM

and τ = σ.
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3.3 Self-dual cone and standard form

We put
P = {AJAJΩ;A ∈M}.

Proposition 3.9 –
i) P = ∆1/4M+Ω = ∆−1/4M′

+Ω and thus P is a convex cone.
ii) ∆itP = P for all t.
iii) If f is of positive type then f(log ∆)P ⊂ P.
iv) If ξ ∈ P then Jξ = ξ.
v) If A ∈M then AJAJP ⊂ P.

Proof
i) Let M0 be the ∗-algebra of elements of M which are entire for the modular

group σ· (that is, t 7→ σt(A) admits an analytic extension). We shall admit here
that M0 is σ-weakly dense in M.

For every A ∈M0 we have
∆1/4AA∗Ω = σ−i/4(A)σi/4(A)∗Ω

= σ−i/4(A)J∆1/2σi/4(A)Ω
= σ−i/4(A)Jσ−i/4(A)JΩ
= BJBJΩ

where B = σ−i/4(A). By σ−i/4(M0) = M0 and by the density of M0 in M we
have

BJBJΩ ∈ ∆1/4M+Ω ⊂ ∆1/4M+Ω
for all B ∈M. Thus

P ⊂ ∆1/4M+Ω ⊂ ∆1/4M+Ω.
Conversely, M+

0 Ω is dense in M+Ω. Let ψ ∈ M+Ω. There exists a sequence
(An) ⊂ M+

0 such that AnΩ → ψ. We know by the above that ∆1/4AnΩ belongs
to P. But

J∆1/2AnΩ = AnΩ → ψ = J∆1/2ψ

and thus ∣∣∣∣∣∣∆1/4(ψ −AnΩ)
∣∣∣∣∣∣2 = <ψ −AnΩ , ∆1/2(ψ −AnΩ)>→ 0.

Thus ∆1/4ψ belongs to P and ∆1/4M+Ω ⊂ P.
This proves the first equality of i). The second one is treated exactly in the

same way.
ii) We have

∆it∆1/4M+Ω = ∆1/4∆itM+Ω = ∆1/4σt(M+)Ω = ∆1/4M+Ω.

iii) If f is of positive type then f is the Fourier transform of some positive,
finite, Borel measure µ on IR. In particular

f(log ∆) =
∫

∆it dµ(t).
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One concludes with ii) now.
iv) JAJAJΩ = JAJAΩ = AJAJΩ.
v) AJAJBJBJΩ = ABJAJJBJΩ = ABJABJΩ.

Theorem 3.10 –
i) P is self-dual, that is P = P∨ where

P∨ = {x ∈ H;<y , x> ≥ 0,∀y ∈ P}.

ii) P is pointed, that is,

P ∩ (−P) = {0}.

iii) If Jξ = ξ then ξ admits a unique decomposition as ξ = ξ1 − ξ2 with
ξ1, ξ2 ∈ P and ξ1 orthogonal to ξ2.

iv) The linear span of P is the whole of H.

Proof
i) If A ∈M+ and A′ ∈M′

+ then

<∆1/4AΩ , ∆−1/4A′Ω> = <AΩ , A′Ω> = <Ω , A1/2A′A1/2Ω> ≥ 0.

Thus P is included in P∨.
Conversely, if ξ ∈ P∨, that is <ξ , ν > ≥ 0 for all ν ∈ P, we put

ξn = fn(log ∆)ξ

where fn(x) = exp(−x2/2n2). Then ξn belongs to ∩α∈C Dom ∆α and ξn converges
to ξ. We know that fn(log ∆)ν belongs to P and thus

<ξn , ν > = <ξ , fn(log ∆)ν > ≥ 0.

Let A ∈M+ then ∆1/4AΩ belongs to P and

<∆1/4ξn , AΩ> = <ξn , ∆1/4AΩ> ≥ 0.

Thus ∆1/4ξn belongs to M+Ω
∨

which coincides with M′
+Ω (admitted). This

finally gives that ξn belongs to ∆−1/4M′
+Ω ⊂ P. This proves i).

ii) If ξ ∈ P ∩ (−P) = P ∩ (−P∨) then <ξ , −ξ > ≥ 0 and ξ = 0.
iii) If Jξ = ξ then, as P is convex and closed, there exists a unique ξ1 ∈ P

such that
||ξ − ξ1|| = inf{||ξ − ν|| ; ν ∈ P}.

We put ξ2 = ξ1 − ξ. Let ν ∈ P and λ > 0. Then ξ1 + λν belongs to P and

||ξ − ξ1||2 ≤ ||ξ1 + λν − ξ||2.

That is ||ξ2||2 ≤ ||ξ2 + λν||2, or else λ2||ν||2 +2λ<<ξ2 , ν > ≥ 0. This implies that
<<ξ2 , ν > is positive. But as Jξ2 = ξ2 and Jν = ν then

<ξ2 , ν > = <Jξ2 , Jν > = <ξ2 , ν >.

That is <ξ2 , ν > ≥ 0 and ξ2 ∈ P∨ = P.
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iv) If ξ is orthogonal to the linear span of P then ξ belongs to P∨ = P. thus
<ξ , ξ > = 0 and ξ = 0.

Theorem 3.11 [Universality] –
1) If ξ ∈ P then ξ is cyclic for M if and only if it is separating for M.
2) If ξ ∈ P is cyclic for M then Jξ,Pξ associated to (M, ξ) satisfy

Jξ = J and Pξ = P.

Proof
1) If ξ is cyclic for M then Jξ is cyclic for M′ = JMJ and thus ξ = Jξ is

separating for M. And conversely.
2) Define as before (the closed version of)

Sξ : Aξ 7−→ A∗ξ
Fξ : A′ξ 7−→ A′∗ξ.

We have

JFξJAξ = JFξJAJξ

= J(JAJ)∗ξ
= A∗ξ

= SξAξ.

This proves that Sξ ⊂ JFξJ . By a symmetric argument Fξ ⊂ JSξJ and thus
JSξ = FξJ .

Note that
(JSξ)∗ = S∗ξJ = FξJ = JSξ.

This means that JSξ is self-adjoint. Let us prove that it is positive. We have

<Aξ , JSξAξ > = <Aξ , JA∗ξ > = <ξ , A∗JA∗ξ >

which is a positive quantity for ξ and A∗JA∗J belong to P. This proves the
positivity of JSξ.

We have
Sξ = Jξ∆

1/2
ξ = J(JSξ).

By uniqueness of the polar decomposition we must have J = Jξ.
Finally, we have that Pξ is generated by the AJξAJξξ = AJAJξ. But as

ξ belongs to P we have that AJAJξ belongs to P and thus Pξ ⊂ P. Finally,
P = P∨ ⊂ P∨ξ = Pξ and P = Pξ.

The following theorem is very usefull and powerfull, but its proof is very long,
tedious and cannot be resumed, thus we prefer not enter into it and give the result
as it is (cf [B-R], p. 108-117).

For every ξ ∈ P one can define a particular normal positive form

ωξ(A) = <ξ , Aξ >
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on M. That is, ξ ∈M∗+.

Theorem 3.12 –
1) For every ω ∈M∗+ there exists a unique ξ ∈ P such that

ω = ωξ.

2) The mapping ξ 7−→ ωξ is an homeomorphism and

||ξ − ν||2 ≤ ||ωξ − ων ||2 ≤ ||ξ − ν|| ||ξ + ν|| .

We denote by ω 7−→ ξ(ω) the inverse mapping of ξ 7−→ ωξ.

Corollary 3.13 –There exists a unique unitary representation

α ∈ Aut(M) 7−→ Uα

of the group of ∗-automorphisms of M on H, such that
i) UαAU

∗
α = α(A), for all A ∈M,

ii) UαP ⊂ P and, moreover,

Uαξ(ω) = ξ(α−1∗(ω))

for all ω ∈M∗+ and where (α∗ω)(A) = ω(α(A)).
iii) [Uα, J ] = 0.

Proof
Let α ∈ Aut(M). Let ξ ∈ P be the representant of the state

A 7−→ <Ω , α−1(A)Ω>.

That is,
<ξ , Aξ > = <Ω , α−1(A)Ω>.

In particular ξ is separating for M and hence cyclic. Define the operator

UAΩ = α(A)ξ.

We have

||UAΩ||2 = <ξ , α(A∗A)ξ > = <Ω , A∗AΩ> = ||AΩ||2.
Thus U is unitary. In particular

U∗Aξ = α−1(A)Ω.

Now, for A,B ∈M we have

UAU∗Bξ = UAα−1(B)Ω = α(Aα−1(B))ξ = α(A)Bξ

and
α(A) = UAU∗.

We have proved the existence of the unitary representation.

35



Note that

SU∗Aξ = Sα−1(A)Ω
= α−1(A)∗Ω
= α−1(A∗)Ω
= U∗A∗ξ

= U∗SξAξ.

Hence by closure
J∆1/2U∗ = U∗Jξ∆

1/2
ξ = U∗J∆1/2

ξ .

That is
UJU∗U∆1/2U∗ = J∆1/2

ξ .

By uniqueness of the polar decomposition we must have UJU∗ = J . This gives
iii).

For A ∈M we have

UAJAJΩ = α(A)Jα(A)Jξ.

Since ξ belongs to P we deduce

UP = P.
If φ ∈M∗+ we have

<Uξ(φ) , AUξ(φ)> = <ξ(φ) , U∗AUξ(φ)>
= <ξ(φ) , α−1(A)ξ(φ)>
= φ(α−1(A))
= (α−1∗(φ))(A)
= <ξ(α−1∗(φ)) , Aξ(α−1∗(φ))>.

By uniqueness of the representing vector in P
U(α)ξ(φ) = ξ(α−1∗(φ)).

This gives ii) and also the uniqueness of the unitary representation.
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