Statistical properties of Pauli matrices going through noisy channels

Stéphane Attal and Nadine Guillotin-Plantard *

December 10, 2007

Abstract

We study the statistical properties of the triplet $\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$ of Pauli matrices going through a sequence of noisy channels, modeled by the repetition of a general, trace-preserving, completely positive map. We show a non-commutative central limit theorem for the distribution of this triplet, which shows up a 3 -dimensional Brownian motion in the limit with a non-trivial covariance matrix. We also prove a large deviation principle associated to this convergence, with an explicit rate function depending on the stationary state of the noisy channel.

1 Introduction

In quantum information theory one of the most important question is to understand and to control the way a quantum bit is modified when transmitted through a quantum channel. It is well-known that realistic transmission channels are not perfect and that they distort the quantum bit they transmit. This transformation of the quantum state is represented by the action of a completely positive map. These are the so-called noisy channels.

The purpose of this article is to study the action of the repetition of a general completely positive map on basic observables. Physically, this model can be thought of as the sequence of transformations of small identical

[^0]pieces of noisy channels on a qubit. It can also be thought of as a discrete approximation of the more realistic model of a quantum bit going through a semigroup of completely positive maps (a Lindblad semigroup).

As basic observables, we consider the triplet ($\sigma_{x}, \sigma_{y}, \sigma_{z}$) of Pauli matrices. Under the repeated action of the completely positive map, they behave as a 3 -dimensional quantum random walk. The aim of this article is to study the statistical properties of this quantum random walk.

Indeed, for any initial density matrix $\rho_{i n}$, we study the statistical properties of the empirical average of the Pauli matrices in the successive states $\Phi^{n}\left(\rho_{i n}\right), n \geq 0$ where Φ is some completely positive and trace-preserving map describing our quantum channel. Quantum Bernoulli random walks studied by Biane in [1] corresponds to the case where Φ is the identity map. Biane [1] proved an invariance principle for this quantum random walk when $\rho_{i n}=\frac{1}{2} I$.

This article is organized as follows. In section two we describe the physical and mathematical setup. In section three we establish a functional central limit theorem for the empirical average of the quantum random walk associated to the Pauli matrices generalizing Biane's result [1]. This central limit theorem involves a 3-dimensional Brownian motion in the limit, whose covariance matrix is non-trivial and depends explicitly on the stationary state of the noisy channel. In section four, we apply our central limit theorem to some explicit cases, in particular to the King-Ruskai-Szarek-Werner representation of completely positive and trace-preserving maps in $M_{2}(\mathbb{C})$. This allows us to compute the limit Brownian motion for the most well-know quantum channels: the depolarizing channel, the phase-damping channel, the amplitude-damping channel. Finally, in the last section, a large deviation principle for the empirical average is proved.

2 Model and notations

Let $M_{2}(\mathbb{C})$ be the set of 2×2 matrices with complex coefficients. The set of 2×2 self-adjoint matrices forms a four dimensional real vector subspace of $M_{2}(\mathbb{C})$. A convenient basis \mathcal{B} is given by the following matrices

$$
I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -\mathrm{i} \\
\mathrm{i} & 0
\end{array}\right) \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

where $\sigma_{x}, \sigma_{y}, \sigma_{z}$ are the traditional Pauli matrices, they satisfy the commutation relations: $\left[\sigma_{x}, \sigma_{y}\right]=2 i \sigma_{z}$, and those obtained by cyclic permutations
of $\sigma_{x}, \sigma_{y}, \sigma_{z}$. A state on $M_{2}(\mathbb{C})$ is given by a density matrix (i.e. a positive semi-definite matrix with trace one) which we will suppose to be of the form

$$
\rho=\left(\begin{array}{ll}
\alpha & \beta \\
\bar{\beta} & 1-\alpha
\end{array}\right)
$$

where $0 \leq \alpha \leq 1$ and $|\beta|^{2} \leq \alpha(1-\alpha)$. The noise coming from interactions between the qubit states and the environment is represented by the action of a completely positive and trace-preserving map $\Phi: M_{2}(\mathbb{C}) \rightarrow M_{2}(\mathbb{C})$.

Let $M_{1}, M_{2}, \ldots, M_{k}, \ldots$ be infinitely many copies of $M_{2}(\mathbb{C})$. For each given state ρ, we consider the algebra

$$
\mathcal{M}_{\rho}=M_{1} \otimes M_{2} \otimes \ldots \otimes M_{k} \otimes \ldots
$$

where the product is taken in the sense of W^{*}-algebra with respect to the product state

$$
\omega=\rho \otimes \Phi(\rho) \otimes \Phi^{2}(\rho) \otimes \ldots \otimes \Phi^{k}(\rho) \otimes \ldots
$$

Our main hypothesis is the following. We assume that for any state ρ, the sequance $\Phi^{n}(\rho)$ converges to a stationary state ρ_{∞}, which we write as

$$
\rho_{\infty}=\left(\begin{array}{cc}
\alpha_{\infty} & \beta_{\infty} \\
\bar{\beta}_{\infty} & 1-\alpha_{\infty}
\end{array}\right)
$$

where $0 \leq \alpha_{\infty} \leq 1$ and $\left|\beta_{\infty}\right|^{2} \leq \alpha_{\infty}\left(1-\alpha_{\infty}\right)$.
Put

$$
v_{1}=2 \operatorname{Re}\left(\beta_{\infty}\right), v_{2}=-2 \operatorname{Im}\left(\beta_{\infty}\right), v_{3}=2 \alpha_{\infty}-1
$$

For every $k \geq 1$, we define

$$
\begin{aligned}
& x_{k}=I \otimes \ldots \otimes I \otimes\left(\sigma_{x}-v_{1} I\right) \otimes I \otimes \ldots \\
& y_{k}=I \otimes \ldots \otimes I \otimes\left(\sigma_{y}-v_{2} I\right) \otimes I \otimes \ldots \\
& z_{k}=I \otimes \ldots \otimes I \otimes\left(\sigma_{z}-v_{3} I\right) \otimes I \otimes \ldots
\end{aligned}
$$

where each $(\sigma .-v . I)$ appears on the $k^{\text {th }}$ place.
For every $n \geq 1$, put

$$
X_{n}=\sum_{k=1}^{n} x_{k}, Y_{n}=\sum_{k=1}^{n} y_{k}, Z_{n}=\sum_{k=1}^{n} z_{k}
$$

with initial conditions

$$
X_{0}=Y_{0}=Z_{0}=0 .
$$

The integer part of a real t is denoted by $[t]$. To each process we associate a continuous time normalized process denoted by

$$
X_{t}^{(n)}=n^{-1 / 2} X_{[n t]}, Y_{t}^{(n)}=n^{-1 / 2} Y_{[n t]}, Z_{t}^{(n)}=n^{-1 / 2} Z_{[n t]} .
$$

3 A central limit theorem

The aim of our article is to study the asymptotical properties of the quantum process $\left(X_{t}^{(n)}, Y_{t}^{(n)}, Z_{t}^{(n)}\right)$ when n goes to infinity. This process being truly non-commutative, there is no hope to obtain an asymptotic behaviour in the classical sense.

For any polynomial $P=P\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ of m variables, we denote by \widehat{P} the totally symmetrized polynomial of P obtained by symmetrizing each monomial in the following way:

$$
X_{i_{1}} X_{i_{2}} \ldots X_{i_{k}} \longrightarrow \frac{1}{k!} \sum_{\sigma \in S_{k}} X_{i_{\sigma(1)}} \ldots X_{i_{\sigma(k)}}
$$

where S_{k} is the group of permutations of $\{1, \ldots, k\}$.
Theorem 3.1. Assume that

$$
\begin{equation*}
\Phi^{n}(\rho)=\rho_{\infty}+o\left(\frac{1}{\sqrt{n}}\right) . \tag{A}
\end{equation*}
$$

Then, for any polynomial P of $3 m$ variables, for any $\left(t_{1}, \ldots, t_{m}\right)$ such that $0 \leq t_{1}<t_{2}<\ldots<t_{m}$, the following convergence holds:

$$
\begin{aligned}
& \lim _{n \rightarrow+\infty} w\left[\widehat{P}\left(X_{t_{1}}^{(n)}, Y_{t_{1}}^{(n)}, Z_{t_{1}}^{(n)}, \ldots, X_{t_{m}}^{(n)}, Y_{t_{m}}^{(n)}, Z_{t_{m}}^{(n)}\right)\right] \\
& \quad=\mathbb{E}\left[P\left(B_{t_{1}}^{(1)}, B_{t_{1}}^{(2)}, B_{t_{1}}^{(3)}, \ldots, B_{t_{m}}^{(1)}, B_{t_{m}}^{(2)}, B_{t_{m}}^{(3)}\right)\right]
\end{aligned}
$$

where $\left(B_{t}^{(1)}, B_{t}^{(2)}, B_{t}^{(3)}\right)_{t \geq 0}$ is a three-dimensional centered Brownian motion with covariance matrix $C t$, where

$$
C=\left(\begin{array}{ccc}
1-v_{1}^{2} & -v_{1} v_{2} & -v_{1} v_{3} \\
-v_{1} v_{2} & 1-v_{2}^{2} & -v_{2} v_{3} \\
-v_{1} v_{3} & -v_{2} v_{3} & 1-v_{3}^{2}
\end{array}\right) .
$$

Remark :

Theorem 3.1 has to be compared with the quantum central limit theorem obtained in [5] and [9]. In our case, the state under which the convergence holds does not need to be an infinite tensor product of states. We also give here a functional version of the central limit theorem. Finally, in [5] (see Remark 3 p.131), the limit is described as a so-called quasi-free state in quantum mechanics. We prove in Theorem 3.1 that the limit is real Gaussian for the class of totally symmetrized polynomials.

Proof:

Let $m \geq 1$ and $\left(t_{0}, t_{1}, \ldots, t_{m}\right)$ such that $t_{0}=0<t_{1}<t_{2}<\ldots<$ t_{m}. The polynomial $P\left(X_{t_{1}}^{(n)}, Y_{t_{1}}^{(n)}, Z_{t_{1}}^{(n)}, \ldots, X_{t_{m}}^{(n)}, Y_{t_{m}}^{(n)}, Z_{t_{m}}^{(n)}\right)$ can be rewritten as a polynomial function Q of the increments: $X_{t_{1}}^{(n)}, Y_{t_{1}}^{(n)}, Z_{t_{1}}^{(n)}, X_{t_{2}}^{(n)}-$ $X_{t_{1}}^{(n)}, Y_{t_{2}}^{(n)}-Y_{t_{1}}^{(n)}, Z_{t_{2}}^{(n)}-Z_{t_{1}}^{(n)}, \ldots, X_{t_{m}}^{(n)}-X_{t_{m-1}}^{(n)}, Y_{t_{m}}^{(n)}-Y_{t_{m-1}}^{(n)}, Z_{t_{m}}^{(n)}-Z_{t_{m-1}}^{(n)}$. A monomial of Q is a product of the form $A_{i_{1}} \ldots A_{i_{k}}$ for some distinct i_{1}, \ldots, i_{k} in $\{1, \ldots, m\}$ where A_{i} is a product depending only on the increments $X_{t_{i}}^{(n)}-X_{t_{i-1}}^{(n)}, Y_{t_{i}}^{(n)}-Y_{t_{i-1}}^{(n)}, Z_{t_{i}}^{(n)}-Z_{t_{i-1}}^{(n)}$. Since the A_{i} 's are commuting variables, the totally symmetrized polynomial of the monomial $A_{i_{1}} \ldots A_{i_{k}}$ is equal to the product $\widehat{A_{i_{1}}} \ldots \widehat{A_{i_{k}}}$. Consequently, it is enough to prove the theorem for any polynomial A_{i}.
Let $i \geq 1$ fixed, for every $\nu_{1}, \nu_{2}, \nu_{3} \in \mathbb{R}$, we begin by determining the asymptotic distribution of the linear combination

$$
\begin{equation*}
\left(\nu_{1}^{2}+\nu_{2}^{2}+\nu_{3}^{2}\right)^{-1 / 2}\left(\nu_{1}\left(X_{t_{i}}^{(n)}-X_{t_{i-1}}^{(n)}\right)+\nu_{2}\left(Y_{t_{i}}^{(n)}-Y_{t_{i-1}}^{(n)}\right)+\nu_{3}\left(Z_{t_{i}}^{(n)}-Z_{t_{i-1}}^{(n)}\right)\right) \tag{1}
\end{equation*}
$$

which can be rewritten as

$$
\frac{1}{\sqrt{n}} \sum_{k=\left[n t_{i-1}\right]+1}^{\left[n t_{i}\right]}\left(\frac{\nu_{1} x_{k}+\nu_{2} y_{k}+\nu_{3} z_{k}}{\sqrt{\nu_{1}^{2}+\nu_{2}^{2}+\nu_{3}^{2}}}\right) .
$$

Consider the matrix

$$
\begin{aligned}
A & =\frac{1}{\sqrt{\nu_{1}^{2}+\nu_{2}^{2}+\nu_{3}^{2}}}\left(\nu_{1}\left(\sigma_{x}-v_{1} I\right)+\nu_{2}\left(\sigma_{y}-v_{2} I\right)+\nu_{3}\left(\sigma_{z}-v_{3} I\right)\right) \\
& =\frac{1}{\sqrt{\nu_{1}^{2}+\nu_{2}^{2}+\nu_{3}^{2}}}\left(\begin{array}{cc}
-\nu_{1} v_{1}-\nu_{2} v_{2}+\nu_{3}\left(1-v_{3}\right) & \nu_{1}-i \nu_{2} \\
\nu_{1}+i \nu_{2} & -\nu_{1} v_{1}-\nu_{2} v_{2}-\nu_{3}\left(1+v_{3}\right)
\end{array}\right)
\end{aligned}
$$

which we denote by

$$
\left(\begin{array}{ll}
a_{1} & a_{3} \\
\bar{a}_{3} & a_{2}
\end{array}\right)
$$

$a_{1}, a_{2} \in \mathbb{R}, a_{3} \in \mathbb{C}$.
From assumption (A) we can write, for every $n \geq 0$

$$
\Phi^{n}(\rho)=\left(\begin{array}{ll}
\alpha_{\infty}+\phi_{n}(1) & \beta_{\infty}+\phi_{n}(2) \\
\bar{\beta}_{\infty}+\phi_{n}(3) & 1-\alpha_{\infty}+\phi_{n}(4)
\end{array}\right)
$$

where each sequence $\left(\phi_{n}(i)\right)_{n}$ satisfies: $\phi_{n}(i)=o(1 / \sqrt{n})$.
Let $k \geq 1$, the expectation and the variance of A in the state $\Phi^{k}(\rho)$ are respectively equal to

$$
\operatorname{Trace}\left(A \Phi^{k}(\rho)\right)
$$

and

$$
\operatorname{Trace}\left(A^{2} \Phi^{k}(\rho)\right)-\operatorname{Trace}\left(A \Phi^{k}(\rho)\right)^{2}
$$

If both following conditions are satisfied:

$$
\begin{equation*}
\sum_{k=\left[n t_{i-1}\right]+1}^{\left[n t_{i}\right]} \operatorname{Trace}\left(A \Phi^{k}(\rho)\right)=o(\sqrt{n}) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{1}{n} \sum_{k=\left[n t_{i-1}\right]+1}^{\left[n t_{i}\right]}\left[\operatorname{Trace}\left(A^{2} \Phi^{k}(\rho)\right)-\operatorname{Trace}\left(A \Phi^{k}(\rho)\right)^{2}\right]=a\left(t_{i}-t_{i-1}\right) \tag{3}
\end{equation*}
$$

then (see Theorem 2.8.42 in [3]) the asymptotic distribution of (1) is the Normal distribution $\mathcal{N}\left(0, a\left(t_{i}-t_{i-1}\right)\right), a>0$.

Let us first prove (2). For every $k \geq 1$, a simple computation gives

$$
\operatorname{Trace}\left(A \Phi^{k}(\rho)\right)=\left[a_{1} \alpha_{\infty}+a_{3} \bar{\beta}_{\infty}+\bar{a}_{3} \beta_{\infty}+a_{2}\left(1-\alpha_{\infty}\right)+o(1 / \sqrt{n})\right]=o(1 / \sqrt{n})
$$

hence

$$
\sum_{k=\left[n t_{i-1}\right]+1}^{\left[n t_{i}\right]} \operatorname{Trace}\left(A \Phi^{k}(\rho)\right)=\sum_{k=\left[n t_{i-1}\right]+1}^{\left[n t_{i}\right]} o(1 / \sqrt{n})=o(\sqrt{n}) .
$$

This gives (2).
Let us prove (3). Note that the sequence $\left(\operatorname{Trace}\left(A \Phi^{n}(\rho)\right)\right)_{n}$ converges to 0 , as n tends to infinity. As a consequence, it is enough to prove that

$$
\frac{1}{n} \sum_{k=\left[n t_{i-1}\right]+1}^{\left[n t_{i}\right]} \operatorname{Trace}\left(A^{2} \Phi^{k}(\rho)\right)
$$

converges to a strictly positive constant. A straightforward computation gives

$$
\begin{aligned}
& \lim _{n \rightarrow+\infty} \frac{1}{n} \sum_{k=\left[n t_{i-1}\right]+1}^{\left[n t_{i}\right]} \operatorname{Trace}\left(A^{2} \Phi^{k}(\rho)\right) \\
= & a_{1}^{2} \alpha_{\infty}+a_{2}^{2}\left(1-\alpha_{\infty}\right)+\left|a_{3}\right|^{2}+\left(a_{1}+a_{2}\right)\left(a_{3} \bar{\beta}_{\infty}+\bar{a}_{3} \beta_{\infty}\right) \\
= & \frac{\left(t_{i}-t_{i-1}\right)}{\nu_{1}^{2}+\nu_{2}^{2}+\nu_{3}^{2}}\left[\nu_{1}^{2}\left(1-v_{1}^{2}\right)+\nu_{2}^{2}\left(1-v_{2}^{2}\right)+\nu_{3}^{2}\left(1-v_{3}^{2}\right)\right. \\
& \left.-2 \nu_{1} \nu_{2} v_{1} v_{2}-2 \nu_{1} \nu_{3} v_{1} v_{3}-2 \nu_{2} \nu_{3} v_{2} v_{3}\right] .
\end{aligned}
$$

This means that, for every $\nu_{1}, \nu_{2}, \nu_{3} \in \mathbb{R}$, for any $p \geq 1$, the expectation

$$
w\left[\left(\nu_{1}\left(X_{t_{i}}^{(n)}-X_{t_{i-1}}^{(n)}\right)+\nu_{2}\left(Y_{t_{i}}^{(n)}-Y_{t_{i-1}}^{(n)}\right)+\nu_{3}\left(Z_{t_{i}}^{(n)}-Z_{t_{i-1}}^{(n)}\right)\right)^{p}\right]
$$

converges to

$$
\mathbb{E}\left[\left(\nu_{1}\left(B_{t_{i}}^{(1)}-B_{t_{i-1}}^{(1)}\right)+\nu_{2}\left(B_{t_{i}}^{(2)}-B_{t_{i-1}}^{(2)}\right)+\nu_{3}\left(B_{t_{i}}^{(3)}-B_{t_{i-1}}^{(3)}\right)\right)^{p}\right],
$$

where $\left(B_{t}^{(1)}, B_{t}^{(2)}, B_{t}^{(3)}\right)$ is a 3-dimensional Brownian motion with the announced covariance matrix.

The polynomial

$$
\left(\nu_{1}\left(X_{t_{i}}^{(n)}-X_{t_{i-1}}^{(n)}\right)+\nu_{2}\left(Y_{t_{i}}^{(n)}-Y_{t_{i-1}}^{(n)}\right)+\nu_{3}\left(Z_{t_{i}}^{(n)}-Z_{t_{i-1}}^{(n)}\right)\right)^{p}
$$

can be developed as the sum

$$
\sum_{0 \leq p_{1}+p_{2} \leq p} \nu_{1}^{p_{1}} \nu_{2}^{p_{2}} \nu_{3}^{p-p_{1}-p_{2}} \sum_{\mathcal{P}} S_{1} S_{2} \ldots S_{p}
$$

where the summation in the last sum runs over all partitions $\mathcal{P}=\{A, B, C\}$ of $\{1, \ldots, p\}$ such that $|A|=p_{1},|B|=p_{2},|C|=p-p_{1}-p_{2}$, with the convention:

$$
S_{j}=\left\{\begin{array}{lll}
X_{t_{i}}^{(n)}-X_{t_{i-1}}^{(n)} & \text { if } & j \in A \\
Y_{t_{i}}^{(n)}-Y_{t_{i-1}}^{(n)} & \text { if } & j \in B \\
Z_{t_{i}}^{(n)}-Z_{t_{i-1}}^{(n)} & \text { if } & j \in C .
\end{array}\right.
$$

The expectation under w of the above expression converges to the corresponding expression involving the expectation ($\mathbb{E}[\cdot]$) of the Brownian motion $\left(B_{t}^{(1)}, B_{t}^{(2)}, B_{t}^{(3)}\right)$. As this holds for any $\nu_{1}, \nu_{2}, \nu_{3} \in \mathbb{R}$, we deduce that
$w\left[\sum_{\mathcal{P}} S_{1} S_{2} \ldots S_{p}\right]$ converges to the corresponding expectation for the Brownian motion.

We can conclude the proof by noticing that $\widehat{A_{i}}$ can be written, modulo multiplication by a constant, as $\sum_{\mathcal{P}} S_{1} S_{2} \ldots S_{p}$ for some p.

Let us discuss the class of polynomials for which Theorem 3.1 holds. In the particular case when the map Φ is the identity map and $\rho=1 / 2 I$ (in that case $v_{i}=0$ for $i=1,2,3$ and $C=I$), Biane [1] proved the convergence of the expectations in Theorem 3.1 for any polynomial in $3 m$ non-commuting variables. It is a natural question to ask whether our result holds for any polynomial P instead of \widehat{P}, or at least for a larger class.

Let us give an example of a polynomial for which the convergence in our setting does not hold. Take $P(X, Y)=X Y$. From Theorem 3.1, the expectation under the state ω of

$$
X_{t}^{(n)} Y_{t}^{(n)}+Y_{t}^{(n)} X_{t}^{(n)}
$$

converges as $n \rightarrow+\infty$ to $2 \mathbb{E}\left[B_{t}^{(1)} B_{t}^{(2)}\right]$.
Since we have the following commutation relations

$$
\left[\left(\sigma_{x}-v_{1} I\right),\left(\sigma_{y}-v_{2} I\right)\right]=2 i \sigma_{z}, \quad\left[\left(\sigma_{y}-v_{2} I\right),\left(\sigma_{z}-v_{3} I\right)\right]=2 i \sigma_{x}
$$

and

$$
\left[\left(\sigma_{z}-v_{3} I\right),\left(\sigma_{x}-v_{1} I\right)\right]=2 i \sigma_{y}
$$

we deduce that

$$
\left[X_{t}^{(n)}, Y_{t}^{(n)}\right]=2 i n^{-1 / 2} Z_{t}^{(n)}+2 i t v_{3} I, \quad\left[Y_{t}^{(n)}, Z_{t}^{(n)}\right]=2 i n^{-1 / 2} X_{t}^{(n)}+2 i t v_{1} I
$$

and

$$
\begin{equation*}
\left[Z_{t}^{(n)}, X_{t}^{(n)}\right]=2 i n^{-1 / 2} Y_{t}^{(n)}+2 i t v_{2} I . \tag{4}
\end{equation*}
$$

Then the expectation under the state ω of

$$
X_{t}^{(n)} Y_{t}^{(n)}=\frac{1}{2}\left[\widehat{P}(X, Y)+\left[X_{t}^{(n)}, Y_{t}^{(n)}\right]\right]
$$

converges to $\mathbb{E}\left[B_{t}^{(1)} B_{t}^{(2)}\right]+i t v_{3} \neq \mathbb{E}\left[B_{t}^{(1)} B_{t}^{(2)}\right]$, if v_{3} is non zero.

Furthermore, by considering the polynomial $P(X, Y)=X Y^{3}+Y^{3} X$, it is possible to show that the convergence in Theorem 3.1 can not be enlarged
to the class of symmetric polynomials. Straightforward computations gives that $P(X, Y)$ can be rewritten as
$\widehat{X Y^{3}}+\widehat{Y X^{3}}+\frac{3}{4}[X, Y]\left(Y^{2}-X^{2}\right)+\frac{1}{2}(Y[X, Y] Y-X[X, Y] X)+\frac{1}{4}\left(Y^{2}-X^{2}\right)[X, Y]$
so the expectation $w\left[P\left(X_{t}^{(n)}, Y_{t}^{(n)}\right)\right]$ converges as n tends to $+\infty$ to

$$
\mathbb{E}\left[P\left(B_{t}^{(1)}, B_{t}^{(2)}\right)\right]+3 i v_{3} t\left(v_{1}^{2}-v_{2}^{2}\right)
$$

which is not equal to $\mathbb{E}\left[P\left(B_{t}^{(1)}, B_{t}^{(2)}\right)\right]$ if $v_{3} \neq 0$ and $\left|v_{1}\right| \neq\left|v_{2}\right|$.
In the following corollary we give a condition under which the convergence in Theorem 3.1 holds for any polynomial in 3 m non-commuting variables.
Corollaire 3.1. In the case when ρ_{∞} is equal to $\frac{1}{2} I$, the convergence holds for any polynomial P in 3m non-commuting variables, i.e. for every $t_{1}<$ $t_{2}<\ldots<t_{m}$, the following convergence holds:

$$
\begin{aligned}
& \lim _{n \rightarrow+\infty} w\left[P\left(X_{t_{1}}^{(n)}, Y_{t_{1}}^{(n)}, Z_{t_{1}}^{(n)}, \ldots, X_{t_{m}}^{(n)}, Y_{t_{m}}^{(n)}, Z_{t_{m}}^{(n)}\right)\right] \\
& \quad=\mathbb{E}\left[P\left(B_{t_{1}}^{(1)}, B_{t_{1}}^{(2)}, B_{t_{1}}^{(3)}, \ldots, B_{t_{m}}^{(1)}, B_{t_{m}}^{(2)}, B_{t_{m}}^{(3)}\right)\right]
\end{aligned}
$$

where $\left(B_{t}^{(1)}, B_{t}^{(2)}, B_{t}^{(3)}\right)_{t \geq 0}$ is a three-dimensional centered Brownian motion with covariance matrix $t I_{3}$.
Proof:
We consider the polynomials of the form $S=\frac{1}{N} \sum_{\mathcal{P}} S_{1} S_{2} \ldots S_{p_{1}+p_{2}+p_{3}}$ where the summation is done over all partitions $\mathcal{P}=\{A, B, C\}$ of the set $\left\{1, \ldots, p_{1}+\right.$ $\left.p_{2}+p_{3}\right\}$ such that $|A|=p_{1},|B|=p_{2},|C|=p_{3}$, with the convention:

$$
S_{j}=\left\{\begin{array}{lll}
X_{t_{i}}^{(n)}-X_{t_{i-1}}^{(n)} & \text { if } & j \in A \\
Y_{t_{i}}^{(n)}-Y_{t_{i-1}}^{(n)} & \text { if } & j \in B \\
Z_{t_{i}}^{(n)}-Z_{t_{i-1}}^{(n)} & \text { if } & j \in C
\end{array}\right.
$$

and N is the number of terms in the sum.
From Theorem 3.1 the expectation under the state w of S converges to

$$
\mathbb{E}\left[\prod_{j=1}^{3}\left(B_{t_{i}}^{(j)}-B_{t_{i-1}}^{(j)}\right)^{p_{j}}\right] .
$$

Using the commutation relations (4) with the v_{i} 's being all equal to zero, monomials of S differ of each other by $n^{-1 / 2}$ times a polynomial of total degree less or equal to $\left(p_{1}+p_{2}+p_{3}\right)-1$. It is easy to conclude by induction.

4 Examples

4.1 King-Ruskai-Szarek-Werner's representation

The set of 2×2 self-adjoint matrices forms a four dimensional real vector subspace of $M_{2}(\mathbb{C})$. A convenient basis of this space is given by $\mathcal{B}=$ $\left\{I, \sigma_{x}, \sigma_{y}, \sigma_{z}\right\}$. Each state ρ on $M_{2}(\mathbb{C})$ can then be written as

$$
\rho=\frac{1}{2}\left(\begin{array}{ll}
1+z & x-i y \\
x+i y & 1-z
\end{array}\right)
$$

where x, y, z are reals such that $x^{2}+y^{2}+z^{2} \leq 1$. Equivalently, in the basis \mathcal{B},

$$
\rho=\frac{1}{2}\left(I+x \sigma_{x}+y \sigma_{y}+z \sigma_{z}\right)
$$

with x, y, z defined above. Thus, the set of density matrices can be identified with the unit ball in \mathbb{R}^{3}. The pure states, that is, the ones for which $x^{2}+$ $y^{2}+z^{2}=1$, constitutes the Bloch sphere.

The noise coming from interactions between the qubit states and the environment is represented by the action of a completely positive and tracepreserving map $\Phi: M_{2}(\mathbb{C}) \rightarrow M_{2}(\mathbb{C})$. Kraus and Choi $[2,7,8]$ gave an abstract representation of these particular maps in terms of Kraus operators: There exists at most four matrices L_{i} such that for any density matrix ρ,

$$
\Phi(\rho)=\sum_{1 \leq i \leq 4} L_{i}^{*} \rho L_{i}
$$

with $\sum_{i} L_{i} L_{i}^{*}=I$. The matrices L_{i} are usually called the Kraus operators of Φ. This representation is unique up to a unitary transformation. Recently, King, Ruskai et al $[10,6]$ obtained a precise characterization of completely positive and trace-preserving maps from $M_{2}(\mathbb{C})$ as follows. The map Φ : $M_{2}(\mathbb{C}) \rightarrow M_{2}(\mathbb{C})$ being linear and preserving the trace, it can be represented as a unique 4×4-matrix in the basis \mathcal{B} given by

$$
\left(\begin{array}{ll}
1 & 0 \\
\mathrm{t} & \mathrm{~T}
\end{array}\right)
$$

with $\mathbf{0}=(0,0,0), \mathbf{t} \in \mathbb{R}^{3}$ and \mathbf{T} a real 3×3-matrix. King, Ruskai et al $[10,6]$
proved that via changes of basis, this matrix can be reduced to

$$
T=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \tag{5}\\
t_{1} & \lambda_{1} & 0 & 0 \\
t_{2} & 0 & \lambda_{2} & 0 \\
t_{3} & 0 & 0 & \lambda_{3}
\end{array}\right)
$$

Necessary and sufficient conditions under which the map Φ with reduced matrix T for which $\left|t_{3}\right|+\left|\lambda_{3}\right| \leq 1$ is completely positive are (see [6])

$$
\begin{align*}
\left(\lambda_{1}+\lambda_{2}\right)^{2} & \leq\left(1+\lambda_{3}\right)^{2}-t_{3}^{2}-\left(t_{1}^{2}+t_{2}^{2}\right)\left(\frac{1+\lambda_{3} \pm t_{3}}{1-\lambda_{3} \pm t_{3}}\right) \leq\left(1+\lambda_{3}\right)^{2}-t_{3}^{2} \tag{6}\\
\left(\lambda_{1}-\lambda_{2}\right)^{2} & \leq\left(1-\lambda_{3}\right)^{2}-t_{3}^{2}-\left(t_{1}^{2}+t_{2}^{2}\right)\left(\frac{1-\lambda_{3} \pm t_{3}}{1+\lambda_{3} \pm t_{3}}\right) \leq\left(1-\lambda_{3}\right)^{2}-t_{3}^{2} \tag{7}\\
& {\left[1-\left(\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}\right)-\left(t_{1}^{2}+t_{2}^{2}+t_{3}^{2}\right)\right]^{2} } \\
& \geq 4\left[\lambda_{1}^{2}\left(t_{1}^{2}+\lambda_{2}^{2}\right)+\lambda_{2}^{2}\left(t_{2}^{2}+\lambda_{3}^{2}\right)+\lambda_{3}^{2}\left(t_{3}^{2}+\lambda_{1}^{2}\right)-2 \lambda_{1} \lambda_{2} \lambda_{3}\right] \tag{8}
\end{align*}
$$

We now apply Theorem 3.1 in this setting. Let Φ be a completely positive and trace preserving map with matrix T given in (5), with coefficients $t_{i}, \lambda_{i}, i=$ $1,2,3$ satisfying conditions (6), (7) and (8). Moreover, we assume that $\left|\lambda_{i}\right|<$ $1, i=1,2,3$. For every $n \geq 0$,

$$
\Phi^{n}(\rho)=\frac{1}{2}\left(\begin{array}{ll}
1+\phi_{n}(3) & \phi_{n}(1)-i \phi_{n}(2) \\
\phi_{n}(1)+i \phi_{n}(2) & 1-\phi_{n}(3)
\end{array}\right)
$$

where the sequences $\left(\phi_{n}(i)\right)_{n \geq 0}, i=1,2,3$ satisfy the induction relations:

$$
\phi_{n}(i)=\lambda_{i} \phi_{n-1}(i)+t_{i} .
$$

with initial conditions $\phi_{0}(1)=x, \phi_{0}(2)=y$ and $\phi_{0}(3)=z$. Explicit formulae can easily be obtained. We get, for every $n \geq 0$,

$$
\begin{aligned}
\phi_{n}(1) & =\left(x-\frac{t_{1}}{1-\lambda_{1}}\right) \lambda_{1}^{n}+\frac{t_{1}}{1-\lambda_{1}} \\
\phi_{n}(2) & =\left(y-\frac{t_{2}}{1-\lambda_{2}}\right) \lambda_{2}^{n}+\frac{t_{2}}{1-\lambda_{2}} \\
\phi_{n}(3) & =\left(z-\frac{t_{3}}{1-\lambda_{3}}\right) \lambda_{3}^{n}+\frac{t_{3}}{1-\lambda_{3}} .
\end{aligned}
$$

Hence, for any state ρ, for any $n \geq 1$,

$$
\Phi_{n}(\rho)=\rho_{\infty}+o\left(|\lambda|_{\max }^{n}\right)
$$

where $|\lambda|_{\max }=\max _{i=1,2,3}\left|\lambda_{i}\right|$ and

$$
\rho_{\infty}=\left(\begin{array}{cc}
\alpha_{\infty} & \beta_{\infty} \\
\bar{\beta}_{\infty} & 1-\alpha_{\infty}
\end{array}\right)
$$

with $\alpha_{\infty}=\frac{1}{2}\left(1+\frac{t_{3}}{1-\lambda_{3}}\right)$ and $\beta_{\infty}=\frac{1}{2}\left(\frac{t_{1}}{1-\lambda_{1}}-i \frac{t_{2}}{1-\lambda_{2}}\right)$. Theorem 3.1 applies with $v_{i}=\frac{t_{i}}{1-\lambda_{i}}, i=1,2,3$.

We now give some examples of well-known quantum channels. For each of them we give their Kraus operators, their corresponding matrix T in the King-Ruskai-Szarek-Werner's representation, as well as the vector $v=$ $\left(v_{1}, v_{2}, v_{3}\right)$ and the covariance matrix C obtained in Theorem 3.1. It is worth noticing that if Φ is a unital map, i.e. such that $\Phi(I)=I$, then the covariance matrix C is equal to the identity matrix I_{3}.

1. The depolarizing channel:

Kraus operators: for some $0 \leq p \leq 1$,

$$
L_{1}=\sqrt{1-p} I, L_{2}=\sqrt{\frac{p}{3}} \sigma_{x}, L_{3}=\sqrt{\frac{p}{3}} \sigma_{y}, L_{4}=\sqrt{\frac{p}{3}} \sigma_{z} .
$$

King-Ruskai-Szarek-Werner's representation:

$$
T=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1-\frac{4 p}{3} & 0 & 0 \\
0 & 0 & 1-\frac{4 p}{3} & 0 \\
0 & 0 & 0 & 1-\frac{4 p}{3}
\end{array}\right)
$$

The vector v is the null vector and the covariance matrix C in this case is given by the identity matrix I_{3}.
2. Phase-damping channel:

Kraus operators: for some $0 \leq p \leq 1$,

$$
L_{1}=\sqrt{1-p} I, L_{2}=\sqrt{p}\left(\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right), L_{3}=\sqrt{p}\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

King-Ruskai-Szarek-Werner's representation:

$$
T=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1-p & 0 & 0 \\
0 & 0 & 1-p & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

The vector v is the null vector and the covariance matrix C in this case is given by I_{3}.
3. Amplitude-damping channel:

Kraus operators: for some $0 \leq p \leq 1$,

$$
L_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & \sqrt{1-p}
\end{array}\right), L_{2}=\left(\begin{array}{ll}
0 & \sqrt{p} \\
0 & 0
\end{array}\right)
$$

King-Ruskai-Szarek-Werner's representation:

$$
T=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \sqrt{1-p} & 0 & 0 \\
0 & 0 & \sqrt{1-p} & 0 \\
t & 0 & 0 & 1-p
\end{array}\right)
$$

The vector v is equal to $(0,0,1)$. The covariance matrix in this case is given by

$$
C=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

4. Trigonometric parameterization:

Consider the particular Kraus operators

$$
L_{1}=\left[\cos \left(\frac{v}{2}\right) \cos \left(\frac{u}{2}\right)\right] I+\left[\sin \left(\frac{v}{2}\right) \sin \left(\frac{u}{2}\right)\right] \sigma_{z}
$$

and

$$
L_{2}=\left[\sin \left(\frac{v}{2}\right) \cos \left(\frac{u}{2}\right)\right] \sigma_{x}-i\left[\cos \left(\frac{v}{2}\right) \sin \left(\frac{u}{2}\right)\right] \sigma_{y} .
$$

King-Ruskai-Szarek-Werner's representation:

$$
T=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos u & 0 & 0 \\
0 & 0 & \cos v & 0 \\
\sin u \sin v & 0 & 0 & \cos u \cos v
\end{array}\right)
$$

The vector v is equal to $\left(0,0, \frac{\sin u \sin v}{1-\cos u \cos v}\right)$. The covariance matrix in this case is given by

$$
C=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1-v_{3}^{2}
\end{array}\right)
$$

with $v_{3}=\frac{\sin u \sin v}{1-\cos u \cos v}$.

4.2 CP map associated to a Markov chain

With every Markov chain with two states and transition matrix given by

$$
P=\left(\begin{array}{ll}
p & 1-p \\
q & 1-q
\end{array}\right), p, q \in(0,1)
$$

is associated a completely positive and trace preserving map, denoted by Φ, with the Kraus operators:

$$
L_{1}=\left(\begin{array}{cc}
\sqrt{p} & \sqrt{1-p} \\
0 & 0
\end{array}\right)=\frac{\sqrt{p}}{2}\left(I+\sigma_{z}\right)+\frac{\sqrt{1-p}}{2}\left(\sigma_{x}+i \sigma_{y}\right)
$$

and

$$
L_{2}=\left(\begin{array}{cc}
0 & 0 \\
\sqrt{q} & \sqrt{1-q}
\end{array}\right)=\frac{\sqrt{1-q}}{2}\left(I-\sigma_{z}\right)+\frac{\sqrt{q}}{2}\left(\sigma_{x}-i \sigma_{y}\right) .
$$

Let ρ be the density matrix

$$
\frac{1}{2}\left(\begin{array}{ll}
1+z & x-i y \\
x+i y & 1-z
\end{array}\right)
$$

where x, y, z are reals such that $x^{2}+y^{2}+z^{2} \leq 1$. The map Φ transforms the density matrix ρ into a new one given by

$$
\Phi(\rho)=L_{1}^{*} \rho L_{1}+L_{2}^{*} \rho L_{2} .
$$

By induction, for every $n \geq 0$,

$$
\Phi^{n}(\rho)=\left(\begin{array}{cc}
p_{n} & r_{n} \\
r_{n} & 1-p_{n}
\end{array}\right)
$$

where the sequences $\left(p_{n}\right)_{n \geq 0}$, and $\left(r_{n}\right)_{n \geq 0}$ satisfy the recurrence relations: for every $n \geq 1$,

$$
p_{n}=p_{n-1}(p-q)+q
$$

and

$$
r_{n}=\sqrt{q(1-q)}+p_{n-1}(\sqrt{p(1-p)}-\sqrt{q(1-q)})
$$

with the initial condition $p_{0}=(1+z) / 2$. Assumption (A) is then clearly satisfied with

$$
\rho_{\infty}=\frac{1}{1+q-p}\left(\begin{array}{ll}
q & \beta \\
\beta & 1-p
\end{array}\right)
$$

where $\beta=[q \sqrt{p(1-p)}+(1-p) \sqrt{q(1-q)}]$. Then, applying Theorem 3.1, if P is a polynomial of $3 m$ non-commuting variables, for every $0<t_{1}<t_{2}<$ $\ldots<t_{m}$, the following convergence holds

$$
\begin{aligned}
& \lim _{n \rightarrow+\infty} w\left[\widehat{P}\left(X_{t_{1}}^{(n)}, Y_{t_{1}}^{(n)}, Z_{t_{1}}^{(n)}, \ldots, X_{t_{m}}^{(n)}, Y_{t_{m}}^{(n)}, Z_{t_{m}}^{(n)}\right)\right] \\
& \quad=\mathbb{E}\left[P\left(B_{t_{1}}^{(1)}, B_{t_{1}}^{(2)}, B_{t_{1}}^{(3)}, \ldots, B_{t_{m}}^{(1)}, B_{t_{m}}^{(2)}, B_{t_{m}}^{(3)}\right)\right]
\end{aligned}
$$

where $\left(B_{t}^{(1)}, B_{t}^{(2)}, B_{t}^{(3)}\right)_{t \geq 0}$ is a three-dimensional centered Brownian motion with Covariance matrix $C t$ where

$$
C=\left(\begin{array}{ccc}
1-v_{1}^{2} & 0 & -v_{1} v_{2} \\
0 & 1 & 0 \\
-v_{1} v_{2} & 0 & 1-v_{2}^{2}
\end{array}\right)
$$

with

$$
v_{1}=\frac{2}{1+q-p}[q \sqrt{p(1-p)}+(1-p) \sqrt{q(1-q)}]
$$

and

$$
v_{2}=\frac{p+q-1}{1+q-p} .
$$

5 Large deviation principle

Let Γ be a Polish space endowed with the Borel σ-field $\mathcal{B}(\Gamma)$. A good rate function is a lower semi-continuous function $\Lambda^{*}: \Gamma \rightarrow[0, \infty]$ with compact level sets $\left\{x ; \Lambda^{*}(x) \leq \alpha\right\}, \alpha \in\left[0, \infty\left[\right.\right.$. Let $v=\left(v_{n}\right)_{n} \uparrow \infty$ be an increasing sequence of positive reals. A sequence of random variables $\left(Y_{n}\right)_{n}$ with values in Γ defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is said to satisfy a Large Deviation Principle (LDP) with speed $v=\left(v_{n}\right)_{n}$ and the good rate function Λ^{*} if for every Borel set $B \in \mathcal{B}(\Gamma)$,

$$
\begin{aligned}
-\inf _{x \in B^{o}} \Lambda^{*}(x) & \leq \liminf _{n} \frac{1}{v_{n}} \log \mathbb{P}\left(Y_{n} \in B\right) \\
& \leq \limsup _{n} \frac{1}{v_{n}} \log \mathbb{P}\left(Y_{n} \in B\right) \leq-\inf _{x \in \bar{B}} \Lambda^{*}(x) .
\end{aligned}
$$

For every $k \geq 1$, we define

$$
\begin{aligned}
\bar{x}_{k} & =I \otimes \ldots \otimes I \otimes \sigma_{x} \otimes I \otimes \ldots \\
\bar{y}_{k} & =I \otimes \ldots \otimes I \otimes \sigma_{y} \otimes I \otimes \ldots \\
\bar{z}_{k} & =I \otimes \ldots \otimes I \otimes \sigma_{z} \otimes I \otimes \ldots
\end{aligned}
$$

where each σ. appears on the $k^{t h}$ place.
For every $n \geq 1$, we consider the processes

$$
\bar{X}_{n}=\sum_{k=1}^{n} \bar{x}_{k}, \bar{Y}_{n}=\sum_{k=1}^{n} \bar{y}_{k}, \bar{Z}_{n}=\sum_{k=1}^{n} \bar{z}_{k}
$$

with initial conditions

$$
\bar{X}_{0}=\bar{Y}_{0}=\bar{Z}_{0}=0 .
$$

To each vector $\nu=\left(\nu_{1}, \nu_{2}, \nu_{3}\right) \in \mathbb{R}^{3}$, we associate the euclidean norm $\|\nu\|=$ $\sqrt{\nu_{1}^{2}+\nu_{2}^{2}+\nu_{3}^{2}}$ and $\langle.,$.$\rangle the corresponding inner product.$

Theorem 5.1. Let Φ be a completely positive and trace-preserving map for which there exists a state

$$
\rho_{\infty}=\left(\begin{array}{cc}
\alpha_{\infty} & \beta_{\infty} \\
\bar{\beta}_{\infty} & 1-\alpha_{\infty}
\end{array}\right)
$$

such that for any given state ρ,

$$
\Phi^{n}(\rho)=\rho_{\infty}+o(1) .
$$

For every $\nu=\left(\nu_{1}, \nu_{2}, \nu_{3}\right) \in \mathbb{R}^{3, *}$, the sequence

$$
\left(\frac{\nu_{1} \bar{X}_{n}+\nu_{2} \bar{Y}_{n}+\nu_{3} \bar{Z}_{n}}{n}\right)_{n \geq 1}
$$

satisfies a LDP with speed n and the good rate function

$$
I(x)= \begin{cases}\frac{1}{2}\left[\left(1+\frac{x}{\|\nu\| \|}\right) \log \left(\frac{\|\nu\|+x}{\|\nu\|+\langle\nu, v\rangle}\right)\right. & \\ \left.+\left(1-\frac{x}{\|\nu\|}\right) \log \left(\frac{\|\nu\|-x}{\|\nu \nu\|-\langle\nu, v\rangle}\right)\right] & \text { if }|x|<\|\nu\| . \\ +\infty & \text { otherwise. }\end{cases}
$$

where $v_{1}=2 \operatorname{Re}\left(\beta_{\infty}\right), v_{2}=-2 \operatorname{Im}\left(\beta_{\infty}\right), v_{3}=2 \alpha_{\infty}-1$.
Proof:
The matrix

$$
B:=\nu_{1} \sigma_{x}+\nu_{2} \sigma_{y}+\nu_{3} \sigma_{z}=\left(\begin{array}{cc}
\nu_{3} & \nu_{1}-i \nu_{2} \\
\nu_{1}+i \nu_{2} & -\nu_{3}
\end{array}\right)
$$

has two distinct eigenvalues $\pm\|\nu\|$.
For every $n \geq 0$, we can write

$$
\Phi^{n}(\rho)=\left(\begin{array}{ll}
\alpha_{\infty}+\phi_{n}(1) & \beta_{\infty}+\phi_{n}(2) \\
\bar{\beta}_{\infty}+\phi_{n}(3) & 1-\alpha_{\infty}+\phi_{n}(4)
\end{array}\right)
$$

where the four sequences $\left(\phi_{n}(i)\right)_{n \geq 0}$ satisfy $\phi_{n}(i)=o(1)$.
For any $k \geq 1$, the expectation of B in the state $\Phi^{k}(\rho)$ is equal to

$$
\operatorname{Trace}\left(B \Phi^{k}(\rho)\right)=\langle\nu, v\rangle+\varepsilon_{k}
$$

with $\varepsilon_{n}=o(1)$. As a consequence, the distribution of B is

$$
p_{k}(\|\nu\|)=\frac{1}{2}\left[1+\frac{1}{|\nu|}\left(\langle\nu, v\rangle+\varepsilon_{k}\right)\right]=1-p_{k}(-\|\nu\|) .
$$

Using the fact that $\nu_{1} \bar{X}_{n}+\nu_{2} \bar{Y}_{n}+\nu_{3} \bar{Z}_{n}$ is the sum of n commuting matrices, we get that

$$
\begin{aligned}
& \frac{1}{n} \log w\left(\exp t\left(\nu_{1} X_{n}+\nu_{2} Y_{n}+\nu_{3} Z_{n}\right)\right) \\
& \quad=\frac{1}{n} \sum_{k=1}^{n} \log \left(e^{\|\nu\| t} p_{k}(\|\nu\|)+e^{-\|\nu\| t}\left(1-p_{k}(\|\nu\|)\right)\right)
\end{aligned}
$$

Since $\varepsilon_{n}=o(1)$, we obtain that

$$
\begin{aligned}
& \lim _{n \rightarrow+\infty} \frac{1}{n} \log w\left(\exp t\left(\nu_{1} X_{n}+\nu_{2} Y_{n}+\nu_{3} Z_{n}\right)\right) \\
& \quad=\log \left(\cosh (\|\nu\| t)+\frac{\langle\nu, v\rangle}{\|\nu\|} \sinh (\|\nu\| t)\right) \\
& \quad=\log (\cosh (\|\nu\| t))+\log \left(1+\frac{\langle\nu, v\rangle}{\|\nu\|} \tanh (\|\nu\| t)\right) .
\end{aligned}
$$

We denote by $\Lambda(t)$ this function of t.
For every $t \in \mathbb{R}$, the function Λ is finite and differentiable on \mathbb{R}, then, by Gärtner-Ellis Theorem (see [4]), the LDP holds with the good rate function

$$
I(x)=\sup _{t \in \mathbb{R}}\{t x-\Lambda(t)\} .
$$

A simple computation leads to the rate function given in the theorem.

References

[1] Biane, P. Some properties of quantum Bernoulli random walks. Quantum probability \& related topics, 193-203, QP-PQ, VI, World Sci. Publ., River Edge, NJ, 1991.
[2] Choi, M. D. Completely positive linear maps on complex matrices. Linear Algebra and Appl. 10, 285-290 (1975).
[3] Dacunha-Castelle, D. and Duflo, M. Probabilités et statistiques 2. Problèmes à temps mobile., Masson, Paris (1983).
[4] Dembo, A. and Zeitouni, O. Large Deviations Techniques and Applications. Springer, (1998).
[5] Giri, N. and von Waldenfels, W. An algebraic version of the central limit theorem. Z. Wahrscheinlichkeitstheorie Verw. Gebiete 42, 129-134 (1978).
[6] King, C. and Ruskai, M.B. Minimal entropy of states emerging from noisy quantum channels. IEEE Trans. Inform. Theory 47, No 1, 192-209 (2001).
[7] Kraus, K. General state changes in quantum theory. Ann. Physics, 64, 311-335 (1971).
[8] Kraus, K. States, effects and operations. Fundamental notions of quantum theory. Lecture Notes in Physics, 190. Springer-Verlag, Berlin (1983).
[9] Petz, D. An invitation to the algebra of canonical commutation relations. Leuven Notes in Mathematical and Theoretical Physics, Vol. 2 (1990).
[10] Ruskai, M.B., Szarek, S. and Werner, E. An analysis of completely positive trace-preserving mapcs on \mathcal{M}_{2}. Linear Algebra Appl. 347, 159-187 (2002).

[^0]: *Université de Lyon, Université Lyon 1, Institut Camille Jordan, U.M.R. C.N.R.S 5208, 43 bld du 11 novembre 1918, 69622 Villeurbanne Cedex, e-mail: nadine.guillotin@univlyon1.fr; attal@math.univ-lyon1.fr

