
Lecture 5

QUANTUM MECHANICS

Stéphane ATTAL

Abstract This lecture proposes an introduction to the axioms of Quan-
tum Mechanics and its main ingredients: states, observables, measurement,
quantum dynamics. We also discuss how these axioms are changed when con-
sidering coupled quantum systems and quantum open systems. This leads in
particular to the notion of density matrices, which we explore.
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No particular knowledge in Physics is needed in this lecture, as we start
from the very beginning in Quantum Mechanics and as our presentation is
very axiomatic. Mathematically we make heavy use of the general theory
of operators, Spectral Theory, functional calculus for Hermitian operators.
These elements can be found in Lecture 1. We also deal a lot with tensor
products of Hilbert spaces and with partial traces of operators (see Lecture
2 if necessary).
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e-mail: attal@math.univ-lyon1.fr

1
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5.1 The Axioms of Quantum Mechanics

5.1.1 Introduction

The theory of Quantum Mechanics differs a lot from the classical theory of
Mechanics that we learned at school. We are used to a theory where systems
have a definite position, velocity or energy ... These different characteristics
of the system (also called observables) can be measured precisely. The result
of the measure does not affect the system in general. If the experiment is
repeated with exactly the same conditions, it gives exactly the same results.

In the Quantum Mechanics facts are totally different. It is impossible to
assign a fixed value for the position, the velocity or the energy of a particle.
The state of the particle is a superposition of several possible values (some-
times a continuum of possible values). The system truly occupies all these
different values at the same time; for example, when concerning the posi-
tion, the quantum system can be affected by transformations of the space
at different places. In Quantum Mechanics the measurement of some physi-
cal quantity concerning a quantum system does not lead to a deterministic
value, the result of the measurement is random. Even if the measurement is
repeated with exactly the same conditions, the result appears unpredictable.
The only quantity which is deterministic and known by the physicist be-
fore the measurement process, is the probability distribution of these results.
Another fundamental fact is that the effect of measuring the value of a phys-
ical parameter of a quantum system (such as position, energy...) affects the
system in an irreversible way.

An adequate mathematical language for describing the rules of Quantum
Mechanics has been developed about 90 years ago and has shown an incredible
efficiency regarding experiments. This axiomatic language, that we develop
below, is the theory accepted nowadays by at least 99 % of the physicists.
It is not our purpose here to discuss why such incredible axioms represent
the reality of the world. Besides, nobody can answer such a question today!
We shall take a certain description of the world for granted and we are reas-
sured by 90 years of experiments agreeing with its predictions, to incredible
accuracy.

5.1.2 The Axioms

Here are the four main axioms of Quantum Mechanics. They are the only
ingredients necessary for being able to compute in Quantum Mechanics (to-
gether with a fifth axiom on bipartite quantum system, to be developed later
on). This axiomatization does not help much in understanding Quantum Me-
chanics, nor in making out an intuition on its strange behaviors. One shall
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only trust the fact that these axioms give rise, since 90 years, to the most
accurate results and predictions of all physical theories.

1st Axiom: States

The space of all possible states of a quantum system is represented by a
Hilbert space H. More precisely the states of a quantum system are rays in
a Hilbert space. By “rays” we mean equivalence classes of vectors that differ
by a non zero scalar multiplication. We can choose a representative vector of
that class to have unit norm. These are the so-called wave functions, that is,
norm 1 elements of H. Note that Ψ ∈ H and eiθΨ describe the same state.

A wave function Ψ contains all the possible information about the system;
one should be able to compute any parameter of the system from Ψ .

2nd Axiom: Observables

Any physical quantity attached to the quantum system, which can be
measured, such as position, velocity, energy, spin, ... is represented by a self-
adjoint operator on H. These are called observables of the system.

The set of different possible values for the measurement of an observable
X is its spectrum σ(X). In particular, for some quantum systems, the energy
of the system may take values only in a discrete set. This is the origin of
the name “Quantum Mechanics”: the energy is made of quanta, small incom-
pressible values.

Recall that, in the finite dimensional case, every observable X can be di-
agonalized in some orthonormal basis. This means that X can be written
as

X =

n∑
i=1

λi Pi

where the λi are the eigenvalues of X and the Pi are the orthogonal projectors
onto the eigenspaces. Note that, for all bounded measurable function f on R
we have

f(X) =

n∑
i=1

f(λi)Pi .

In the infinite dimensional case, an observable X is described by its spectral
measure ξX(·) and by the Spectral Theorem:

X =

∫
σ(X)

λ dξX(λ) .

Recall that for every bounded measurable function f on R we have

f(X) =

∫
σ(X)

f(λ) dξX(λ) .

3rd Axiom: Measurement
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The only possible numerical outcome for the measurement of an observable
X is an element of its spectrum σ(X). The result of the measurement belongs
to the set σ(X) but is completely random. The only possible information one
can be sure of is the probability distribution of the measurement outcome.
This is described as follows.

Let ξX be the spectral measure associated to an observable X. If the state
of the system is Ψ then the probability of measuring, for the observable X, a
value which lies in the Borel set A ⊂ R is

P(X ∈ A) = ‖ξX(A)Ψ‖2 ,

which is also equal to

P(X ∈ A) = 〈Ψ , ξX(A)Ψ〉

and to
P(X ∈ A) = Tr

(
|Ψ〉〈Ψ | ξX(A)

)
.

Furthermore, immediately after the measurement, the state of the system is
changed and becomes

Ψ ′ =
ξX(A)Ψ

‖ξX(A)Ψ‖
.

This is the so-called reduction of the wave packet.

Note that, in the case where the state space H is finite dimensional, a
measurement of an observable

X =

n∑
i=1

λi Pi

will give randomly one of its eigenvalues λi, as outcome of the measurement,
with probability

P(X = λi) = 〈Ψ , Pi Ψ〉 = ‖Pi Ψ‖2 .

After that measurement the state of the system is changed into

Ψ ′ =
Pi Ψ

‖Pi Ψ‖
.

Note the following important fact: when measuring successively with re-
spect to two different observables of a quantum system H the order in which
the measurements are made is of importance in general. For example, assume
for simplicity that we are in finite dimension, that the spectral decomposi-
tions of the observables X and Y are respectively
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X =

n∑
i=1

λi Pi and Y =

n∑
i=1

µiQi .

Assume that the initial state is Ψ , then the probability of measuring the
observable X equal to λi and then Y equal to µj is given as follows. Measuring

first X to be equal to λi is obtained with probability ‖Pi Ψ‖2 and the state
becomes

Ψ ′ =
Pi Ψ

‖Pi Ψ‖
.

Having this state now, the measurement of Y being equal to µj is obtained
with probability

‖Qj Pi Ψ‖2

‖Pi Ψ‖2
,

the final state is then

Ψ ′′ =
Qj Ψ

′

‖Qj Ψ ′‖
=

Qj Pi Ψ

‖Qj Pi Ψ‖
.

The total probability of the two successive measurements is then (with obvi-
ous notations)

P(X = λi ,Y = µj) = P(Y = µj |X = λi)P(X = λi)

which gives finally

P(X = λi ,Y = µj) = ‖Qj Pi Ψ‖2 .

Had we done the measurements in the reverse order, we would have obtained
the probability ‖PiQj Ψ‖2 and the final state

Ψ ′′ =
PiQj Ψ

‖PiQj Ψ‖
.

We leave to the reader to check that if the observables X and Y do not
commute, that is, if the orthogonal projectors Pi and Qj do not commute
two-by-two, then the two probabilities and the two final states above are
different in general.

On the other hand, if X and Y commute, their spectral projectors do
commute with each other and hence the two ways of measuring X and Y give
the same results, that is, the same probability and the same final state after
measurement.

4th Axiom: Dynamics

One observable of the system H has a particular status: the total energy of
the system. This observable, let us denote it by H, is called the Hamiltonian
of the system, it controls the way the system evolves with time, without
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exterior intervention. Indeed, if we put for all t ∈ R

Ut = e−itH ,

in the sense of the Functional Calculus for operators, then (Ut)t∈R forms a
group of unitary operators on H. The state of the system at time t is then
given by

Ψt = Ut Ψ0

if it were Ψ0 at time 0. This is the so-called Schrödinger equation.

Note that the probability of measuring an observable X to be in a set A
at time t is thus equal to

‖ξX(A)Ψt‖2 = 〈Ψt , ξX(A)Ψt〉 = 〈Ut Ψ0 , ξX(A)Ut Ψ0〉 = 〈Ψ0 , U
∗
t ξX(A)Ut Ψ0〉 .

But, by the Bounded Functional Calculus, the mapping A 7→ U∗t ξX(A)Ut is
the spectral measure A 7→ ξXt

(A), where Xt is the observable

Xt = U∗tXUt .

Hence this probability is the same as the probability to measure the observ-
able Xt in the state Ψ0.

This equivalent point of view is the so-called Heisenberg picture, as opposed
to the first one which is called the Schrödinger picture. That is, instead of
considering that states are evolving with time and that we always measure
the same observable, one can think of the observables evolving with time and
the state being fixed.

The Schrödinger picture is that most commonly used by physicists. It
is more natural to think the time evolution as modifying the state of the
system, the observables being fixed functionals which respect to which we
make measures (with a designed apparatus for example).

But when having a probabilistic point of view on this theory, one may
find the Heisenberg picture more natural. The state is interpreted as a fixed
underlying probability measure, the observables are kind of random variables
from which we extract a probability distribution. As time goes the random
variables evolve (they are “processes”) and their distributions also evolve
with time.

5.1.3 Stern-Gerlach Experiment

In order to illustrate the above postulates we describe a well-known experi-
ment, due to Stern and Gerlach.

A source emits a linear horizontal beam of particles (electrons in our exam-
ple). This beam goes through an intense vertical magnetic field. One observes
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that the beam splits into several beams corresponding to fixed deviations. The
number of such beams is finite, fixed, and depends only on the nature of the
particles (2 beams for electrons, for example). We call each of the possible
deviations of the particles the spin (in the direction Oz). In the case of the
electron one speaks for example of spin +1 or −1, depending on which of the
two deviations occurs. If one makes the particles go through the field one by
one we see them “choosing” a spin at random. The value of the spin measured
for each particle cannot be predicted. The only predictable fact is that after
a large number of particles have gone through the experiment, there will be
a fixed and predictable proportion of particles in each direction.

These different deviations actually correspond to a kind of magnetic mo-
ment of the particle. The fact that each particle has only a discrete spectrum
of spin values is fundamental in quantum mechanics.

Suppose that we isolate a beam of electrons which all have spin +1 in
the vertical direction. If one makes this beam go through the same vertical
field again, one observes that they all deviate corresponding to the spin +1
direction. These particles seem to “have kept in mind” that they are spin +1.

Now, suppose that this selected beam goes through a magnetic field whose
direction makes an angle θ with the vertical axis. One then observes another
splitting for the electrons, into two directions with respective proportions
cos2(θ/2) and sin2(θ/2) this time.

Finally, we select the spin +1 beam after this experiment (with the field
in the direction θ) and make it go through the initial vertical field again.
One observes a splitting into two directions, with proportions cos2(θ/2) and
sin2(θ/2) respectively. Recall that this beam was selected with spin +1 in the
vertical direction; it appeared to have memory of this fact. We see that, after
the passage through the direction θ field, the beam has lost the memory of
its spin in the vertical direction.

Trying to give a model for such an experiment and such a complicated
behavior may seem very difficult. One might be tempted to attach a random
variable to the spin in each direction and to find rules explaining how these
random variables are modified after each experiment. This model is clearly, at
the least, very complicated, and, in fact, impossible (see Section ??). However,
the formalism of quantum mechanics provides a very simple answer. Let us
see how the axioms of quantum mechanics describe in a very simple and nice
way the Stern-Gerlach experiment.

In order to give a model for the spin observables it is enough to consider
the state space H = C2. A state is then an element Ψ = (u, v) ∈ C2 with
norm 1. The spin observable in the normalized direction (x, y, z) is physically
represented by the observable

S(x,y,z) =

(
z x− iy

x+ iy −z

)
.
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This operator has eigenvalues +1 and −1 with unit eigenvectors α+ and α−
respectively. In the vertical direction the spin observable is

S(0,0,1) =

(
1 0
0 −1

)
with α+ = e1 and α− = e2 (the canonical basis vectors). Thus the spin of

the particle is +1 with probability p = |〈Ψ , α+〉|2 and is −1 with probability

q = |〈Ψ , α−〉|2. After going through the vertical field, those particles, which
have been observed with spin +1, are in the state

Ψ ′ =
〈Ψ , e1〉 e1
‖〈Ψ , e1〉 e1‖

,

that is, Ψ ′ = e1 (recall that wave functions which differ by a modulus one
complex factor represent the same state).

If one measures these particle spins in the vertical direction again, we
get a probability p = |〈e1 , α+〉|2 = |〈e1 , e1〉|2 = 1 to measure it with spin
+1; and hence a probability 0 to measure it with spin −1. The beam has
“remembered” that it has spin +1 in the vertical direction.

If we now measure the spin in the direction (0, sin θ, cos θ) the spin observ-
able is

S(0,sin θ,cos θ) =

(
cos θ −i sin θ
i sin θ − cos θ

)
.

The associated eigenvectors are

α+ =

(
−i cos (θ/2)

sin (θ/2)

)
and α− =

(
sin(θ/2)
i cos(θ/2)

)
.

In particular, the respective probabilities are

p = |〈e1 , α+〉|2 = cos2(θ/2) and q = |〈e1 , α−〉|2 = sin2(θ/2) .

We recover the observed proportions. Those particles which have spin +1 in
this direction θ are now in the state Ψ ′′ = α+.

Finally, if one makes the spin +1 particles (measured in the direction θ)

go through the vertical field again, we get the proportions p = |〈α+ , e1〉|2 =

cos2(θ/2) and q = |〈α− , e1〉|2 = sin2(θ/2).

This is exactly what was observed. One can only be impressed by the
efficiency of this formalism!
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5.2 Bipartite Quantum Systems

We need now to extend our axioms to the situation where our quantum
system of interest is made of two pieces, two quantum systems. This is a
so-called bipartite quantum system.

5.2.1 Coupling Quantum Systems

The way one can describe a quantum system made of two quantum subsys-
tems, the way one defines states on the whole system, or the way observables
of each subsystem are appearing in the framework of the larger system, is
the object of a new axiom. Even though this axiom can somehow be justified
if one writes all the mathematical consequences that one may expect from a
coupled system: space containing the two initial spaces, independence of the
measurement results on each subsystem, etc., we do not wish to develop this
justification here and we take this assumption for granted, as a new axiom
of quantum mechanics.

5th axiom: Coupled systems

If the respective state space of two quantum systems are H and K, then
the state space of the coupled system is the tensor product

H⊗K .

If the two systems were initially in the respective states ψ and φ, then the
coupled system is in the state

ψ ⊗ φ .

But be aware that the coupled system H⊗K can be in a more complicated
state, that is, any norm one vector Ψ ∈ H ⊗ K; this means a state where H
and K are not necessarily independent at the beginning.

If X and Y are observables of the systems H and K respectively, then they
are extended as observables of H⊗K by considering the operators

X⊗ I and I⊗ Y

respectively. They mean the same: if X represents the position of the system
H alone, then X⊗ I still represent the position of the particle H, but as part
of a larger system now.

It is easy to check that the axioms of Subsection 5.1.2 are preserved when
seeing H as a subsystem of H ⊗ K. Indeed, first note that the spectrum of
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the operator X⊗ I is σ(X) and the spectral measure of X⊗ I is

ξX⊗I = ξX ⊗ I ,

as can be checked easily (exercise). Hence, measuring the observable X of H,
when the coupled system H⊗K is in the state ψ ⊗ φ, gives the probabilities

P(X⊗ I ∈ A) = 〈ψ ⊗ ψ , ξX⊗I(A) (ψ ⊗ φ)〉
= 〈ψ ⊗ ψ , (ξX(A)⊗ I) (ψ ⊗ φ)〉
= 〈ψ , ξX(A)ψ〉 〈φ , φ〉
= 〈ψ , ξX(A)ψ〉
= P(X ∈ A) .

We recover the usual probabilities for the system H alone.

The reduction of the wave packet also works smoothly in this enlarged
point of view. After having measured the observable X ⊗ I in the set A, the
state of the system becomes

ξX⊗I(A) (ψ ⊗ φ)

‖ξX⊗I(A) (ψ ⊗ φ)‖
=

ξX(A)ψ

‖ξX(A)ψ‖
⊗ φ .

We recover the usual reduced state

ξX(A)ψ

‖ξX(A)ψ‖

for the system H, tensorized by the unchanged state φ of the system K.

This is all for the moment concerning coupled quantum systems. We shall
come back to it much more in details when dealing with quantum open sys-
tems.

5.2.2 Hidden Variables, Bell’s Inequalities

The experiment that we want to describe now is a very famous one which
shows that the probabilistic behavior of Quantum Mechanics cannot be mod-
eled by classical Probability Theory.

Consider a system made of two particles of the same nature going in two
different directions (right and left, say). Assume that their spin can take only
two values: +1 and −1. They have been prepared in such a way that their
spins, in a fixed direction, are anticorrelated. This means the following. The
state space of the two particles (just for the study of their respective spin) is
H = C2 ⊗ C2. If (e1, e2) is an orthonormal basis of C2 made of spin +1 and
spin −1 eigenvectors respectively (in the chosen direction), then the initial



5 QUANTUM MECHANICS 11

state of our system is

ϕ =
1√
2

(e1 ⊗ e2 − e2 ⊗ e1).

Actually, the above state does not depend on the choice of direction: as a
state (that is, up to a phase factor) it is the same if one changes the choice of
the orthonormal basis. The above state is called the singlet state in physics:
it is the state in which the spins of the two particles are anticorrelated in any
direction of the space. Such a state is physically realizable.

In front of each particle (right and left) is placed an apparatus which mea-
sures their spin in directions (sinα, 0, cosα) and (sinβ, 0, cosβ) respectively
(that we shall call directions α and β in the following). Let us denote by Xα
the observable “spin of the left particle in the direction α”, and by Yβ the
observable “spin of the right particle in the direction β”. They are observ-
ables of the first and the second system respectively. That is, if one wants to
consider them as observables of the whole system, we have to consider the
observables Xα ⊗ I and I⊗ Yβ respectively.

These two observables obviously commute hence, when measuring both of
them, the order of measurement is of no importance (as was discussed after
the 3rd Axiom).

We denote by

α+ = (cosα/2, sinα/2)

α− = (− sinα/2, cosα/2)

β+ = (cosβ/2, sinβ/2)

β− = (− sinβ/2, cosβ/2)

the eigenvectors of Xα and Yβ respectively. The probability that the spin is
measured to be +1 on the left and +1 on the right is equal to

P(Xα = +1,Yβ = +1) = ‖(|α+〉〈α+| ⊗ I) (I⊗ |β+〉〈β+|)φ‖2

= ‖|α+ ⊗ β+〉〈α+ ⊗ β+|ϕ‖2

= |〈α+ ⊗ β+ , ϕ〉|2 .

A straightforward computation then gives

P(Xα = +1,Yβ = +1) =
1

2
sin2

(
α− β

2

)
.

In the same way we find
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P(Xα = +1,Yβ = −1) =
1

2
cos2

(
α− β

2

)
P(Xα = −1,Yβ = +1) =

1

2
cos2

(
α− β

2

)
P(Xα = −1,Yβ = −1) =

1

2
sin2

(
α− β

2

)
.

We wonder if such correlations, such probabilities, can be obtained with
the help of a classical probability model. That is, we wonder if it is possible
to define a probability space (Ω,F , P ) and some ±1-valued random variables
Xα, Yβ on (Ω,F , P ), for each angle α and β, such that the above is satisfied.
This assumption would mean physically that there is some uncertainty in the
knowledge of the initial state of the system; everything is determined from the
beginning (the spin in each direction, etc...) but we have a lack of knowledge
in some of the variables of the system which leads to a random result about
the quantities Xα, Yβ (this is the so-called hidden variable hypothesis).

We then conduct the following experiment. We are given three fixed angles
α1, α2 and α3. We have a great number of particle pairs all prepared in the
same state as described above. For each choice of a pair (αi, αj) we make a
large number of our particle pairs going through a spin measurement on the
left and on the right particle. We then get all the different correlations as
computed above.

But in fact we have the following easy result.

Theorem 5.1. [Bell’s Three Variable Inequality] For any three ±1-valued
random variables X1, X2, X3 on a probability space (Ω,F , P ) we have

P(X1 = 1, X3 = −1) ≤ P(X1 = 1, X2 = −1) + P(X2 = 1, X3 = −1) .

Proof. Simply write

P(X1 = 1,X3 = −1) =

= P(X1 = 1, X2 = −1, X3 = −1) + P(X1 = 1, X2 = 1, X3 = −1)

≤ P(X1 = 1, X2 = −1) + P(X2 = 1, X3 = −1) . ut

With the probabilities we found, Bell’s inequality is violated. For example
take α1 = π/2, α2 = 5π/6 and α3 = 7π/6, we find

P(X1 = 1, X3 = −1) =
3

8

and

P(X1 = 1, X2 = −1) + P(X2 = 1, X3 = −1) =
1

8
+

1

8
.
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It is impossible to attach classical random variables behind each spin of
the particle. The theory and the experiment (which was performed in Orsay
by A. Aspect’s team) show that these correlations cannot come from classical
random variables.

A possible criticism of the above conclusion is to say that the measure-
ment on the left device influences the measurement on the right one. The
Orsay experiment, directed by A. Aspect in 1982, was actually a little more
sophisticated than only checking the correlations above. A random choice of
two different angles α1, α2 was made on the left, and the same with β1, β2
on the right.

We then use an improved form of the Bell Inequalities.

Theorem 5.2 (Bell’s Four Variable Inequality). For any quadruple X1, X2,
Y1, Y2 of random variables on (Ω,F ,P), taking the only values −1 and 1, we
have

P (X1 = Y1) ≤ P (X1 = Y2) + P (X2 = Y1) + P (X2 = Y2) .

Proof. Note that

‖X1 + Y1‖L1(Ω) = E [|X1 + Y1|] = E [|X1 + Y1| 1lX1=Y1
] + E [|X1 + Y1| 1lX1 6=Y1

]

= 2E [1lX1=Y1
]

= 2P(X1 = Y1) .

Thus the inequality of the theorem is just the quadrangle inequality:

‖X1 + Y1‖L1(Ω) ≤ ‖X1 + Y2‖L1(Ω) + ‖X2 + Y2‖L1(Ω) + ‖X2 + Y1‖L1(Ω) . ut

In our case, we have

P(Xαi
= Yβj

) = sin2

(
αi − βj

2

)
.

Thus the Bell inequality is violated for the choice α1 = 0, α2 = 2π/3, β1 = π
and β2 = π/3, for we find

P(X1 = Y1) = 1

and

P(X1 = Y2) + P(X2 = Y1) + P(X2 = Y2) =
1

4
+

1

4
+

1

4
.

These results go against the hidden variable hypothesis and the attempt
to model Quantum Mechanics with classical Probability Theory. A classical
probabilistic model of the phenomena of Quantum Mechanics is not possible.

One comment must be added here. The above argument works if one can
be sure that the measurement of the left particle in the direction α cannot
influence the measurement of the right particle, a little later, in the direction
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β. This assumption is called locality in physics. In the Orsay experiment, this
assumption was fulfilled. Indeed, they performed the measurements on the
left and then on the right in an interval of time which is smaller than the
flight time of a photon between the two pieces of apparatus. Thus, by the
causality principle of Relativity Theory, the first measurement cannot have
influenced the second one.

If one admits the causality principle to be valid in Quantum Mechanics,
then the hidden variable hypothesis must be rejected, as well as any attempt
to model Quantum Mechanics with classical Probability Theory.

If the causality principle in Quantum Mechanics is abandoned then there
is still some room for modeling the Orsay experiment in classical probabilist
terms. This is, for example, the case of so-called Bohmian quantum mechan-
ics. But a very large majority of physicists nowadays considers the causality
principle to be valid in Quantum Mechanics.

5.3 Quantum Open Systems

The formalism of Quantum Mechanics which is developed in Section 5.1 actu-
ally needs to be extended. Indeed, this formalism only describes the behavior
of isolated quantum systems, but in many situations one has to consider
quantum systems which interact with another one (or other ones). These are
the so-called open quantum systems.

The main point with open quantum systems, which differs from just con-
sidering bipartite quantum systems such as in Subsection 5.2.2, is the fact
that in most of the situations of open quantum systems one does not have
access to the second system. In general this happens because this second sys-
tem is too large, too complicated, like a large environment, a quantum heat
bath etc.

Even if one is not willing to, it is very difficult to prevent a quantum system
to interact with an exterior system, with the environment, with photons ...
This fact induces the so-called decoherence on the small system, this effect is
the main obstacle which prevents physicist from being able to built a quantum
computer (at the time we write this book). It is one of the main stream of
research in Quantum Physics nowadays to try to prevent, or to control, this
decoherence, this interaction with the environment.

It happens also in many situations, in particular in the context of Quantum
Information Theory, that one is in the following situation: a quantum system
is made of two simple systems which are interacting (or which have been
interacting), but the two systems (A and B say) are shared by two distant
persons. The first person (always called Alice!) has only access to system A,
while system B is the property of Bob. This is also a very important and
common situation of open quantum system.
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Describing the rules of Quantum Mechanics in the situation of open sys-
tems leads to important extensions of the axioms.

5.3.1 Density Matrices

First of all, let us focus on states. We have already seen that a coupled
system in Quantum Mechanics is represented by the tensor product of the
corresponding Hilbert spaces H ⊗ K. A state on that system is thus a unit
vector Ψ ∈ H ⊗K.

Imagine that we are dealing with the coupled system H⊗K, but we per-
sonally have access to H only. If we want to measure an observable X of H,
we have to consider the observable X ⊗ I on H ⊗ K, as we have seen in the
5th Axiom. The spectral measure of X⊗ I is ξX(·)⊗ I and the probability for
finding the value of the measurement lying in the Borel set A is equal to

P(X⊗ I ∈ A) = 〈Ψ , (ξX(A)⊗ I)Ψ〉
= Tr

(
|Ψ〉〈Ψ | (ξX(A)⊗ I)

)
= Tr

(
TrK (|Ψ〉〈Ψ |) ξX(A)

)
where TrK denotes the partial trace with respect to the space K, and where
we have used the basic property characterizing the partial traces. This means
that

P(X⊗ I ∈ A) = Tr (ρH ξX(A)) (5.1)

where
ρH = TrK (|Ψ〉〈Ψ |) .

Clearly, any physical measurement on any observable of H will be obtained
by the same kind of formula as (5.1).

This formula is very interesting because, despite the fact that one does
not have access to the whole system H ⊗ K, despite the fact that one may
not know the full state Ψ , if we have the knowledge of this operator ρH we
can compute any probability on any observable of H, via Formula (5.1). The
point with this formula is that it makes use only of operators on H. It takes
into account the fact that the system H is not isolated, but the formula stays
internal to H.

Note that one recovers the special case of an isolated system (Subsection
5.1.2) when ρH is of the form |Φ〉〈Φ|.

We now wish to characterize those operators ρH onH that can be obtained
this way.

Theorem 5.3. Let ρ be an operator on a Hilbert space H. Then the following
assertions are equivalent.
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1) There exists a Hilbert space K and a unit vector Ψ in H ⊗ K such that
ρ = TrK(|Ψ〉〈Ψ |) .
2) The operator ρ is positive, trace-class and Tr ρ = 1 .

Proof. If ρ is of the form described in 1) then, for every φ ∈ H, we have

〈φ , ρ φ〉 = Tr
(
|φ〉〈φ| TrK(|Ψ〉〈Ψ |)

)
= Tr

(
(|φ〉〈φ| ⊗ I) |Ψ〉〈Ψ |

)
= 〈Ψ , (|φ〉〈φ| ⊗ I)Ψ〉 .

Decomposing Ψ =
∑
i,j Ψij ei⊗ fj in some orthonormal basis of H⊗K, gives

〈φ , ρ φ〉 =
∑
ij,k

Ψij Ψkj 〈ei , φ〉 〈φ , ek〉

=
∑
j

∣∣∣∣∣∑
i

Ψij 〈ei , φ〉

∣∣∣∣∣
2

≥ 0 .

This shows that ρ is a positive operator. Furthermore, for any orthonormal
basis (en) of H we have

Tr (ρ) =
∑
n

〈en , ρ en〉

=
∑
n

Tr (|en〉〈en| TrK (|Ψ〉〈Ψ |))

=
∑
n

Tr ((|en〉〈en| ⊗ I) |Ψ〉〈Ψ |)

=
∑
n

〈Ψ , (|en〉〈en| ⊗ I) Ψ〉

=

〈
Ψ ,

(∑
n

|en〉〈en| ⊗ I

)
Ψ

〉
= 〈Ψ , Ψ〉
= 1 .

This proves that ρ is trace-class and that Tr ρ = 1. We have proved the
theorem in one direction.

Conversely, if ρ is of the form 2) then, by the fundamental decomposition
of trace-class operators, it can decomposed as ρ =

∑
i λi |ei〉〈ei| , for some

orthonormal basis (ei) of H and some positive scalars λi satisfying
∑
i λi = 1.

Put K = H, the vector Ψ =
∑
i

√
λi ei⊗ei is norm 1 inH⊗K. Furthermore

the partial trace TrK(|Ψ〉〈Ψ |) can be easily computed:

TrK(|Ψ〉〈Ψ |) =
∑
i

λi |ei〉〈ei| = ρ .
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We have proved the theorem. ut

5.3.2 Extended Axioms

The results obtained above mean that considering open quantum systems
leads to a generalization of the notion of state.

1st Extended Axiom: States and Measurement of Observables

A quantum state on a general Hilbert space H is a trace-class, positive
operator ρ such that Tr ρ = 1. The probability of measuring a numerical
outcome for an observable X in the set A is given by the formula

P(X ∈ A) = Tr (ρ ξX(A)) . (5.2)

Such operators ρ are called density matrices. They can always be decomposed
as

ρ =
∑
n∈N

λn |en〉〈en| (5.3)

for some orthonormal basis (en) of eigenvectors and some positive eigenvalues
λn satisfying

∑
n∈N λn = 1. The set of quantum states (i.e. density matrices)

on H is denoted by S(H).
The special case where

ρ = |Ψ〉〈Ψ |

for some norm 1 vector Ψ of H corresponds to the case where H is an isolated
quantum system. In that case ρ is called a pure state. We often identify the
rank one projector |Ψ〉〈Ψ | with the wave function Ψ .

Recall that quantum states were defined up to a norm 1 multiplicative
constant λ. This now appears more clear if one thinks in terms of the pure
state |Ψ〉〈Ψ | instead of the vector Ψ . Indeed the pure state associated to λΨ
is

|λΨ〉〈λΨ | = λλ |Ψ〉〈Ψ | = |Ψ〉〈Ψ | .

Now let us see how the reduction of the wave packet postulate is modified
when considering open quantum systems and density matrices.

Proposition 5.4. Consider a quantum system H in a state ρ. Let X be an
observable of H. When measuring the observable X we get the measurement
value to belong to a set A with probability

P(X ∈ A) = Tr (ρ ξX(A)) .
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Immediately after the measurement the state of the system becomes

ρ′ =
ξX(A) ρ ξX(A)

Tr (ρ ξX(A))
. (5.4)

Proof. By Theorem 5.3 there exists a Hilbert space K and a pure state Ψ on
H ⊗ K such that ρ = TrK(|Ψ〉〈Ψ |). We have already proved above that the
observable X⊗I is then measured to belong toA with probability Tr (ρ ξX(A)) .

The reduction of the wave packet postulate says that after that measure-
ment the state of the system H⊗K is

Ψ ′ =
(ξX(A)⊗ I)|Ψ〉
‖(ξX(A)⊗ I)|Ψ〉‖

.

On the space H the resulting density matrix is then

ρ′ = TrK (|Ψ ′〉〈Ψ ′|) .

Applying the different properties of partial traces we get

ρ′ =
1

‖(ξX(A)⊗ I) |Ψ〉‖2
TrK

(
(ξX(A)⊗ I) |Ψ〉〈Ψ | (ξX(A)⊗ I)

)
=

1

Tr
(
(ξX(A)⊗ I) |Ψ〉〈Ψ | (ξX(A)⊗ I)

) ξX(A) TrK (|Ψ〉〈Ψ |) ξX(A)

=
1

Tr
(

TrK
(
(ξX(A)⊗ I) |Ψ〉〈Ψ | (ξX(A)⊗ I)

)) ξX(A) ρ ξX(A)

=
1

Tr (ξX(A) ρ ξX(A))
ξX(A) ρ ξX(A) .

This gives (5.4). ut

This leads to the following extended axiom for the wave packet reduction.

2nd Extended Axiom: Wave Packet Reduction
If a quantum system H is in the state ρ then the measurement of any

observable X of H in the set A gives rise to a new state for H:

ρ′ =
ξX(A) ρ ξX(A)

Tr (ρ ξX(A))
. (5.5)

In particular, if H is finite dimensional and if the spectral decomposition
of X is

X =

n∑
i=1

λi Pi

then a measurement of X being equal to λi gives rise to the new state
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ρ′ =
Pi ρPi

Tr (ρPi)
. (5.6)

Note that if ρ is the pure state associated to Ψ , then ρ′ is the pure state
associated to Pi Ψ/ ‖Pi Ψ‖, as in the first series of axioms.

Let us see how the last axiom is modified when considering density ma-
trices instead of wave functions. Actually we are only going to develop a
very simple situation here: the case where the two coupled systems H and K
evolve independently. More general evolutions for the coupled system H⊗K
are considered in Lecture ??.

On the coupled system H⊗K, we consider an Hamiltonian of the form

H = HH ⊗ I + I⊗ HK ,

resulting from the parallel evolution of the two systems, each one having
its own Hamiltonian (they do not interact with each other). It is easy to
check that the associated unitary group is then U(t) = UH(t)⊗ UK(t) where
UH(t) = exp(−itHH) and UK(t) = exp(−itHK).

Consider an initial state Ψ on H ⊗ K, it gives rise to a density matrix
ρH = TrK ( |Ψ〉〈Ψ | ) on H. The state Ψ evolves into the state Ψ(t) = U(t)Ψ at
time t.

Proposition 5.5. The density matrix corresponding to the state on H at
time t is given by

ρH(t) = UH(t) ρH UH(t)∗ . (5.7)

Proof. The state Ψ evolves to Ψ(t) = U(t)Ψ at time t. Hence the correspond-
ing density matrix on H is ρH(t) = TrK(|Ψ(t)〉〈Ψ(t)|). In particular, for all
X ∈ B(H) we have

Tr (ρH(t)X) = Tr (TrK (|Ψ(t)〉〈Ψ(t)|)X)

= Tr (TrK (U(t) |Ψ〉〈Ψ |U(t)∗)X)

= Tr (U(t) |Ψ〉〈Ψ |U(t)∗ (X⊗ I))

= Tr (|Ψ〉〈Ψ | (UH(t)∗ ⊗ UK(t)∗) (X⊗ I) (UH(t)⊗ UK(t)))

= Tr (|Ψ〉〈Ψ | (UH(t)∗ XUH(t))⊗ I)

= Tr (TrK (|Ψ〉〈Ψ |) (UH(t)∗ XUH(t)))

= Tr (UH TrK (|Ψ〉〈Ψ |) UH(t)∗ X) .

As this is true for all X ∈ B(H) this proves that

ρH(t) = UH(t) ρH UH(t)∗ . ut

This is how the evolution of states as described in Subsection 5.1.2 should be
generalized when dealing with density matrices.
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3rd Extended Axiom: Time Evolution

If a quantum system H has an initial state described by the density matrix
ρ and if it evolves independently of the environment with the Hamiltonian
H, then the state of H at time t is the density matrix

ρ(t) = Ut ρU
∗
t

where Ut = e−itH.
Note that if ρ is the pure state associated to Ψ , then ρ′ is the pure state

associated to Ut Ψ , as in the first series of axioms.

5.3.3 Ambiguity of the Purification

Coming back to the characterization of density matrices: they all are partial
trace of some pure state on some larger space H⊗K. Finding a pure state Ψ
on H⊗K such that

ρ = TrK (|ψ〉〈ψ|)

is called a purification of ρ. It is easy to see that such a purification is not
unique, there are plenty of possibilities. The following theorem (important in
Quantum Information Theory) classifies all the possible purifications of ρ.

Theorem 5.6 (GHJW Theorem). Two unit vectors Ψ and Ψ ′ of H ⊗ K
satisfy

TrK (|Ψ〉〈Ψ |) = TrK (|Ψ ′〉〈Ψ ′|) ,

if and only if there exists a unitary operator U on K such that

Ψ ′ = (I⊗ U)Ψ .

Proof. One direction is easy, if Ψ ′ = (I⊗ U)Ψ then

TrK (|Ψ ′〉〈Ψ ′|) = TrK ((I⊗ U) |Ψ〉〈Ψ | (I⊗ U∗)) .

By definition of the partial trace, this means that for all X ∈ B(H) we have

Tr (TrK (|Ψ ′〉〈Ψ ′|) X) = Tr (TrK ((I⊗ U) |Ψ〉〈Ψ | (I⊗ U∗)) X)

= Tr ((I⊗ U) |Ψ〉〈Ψ | (I⊗ U∗) (X⊗ I))

= Tr (|Ψ〉〈Ψ | (I⊗ U∗) (X⊗ I) (I⊗ U))

= Tr (|Ψ〉〈Ψ | (I⊗ U∗) (I⊗ U) (X⊗ I))

= Tr (|Ψ〉〈Ψ | (X⊗ I))

= Tr (TrK (|Ψ〉〈Ψ |) X) .

As this holds for all X ∈ B(H), we have proved that
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TrK (|Ψ〉〈Ψ |) = TrK (|Ψ ′〉〈Ψ ′|) .

We now prove the converse direction, assume that

TrK (|Ψ〉〈Ψ |) = TrK (|Ψ ′〉〈Ψ ′|) .

Let ρ = TrK (|Ψ〉〈Ψ |), it is a density matrix onH. Hence it can be diagonalized
in some orthonormal basis of H:

ρ =
∑
n∈N

λn |un〉〈un| ,

with the λn’s being positive. Let (vn)n∈M be an orthonormal basis of K, if
we decompose Ψ in the orthonormal basis {un⊗vm ; n ∈ N ,m ∈M} we get

Ψ =
∑
n∈N
m∈M

αnm un ⊗ vm =
∑
n∈N

un ⊗ wn ,

where
wn =

∑
m∈M

αnm vm .

Computing the partial trace TrK (|Ψ〉〈Ψ |) with this representation gives

ρ =
∑

n,n′∈N
〈wn , wn′〉 |un〉〈un′ |

which imposes
〈wn , wn′〉 = δn,n′ λn ,

if we compare with the diagonal form of ρ. Put ŵn = wn/
√
λn, for those λn

which are strictly positive.They form an orthonormal family, which we can
complete in an orthonormal family indexed by N . We have proved that Ψ
can be written as

Ψ =
∑
n∈N

√
λn un ⊗ ŵn

for some orthonormal family (ŵn))n∈N in K.
The same computation applied to Ψ ′ impose that it can be decomposed

as
Ψ ′ =

∑
n∈N

√
λn un ⊗ w̃n

for some orthonormal family (w̃n))n∈N in K.
As the families (ŵn)n∈N and (w̃n)n∈N are orthonormal in K, there exist

a unitary operator U on K such that w̃n = U ŵn for all n. This proves the
announced relation Ψ ′ = (I⊗ U)Ψ . ut
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5.3.4 Statistical Interpretation of Density Matrices

The density matrices represent the generalization of the notion of wave func-
tion which is necessary to handle open quantum systems. Their decomposi-
tion under the form (5.3) can be understood as a mixture of wave functions.
It can also be understood as a random pure state.

Indeed, let ρ =
∑
i λi |ei〉〈ei| be a density matrix on H. Let |Ψ〉 be a

random state which can be equal to each of the |ei〉’s with probability λi,
respectively. We claim that when measuring any observable X on H with one
or the other state gives the same results. Let us prove this fact.

We have seen that measuring the observable X gives a value in A with
probability Tr (ρ ξX(A)). Let us detail what happens if we measure the ob-
servable X with the random state |Ψ〉. Let us adopt a helpful notation. By
“(choose ei)” we mean the event of choosing the state |ei〉. By “(measure in
A)” we mean that the event of having the result of the measure of X lying in
A. Adopting obvious probabilistic notations, we know that

P(choose ei) = λi and P(measure in A | choose ei) = ‖ξX(A) |ei〉‖2 .

In particular,

P(measure in A) =
∑
i

P(measure in A, choose ei)

=
∑
i

P(measure in A | choose ei)P(choose ei)

=
∑
i

λi 〈ei , ξX(A) ei〉

= Tr (ρ ξX(A)) .

Hence measuring any observable X of H with the density matrix ρ or with
the random state |Ψ〉 gives the same results, with the same probabilities. In
that sense, from the physicist point of view, these two states, when measuring
observables (which is what states are meant for) give exactly the same results,
the same values, the same probabilities. Hence they describe the same “state”
of the system.

Notice that this identification also works with the reduction of the wave
packet, as follows. When measuring the observable X inside the set A, we
have seen that the density matrix ρ has been transformed into

ξX(A) ρ ξX(A)

Tr (ρ ξX(A))
.

Had we measured X with the random state |Ψ〉 we would have measured X
with one the state |ei〉. After having measured the observable X with a value
in A, the state of the system is one of the pure states
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ξX(A)|ei〉
‖ξX(A)|ei〉‖

.

But what is exactly the probability to obtain the above pure state? We have
to compute P(choose ei |measure in A). This is equal to

P(measure in A, choose ei)

P(measure in A)
=
λi 〈ei , ξX(A) ei〉

Tr (ρ ξX(A))
=
λi‖ξX(A) ei‖2

Tr (ρ ξX(A))
.

Hence, after the measurement we end up with a random pure state again,
which is equivalent (we have just discussed this point above) to having the
density matrix

∑
i

λi‖ξX(A) ei‖2

Tr (ρ ξX(A))

ξX(A)|ei〉〈ei|ξX(A)

‖ξX(A)|ei〉‖2
=
∑
i

λi
ξX(A)|ei〉〈ei|ξX(A)

Tr (ρ ξX(A))
,

that is, the density matrix

ξX(A) ρ ξX(A)

Tr (ρ ξX(A))
.

We have proved that the two interpretations of a density matrix are equivalent
from the point of view of measuring observables and from the point of view
of the resulting state, after the reduction of the wave packet.

This equivalence is of course only physical, in the sense that whatever
one wants to do physically with these states, they give the same results.
Mathematically they are clearly different objects, one is a positive, trace 1
operator, the other one is a random pure state.

5.3.5 Faster Than Light?

Here we illustrate the role of density matrices, in particular their interpre-
tation as “local states” via a pseudo-paradox of Quantum Mechanics. This
“paradox” is an experiment which seems to show that the axioms of Quan-
tum Mechanics are violating the locality axiom of Relativity Theory: “No
information can be transmitted faster than light”. Here is the idea of the
experiment.

Consider two coupled systems A and B being both represented by a state
space C2. Let {e0, e1} be an orthonormal basis of C2. We prepare the coupled
system in the state

Ψ =
1√
2

(e0 ⊗ e0 + e1 ⊗ e1) .

Imagine that a person, Bob, is having control on the system B and acts on it
by performing a measurement of an observable which is diagonal along some
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orthonormal basis {f0, f1}. If the basis {f0, f1} is such that all the scalar
products 〈ei , fj〉 are real, we have

(I ⊗ |f0〉〈f0|) Ψ =
1√
2

(〈e0 , f0〉 e0 ⊗ f0 + 〈e1 , f0〉 e1 ⊗ f0) =
1√
2
f0 ⊗ f0

and in the same way

(I ⊗ |f1〉〈f1|) Ψ =
1√
2
f1 ⊗ f1.

This means that, with probability 1/2 Bob will obtain the state f0 ⊗ f0 and
with probability 1/2 the state f1 ⊗ f1.

By performing this measurement it seems that Bob has modified the A-
part of the state by forcing it to be in the f basis also. This is the starting
point for imagining the faster-than-light communication. A great number of
copies of the coupled system A⊗ B are prepared, all in the same state Ψ as
above. Alice goes to Andromeda with all the systems A, Bob stays on earth
with all the systems B. They agreed that at a given fixed time Bob sends
a faster-than light information to Alice in the following way. Bob chooses
between two orthonormal basis f or g, both having this property to be real
with respect to the basis e. He performs measurements along the chosen basis
on all its B systems. This puts the coupled systems in the corresponding state,
as described above. Immediately after that, outside the light cone of Bob’s
measurement, Alice performs measurements on the systems A in order to
know if they are in the states f or g. This way she knows the information
chosen by Bob (e.g. “f” or “g”) faster than light!

Where is the paradox? Actually there is no paradox at all. Alice cannot
figure out what Bob choose actually, in any way she may try. Imagine that
Bob has chosen the basis f . The collection of state are then half in the state
f0 ⊗ f0 and half in the state f1 ⊗ f1. If Alice measure then along the f basis
she obtains f0 with probability 1/2 and f1 with probability 1/2. But if she
measures with respect to the basis g (or any other) she then obtains g0 with
probability

1

2
|〈g0 , f0〉|2 +

1

2
|〈g0 , f1〉|2 =

1

2

and g1 with probability 1/2. She gets no information at all from what has
done Bob, by acting on A only.

Another way to understand the above experiment and conclusion is by
means of density matrices. The effect of Bob’s measurement transforms the
pure state Ψ into the density matrix

ρ =
1

2
(|f0 ⊗ f0〉〈f0 ⊗ f0|+ |f1 ⊗ f1〉〈f1 ⊗ f1|)



5 QUANTUM MECHANICS 25

which is nothing but the operator 1/2 I. Whatever was the choice of the bases
made by Bob, Alice could see no difference afterward. Even if Bob had not
changed anything to the initial state, the resulting state on A for Alice is the
partial trace

ρA = TrA (|Ψ〉〈Ψ |) =
1

2
(|e0〉〈e0|+ |e1〉〈e1|) =

1

2
I .

Actually, there is no way a local action by Bob may change the local state
of Alice. This assertion can be easily proved mathematically, but we do not
need to develop this point here.

5.3.6 Qubits

We shall end this lecture with a tour of very useful notations and remarks
concerning the simplest non trivial example of a quantum state space: the
space H = C2.

Definition 5.7. Let (e1, e2) be the canonical basis of C2. The matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
are the so-called Pauli matrices. They are also usually denoted by σ1, σ2, σ3.
Together with the identity matrix

I =

(
1 0
0 1

)
they form a (real) basis of the space O(H) of observables on H. That is, any
observable X on H can be written

X = t I +

3∑
i=1

xiσi

for some t, x1, x2, x3 ∈ R. In particular note that Tr (X) = 2t.

Putting ‖x‖ =
√
x21 + x22 + x23 , the eigenvalues of X are

{
t−‖x‖ , t+‖x‖

}
.

In particular, any state ρ on H is of the form

ρ =
1

2

(
I +

3∑
i=1

xiσi

)
with ‖x‖ ≤ 1. The space S(H) thus identifies to B(0, 1), the unit ball of
R3, with the same convex structure. Hence the pure states correspond to the
points of the unit sphere S2 of R3.



26 Stéphane ATTAL

In other words, any state ρ is of the form

ρ =
1

2

(
1 + z x− iy
x+ iy 1− z

)
with x2 + y2 + z2 ≤ 1 and ρ is a pure state if and only if x2 + y2 + z2 = 1.

Let us see this directly in some different way. One can also write a pure
state as:

ρ =
1

2

(
1 + cos θ eiϕ sin θ
e−iϕ sin θ 1− cos θ

)
=

(
cos2(θ/2) eiϕ sin(θ/2) cos(θ/2)

e−iϕ sin(θ/2) cos(θ/2) sin2(θ/2)

)
which is the operator |u〉〈u| where

u =

(
ei

ϕ
2 cos(θ/2)

e−i
ϕ
2 sin(θ/2)

)
.

This clearly describes all unitary vectors of C2 up to a phase factor, that is,
it describes all rank one projectors |u〉〈u|.

Notes

The general literature proposing an introduction to Quantum Mechanics is
more than huge! It is very difficult to make a choice in order to guide the
reader. Anyway, as this section is made for that, we propose a few references.
We really appreciate the two volumes by Cohen-Tanoudji et al. [CTL92]. This
enormous work is an absolute reference. It is very complete and pedagogical,
it is written in a style which is very comprehensive with a mathematical
culture. For a more modern reference, see [AP09].

We mentioned the very famous Orsay experiment by Aspect’s team, the
articles [AR81] and [AR82] are the reference articles for this experiment.

In order to write this lecture, we have also made use of the following
references : [Pre04], [Bia95] and [KM98].
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