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WHAT WE WANT. WHY? HoOw?

Fundamentally discrete space and time
Quantum electrodynamics (QED) from first principles

... (perspective) standard model of particles on a chessboard

Describe QED as a quantum circuit on a chessboard
Explainability

Efficient quantum simulation

Three challenges:
‘Relativistic’ discretization (A; = Ay)
Multi-particle

Three spatial dimensions



SPECIFICATIONS

A symmetry: gauge invariance
Fundamental particles: specific commutation relations
Many particles

Electromagnetic contribution
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O A required symmetry—Gauge invariance
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FRAMEWORK AND NON GAUGE INVARIANCE

Two fermions per site
-0 OO CO 00—

Gauge invariance (of the evolution T):

Togey=8p0T

Gauge transformations:

8o ) el (x) |1y
1) 1) if x#y.

Transport

@(x+1)
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20 (x)+ @(x+1)
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® Particle specifications—fermionic anti-commutation
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OPERATORS AND THEIR COMMUTATIONS

Specifications:

T . creates a fermion of type j at position x

axyj.

V;f:u: raises the gauge field at position x in direction p

Commutation relations

{ax,j: a;k} = 6><,y6j,k
[Vx:uv vy:v} =0
[VXZI.lv ay,j} =0

Working with commuting qubits: how to implement the anti-commutation?
ANSWER: using the Jordan-Wigner transform
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THE JORDAN-WIGNER TRANSFORM
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THE JORDAN-WIGNER TRANSFORM
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THE JORDAN-WIGNER TRANSFORM

T X.I e
a,; = =11) H Z, In 2D: fix an order
y=(x.J)
QO (0] O O O
O o @O O O
al
2D
O o O O [©@)




LOCALITY OF THE JORDAN-WIGNER TRANSFORM?

In short:

1D: Yes

2D (and higher): No.
Solution

Use the gauge field



® Working with many particles—second quantization
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MULTI-PARTICLE QW

QW unitary:
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MULTI-PARTICLE QW

QW unitary:

U= U()() —FT".eUfO |01>
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MULTI-PARTICLE QW: COMPUTING ¢
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MULTI-PARTICLE QW: COMPUTING ¢
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FREE MULTI-PARTICLE “DIRAC” QW
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FREE MULTI-PARTICLE “DIRAC” QW

t+e

I
1 0
1 0

DF - Ce [Tvs} [HT“SH]

Gauge invariance insured by
transport acting on gauge field.




FREE MULTI-PARTICLE “DIRAC” QW

Df =C. [T,S] [HT,SH]
QW = ®c€]
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(GOING THREE DIMENSIONAL

2D Dirac Eq.: two amplitudes (spin up and down)
3D Dirac Eq.: four amplitudes

I I L 11|
2 — 4 qubits: | U — U
| | RN

U is a 16 x 16 unitary. Divide up in 2-qubit gates. X
For the swap: [

S=1leXel)XeX)(leXal) |

—S=(laXeNXeaX)(IeaX®I) 9(




@ Adding electromagnetic contribution—full QED



ELECTROMAGNETIC TERMS

Magnetic term: gauge field dynamics

PlA) = |n+1)
Electric term: interaction Dy = e (P+PD)
EN) = 111) _ _
De = eirtkE2 ..... + _____
............ o




® Conclusion and perspectives



CONCLUSION

Gauge invariance Jordan-Wigner
e(x+1) X y
—00—80—00—C0—
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Multi-particle Electromagnetic




PERSPECTIVES

Experiment

Implementation on quantum devices / experiments

Extensions
QCD (non-abelian gauge theory)
Different types of lattice / graph

Theory
Make the CA ‘plastic’ (proper continuous limit to QED)

Link between fermions and interacting-hardcore-bosons 7
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APPENDICES

21 Locality of the Jordan-Wigner transform
21 Interaction and gauge field dynamics (EM contribution)
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LOCALITY

Is the map ai — al ., local ?
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LOCALITY

Is the map ai — alH local 7

T X+1
a, qax =I1) H Z,|0)y*
x<y~<x+1

1D: yes
2D or higher: no

@O 00 @O OO CO
CO O 09 O o
O O O O CO

Non locality due to the JW order
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(GAUGE FIELD TO THE RESCUE

4= 1 5 Transport

i i _ f T
VXiﬂ = SX;T]ST ax+n’j Vx:n ax k = 3X+n’j(5x+n:—n5x:n)ax,k




(GAUGE FIELD TO THE RESCUE

Parity of gauge field is considered as a fermion: included in the JW order

y=<(x.j)
_ t t f — al i
VX:T] - SX:T]SXJrT]Z*T] ax+n,j sznaX,k - ax+n,j(sx+n:—n5x;n)ax,k
— (4
e | | Zy = (ax_._nijern:fn)(Si;nax,k)
y=xm )

ZIh = (=111



LOCALITY IN HIGHER DIMENSIONS!
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LOCALITY IN HIGHER DIMENSIONS!
|GO}+++ICO}+{COl GO} +++1CO}++ICOl
o @ @ o @ @
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ELECTRIC CONTRIBUTION (INTERACTION)

Simplest contribution using the electric
operator

E|l) =II)
that is anisotropic

2 _ p2
Ex:u - EX+H:7}L
and unitary

DE = e£€2g§E2



ELECTRIC CONTRIBUTION (INTERACTION)

Simplest contribution using the electric

operator Matches the Trotterization of the electric

Elly =I11) Hamiltonian:

. g
that is anisotropic F3d EA Z w T E2.)

2 2
EX: = Ex+p o8
AT

and unitary H De =e'2°F

D = o}t



MAGNETIC CONTRIBUTION (GAUGE DYNAMICS)




MAGNETIC CONTRIBUTION (GAUGE DYNAMICS)

Gauge invariant operator on gauge field
PX,LL,V = V)jJru:qu)Lr'vau:fv V)j+v:uv>j:v
= Vx:u VX+ nrv VT VT

X+vin Y xv




MAGNETIC CONTRIBUTION (GAUGE DYNAMICS)

Reformulation of gauge state

‘;1_3\(:77> —yaybyte |—n, —n, n, n)

XN X+ u:v

b
L :
a
¢

X1V X+v:ipn




MAGNETIC CONTRIBUTION (GAUGE DYNAMICS)

Reformulation of gauge state Gauge invariant ‘plaquette’ operator
‘;1_3\57> —yaybyte |—n, —n, n, n) P ‘3/2)271> = ‘abc, n+ 1>
Xip X4p:v (x, 1) (x+ 1)
n n

X1V X+v:ipn




MAGNETIC CONTRIBUTION (QUANTUM WALK)
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MAGNETIC CONTRIBUTION (QUANTUM WALK)

PIA) =|n+1)

PHnT1) = 1)

i3
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P~ 3 e i)
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MAGNETIC CONTRIBUTION (QUANTUM WALK)

PlA) =|n+1)
PHnT1) = 1)
P=3 [A)n+1]+|a+1)
ne2z
Q= 3 [a)n+if+

n€27Z+1

P+PT=P+Q

1)

Taking the exponential

Dg = exp ( 2ng)

one obtains the dynamics (n even)
D [7) =c|#) +is‘m>
D; ‘m> =is|n) + ¢ ‘m>

reminiscent of a ‘QW’



MAGNETIC CONTRIBUTION (QUANTUM WALK)

DQ DQ DQ DQ DQ
j I ) R S ﬁ:
/ D; D; Ds D, i

I A N
‘ Dy ‘ Dy ‘ Dg ‘ D, ‘ Dg
j I O S ﬁ:
/ D, D; D; D; i
I I I I I I I I
—n—4__n=2__ @ n+2 —~— n+4
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