
A relativistic discrete
spacetime formulation of

3+1 QED
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What we want.

Why? How?

Fundamentally discrete space and time

Quantum electrodynamics (QED) from first principles

... (perspective) standard model of particles on a chessboard

Describe QED as a quantum circuit on a chessboard

Explainability

Efficient quantum simulation

Three challenges:

‘Relativistic’ discretization (∆t = ∆x)

Multi-particle

Three spatial dimensions
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Specifications

A symmetry: gauge invariance

Fundamental particles: specific commutation relations

Many particles

Electromagnetic contribution
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Some conventions

The matter particles, fermions, at x

The interaction particles, boson/gauge field, at x : η

x x + µ

x + ν

x : µ
x + µ : −µ

x : ν

x + ν : −ν

x
y

t
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1 A required symmetry—Gauge invariance

2 Particle specifications—fermionic anti-commutation

3 Working with many particles—second quantization

4 Adding electromagnetic contribution—full QED

5 Conclusion and perspectives
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Framework

Two fermions per site

Gauge invariance (of the evolution T ):

T ◦ gφ = gφ ◦ T

Gauge transformations:

gx ,φ : |l⟩x 7→ e ilφ(x) |l⟩x

|l⟩y 7→ |l⟩y if x ̸= y .

2φ(x) +φ(x + 1)

Transport

φ(x)

φ(x + 1)

T ◦ gφ −→ φ(x)

̸= gφ ◦ T −→ φ(x + 1)
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Framework and non gauge invariance

Two fermions per site

Gauge invariance (of the evolution T ):

T ◦ gφ = gφ ◦ T
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Gauge invariance using a gauge field (bouncer)

−k l + 1 −l − 1 m

+

−

−k l −l m

opposite

gφ −→ (l − k + 1)φ(x) + (m− l)φ(x + 1)

gφ −→ (l + 1− k)φ(x) + (m− l − 1+ 1)φ(x + 1)

=
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Operators and their commutations

Specifications:

a†x ,j : creates a fermion of type j at position x

V †
x :µ: raises the gauge field at position x in direction µ

Commutation relations

{ax ,j , a
†
y ,k } = δx ,yδj ,k

[Vx :µ,Vy :ν] = 0

[Vx :µ, ay ,j ] = 0

Working with commuting qubits: how to implement the anti-commutation?
Answer: using the Jordan-Wigner transform
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The Jordan-Wigner transform

a†x ,j = |1⟩x ,j ⟨0|
∏

y≺(x ,j)

Zy

|00 00 00 00⟩

|00 10 00 00⟩
− |00 10 01 00⟩

++

x

++ −+ +

y

a†ya
†
x = −a†xa

†
y

|00 00 00 00⟩
|00 00 01 00⟩

+ |00 10 01 00⟩
++ ++ +

y

++

x
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The Jordan-Wigner transform

a†x ,j = |1⟩x ,j ⟨0|
∏

y≺(x ,j)

Zy In 2D: fix an order

a†x
2D

ν

µ
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Locality of the Jordan-Wigner transform?

In short:

1D: Yes

2D (and higher): No.

Solution

Use the gauge field
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Single-particle QW

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

QW unitary:

U =

(
U00 −e iθU∗

10

U10 e iθU∗
00

)
|01⟩
|10⟩

QCA unitary:

U = 1⊕ U ⊕ e iϕ

=


1 0 0 0
0 U00 −e iθU∗

10 0
0 U10 e iθU∗

00 0
0 0 0 e iϕ


|00⟩
|01⟩
|10⟩
|11⟩

Who is ϕ?
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Multi-particle QW
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Multi-particle QW: computing ϕ

U =


1 0 0 0

0 U00 −e iθU∗
10 0

0 U10 e iθU∗
00 0

0 0 0 e iϕ


ϕ ̸= θ =⇒ intrication. e.g. U = Id

U =


1 0 0 0

0 1 0 0
0 0 1 0

0 0 0 e iϕ

 = C [Pϕ]

No interaction =⇒ ϕ = θ

U =


1 0 0 0
0 U00 U01 0
0 U10 U11 0
0 0 0 U00U11 − U01U10


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Free multi-particle “Dirac” QW

DF = Cϵ [TνS] [HTµSH]

Gauge invariance insured by
transport acting on gauge field.

t

Tµ

H

S

H

Tµ

H

S

H

Tµ

H

S

H

Tµ

H

S

H

H

S

H

H

S

H
t + ϵ

3

Tν Tν Tν

S S S

S S S

t + 2ϵ
3

Cϵ Cϵ Cϵ

Cϵ Cϵ Cϵ

t + ϵ
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Free multi-particle “Dirac” QW

DF =Cϵ [TνS] [HTµSH]

QW =

[⊗
x

Cϵ

]
 ⊗
(x ,1),(x+ν,0)

Tν

⊗
x

S


(⊗

x

Hµ

) ⊗
(x ,1),(x+µ,0)

Tµ

⊗
x

S

(⊗
x

H†
µ

)
15 / 21



Going three dimensional

2D Dirac Eq.: two amplitudes (spin up and down)

3D Dirac Eq.: four amplitudes

U −→ U2 −→ 4 qubits:

U is a 16× 16 unitary. Divide up in 2-qubit gates.
For the swap:

S = (1⊕ X ⊕ 1)(X ⊕ X )(1⊕ X ⊕ 1)

−→ S = (I ⊗ X⊗ I )(X⊗ X)(I ⊗ X⊗ I ) X

X X

X

S
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1 A required symmetry—Gauge invariance

2 Particle specifications—fermionic anti-commutation

3 Working with many particles—second quantization

4 Adding electromagnetic contribution—full QED

5 Conclusion and perspectives
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Electromagnetic terms

Electric term: interaction

E |l⟩ = l |l⟩

DE = e iπkE
2

Magnetic term: gauge field dynamics

P |ñ⟩ =
∣∣∣ñ + 1

〉
DM = e iπk

′(P+P†)

-

+

- +

-

+

-+
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Conclusion

Gauge invariance

φ(x)

φ(x + 1)

Jordan-Wigner

++

x

++ −+ +

y

++ ++ +

y

++

x

Multi-particle

t

Tµ

H

S

H

Tµ

H

S

H

Tµ

H

S

H

Tµ

H

S

H

H

S

H

H

S

H
t + ϵ

3

Tν Tν Tν

S S S

S S S

t + 2ϵ
3

Cϵ Cϵ Cϵ

Cϵ Cϵ Cϵ

t + ϵ

Electromagnetic

-

+

- +

-

+

-+
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Perspectives

Experiment

Implementation on quantum devices / experiments

Extensions

QCD (non-abelian gauge theory)

Different types of lattice / graph

Theory

Make the CA ‘plastic’ (proper continuous limit to QED)

Link between fermions and interacting-hardcore-bosons ?
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Thank you

t

Tµ

H

S

H

Tµ

H

S

H

Tµ

H

S

H

Tµ

H

S

H

H

S

H

H

S

H
t + ϵ

3

Tν Tν Tν

S S S

S S S

t + 2ϵ
3

Cϵ Cϵ Cϵ

Cϵ Cϵ Cϵ

t + ϵ
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Appendices

21 Locality of the Jordan-Wigner transform

21 Interaction and gauge field dynamics (EM contribution)
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Locality

Is it local?

Is the map a†x 7→ a†x+1 local ?

a†x+1ax = |1⟩x+1 ⟨0|
∏

x≺y≺x+1

Zy |0⟩x ⟨1|

Answer

1D: yes

2D or higher: no

Local operator
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Locality

Is it local?

Is the map a†x 7→ a†x+1 local ?

a†x+1ax = |1⟩x+1 ⟨0|
∏

x≺y≺x+1

Zy |0⟩x ⟨1|

Answer

1D: yes

2D or higher: no

−1
Non-local operator

Non locality due to the JW order

21 / 21



Gauge field to the rescue

Parity of gauge field is considered as a fermion: included in the JW order

Operators

a†x ,j = |1⟩x ,j ⟨0|
∏

y≺(x ,j)

Zy

Vx :η = sx :ηs
†
x+η:−η

sx :η = rx :η
∏

y≺x :η

Zy

Z |l⟩ = (−1)l |l⟩

Transport

a†x+η,j

V †
x :η

ax ,k

= a†x+η,j(sx+η:−ηs
†
x :η)ax ,k

= (a†x+η,jsx+η:−η)(s
†
x :ηax ,k)
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Locality in higher dimensions!

a†x ,1 sx :η a†x ,1sx :η

a†x+η,jV
†
x :ηax ,k = (a†x+η,jsx+η:−η)(s

†
x :ηax ,k)
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Locality in higher dimensions!
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Electric contribution (interaction)

Simplest contribution using the electric
operator

E |l⟩ =l |l⟩

that is anisotropic

E 2
x :µ = E 2

x+µ:−µ

and unitary

DE = e
i
2ϵ

2g2
EE

2
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Electric contribution (interaction)

Simplest contribution using the electric
operator

E |l⟩ =l |l⟩

that is anisotropic

E 2
x :µ = E 2

x+µ:−µ

and unitary

DE = e
i
2ϵ

2g2
EE

2

Matches the Trotterization of the electric
Hamiltonian:

H2d
E =

g2
E

2
∆x

∑
x

(E 2
x :µ + E 2

x :ν)

∏
x :η

DE =e i∆tHE
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Magnetic contribution (gauge dynamics)

Gauge invariant operator on gauge field

Px ,µ,ν = V †
x+µ:−µV

†
x+ν+µ:−νV

†
x+ν:µ

V †
x :ν

= Vx :µVx+µ:νV
†
x+ν:µV

†
x :ν

-

+
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†
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†
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Magnetic contribution (gauge dynamics)

Reformulation of gauge state∣∣∣ãbcn〉 =V aV bV †c |−n,−n, n, n⟩

x : µ

x : ν

x + µ : ν

x + ν : µ

−n

n

−n

n

a
b

c
-

+

- +

-

+

-+
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Magnetic contribution (gauge dynamics)

Reformulation of gauge state∣∣∣ãbcn〉 =V aV bV †c |−n,−n, n, n⟩

x : µ

x : ν

x + µ : ν

x + ν : µ

−n

n

−n

n

a
b

c

Gauge invariant ‘plaquette’ operator

P
∣∣∣ãbcn〉 =

∣∣∣ ˜abc, n + 1
〉

(x ,µ)

(x ,ν)

(x + µ,ν)

(x + ν,µ)
-1

+1

-1

+1 Px
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Magnetic contribution (quantum walk)

P |ñ⟩ =
∣∣∣ñ + 1

〉
P†
∣∣∣ñ + 1

〉
= |ñ⟩

P̃ =
∑
n∈2Z

∣∣∣ñ〉〈ñ + 1
∣∣∣+ ∣∣∣ñ + 1

〉〈
ñ
∣∣∣

Q̃ =
∑

n∈2Z+1

∣∣∣ñ〉〈ñ + 1
∣∣∣+ ∣∣∣ñ + 1

〉〈
ñ
∣∣∣

P+P† = P̃ + Q̃

|ñ⟩

∣∣∣ñ + 1
〉

∣∣∣ñ + 2
〉

∣∣∣ñ + 3
〉

∣∣∣ñ + 4
〉

∣∣∣ñ + 5
〉

P

P̃Q̃
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P |ñ⟩ =
∣∣∣ñ + 1
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Magnetic contribution (quantum walk)

P |ñ⟩ =
∣∣∣ñ + 1

〉
P†
∣∣∣ñ + 1

〉
= |ñ⟩

P̃ =
∑
n∈2Z

∣∣∣ñ〉〈ñ + 1
∣∣∣+ ∣∣∣ñ + 1

〉〈
ñ
∣∣∣

Q̃ =
∑

n∈2Z+1

∣∣∣ñ〉〈ñ + 1
∣∣∣+ ∣∣∣ñ + 1

〉〈
ñ
∣∣∣

P+P† = P̃ + Q̃

Taking the exponential

DP̃ = exp

(
iϵ2

g2
m

2
P̃

)
one obtains the dynamics (n even)

DP̃
|ñ⟩ =c |ñ⟩+ is

∣∣∣ñ + 1
〉

DP̃

∣∣∣ñ + 1
〉
=is |ñ⟩+ c

∣∣∣ñ + 1
〉

reminiscent of a ‘QW’(
c is
is c

)
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Magnetic contribution (quantum walk)

D
P̃

D
P̃

D
P̃

D
P̃

D
P̃

D
P̃

D
P̃

D
P̃

D
P̃

D
P̃

D
P̃

D
P̃

D
P̃

D
P̃

D
P̃

D
P̃

D
P̃

D
P̃

D
Q̃

D
Q̃

D
Q̃

D
Q̃

D
Q̃

D
Q̃

D
Q̃

D
Q̃

D
Q̃

D
Q̃

ñ − 5
ñ − 4

ñ − 3
ñ − 2

ñ − 1
ñ

ñ + 1
ñ + 2

ñ + 3
ñ + 4
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