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Introduction



Causal compatibility

— Causal structure = observed and unobserved nodes +

theory for unobserved nodes + connectivity

e.g., classical bilocal network

A B C

1 2

— Causal compatibility = compatibility of a distribution with

a given causal structure
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Causal compatibility: applications

— Bell’s theorem

— non-locality without inputs

Renou, Bäumer, Boreiri, Brunner, Gisin, Beigi, arXiv:1905.04902

— quantifying freedom of choice in Bell’s theorem

Chaves et al, arXiv:2105.05721

— multipartite quantum or post-quantum entanglement

Coiteux-Roy, Wolfe, Renou, arXiv:2105.09381
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Causal compatibility: computational aspects

— Bell-like scenarios: one unobserved node → convex

problem → easy

— More general networks: several independent unobserved

nodes → nonconvex → hard
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Causal compatibility: approximations

— Inner approximations: based on human or computational

exploration of the search space

set of distributions compatible with network

(lower bounds for maximization problems,

certify feasibility)

Kriváchy et al, arXiv:1907.10552

— Outer approximations:

• nontight: entropic or algebraic inequalities

• powerful and asymptotically tight method: inflation

(upper bounds for maximization problems,

certify infeasibility)
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Objectives of the talk

— Define causal compatibility formally

— Construct outer approximations that are apparently

converging
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Causal compatibility in classical

networks, a.k.a. network locality



Tensor notation

Standard Tensor Components

Outcome

distribution
p(·, ·, ·) p p(a,b, c) =

p

a b c

Strategy with

two inputs
pA(·|·, ·) A pA(a|α, β) = A

a

α β

Uniform distribution on...

...{1, . . . ,n}
Un Un

i

= 1
n

...[0, 1]
U∞ U∞

x

= 1
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Tensor notation

Special case: deterministic strategies A such that

A

a

α β

= δ(a− f (α, β))

for some function f (·, ·)
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Causal compatibility in classical networks

Define

p ∈ L

 A B C

1 2


iff there exist A , B , C such that

p =

A B C

U∞ U∞

(w.l.o.g)

i.e., for all a,b, c :
p

a b c

=
∫
dαdβ A

a

α

B

b

α β

C

c

β
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Causal compatibility: identical strategies

Define

p ∈ L

 A B A

1 2


iff there exist A , B such that

p =

A B A

U∞ U∞

i.e., for all a,b,a′ :
p

a b a′

=
∫
dαdβ A

a

α

B

b

α β

A

a′

β
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Constructing converging outer

approximations



Step 1: Convexification

p ∈ L

 A B C

1 2

 iff there exist A , B , C

,
Λ

such that

p =

A B C

U∞ U∞

Λ

Convex but too permissive. Idea: forbid the agent to use Λ?
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Main lemma

If
q q

Λ

= p p

then∗ ∀λ : q

λ

= p

*Robust version:
∫
dλ

Λ

λ

∥∥∥∥∥∥ p − q

λ

∥∥∥∥∥∥
2

2

≤ 3

∥∥∥∥∥∥∥∥ p p −
q q

Λ

∥∥∥∥∥∥∥∥
1
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Step 1: Convexification

p ∈ L

 A B C

1 2

 iff there exist A , B , C ,
Λ

such that

p p =

A B C

U∞ U∞

A B C

U∞ U∞

Λ

Equivalent to the original problem thanks to the main lemma
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Step 2: Restricting the source output cardinality

p ∈ I(n)
restr

 A B C

1 2

 iff there exist A , B , C ,
Λ

such that

p p =

A B C

Un Un

A B C

Un Un

Λ
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Step 2: Restricting the source output cardinality

p ∈ I(n)
restr

 A B C

1 2

 iff there exist A , B , C ,
Λ

such that

p p =

A B C

Un Un

A B C

Un Un

Λ

Inner approximation I(n)
restr ⊆ L, but also I(n)

restr
n→∞−→ L
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Step 2: Restricting the source output cardinality

p ∈ I(n)
restr

 A B C

1 2

 iff there exist A , B , C ,
Λ

such that

p p =

A B C

Un Un

A B C

Un Un

Λ

Want outer approximations → let the agents use Λ a little bit?
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Postselection for additional correlations

Idea: replace

Un

...

Un

...

Un

...

Un

...
f

with

Un

...

Un

...

Un

...

Un

...
f

For instance, if n ≥ 4,

Un

i1

Un

i2

Un

i3

Un

i4

6=
4

=


1

n(n− 1)(n− 2)(n− 3)
if ix 6= iy

0 else

15
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Step 3: Adding postselection

p ∈ I(n)
restr

 A B C

1 2

 iff there exist A , B , C ,
Λ

such that

p p =

A B C

Un Un

A B C

Un Un

Λ

6=
4
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Λ
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p p =
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6=
4f

I(n)
f

and L are incomparable for general f . But if f → “trivial”

and n → ∞ then I(n)
f

→ L
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Step 3: Adding postselection

p ∈ I(n)
f

 A B C

1 2

 iff there exist A , B , C ,
Λ

such that

p p =

A B C

Un Un

A B C

Un Un

Λ

6=
4f

How to choose f ? The agents need some asymmetry to use

“different parts” of Λ
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Step 4: Fixing the postselection

p ∈ I(n)
6=

 A B C

1 2

 iff there exist A , B , C ,
Λ

such that

p p =

A B C

Un Un

A B C

Un Un

Λ

6=
4
6=
4

Answer: provide the agents with distinct values from the Un

sources

16



Step 4: Fixing the postselection

p ∈ I(n)
6=

 A B C

1 2

 iff there exist A , B , C ,
Λ

such that

p p =

A B C

Un Un

A B C

Un Un

Λ

6=
4
6=
4

Outer approximation: L ⊆ I(n)
6= (left as an exercise).

Furthermore, n → ∞ implies “ 6= ” → “trivial”, so I(n)
6=

n→∞−→ L
16



Results

— Definition of I(n)
6= (N ) for arbitrary network N

— Proofs of inclusions: L(N ) ⊆ I(n)
6= (N ) and

I(n+1)
6= (N ) ⊆ I(n)

6= (N )

— Convergence: if p

...
∈ I(n)

6= (N ), then

inf

q

...

∈ L (N )

∥∥∥∥ p

...
− q

...
∥∥∥∥
1

≤ c(N )√
n

+O
(

1

n
√
n

)

— Drawback: the linear program testing p

...
∈ I(n)

6= (N )

takes epoly(n) time/memory

VG, arXiv:2202.04103
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Inflation correspondence



Inflation correspondence

— Two equivalent formulations: I(n)
6= (N ) = I(n)

std
(N )

Standard

inflation

Postselected

inflation

Is an outer

approximation:

Converges:

— The present proof of convergence extends the original

proof to same-strategy networks

Navascuès, Wolfe, arXiv:1707.06476
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Outlook



Outlook

— Further developments to obtain new tools and solve open

problems in classical causal compatibility? E.g., still lack

noise-robust proofs of “genuine” multipartite nonlocality

Gisin, arXiv:1708.05556

— We still lack convergent outer approximations for

quantum causal compatibility, although some progress

has been made recently

Ligthart, Gachechiladze, Gross, arXiv:2110.14659

19
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Appendix



Solution: proof that L ⊆ I(n)
6= for n = 4

Let p ∈ L with prob. tensors A0 , B0 , C0 such that

p =

A0 B0 C0

U∞ U∞

We let

Λ

(x1,x2,x3,x4)
:=

U∞

x1

U∞

x3

U∞

x3

U∞

x4

A

a

i (x1,...,x4)

:= A0

a

xi

, B

b

i j (x1,...,x4)

:= B0

b

xi xj

, C

c

j (x1,...,x4)

:= C0

c

xj

20
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Solution: proof that L ⊆ I(n)
6= for n = 4

A B C A B C

U4 U4 U4 U4

Λ

6=
4
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Solution: proof that L ⊆ I(n)
6= for n = 4

=

A0 B0 C0

U∞ U∞

A0 B0 C0

U∞ U∞
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Solution: proof that L ⊆ I(n)
6= for n = 4

= p p

20



Inflation correspondence: the case of de Finetti

For any distribution p ,

∃
q

...

n

such that


p =

q

...

q

a1 a2 a3
...

an

=
q

aσ(1)aσ(2)aσ(3)
...

aσ(n)

if and only if

∃ A ,
Λ

such that p =

A A

Un Un

Λ

6=
2

6=
2

21
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a1 a2 a3
...

an

=
q

aσ(1)aσ(2)aσ(3)
...

aσ(n)

if and only if

∃ A ,
Λ

such that p

2/n
≈

A A

Un Un

Λ

6=
2
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De Finetti equivalence

For any distribution p , given q({Ai = ·}n
i=1

) such that

p = q(A1 = ·,A2 = ·)

and ∀{ai}ni=1,∀σ ∈ Sn : q({Aσ(i) = ai}ni=1) = q({Ai = ai}ni=1),

define first q =:
∑

λ Λ

λ
q(λ) where the q(λ) are deterministic

distributions, and then

A

a

i λ

:= q(λ)(Ai = a)
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De Finetti equivalence

For any distribution p , given A and
Λ

such that

p =

A A

Un Un

Λ

6=
2 ,

define q such that

q({Ai = ai}ni=1) =
∑
λ

Λ

λ 1

n!

∑
σ∈Sn

n∏
i=1

A

aσ(i)

i λ
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