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— Causal compatibility = compatibility of a distribution with
a given causal structure
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— Bell's theorem

— non-locality without inputs

Renou, Baumer, Boreiri, Brunner, Gisin, Beigi, arXiv:1905.04902

— quantifying freedom of choice in Bell's theorem
Chaves et al, arXiv:2105.05721

— multipartite quantum or post-quantum entanglement
Coiteux-Roy, Wolfe, Renou, arXiv:2105.09381
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— More general networks: several independent unobserved
nodes — nonconvex — hard ##
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Causal compatibility: approximations

— Inner approximations: based on human or computational
exploration of the search space

(lower bounds for maximization problems,

certify feasibility)

set of distributions compatible with network
Krivachy et al, arXiv:190710552
— Outer approximations:
« nontight: entropic or algebraic inequalities
« powerful and asymptotically tight method: inflation

(upper bounds for maximization problems,

certify infeasibility)



Objectives of the talk

— Define causal compatibility formally

— Construct outer approximations that are apparently
converging



Causal compatibility in classical
networks, a.k.a. network locality
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Tensor notation

Special case: deterministic strategies such that

for some function f(-,-)
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Causal compatibility: identical strategies
Define
(B
wee(SA/)
1 2

iff there exist , such that

«

a b a’
ie, foralla,b,a : %I —fdozdﬁ
ap B



Constructing converging outer
approximations
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Convex but too permissive. ldea: forbid the agent to use A?
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Equivalent to the original problem thanks to the main lemma
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Step 2: Restricting the source output cardinality

B (C
ﬁ ez, %/RVP iff there exist , , ,
1 2

such that

Want outer approximations — let the agents use A a little bit?
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Postselection for additional correlations

///////

Idea: replace + + 1l owith |1 12

0] (U] [0a] (O] (0] (U] 0] [V

For instance, if n > 4,

A{ ! if iy # i,

n(n—1)(n—-2)(n—-3)
0 else

—
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Step 3: Adding postselection
B (C
ﬁe I]S”) %/RWP iffthereexist,,,
1 2

such that

How to choose f? The agents need some asymmetry to use
“different parts” of A



Step 4: Fixing the postselection
B (C
ﬁ € z;”) %/R\/O iff there exist , , ,

such that

Answer: provide the agents with distinct values from the U,
sources



Step 4: Fixing the postselection
B (C
ﬁ € z;”) %/R\/O iff there exist , , ,

such that

Outer approximation: £ C I;”) (left as an exercise).

n—oo

Furthermore, n — oo implies “ # " — “trivial”, so I;”) — L
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— Definition of Z;”)(N) for arbitrary network A/

— Proofs of inclusions: £(N) C I;”)(J\/) and
0wy < TP (W)

— Convergence: if \@/ GI;”)(/\/), then

ol <o)

— Drawback: the linear program testing \@/ c I;”)(N)

takes ePo¥(" time/memory

VG, arXiv:2202.04103
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Inflation correspondence

— Two equivalent formulations: I;n)(N) = Is(fd)(/\/)

Standard Postselected
inflation inflation
Is an outer R o
. ) = %
approximation:
Converges: & =

— The present proof of convergence extends the original
proof to same-strategy networks

Navascueés, Wolfe, arXiv:1707.06476
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Outlook

— Further developments to obtain new tools and solve open
problems in classical causal compatibility? E.g,, still lack
noise-robust proofs of “genuine” multipartite nonlocality

Gisin, arXiv:1708.05556

— We still lack convergent outer approximations for
quantum causal compatibility, although some progress
has been made recently

Ligthart, Gachechiladze, Gross, arXiv:211014659
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De Finetti equivalence

For any distribution @ , given g({A; = -}1_,) such that

ﬁ =q(A =-A=")

and Y{a;}[L,,Yo € Sp : a({As()) = ai}iLq) = a({Ai = a;}L,),

A
define first g =: 3", = g™ where the g are deterministic
distributions, and then

a

— (A =a)

A

22



De Finetti equivalence

For any distribution ﬁ,given and such that

define g such that

q({Ai = ai}lLy) =

~[~]
B
M
=
B
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