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Quantum complexity

Quantum (circuit) complexity is a well-established concept in

quantum information theory.

I Which operations are hard and which are easy?

I Classical analogue is one of the most pervasive objects in CS.

I Definition of topological phases of matter.

I In the AdS/CFT correspondence.



Quantum circuit complexity

How many 2-local gates are necessary to implement a unitary (or a

state)?

≈ε

Denote the number of gates in a minimal decomposition by Cε(U).

Also, exact circuit complexity C(U) := C0(U).



Wormhole growth

AdS CFT

Complexity = Volume?

Susskind, Fort. Phys. Standford, Susskind, Phys. Rev. D Hartman, Maldacena, JHEP



Complexity growth: A universal phenomenon?

How does Cε(exp(itH)) grow for interacting system H.

Brown, Susskind, PRA

(Also recurrence after very long times: Micha l’s talk!)

Oszmaniec, Horodecki, Hunter-Jones, preprint



Notoriety of circuit complexity

I Almost no superpolynomial complexity lower bound for an

explicit unitary.

I Ruling out “accidental short-cuts”.

Jia, Wolf, preprint
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How to make progress?

I Superpolynomial complexity for particular Hamiltonians from

conjectures in computational complexity theory. Aaronson, Susskind and

Brandão, Bohdanowicz

I Random quantum circuits on n qubits: Draw gates iid from

the Haar measure on SU(4) or from fixed gate set G .

timetimetimetimetimetimetimetimetimetimetimetimetimetimetimetimetimetime

Brandão, Chemissany, Hunter-Jones, Kueng, Preskill, PRX Q



Counting arguments for complexity

Most unitaries are very complex:

I Uniform measure of balls Bε(U) is doubly exponentially small.
I Set MR : quantum circuits with R gates from a gate set G

have at most |G |R unitaries.
I =⇒ Exponentially many gates required to cover full unitary

group.



Partial derandomization: Unitary designs

I Unitary t-designs are pseudorandom distribuitions:

indistiguishable from Haar for degree t polynomials.

I Defined via t-fold twirl:

M(ν, t) :=

∫
U⊗t ⊗ U

⊗t
dν(U) =

∫
U⊗t ⊗ U

⊗t
dµH(U).

I
∫
U⊗t ⊗ U

⊗t
dµH(U) = Projector onto permutations.



Partial derandomization: Unitary designs

I Unitary t-designs are pseudorandom distribuitions:

indistiguishable from Haar for degree t polynomials.

I Defined via t-fold twirl:

M(ν, t) :=

∫
U⊗t ⊗ U

⊗t
dν(U) =

∫
U⊗t ⊗ U

⊗t
dµH(U).

I
∫
U⊗t ⊗ U

⊗t
dµH(U) = Projector onto permutations.



Partial derandomization: Unitary designs

I Unitary t-designs are pseudorandom distribuitions:

indistiguishable from Haar for degree t polynomials.

I Defined via t-fold twirl:

M(ν, t) :=

∫
U⊗t ⊗ U

⊗t
dν(U)≈

∫
U⊗t ⊗ U

⊗t
dµH(U).



Circuit lower bounds for unitary designs

I For U drawn from a unitary t-designs:

Cε(U) ≥ Ω(t).

I Draw |φ〉 from t-design. From union bound:

P

[
max
|ψ〉∈MR

|〈ψ|φ〉| ≥ (1− δ)

]
≤
∑
|ψ〉∈MR

P[|〈ψ|φ〉| ≥ (1− δ)]

I From Markov’s inequality:

P[|〈ψ|φ〉| ≥ (1− δ)]=P[|〈ψ|φ〉|2t ≥ (1− δ)2t ]≤E|〈ψ|φ〉|2t

(1− δ)2t

Brandão, Chemissany, Hunter-Jones, Kueng, Preskill, PRX Q
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Circuit lower bounds for unitary designs

I For U drawn from a unitary t-designs:

Cε(U) ≥ Ω(t).

I Combined we find:

P

[
max
|ψ〉∈MR

|〈ψ|φ〉| ≥ (1− δ)

]
≤|G |R(1− δ)−2t

(
2n + t − 1

t

)−1
I Scales roughly like (2n/t)−teO(R).

Brandão, Chemissany, Hunter-Jones, Kueng, Preskill, PRX Q



Sublinear scaling of complexity

I Random circuits form unitary t-designs in depth T = O(nt11).

I For circuit complexity:

Cε(U) ≥ Ω(T 1/11),

for t ≤ 2n/2.

Brandão, Harrow, Horodecki, Comm. Math. Phys.



Limitations

What can we hope for with current techniques?

I Current techniques might be improved.

I Spectral gap method of Brandão, Harrow and Horodecki:

λ2(M(ν, t)) := ||M(ν, t)−M(µH , t)||∞ = 1−
∆(Hn)

n
.

I Many-body techniques to bound spectral gap of

frustration-free Hn.
I Combine with exponential bound from convergence result.
I Translate to better notion of approximate design via norm

inequality.



Dissecting the BHH exponent

10.41 ≈ 1︸︷︷︸
1.

+

(
2︸︷︷︸
2.

+ 0.5︸︷︷︸
3.

)
×

log2 5 + log2(e)︸ ︷︷ ︸
4.

 .

1. From spectral gap to better notions of approximate designs.

2. Approximate orthogonality of permutations in the regime

t2 ≤ 2n.

3. Artefact of the proof technique.

4. Exponential bound on the spectral gap of the moment

operator:

λ2(M(ν, t)) ≤ 1− 1

n(5e)n
.



New bounds on the design depth

Theorem (Improved bounds for unitary designs )

Random quantum circuits for unitary t-designs in depth

T = O(nt5+o(1))

for t ≤ 2n/2. JH, preprint

5 + o(1) = 1︸︷︷︸
1.

+

 2︸︷︷︸
2.

+ 1.5
1√

log2(t)︸ ︷︷ ︸
3.

× log2(4)︸ ︷︷ ︸
4.

,

Improved bound on spectral gap:

λ2(M(ν, t)) ≤ 1− 120000−1n−52−2n.
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Improved growth of circuit complexity

For the quantum circuit complexity:

Cε(U) ≥ Ω(T 1/(5+o(1))),



Cliffords

Many faces:

I Generated by Phase gate, Hadamard and controlled NOT:

Cl(2n) := 〈{S ,H,CZ}〉.
I Normalizer of the Pauli group:

Cl(2n) := {U ∈ U(2n),UPU† ⊆ P}.
I Symplectic group on vector space over finite field.

Many properties:

I Polynomially bounded complexity.

I Unitary 2-design.



Clifford interleaved walks

I Convergence via path coupling technique on unitary group.

I Near optimal convergence of auxiliary walk:

CL1 CL2 CL3 CL4 CL5

I Approximate uniform measure on Clifford group by local

random walk.

JH, Montealegre-Mora, Heinrich, Eisert, Gross, Roth



Dimension counting and exact circuit complexity

I dim(SU(2n)) = 4n − 1.

I Define sets

U(R) := {U,U = UR . . .U1,Ui 2-local gates}.

I dimU(R) ≤ dimSU(4) ∗ R = 15R.

I Not enough parameters to generate a set of positive measure.

I Partial derandomization: Lower bounds on

dimUbw(T ) := dim{U,U = UnT . . .U1, in brickwork arrangement}.
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Tools

C(eiH) dimUbw(T )

I Toolkit from topology and (semi)algebraic geometry.

I Reduced to combinatorial problem: Inserting Pauli operators

into circuits:



Many independent matrices
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Linear growth of exact circuit complexity

Theorem (Brown-Susskind for exact circuit complexity)

U = random quantum circuit in brickwork architecture.

C(U) ≥ # of gates

9n2
− n

3
.

with unit probability, until the number of gates grows to

# of gates/n2 ≥ 4n − 1.

JH, Faist, Kothakonda, Eisert, Yunger Halpern, Nature Physics, Li, preprint



Future science

I Perfect incompressibility of polynomial quantum circuits.

I Quantum circuit lower bounds for output distributions.

I Brown-Susskind for error robust circuit complexity.


