Linear growth of quantum circuit complexity

Jonas Haferkamp Dahlem center for complex quantum systems

Based on work with:

P. Faist, N. B. T. Kothakonda, J. Eisert, N. Yunger Halpern

Quantum (circuit) complexity is a well-established concept in quantum information theory.

- Which operations are hard and which are easy?
- Classical analogue is one of the most pervasive objects in CS.
- Definition of topological phases of matter.
- ► In the AdS/CFT correspondence.

Quantum circuit complexity

How many 2-local gates are necessary to implement a unitary (or a state)?

Denote the number of gates in a minimal decomposition by $C_{\varepsilon}(U)$. Also, exact circuit complexity $C(U) := C_0(U)$.

Wormhole growth

Complexity = Volume?

Susskind, Fort. Phys.

Standford, Susskind, Phys. Rev. D

Hartman, Maldacena, JHEP

Complexity growth: A universal phenomenon?

How does $C_{\varepsilon}(\exp(itH))$ grow for interacting system *H*.

Brown, Susskind, PRA

(Also recurrence after very long times: Michał's talk!)

Oszmaniec, Horodecki, Hunter-Jones, preprint

Notoriety of circuit complexity

Notoriety of circuit complexity

- Almost no superpolynomial complexity lower bound for an explicit unitary.
- Ruling out "accidental short-cuts".

Jia, Wolf, preprint

How to make progress?

- Superpolynomial complexity for particular Hamiltonians from conjectures in computational complexity theory. Aaronson, Susskind and Brandão, Bohdanowicz
- Random quantum circuits on n qubits: Draw gates iid from the Haar measure on SU(4) or from fixed gate set G.

Counting arguments for complexity

Most unitaries are very complex:

- ▶ Uniform measure of balls $B_{\varepsilon}(U)$ is doubly exponentially small.
- ► Set M_R: quantum circuits with R gates from a gate set G have at most |G|^R unitaries.
- Exponentially many gates required to cover full unitary group.

Partial derandomization: Unitary designs

Unitary t-designs are pseudorandom distribuitions: indistiguishable from Haar for degree t polynomials.

Partial derandomization: Unitary designs

Unitary t-designs are pseudorandom distribuitions: indistiguishable from Haar for degree t polynomials.

Defined via t-fold twirl:

$$M(\nu, t) := \int U^{\otimes t} \otimes \overline{U}^{\otimes t} \mathrm{d}\nu(U) = \int U^{\otimes t} \otimes \overline{U}^{\otimes t} \mathrm{d}\mu_{H}(U).$$

► $\int U^{\otimes t} \otimes \overline{U}^{\otimes t} d\mu_H(U) = Projector onto permutations.$

Partial derandomization: Unitary designs

Unitary t-designs are pseudorandom distribuitions: indistiguishable from Haar for degree t polynomials.

Defined via *t*-fold twirl:

$$M(
u,t) := \int U^{\otimes t} \otimes \overline{U}^{\otimes t} \mathrm{d}
u(U) pprox \int U^{\otimes t} \otimes \overline{U}^{\otimes t} \mathrm{d} \mu_H(U) \mathrm{d} u$$

► For *U* drawn from a unitary *t*-designs:

 $C_{\varepsilon}(U) \geq \Omega(t).$

► For *U* drawn from a unitary *t*-designs:

 $C_{\varepsilon}(U) \geq \Omega(t).$

• Draw $|\phi\rangle$ from *t*-design. From union bound:

$$P\left[\max_{|\psi\rangle\in M_{\mathcal{R}}}|\langle\psi|\phi\rangle|\geq (1-\delta)\right]\leq \sum_{|\psi\rangle\in M_{\mathcal{R}}}P[|\langle\psi|\phi\rangle|\geq (1-\delta)]$$

► For *U* drawn from a unitary *t*-designs:

 $C_{\varepsilon}(U) \geq \Omega(t).$

• Draw $|\phi\rangle$ from *t*-design. From union bound:

$$P\left[\max_{|\psi\rangle\in M_{\mathcal{R}}}|\langle\psi|\phi\rangle|\geq (1-\delta)\right]\leq \sum_{|\psi\rangle\in M_{\mathcal{R}}}P[|\langle\psi|\phi\rangle|\geq (1-\delta)]$$

From Markov's inequality:

$$\mathbf{P}[|\langle \psi | \phi \rangle| \ge (1-\delta)] = \mathbf{P}[|\langle \psi | \phi \rangle|^{2t} \ge (1-\delta)^{2t}] \le \frac{\mathbb{E}|\langle \psi | \phi \rangle|^{2t}}{(1-\delta)^{2t}}$$

Brandão, Chemissany, Hunter-Jones, Kueng, Preskill, PRX Q

► For *U* drawn from a unitary *t*-designs:

 $C_{\varepsilon}(U) \geq \Omega(t).$

► For *U* drawn from a unitary *t*-designs:

 $C_{\varepsilon}(U) \geq \Omega(t).$

• Draw $|\phi\rangle$ from *t*-design. From union bound:

$$P\left[\max_{|\psi\rangle\in M_{\mathcal{R}}}|\langle\psi|\phi\rangle|\geq (1-\delta)\right]\leq \sum_{|\psi\rangle\in M_{\mathcal{R}}}P[|\langle\psi|\phi\rangle|\geq (1-\delta)]$$

► For *U* drawn from a unitary *t*-designs:

 $C_{\varepsilon}(U) \geq \Omega(t).$

b Draw $|\phi\rangle$ from *t*-design. From union bound:

$$\Pr\left[\max_{|\psi\rangle\in M_{\mathcal{R}}}|\langle\psi|\phi\rangle|\geq (1-\delta)\right]\leq \sum_{|\psi\rangle\in M_{\mathcal{R}}}\Pr[|\langle\psi|\phi\rangle|\geq (1-\delta)]$$

From Markov's inequality:

$$\mathbf{P}[|\langle \psi | \phi \rangle| \geq (1-\delta)] = \mathbf{P}[|\langle \psi | \phi \rangle|^{2t} \geq (1-\delta)^{2t}] \leq \frac{\binom{2^n+t-1}{t}^{-1}}{(1-\delta)^{2t}}$$

Brandão, Chemissany, Hunter-Jones, Kueng, Preskill, PRX Q

► For *U* drawn from a unitary *t*-designs:

 $C_{\varepsilon}(U) \geq \Omega(t).$

Combined we find:

$$\Pr\left[\max_{|\psi\rangle\in M_{\mathcal{R}}}|\langle\psi|\phi\rangle|\geq (1-\delta)\right]\leq |\mathcal{G}|^{\mathcal{R}}(1-\delta)^{-2t}\binom{2^{n}+t-1}{t}^{-1}$$

• Scales roughly like $(2^n/t)^{-t}e^{O(R)}$.

Sublinear scaling of complexity

- **•** Random circuits form unitary *t*-designs in depth $T = O(nt^{11})$.
- ► For circuit complexity:

 $C_{\varepsilon}(U) \geq \Omega(T^{1/11}),$

for $t \leq 2^{n/2}$.

What can we hope for with current techniques?

- Current techniques might be improved.
- Spectral gap method of Brandão, Harrow and Horodecki:

$$\lambda_2(M(\nu,t)) := ||M(\nu,t) - M(\mu_H,t)||_{\infty} = 1 - \frac{\Delta(H_n)}{n}.$$

- Many-body techniques to bound spectral gap of frustration-free H_n.
- Combine with exponential bound from convergence result.
- Translate to better notion of approximate design via norm inequality.

Dissecting the BHH exponent

10.41
$$\approx \underbrace{1}_{1.} + \left(\underbrace{2}_{2.} + \underbrace{0.5}_{3.}\right) \times \left(\underbrace{\log_2 5 + \log_2(e)}_{4.}\right).$$

- 1. From spectral gap to better notions of approximate designs.
- 2. Approximate orthogonality of permutations in the regime $t^2 \leq 2^n$.
- 3. Artefact of the proof technique.
- 4. Exponential bound on the spectral gap of the moment operator:

$$\lambda_2(M(\nu,t)) \leq 1 - \frac{1}{n(5e)^n}$$

New bounds on the design depth

Theorem (Improved bounds for unitary designs) *Random quantum circuits for unitary t-designs in depth*

 $T = O(nt^{5+o(1)})$

for $t \leq 2^{n/2}$. JH, preprint

New bounds on the design depth

Theorem (Improved bounds for unitary designs) *Random quantum circuits for unitary t-designs in depth*

$$T = O(nt^{5+o(1)})$$

for $t \leq 2^{n/2}$. JH, preprint

$$5+o(1) = \underbrace{1}_{1.} + \left(\underbrace{2}_{2.} + \underbrace{1.5\frac{1}{\sqrt{\log_2(t)}}}_{3.}\right) \times \underbrace{\log_2(4)}_{4.},$$

Improved bound on spectral gap:

$$\lambda_2(M(\nu, t)) \le 1 - 120000^{-1} n^{-5} 2^{-2n}.$$

Improved growth of circuit complexity

For the quantum circuit complexity:

 $\overline{C_{\varepsilon}(U)} \ge \overline{\Omega(T^{1/(5+o(1))})},$

Many faces:

- ▶ Generated by Phase gate, Hadamard and controlled NOT: Cl(2ⁿ) := ⟨{S, H, CZ}⟩.
- ► Normalizer of the Pauli group: $Cl(2^n) := \{U \in U(2^n), U\mathcal{P}U^{\dagger} \subseteq \mathcal{P}\}.$
- Symplectic group on vector space over finite field.

Many properties:

- Polynomially bounded complexity.
- ► Unitary 2-design.

Clifford interleaved walks

- Convergence via path coupling technique on unitary group.
- ► Near optimal convergence of auxiliary walk:

 Approximate uniform measure on Clifford group by local random walk.

Dimension counting and exact circuit complexity

$$\blacktriangleright \dim(SU(2^n)) = 4^n - 1.$$

Define sets

 $\mathcal{U}(\mathbf{R}) := \{U, U = U_{\mathbf{R}} \dots U_1, U_i \text{ 2-local gates}\}.$

- dim $\mathcal{U}(\mathbf{R}) \leq$ dim $SU(4) * \mathbf{R} = 15\mathbf{R}$.
- Not enough parameters to generate a set of positive measure.

Dimension counting and exact circuit complexity

$$\blacktriangleright \dim(SU(2^n)) = 4^n - 1.$$

Define sets

 $\mathcal{U}(\mathbf{R}) := \{U, U = U_{\mathbf{R}} \dots U_1, U_i \text{ 2-local gates}\}.$

- dim $\mathcal{U}(\mathbf{R}) \leq$ dim $SU(4) * \mathbf{R} = 15\mathbf{R}$.
- Not enough parameters to generate a set of positive measure.
- Partial derandomization: Lower bounds on

 $\dim \mathcal{U}_{\mathrm{bw}}(\mathcal{T}) := \dim \{ U, U = U_{nT} \dots U_1, \text{ in brickwork arrangement} \}.$

 $\dim \mathcal{U}_{\mathrm{bw}}(\mathcal{T})$

- ► Toolkit from topology and (semi)algebraic geometry.
- Reduced to combinatorial problem: Inserting Pauli operators into circuits:

Many independent matrices

Many independent matrices

Many independent matrices

Linear growth of exact circuit complexity

Theorem (Brown-Susskind for exact circuit complexity) U = random quantum circuit in brickwork architecture.

$$\mathcal{C}(U) \geq \frac{\# \text{ of gates}}{9n^2} - \frac{n}{3}$$

with unit probability, until the number of gates grows to # of gates/ $n^2 \ge 4^n - 1$.

JH, Faist, Kothakonda, Eisert, Yunger Halpern, Nature Physics, Li, preprint

- Perfect incompressibility of polynomial quantum circuits.
- Quantum circuit lower bounds for output distributions.
- Brown-Susskind for error robust circuit complexity.