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Quantum complexity

Quantum (circuit) complexity is a well-established concept in
quantum information theory.

> Which are hard and which are easy?
» Classical analogue is one of the most pervasive objects in CS.
> Definition of topological phases of matter.

> In the correspondence.




Quantum circuit complexity

How many 2-local gates are necessary to implement a unitary (or a
state)?
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Denote the number of gates in a minimal decomposition by C.(U).
Also, exact circuit complexity C(U) := Co(U).




Wormhole growth

CFT
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Complexity growth: A universal phenomenon?

How does C.(exp(itH)) grow for interacting system H.
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Brown, Susskind, PRA

(Also after very long times: Michat's talk!)

Oszmaniec, Horodecki, Hunter-Jones, preprint



Notoriety of circuit complexity




Notoriety of circuit complexity

complexity lower bound for an

» Almost no

explicit unitary.

accidental short-cuts”.

» Ruling out

Jia, Wolf, preprint



How to make progress?

» Superpolynomial complexity for particular Hamiltonians from
conjectures in computational complexity theory. aaronson, Susskind and

Brand3o, Bohdanowicz

» Random quantum circuits on n qubits: Draw gates iid from
the Haar measure on SU(4) or from fixed gate set G.

Brand3o, Chemissany, Hunter-Jones, Kueng, Preskill, PRX Q



Counting arguments for complexity

Most unitaries are very complex:

> of balls B(U) is doubly exponentially small.

> Set Mg: quantum circuits with R gates from a gate set G
have at most |G| unitaries.

» — Exponentially many gates required to cover full unitary

group.




Partial derandomization: Unitary designs

P Unitary t-designs are pseudorandom distribuitions:
indistiguishable from Haar for degree ¢ polynomials.



Partial derandomization: Unitary designs

P Unitary t-designs are pseudorandom distribuitions:
indistiguishable from Haar for degree ¢ polynomials.

» Defined via t-fold twirl:

M(», ) ::/U®t®U®td (U):/U®t®U®tduH(U).

> [ Ut ® U djiy(U) = Projector onto permutations.
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Circuit lower bounds for unitary designs

» For U drawn from a unitary t-designs:

C.(U) > Q(1).
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» For U drawn from a unitary t-designs:
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Circuit lower bounds for unitary designs

» For U drawn from a unitary t-designs:

C.(U) > Q(1).

» Draw |¢) from t-design. From union bound:

P max [(00) 2 (- 0)] < X P[0}z (1)
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» From

bl |2t
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Circuit lower bounds for unitary designs

» For U drawn from a unitary t-designs:

C(U) > Q(1).

» Draw |¢) from t-design. From union bound:
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Circuit lower bounds for unitary designs

> For U drawn from a unitary t-designs:
C.(U) > Q(1).

» Combined we find:

2”+t—1>_1

P | max |(¢)]o)] > (1-9) |G|R(15)_2t< t
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> Scales roughly like (27 /1) te9(R).

Brand3o, Chemissany, Hunter-Jones, Kueng, Preskill, PRX Q



Sublinear scaling of complexity

» Random circuits form unitary t-designs in depth T = O(nt" ).
> For circuit complexity:

C.(U) = (T,

for t < 21/2,
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Brand3o, Harrow, Horodecki, Comm. Math. Phys.



Limitations

What can we hope for with current techniques?
> Current techniques might be improved.
» Spectral gap method of Branddo, Harrow and Horodecki:
A(Hn)
Xo(M(v, 1) = [M(v, £) = Mg, D) |ow = 1 = =2,

» Many-body techniques to bound spectral gap of
frustration-free H,,.

» Combine with bound from convergence result.

» Translate to better notion of approximate design via norm
inequality.



Dissecting the BHH exponent

1041 =~ 1 —i—( 2 + 0.5) x | logy 5 + log,(e)
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. From spectral gap to better notions of approximate designs.
2. of permutations in the regime

2 <2
3. Artefact of the proof technique.

4. Exponential bound on the spectral gap of the moment
operator:

YoM, 1) 1



New bounds on the design depth

Theorem (Improved bounds for unitary designs )
for unitary t-designs in depth
T =0(nt )

for t S 2n/2 JH, preprint



New bounds on the design depth
Theorem (Improved bounds for unitary designs )
for unitary t-designs in depth
T =0(nt )

for t S 2n/2 JH, preprint

1
5+0(1) = 1 +| 2 +15—— | xlogy(4),

Y Y V/log (1) —
3

Improved bound on spectral gap:

Ao(M(v, t)) < 1 —120000"1n~5272",



Improved growth of circuit complexity

For the quantum circuit complexity:

C(U) > QT o)y,




Cliffords

Many faces:
> Generated by Phase gate, Hadamard and controlled NOT:
Cl(2m) .= ({S, H,CZ}).
» Normalizer of the Pauli group:
Cl(27) :={U € U(2"), UPU' C P}.

> on vector space over finite field.

Many properties:
> bounded complexity.
» Unitary 2-design.



Clifford interleaved walks

> Convergence via path coupling technique on unitary group.

> Near optimal convergence of auxiliary walk:

III-I-III

> Approximate uniform measure on Clifford group by local

random walk.

JH, Montealegre-Mora, Heinrich, Eisert, Gross, Roth



Dimension counting and exact circuit complexity

> dim(SU(2")) =4" — 1.
> Define sets

UR) ={U,U=Ux...U, U 2-local gates}.

> dimlU(R) < dim SU(4) = i = 15F.

> Not enough parameters to generate a set of positive measure.



Dimension counting and exact circuit complexity

> dim(SU(2")) =4" — 1.
> Define sets

UR) ={U,U=Ux...U, U 2-local gates}.

» dimU(R) < dimSU(4) « R = 15R.
> Not enough parameters to generate a set of positive measure.

> Partial derandomization: Lower bounds on

dimUpy(T) :=dim{U,U = U,r ... U1, in brickwork arrangement}.



Tools
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» Toolkit from topology and (semi)algebraic geometry.
» Reduced to combinatorial problem: Inserting Pauli operators
into circuits:




Many independent matrices
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Linear growth of exact circuit complexity

Theorem (Brown-Susskind for exact circuit complexity)

U = in brickwork architecture.
# of gates n
>7 o7
c(u) = 9n2 3

with unit probability, until the number of gates grows to
# of gates/n® > 4" — 1.
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JH, Faist, Kothakonda, Eisert, Yunger Halpern, Nature Physics,  Li, preprint



Future science

> Perfect incompressibility of polynomial quantum circuits.
» Quantum circuit lower bounds for output distributions.

» Brown-Susskind for circuit complexity.



